JP6248393B2 - Temperature control system - Google Patents

Temperature control system Download PDF

Info

Publication number
JP6248393B2
JP6248393B2 JP2013014321A JP2013014321A JP6248393B2 JP 6248393 B2 JP6248393 B2 JP 6248393B2 JP 2013014321 A JP2013014321 A JP 2013014321A JP 2013014321 A JP2013014321 A JP 2013014321A JP 6248393 B2 JP6248393 B2 JP 6248393B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
water heat
water
phase region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013014321A
Other languages
Japanese (ja)
Other versions
JP2014145522A (en
Inventor
晋司 吉川
晋司 吉川
荒屋 享司
享司 荒屋
照男 西田
照男 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013014321A priority Critical patent/JP6248393B2/en
Publication of JP2014145522A publication Critical patent/JP2014145522A/en
Application granted granted Critical
Publication of JP6248393B2 publication Critical patent/JP6248393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は温調システムに関する。   The present invention relates to a temperature control system.

従来、温調システムとしては、特開2009−139082号公報(特許文献1)に記載されているように、熱媒が流れる熱媒回路を備えたものがある。この熱媒回路には、室外熱交換器、圧縮機、水熱交換器および膨張機構が1個ずつ設けられている。   Conventionally, as a temperature control system, there is one provided with a heat medium circuit through which a heat medium flows, as described in JP 2009-139082 A (Patent Document 1). This heat medium circuit is provided with one outdoor heat exchanger, one compressor, one water heat exchanger, and one expansion mechanism.

上記水熱交換器では、熱媒と水の熱交換により、温水が生成される。この温水を熱動弁を介して2次側熱交換端末に供給することにより、2次側熱交換端末の周囲を暖房することができる。   In the water heat exchanger, hot water is generated by heat exchange between the heat medium and water. By supplying this warm water to the secondary side heat exchange terminal via the thermal valve, the periphery of the secondary side heat exchange terminal can be heated.

特開2009−139082号公報JP 2009-139082 A

ところで、上記温調システムにおいて、水熱交換器を複数にし、各水熱交換器に2次側熱交換端末を接続する変更を行った場合、ある2次側熱交換端末の周囲の温度を高温にし、かつ、他の2次側熱交換端末の周囲の温度を低温するため、ある2次側熱交換端末に接続された熱動弁を全開にすると共に、他の2次側熱交換端末に接続された熱動弁を間欠的に開くと、問題が生じてしまう。   By the way, in the said temperature control system, when the water heat exchanger is made into two or more and the change which connects a secondary side heat exchange terminal to each water heat exchanger is performed, the temperature around a certain secondary side heat exchange terminal is made high. In order to lower the ambient temperature of the other secondary side heat exchange terminal, the thermal valve connected to a certain secondary side heat exchange terminal is fully opened and the other secondary side heat exchange terminal is opened. Problems arise when the connected thermal valve is opened intermittently.

すなわち、上記他の2次側熱交換端末には高温の温水が間欠的に流れることにより、2次側熱交換端末の温度変動が大きくなってしまうという問題が生じる。   That is, there is a problem that the temperature fluctuation of the secondary side heat exchange terminal becomes large due to intermittent flow of high-temperature hot water to the other secondary side heat exchange terminal.

また、上記他の2次側熱交換端末には高温の温水が間欠的に流れることにより、圧縮機の発停が頻発する結果、機器効率が悪くなってしまうという問題も生じる。   In addition, the hot water of high temperature intermittently flows in the other secondary side heat exchange terminals, and as a result of frequent start and stop of the compressor, there is a problem that the equipment efficiency is deteriorated.

そこで、本発明の課題は、2次側熱交換端末の温度変動を低減できると共に、機器効率を向上させることができる温調システムを提供することにある。   Then, the subject of this invention is providing the temperature control system which can improve apparatus efficiency while being able to reduce the temperature fluctuation of a secondary side heat exchange terminal.

上記課題を解決するため、本発明の温調システムは、
室外熱交換器、圧縮機、複数の水熱交換器および複数の膨張機構が順に連結された熱媒回路と、
上記複数の水熱交換器に接続された複数の2次側熱交換端末と、
上記水熱交換器を通過する熱媒と熱交換した温水または冷水を上記2次側熱交換端末に送るポンプと、
制御装置と
を備え、
上記制御装置は、上記各2次側熱交換端末の設定温度に基づいて、上記各水熱交換器内の熱媒の1相域の大きさと、上記各水熱交換器内の熱媒の2相域の大きさとを制御することを特徴としている。
In order to solve the above problems, the temperature control system of the present invention is:
An outdoor heat exchanger, a compressor, a plurality of water heat exchangers, and a heating medium circuit in which a plurality of expansion mechanisms are sequentially connected;
A plurality of secondary heat exchange terminals connected to the plurality of water heat exchangers;
A pump for sending hot water or cold water heat-exchanged with the heat medium passing through the water heat exchanger to the secondary heat exchange terminal;
A control device,
Based on the set temperature of each of the secondary side heat exchange terminals, the control device determines the size of one phase region of the heat medium in each of the water heat exchangers and 2 of the heat medium in each of the water heat exchangers. It is characterized by controlling the size of the phase range.

上記構成の温調システムによれば、上記熱媒は、室外熱交換器、圧縮機、水熱交換器および膨張機構を流れることにより、水熱交換器で水と熱交換する。このとき、上記水熱交換器内の熱媒の1相域の大きさと、水熱交換器内の熱媒の2相域の大きさを変えることにより、水熱交換器内の熱媒と水との熱交換量を変更して、水熱交換器から出る温水または冷水の温度を調節できる。   According to the temperature control system having the above configuration, the heat medium exchanges heat with water in the water heat exchanger by flowing through the outdoor heat exchanger, the compressor, the water heat exchanger, and the expansion mechanism. At this time, the heat medium and water in the water heat exchanger are changed by changing the size of the one phase region of the heat medium in the water heat exchanger and the size of the two phase region of the heat medium in the water heat exchanger. The amount of heat exchange with can be changed to adjust the temperature of hot or cold water coming out of the water heat exchanger.

したがって、上記制御装置が、各2次側熱交換端末の設定温度に基づいて、各水熱交換器内の熱媒の1相域の大きさと、各水熱交換器内の熱媒の2相域の大きさとを制御することにより、2次側熱交換端末の設定温度に応じた温水または冷水を2次側熱交換端末に供給することができる。その結果、上記2次側熱交換端末の温度変動を低減できる。   Therefore, based on the set temperature of each secondary side heat exchange terminal, the control device determines the size of one phase region of the heat medium in each water heat exchanger and the two phases of the heat medium in each water heat exchanger. By controlling the size of the area, hot water or cold water corresponding to the set temperature of the secondary side heat exchange terminal can be supplied to the secondary side heat exchange terminal. As a result, the temperature fluctuation of the secondary side heat exchange terminal can be reduced.

また、上記2次側熱交換端末の設定温度に応じた温水または冷水を2次側熱交換端末に供給することができるので、圧縮機の発停を減らして、機器効率を向上させることができる。   Moreover, since hot water or cold water according to the set temperature of the secondary side heat exchange terminal can be supplied to the secondary side heat exchange terminal, the start and stop of the compressor can be reduced, and the equipment efficiency can be improved. .

一実施形態の温調システムでは、
上記制御装置は、暖房運転時、上記各水熱交換器内の熱媒の2つの1相域の大きさと、上記各水熱交換器内の熱媒の1つの2相域の大きさとを制御する。
In the temperature control system of one embodiment,
The control device controls the size of two one-phase regions of the heat medium in each of the water heat exchangers and the size of one two-phase region of the heat medium in each of the water heat exchangers during heating operation. To do.

上記実施形態の温調システムによれば、暖房運転時、圧縮機から吐出された熱媒が、水熱交換器で水と熱交換されて凝縮する。この凝縮した熱媒は、膨張機構により膨張して、室外熱交換器で蒸発して室外の熱源から吸熱した後、圧縮機に戻る。このとき、上記水熱交換器を流れる水は、熱媒との熱交換により、温水となって、2次側熱交換器へ向かって流れる。   According to the temperature control system of the above embodiment, during the heating operation, the heat medium discharged from the compressor undergoes heat exchange with water in the water heat exchanger and condenses. The condensed heat medium expands by the expansion mechanism, evaporates in the outdoor heat exchanger, absorbs heat from the outdoor heat source, and returns to the compressor. At this time, the water flowing through the water heat exchanger becomes warm water by heat exchange with the heat medium and flows toward the secondary heat exchanger.

このように、上記水熱交換器内の水が熱媒と熱交換するとき、水熱交換器内の熱媒の2つの1相域の大きさと、水熱交換器内の熱媒の1つの2相域の大きさとを変えることにより、水熱交換器内の水と熱媒の熱交換量を変更できるので、水熱交換器から出る温水が2次側熱交換端末の設定温度から大きく外れるのを防ぐことができる。   Thus, when the water in the water heat exchanger exchanges heat with the heat medium, the size of two one-phase regions of the heat medium in the water heat exchanger and one of the heat medium in the water heat exchanger By changing the size of the two-phase region, the amount of heat exchange between the water and the heat medium in the water heat exchanger can be changed, so the hot water coming out of the water heat exchanger deviates significantly from the set temperature of the secondary heat exchange terminal. Can be prevented.

一実施形態の温調システムでは、
上記制御装置は、冷房運転時、上記各水熱交換器内の熱媒の1つの1相域の大きさと、上記各水熱交換器内の熱媒の1つの2相域の大きさとを制御する。
In the temperature control system of one embodiment,
The control device controls the size of one phase region of the heat medium in each of the water heat exchangers and the size of one two phase region of the heat medium in each of the water heat exchangers during cooling operation. To do.

上記実施形態の温調システムによれば、冷房運転時、圧縮機から吐出された熱媒が、室外熱交換器で室外の熱源と熱交換されて凝縮する。この凝縮した熱媒は、膨張機構により膨張して、水熱交換器で蒸発して水熱交換器内の水から吸熱した後、圧縮機に戻る。このとき、上記水熱交換器を流れる水は、熱媒との熱交換により、冷水となって、2次側熱交換器へ向かって流れる。   According to the temperature control system of the above embodiment, during the cooling operation, the heat medium discharged from the compressor is heat-exchanged with the outdoor heat source in the outdoor heat exchanger and condensed. The condensed heat medium expands by the expansion mechanism, evaporates in the water heat exchanger, absorbs heat from the water in the water heat exchanger, and returns to the compressor. At this time, the water flowing through the water heat exchanger becomes cold water through heat exchange with the heat medium and flows toward the secondary heat exchanger.

このように、上記水熱交換器内の水が熱媒と熱交換するとき、水熱交換器内の熱媒の1つの1相域の大きさと、水熱交換器内の熱媒の1つの2相域の大きさとを変えることにより、水熱交換器内の水と熱媒の熱交換量を変更できるので、水熱交換器から出る冷水の温度が2次側熱交換端末の設定温度から大きく外れるのを防ぐことができる。   Thus, when the water in the water heat exchanger exchanges heat with the heat medium, the size of one phase region of the heat medium in the water heat exchanger and one of the heat medium in the water heat exchanger. By changing the size of the two-phase region, the amount of heat exchange between the water and the heat medium in the water heat exchanger can be changed, so the temperature of the cold water coming out of the water heat exchanger is It can be prevented from coming off greatly.

一実施形態の温調システムは、
上記水熱交換器内の熱媒の2相域の温度を検出するための2相域温度検出部を備える。
The temperature control system of one embodiment is
A two-phase region temperature detector for detecting the temperature of the two-phase region of the heat medium in the water heat exchanger is provided.

上記実施形態の温調システムによれば、上記2相域温度検出部を用いて、水熱交換器内の熱媒の2相域の温度を検出することができる。したがって、上記制御装置は、水熱交換器内の熱媒の2相域の温度に基づいて、その2相域の大きさを良好に制御することができる。   According to the temperature control system of the above embodiment, the temperature of the two-phase region of the heat medium in the water heat exchanger can be detected using the two-phase region temperature detection unit. Therefore, the said control apparatus can control the magnitude | size of the two-phase area | region favorably based on the temperature of the two-phase area | region of the heat medium in a water heat exchanger.

一実施形態の温調システムでは、
上記2相域温度検出部は、上記熱媒回路の上記水熱交換器近傍の部分に接続された圧力センサである。
In the temperature control system of one embodiment,
The two-phase region temperature detection unit is a pressure sensor connected to a portion near the water heat exchanger of the heat medium circuit.

上記実施形態の温調システムによれば、上記圧力センサは、熱媒回路の水熱交換器近傍の部分に接続されているので、水熱交換器内の熱媒の圧力を正確に検出することができる。したがって、上記制御装置は、水熱交換器内の熱媒の圧力に基づいて、水熱交換器内の熱媒の2相域の温度を正確に検出することができる。   According to the temperature control system of the above embodiment, since the pressure sensor is connected to a portion near the water heat exchanger of the heat medium circuit, the pressure of the heat medium in the water heat exchanger can be accurately detected. Can do. Therefore, the said control apparatus can detect the temperature of the two-phase area | region of the heat medium in a water heat exchanger correctly based on the pressure of the heat medium in a water heat exchanger.

一実施形態の温調システムでは、
上記2相域温度検出部は、上記水熱交換器に取り付けられた2相域用温度センサである。
In the temperature control system of one embodiment,
The two-phase region temperature detection unit is a two-phase region temperature sensor attached to the water heat exchanger.

上記実施形態の温調システムによれば、上記2相域用温度センサは、水熱交換器に取り付けられているので、水熱交換器内の熱媒の2相域の温度を正確に検出することができる。   According to the temperature control system of the above embodiment, since the temperature sensor for the two-phase region is attached to the water heat exchanger, the temperature of the two-phase region of the heat medium in the water heat exchanger is accurately detected. be able to.

一実施形態の温調システムは、
暖房運転時に上記水熱交換器内の熱媒の1相域の温度を検出するための第1の1相域用温度センサを備え、
上記制御装置は、暖房運転時、上記水熱交換器内の熱媒の2相域と、上記水熱交換器内の熱媒の1相域との温度差に基づいて、上記水熱交換器内の熱媒の1相域の大きさを制御する。
The temperature control system of one embodiment is
A first one-phase region temperature sensor for detecting the temperature of the one-phase region of the heat medium in the water heat exchanger during the heating operation;
In the heating operation, the control device is configured to change the water heat exchanger based on a temperature difference between the two-phase region of the heat medium in the water heat exchanger and the one-phase region of the heat medium in the water heat exchanger. Control the size of one phase region of the heating medium inside.

上記実施形態の温調システムによれば、上記制御装置は、暖房運転時、水熱交換器内の熱媒の2相域と、水熱交換器内の熱媒の1相域との温度差に基づいて、水熱交換器内の熱媒の1相域の大きさを制御するので、この制御の信頼性を高めることができる。   According to the temperature control system of the above-described embodiment, the control device is configured such that, during heating operation, the temperature difference between the two-phase region of the heat medium in the water heat exchanger and the one-phase region of the heat medium in the water heat exchanger. Since the size of one phase region of the heat medium in the water heat exchanger is controlled based on the above, the reliability of this control can be enhanced.

一実施形態の温調システムは、
冷房運転時に上記水熱交換器内の熱媒の1相域の温度を検出するための第2の1相域用温度センサを備え、
上記制御装置は、冷房運転時、上記水熱交換器内の熱媒の2相域と、上記水熱交換器内の熱媒の1相域との温度差に基づいて、上記水熱交換器内の熱媒の1相域の大きさを制御する。
The temperature control system of one embodiment is
A second temperature sensor for one phase region for detecting the temperature of the one phase region of the heat medium in the water heat exchanger during cooling operation;
In the cooling operation, the control device is configured to change the water heat exchanger based on a temperature difference between the two-phase region of the heat medium in the water heat exchanger and the one-phase region of the heat medium in the water heat exchanger. Control the size of one phase region of the heating medium inside.

上記実施形態の温調システムによれば、上記制御装置は、冷房運転時、水熱交換器内の熱媒の2相域と、水熱交換器内の熱媒の1相域との温度差に基づいて、水熱交換器内の熱媒の1相域の大きさを制御するので、この制御の信頼性を高めることができる。   According to the temperature control system of the embodiment described above, the control device is configured such that, during cooling operation, the temperature difference between the two-phase region of the heat medium in the water heat exchanger and the one-phase region of the heat medium in the water heat exchanger. Since the size of one phase region of the heat medium in the water heat exchanger is controlled based on the above, the reliability of this control can be enhanced.

本発明の温調システムは、各2次側熱交換端末の設定温度に基づいて、上記各水熱交換器内の熱媒の1相域の大きさと、上記各水熱交換器内の熱媒の2相域の大きさとを制御する制御装置を備えることによって、2次側熱交換端末の設定温度に応じた温水または冷水を2次側熱交換端末に供給することができるので、2次側熱交換端末の温度変動を低減できる。   The temperature control system of the present invention is based on the set temperature of each secondary heat exchange terminal, and the size of one phase region of the heat medium in each of the water heat exchangers and the heat medium in each of the water heat exchangers. By providing a control device that controls the size of the two-phase region, hot water or cold water corresponding to the set temperature of the secondary side heat exchange terminal can be supplied to the secondary side heat exchange terminal. Temperature fluctuation of the heat exchange terminal can be reduced.

また、上記設定温度に応じた温水または冷水を2次側熱交換端末を供給することができるので、サーモオフの繰り返しを減らして、機器効率を向上させることができる。   Moreover, since the secondary side heat exchange terminal can be supplied with hot water or cold water according to the set temperature, the repetition of thermo-off can be reduced and the equipment efficiency can be improved.

本発明の一実施形態の温調システムの概略構成図である。It is a schematic block diagram of the temperature control system of one Embodiment of this invention. 上記温調システムの暖房運転時の動作を説明するための模式図である。It is a schematic diagram for demonstrating the operation | movement at the time of the heating operation of the said temperature control system. 上記温調システムの暖房運転時の他の動作を説明するための模式図である。It is a schematic diagram for demonstrating the other operation | movement at the time of the heating operation of the said temperature control system. 上記温調システムの冷房運転時の動作を説明するための模式図である。It is a schematic diagram for demonstrating the operation | movement at the time of the cooling operation of the said temperature control system. 上記温調システムの冷房運転時の他の動作を説明するための模式図である。It is a schematic diagram for demonstrating the other operation | movement at the time of the cooling operation of the said temperature control system.

以下、この発明を図示の実施形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

図1は、本発明の一実施形態の温調システムの概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of a temperature control system according to an embodiment of the present invention.

〔温調システムの全体構成〕
上記温調システムは、室外ユニット100と、この室外ユニット100に接続された第1,第2の床冷暖房ユニット200,300と、この第1の床冷暖房ユニット200に接続された第1,第2の床冷暖房パネル401,402と、第2の床冷暖房ユニット300に接続された第3,第4の床冷暖房パネル403,404と、室外ユニット100に接続された室内熱交換器501とを備えている。なお、第1〜第4の床冷暖房パネル401〜404は2次側熱交換端末の一例である。
[Overall configuration of temperature control system]
The temperature control system includes an outdoor unit 100, first and second floor cooling / heating units 200, 300 connected to the outdoor unit 100, and first and second floors connected to the first floor cooling / heating unit 200. Floor heating and cooling panels 401 and 402, third and fourth floor cooling and heating panels 403 and 404 connected to the second floor cooling and heating unit 300, and an indoor heat exchanger 501 connected to the outdoor unit 100. Yes. In addition, the 1st-4th floor air conditioning panel 401-404 is an example of a secondary side heat exchange terminal.

〔室外機100の構成〕
上記室外機100は、圧縮機101、この圧縮機101の吐出側に第1ポート102aが接続された四路弁102と、この四路弁102の第2ポート102bに一端が接続された室外熱交換器103と、この室外熱交換器103の他端に一端が接続された第1〜第3の電動膨張弁104〜106と、圧縮機101の吸入側に一端が接続されたアキュムレータ107とを有している。このアキュムレータ107の他端は四路弁102の第3ポート102cに接続されている。なお、第1,第2の電動膨張弁104,105は膨張機構の一例である。
[Configuration of outdoor unit 100]
The outdoor unit 100 includes a compressor 101, a four-way valve 102 having a first port 102a connected to the discharge side of the compressor 101, and an outdoor heat having one end connected to a second port 102b of the four-way valve 102. An exchanger 103, first to third electric expansion valves 104 to 106 having one end connected to the other end of the outdoor heat exchanger 103, and an accumulator 107 having one end connected to the suction side of the compressor 101. Have. The other end of the accumulator 107 is connected to the third port 102 c of the four-way valve 102. The first and second electric expansion valves 104 and 105 are an example of an expansion mechanism.

また、上記室外機100は、例えばサーミスタからなる第1〜第9の温度センサ108〜116と、この第1〜第9の温度センサ108〜116が検出した温度を示す信号を受ける室外機用制御装置117とを有している。なお、室外機用制御装置117は制御装置の一例である。   Further, the outdoor unit 100 is a control for an outdoor unit that receives, for example, first to ninth temperature sensors 108 to 116 made of a thermistor and signals indicating temperatures detected by the first to ninth temperature sensors 108 to 116. Device 117. The outdoor unit control device 117 is an example of a control device.

上記第1の温度センサ108は第1の電動膨張弁104近傍に設置されている。この第1の温度センサ108は、第1の電動膨張弁104と、後述する二重管式水熱交換器201との間の冷媒の温度を検出する。より詳しくは、第1の温度センサ108は、暖房運転時、二重管式水熱交換器201から出て第1の電動膨張弁104に入る直前の冷媒の温度を検出する。また、第1の温度センサ108は、上記冷媒の温度を示す信号を室外機用制御装置117に送出する。なお、第1の温度センサ108は、第1の1相域用温度センサの一例で、二重管式水熱交換器201は水熱交換器の一例で、上記冷媒は熱媒の一例である。   The first temperature sensor 108 is installed in the vicinity of the first electric expansion valve 104. The first temperature sensor 108 detects the temperature of the refrigerant between the first electric expansion valve 104 and a double-pipe hydrothermal exchanger 201 described later. More specifically, the first temperature sensor 108 detects the temperature of the refrigerant just before entering the first electric expansion valve 104 from the double-pipe hydrothermal exchanger 201 during the heating operation. The first temperature sensor 108 sends a signal indicating the temperature of the refrigerant to the outdoor unit control device 117. The first temperature sensor 108 is an example of a first one-phase temperature sensor, the double-pipe water heat exchanger 201 is an example of a water heat exchanger, and the refrigerant is an example of a heat medium. .

上記第2の温度センサ109は第2の電動膨張弁105近傍に設置されている。この第2の温度センサ109は、第2の電動膨張弁105と、後述する二重管式水熱交換器301との間の冷媒の温度を検出する。より詳しくは、第2の温度センサ109は、暖房運転時、二重管式水熱交換器301から出て第2の電動膨張弁105に入る直前の冷媒の温度を検出する。また、第2の温度センサ109は、上記冷媒の温度を示す信号を室外機用制御装置117に送出する。なお、第2の温度センサ109は第1の1相域用温度センサの一例で、二重管式水熱交換器301は水熱交換器の一例である。   The second temperature sensor 109 is installed in the vicinity of the second electric expansion valve 105. The second temperature sensor 109 detects the temperature of the refrigerant between the second electric expansion valve 105 and a double-pipe hydrothermal exchanger 301 described later. More specifically, the second temperature sensor 109 detects the temperature of the refrigerant just before exiting the double-pipe hydrothermal exchanger 301 and entering the second electric expansion valve 105 during heating operation. The second temperature sensor 109 sends a signal indicating the temperature of the refrigerant to the outdoor unit controller 117. The second temperature sensor 109 is an example of a first one-phase region temperature sensor, and the double-pipe water heat exchanger 301 is an example of a water heat exchanger.

上記第3の温度センサ110は、第3の電動膨張弁106と室内熱交換器501との間の冷媒の温度を検出する。   The third temperature sensor 110 detects the temperature of the refrigerant between the third electric expansion valve 106 and the indoor heat exchanger 501.

上記第4の温度センサ111は、四方弁102の第4ポート102dと室内熱交換器501との間の冷媒の温度を検出する。   The fourth temperature sensor 111 detects the temperature of the refrigerant between the fourth port 102d of the four-way valve 102 and the indoor heat exchanger 501.

上記第5の温度センサ112は合流/分流部120近傍に設置されている。この第5の温度センサ112は、合流/分流部120と二重管式水熱交換器301との間の冷媒の温度を検出する。より詳しくは、第5の温度センサ112は、冷房運転時、合流/分流部120を通過した直後の冷媒の温度を検出し、この温度を示す信号を室外機用制御装置117へ送出する。なお、第5の温度センサ112は、第2の1相域用温度センサの一例である。   The fifth temperature sensor 112 is installed in the vicinity of the merging / dividing part 120. The fifth temperature sensor 112 detects the temperature of the refrigerant between the merging / dividing unit 120 and the double-pipe water heat exchanger 301. More specifically, the fifth temperature sensor 112 detects the temperature of the refrigerant immediately after passing through the merging / dividing unit 120 during the cooling operation, and sends a signal indicating this temperature to the outdoor unit controller 117. The fifth temperature sensor 112 is an example of a second one-phase region temperature sensor.

上記第6の温度センサ113は合流/分流部120近傍に設置されている。この第6の温度センサ113は、合流/分流部120と二重管式水熱交換器201との間の冷媒の温度を検出する。より詳しくは、第6の温度センサ113は、冷房運転時、合流/分流部120を通過した直後の冷媒の温度を検出し、この温度を示す信号を室外機用制御装置117へ送出する。なお、第6の温度センサ113は、第2の1相域用温度センサの一例である。   The sixth temperature sensor 113 is installed in the vicinity of the merging / dividing part 120. The sixth temperature sensor 113 detects the temperature of the refrigerant between the merging / dividing unit 120 and the double-pipe water heat exchanger 201. More specifically, the sixth temperature sensor 113 detects the temperature of the refrigerant immediately after passing through the merging / dividing unit 120 during the cooling operation, and sends a signal indicating this temperature to the outdoor unit controller 117. The sixth temperature sensor 113 is an example of a second one-phase region temperature sensor.

上記第7の温度センサ114は、圧縮機101と四方弁102の第1ポート102aとの間の冷媒の温度を検出する。   The seventh temperature sensor 114 detects the temperature of the refrigerant between the compressor 101 and the first port 102a of the four-way valve 102.

上記第8の温度センサ115は、室外熱交換器103内の冷媒の温度を検出するために、室外熱交換器103に取り付けられている。   The eighth temperature sensor 115 is attached to the outdoor heat exchanger 103 in order to detect the temperature of the refrigerant in the outdoor heat exchanger 103.

上記第9の温度センサ116は、外気温を検出するために、室外熱交換器103の近傍に配置されている。   The ninth temperature sensor 116 is disposed in the vicinity of the outdoor heat exchanger 103 in order to detect the outside air temperature.

上記室外機用制御装置117は、インバータ(図示せず)を介して、圧縮機101を制御する。この室外機用制御装置117は、ソフトウェアで構成された第1〜第3の弁開度調節部117a〜117cを有している。   The outdoor unit control device 117 controls the compressor 101 via an inverter (not shown). The outdoor unit control device 117 includes first to third valve opening degree adjustment units 117a to 117c configured by software.

また、室外機用制御装置117は、暖房運転時および冷房運転時、二重管式水熱交換器201,301内の冷媒の圧力に基づいて、二重管式水熱交換器201,301内の冷媒の2相域の温度を検出する。   In addition, the outdoor unit control device 117 is used in the double-pipe water heat exchangers 201 and 301 based on the refrigerant pressure in the double-pipe water heat exchangers 201 and 301 during heating operation and cooling operation. The temperature of the two-phase region of the refrigerant is detected.

また、上記室外機用制御装置117は、暖房運転時、第1,第2の電動膨張弁104,105に入る直前の冷媒の温度に基づいて、二重管式水熱交換器201,301内の冷媒の1相域の温度を検出する。   In addition, the outdoor unit control device 117 includes a double pipe type water heat exchanger 201, 301 based on the temperature of the refrigerant just before entering the first and second electric expansion valves 104, 105 during the heating operation. The temperature of one phase region of the refrigerant is detected.

また、上記室外機用制御装置117は、冷房運転時、合流/分流部120を通過した直後の冷媒の温度に基づいて、二重管式水熱交換器201,301内の冷媒の1相域の温度を検出する。   In addition, the outdoor unit control device 117 is configured so that the one-phase region of the refrigerant in the double-pipe hydrothermal exchangers 201 and 301 is based on the temperature of the refrigerant immediately after passing through the merging / dividing unit 120 during the cooling operation. Detect the temperature.

上記第1の弁開度調節部117aは、二重管式水熱交換器201内の冷媒の1相域および2相域の大きさを制御するため、第1,第2の床冷暖房パネル401,402の設定温度に基づいて、第1の電動膨張弁104の開度を調節する。   The first valve opening degree adjustment unit 117a controls the size of the one-phase region and the two-phase region of the refrigerant in the double-pipe hydrothermal exchanger 201, so that the first and second floor cooling / heating panels 401 are provided. , 402 is adjusted based on the set temperature of the first electric expansion valve 104.

上記第2の弁開度調節部117bは、二重管式水熱交換器301内の冷媒の1相域および2相域の大きさを制御するため、第3,第4の床冷暖房パネル403,404の設定温度などに基づいて、第2の電動膨張弁105の開度を調節する。   The second valve opening adjustment unit 117b controls the size of the one-phase region and the two-phase region of the refrigerant in the double-pipe hydrothermal exchanger 301, so that the third and fourth floor cooling / heating panels 403 are provided. , 404, etc., the opening degree of the second electric expansion valve 105 is adjusted.

上記第3の弁開度調節部117cは、室内熱交換器501内の冷媒の1相域および2相域の大きさを制御するため、室内設定温度に基づいて、第2の電動膨張弁105の開度を調節する。   The third valve opening degree adjusting unit 117c controls the size of the one-phase region and the two-phase region of the refrigerant in the indoor heat exchanger 501, so that the second electric expansion valve 105 is based on the indoor set temperature. Adjust the opening.

ここで、「1相域」とは、冷媒が過熱ガスとなっている加熱ガス領域、または、冷媒が過冷却液となっている過冷却液領域のことである。また、「2相域」とは、冷媒が気相と液相が混じり合った気液2相状態となっている飽和領域のことである。   Here, the “one-phase region” refers to a heated gas region in which the refrigerant is a superheated gas or a supercooled liquid region in which the refrigerant is a supercooled liquid. The “two-phase region” is a saturation region where the refrigerant is in a gas-liquid two-phase state in which the gas phase and the liquid phase are mixed.

また、上記室外熱交換器103、圧縮機101、二重管式水熱交換器201,301および第1,第2の電動膨張弁104,105は順に連結されて、それぞれが冷媒回路601の一部を構成する。なお、冷媒回路601は熱媒回路の一例である。   The outdoor heat exchanger 103, the compressor 101, the double-pipe water heat exchangers 201 and 301, and the first and second electric expansion valves 104 and 105 are connected in order, and each of them is one of the refrigerant circuit 601. Parts. The refrigerant circuit 601 is an example of a heat medium circuit.

また、図示しないが、上記室外熱交換器103の近傍には室外ファンが配置されている。   Although not shown, an outdoor fan is disposed in the vicinity of the outdoor heat exchanger 103.

〔第1の床冷暖房ユニット200の構成〕
上記第1の床冷暖房ユニット200は、二重管式水熱交換器201、膨張タンク202、循環ポンプ203、往きヘッダ204および戻りヘッダ205を有している。なお、循環ポンプ203はポンプの一例である。
[Configuration of the first floor cooling and heating unit 200]
The first floor cooling / heating unit 200 includes a double-pipe water heat exchanger 201, an expansion tank 202, a circulation pump 203, a forward header 204, and a return header 205. The circulation pump 203 is an example of a pump.

上記二重管式水熱交換器201は、冷媒回路601の凝縮器または蒸発器として機能する。この二重管式水熱交換器201には、室外機100からの冷媒が流れる流路と、第1,第2の床冷暖房パネル401,402からの戻り水が流れる流路とが設けられている。これにより、室外機100からの冷媒と、第2の床冷暖房パネル401,402からの戻り水とが、互いに熱交換できるようになっている。   The double pipe type water heat exchanger 201 functions as a condenser or an evaporator of the refrigerant circuit 601. The double-pipe water heat exchanger 201 is provided with a flow path through which refrigerant from the outdoor unit 100 flows and a flow path through which return water from the first and second floor cooling / heating panels 401 and 402 flows. Yes. Thereby, the refrigerant from the outdoor unit 100 and the return water from the second floor cooling / heating panels 401 and 402 can exchange heat with each other.

上記膨張タンク202は、正負圧弁が付いており、二重管式水熱交換器201からの温水または冷水が溜まる。また、膨張タンク202の上部には給水口202aを設けており、給水口202aから膨張タンク202内に水が必要時に補充される。   The expansion tank 202 is provided with a positive / negative pressure valve, and hot water or cold water from the double-pipe hydrothermal exchanger 201 is accumulated therein. Further, a water supply port 202a is provided in the upper part of the expansion tank 202, and water is replenished into the expansion tank 202 from the water supply port 202a when necessary.

上記循環ポンプ203は、吸入側が膨張タンク202に接続されている一方、吐出側が往きヘッダ204に接続されている。これにより、循環ポンプ203は、二重管式水熱交換器201を通過する冷媒と熱交換した温水または冷水を第1,第2の床冷暖房パネル401,402に送ることができるようになっている。   The circulation pump 203 is connected to the expansion tank 202 on the suction side and connected to the forward header 204 on the discharge side. As a result, the circulation pump 203 can send hot water or cold water heat-exchanged with the refrigerant passing through the double-pipe water heat exchanger 201 to the first and second floor cooling and heating panels 401 and 402. Yes.

上記往きヘッダ204には、第1〜第4の熱動弁206〜209の一端と、水抜き栓210の一端とが接続されている。この第1,第2の熱動弁206,207の他端には、第1,第2の床冷暖房パネル401,402の水入口が接続されている。   One end of the first to fourth thermal valves 206 to 209 and one end of the drain plug 210 are connected to the forward header 204. Water inlets of the first and second floor cooling / heating panels 401 and 402 are connected to the other ends of the first and second thermal valves 206 and 207, respectively.

上記戻りヘッダ205には、第1,第2の床冷暖房パネル401,402の水出口が接続されている。これにより、第1,第2の床冷暖房パネル401,402の温水または冷水が第1の床冷暖房ユニット200に戻って、水が水回路211を循環できるようになっている。   The return header 205 is connected to water outlets of the first and second floor cooling / heating panels 401 and 402. Thereby, the hot water or cold water of the 1st, 2nd floor air conditioning panel 401,402 returns to the 1st floor air conditioning unit 200, and water can circulate through the water circuit 211 now.

また、上記第1の床冷暖房ユニット200は、例えばサーミスタからなる第1,第2の水温センサ212,213と、例えばサーミスタからなる第1の冷媒温センサ214と、圧力センサ215と、床冷暖房ユニット用制御装置216とを有している。なお、第1の冷媒温センサ214は第1の1相域用温度センサの一例である。また、圧力センサ215は、2相域温度検出部の一例であり、圧力センサの一例でもある。   The first floor cooling / heating unit 200 includes, for example, first and second water temperature sensors 212, 213 made of a thermistor, a first refrigerant temperature sensor 214 made of, for example, a thermistor, a pressure sensor 215, and a floor cooling / heating unit. Control device 216. The first refrigerant temperature sensor 214 is an example of a first one-phase temperature sensor. Moreover, the pressure sensor 215 is an example of a two-phase region temperature detection unit, and is also an example of a pressure sensor.

上記第1の水温センサ212は、二重管式水熱交換器201から第1,第2の床冷暖房パネル401,402へ向って流れる温水または冷水の温度を検出する。   The first water temperature sensor 212 detects the temperature of hot water or cold water flowing from the double-pipe water heat exchanger 201 toward the first and second floor cooling / heating panels 401 and 402.

上記第2の水温センサ213は、第1,第2の床冷暖房パネル401,402から二重管式水熱交換器201へ向かって流れる温水または冷水の温度を検出する。   The second water temperature sensor 213 detects the temperature of hot water or cold water flowing from the first and second floor cooling / heating panels 401 and 402 toward the double-pipe water heat exchanger 201.

上記第1の冷媒温センサ214は二重管式水熱交換器201近傍に設置されている。この第1の冷媒温センサ214は、第1の電動膨張弁104と二重管式水熱交換器201の間の冷媒の温度を検出する。より詳しくは、第1の冷媒温センサ214は、暖房運転時、二重管式水熱交換器201から出た直後の冷媒の温度を検出する。   The first refrigerant temperature sensor 214 is installed in the vicinity of the double-pipe water heat exchanger 201. The first refrigerant temperature sensor 214 detects the refrigerant temperature between the first electric expansion valve 104 and the double-pipe water heat exchanger 201. More specifically, the first refrigerant temperature sensor 214 detects the temperature of the refrigerant immediately after coming out of the double-pipe water heat exchanger 201 during the heating operation.

上記圧力センサ215は、熱媒回路601の二重管式水熱交換器201近傍の部分に接続されている。また、圧力センサ215は、四方弁102の第4ポート102dと二重管式水熱交換器201との間の冷媒の圧力を検出し、この圧力を示す信号を床冷暖房ユニット用制御装置216に送出する。   The pressure sensor 215 is connected to a portion in the vicinity of the double-pipe hydrothermal exchanger 201 of the heat medium circuit 601. The pressure sensor 215 detects the pressure of the refrigerant between the fourth port 102d of the four-way valve 102 and the double-pipe hydrothermal exchanger 201, and sends a signal indicating this pressure to the floor cooling / heating unit controller 216. Send it out.

上記床冷暖房ユニット用制御装置216は、圧力センサ215からの信号に基づいて、二重管式水熱交換器201内の冷媒の圧力を求め、この冷媒の圧力を示す信号を室外機用制御装置100に送出する。また、床冷暖房ユニット用制御装置216は、第1,第2の床冷暖房パネル401,402の設定温度を示す信号なども室外機用制御装置100に送出する。また、床冷暖房ユニット用制御装置216は、第1,第2の床冷暖房パネル401,402の設定温度や、第1,第2の水温センサ212,213が検出する温水または冷水の温度などに基づいて、循環ポンプ203および第1〜第4の熱動弁206〜209などを制御する。   The floor cooling / heating unit control device 216 obtains the pressure of the refrigerant in the double-pipe hydrothermal exchanger 201 based on the signal from the pressure sensor 215, and uses the signal indicating the pressure of the refrigerant as the outdoor unit control device. To 100. The floor cooling / heating unit control device 216 also sends a signal indicating the set temperature of the first and second floor cooling / heating panels 401, 402 to the outdoor unit control device 100. The floor cooling / heating unit control device 216 is based on the set temperature of the first and second floor cooling / heating panels 401, 402, the temperature of hot water or cold water detected by the first and second water temperature sensors 212, 213, and the like. The circulation pump 203 and the first to fourth thermal valves 206 to 209 are controlled.

また、上記第1の床冷暖房ユニット200は、二重管式水熱交換器201に取り付けられ、例えばサーミスタからなる第2,第3の冷媒温センサ217,218を有している。この第2の冷媒温センサ217は、二重管式水熱交換器201の冷媒流れ方向の略中央部に対向している。一方、第3の冷媒温センサ218は、二重管式水熱交換器201の冷媒流れ方向の一端部に対向している。なお、第2,第3の冷媒温センサ217,218は、2相域温度検出部の一例であり、2相域用温度センサの一例でもある。   The first floor cooling / heating unit 200 is attached to the double-pipe water heat exchanger 201 and includes second and third refrigerant temperature sensors 217 and 218 made of, for example, a thermistor. The second refrigerant temperature sensor 217 is opposed to the substantially central portion of the double-pipe hydrothermal exchanger 201 in the refrigerant flow direction. On the other hand, the third refrigerant temperature sensor 218 faces one end of the double-pipe hydrothermal exchanger 201 in the refrigerant flow direction. The second and third refrigerant temperature sensors 217 and 218 are an example of a two-phase region temperature detection unit and an example of a two-phase region temperature sensor.

〔第2の床冷暖房ユニット300の構成〕
上記第2の床冷暖房ユニット300は、二重管式水熱交換器301、膨張タンク302、循環ポンプ303、往きヘッダ304および戻りヘッダ305を有している。なお、循環ポンプ303はポンプの一例である。
[Configuration of second floor cooling / heating unit 300]
The second floor cooling / heating unit 300 includes a double-pipe water heat exchanger 301, an expansion tank 302, a circulation pump 303, a forward header 304, and a return header 305. The circulation pump 303 is an example of a pump.

上記二重管式水熱交換器301は、冷媒回路601の凝縮器または蒸発器として機能する。この二重管式水熱交換器301には、室外機100からの冷媒が流れる流路と、第3,第4の床冷暖房パネル403,404からの戻り水が流れる流路とが設けられている。これにより、室外機100からの冷媒と、第2の床冷暖房パネル403,404からの戻り水とが、互いに熱交換できるようになっている。   The double pipe type water heat exchanger 301 functions as a condenser or an evaporator of the refrigerant circuit 601. The double pipe type water heat exchanger 301 is provided with a flow path through which refrigerant from the outdoor unit 100 flows and a flow path through which return water from the third and fourth floor cooling / heating panels 403 and 404 flows. Yes. Thereby, the refrigerant from the outdoor unit 100 and the return water from the second floor cooling / heating panels 403 and 404 can exchange heat with each other.

上記膨張タンク302は、正負圧弁が付いており、二重管式水熱交換器301からの温水または冷水が溜まる。また、膨張タンク302の上部には給水口302aを設けており、給水口202aから膨張タンク302内に水が必要時に補充される。   The expansion tank 302 is provided with a positive / negative pressure valve, and hot water or cold water from the double-pipe hydrothermal exchanger 301 is accumulated therein. In addition, a water supply port 302a is provided in the upper part of the expansion tank 302, and water is replenished into the expansion tank 302 from the water supply port 202a when necessary.

上記循環ポンプ303は、吸入側が膨張タンク302に接続されている一方、吐出側が往きヘッダ304に接続されている。これにより、循環ポンプ303は、二重管式水熱交換器301を通過する冷媒と熱交換した温水または冷水を第3,第4の床冷暖房パネル403,404に送ることができるようになっている。   The circulation pump 303 has a suction side connected to the expansion tank 302 and a discharge side connected to the forward header 304. As a result, the circulation pump 303 can send hot water or cold water heat-exchanged with the refrigerant passing through the double-pipe water heat exchanger 301 to the third and fourth floor cooling / heating panels 403 and 404. Yes.

上記往きヘッダ304には、第1〜第4の熱動弁306〜309の一端と、第2の水抜き栓310の一端とが接続されている。この第1,第2の熱動弁306,307の他端には、第3,第4の床冷暖房パネル403,404の水入口が接続されている。   One end of the first to fourth thermal valves 306 to 309 and one end of the second drain plug 310 are connected to the forward header 304. Water inlets of the third and fourth floor cooling / heating panels 403 and 404 are connected to the other ends of the first and second thermal valves 306 and 307, respectively.

上記戻りヘッダ305には、第3,第4の床冷暖房パネル403,404の水出口が接続されている。これにより、第3,第4の床冷暖房パネル403,404の温水または冷水が第2の床冷暖房ユニット300に戻って、水が水回路311を循環できるようになっている。   The return header 305 is connected to the water outlets of the third and fourth floor cooling / heating panels 403 and 404. As a result, the hot water or cold water of the third and fourth floor cooling / heating panels 403, 404 returns to the second floor cooling / heating unit 300 so that water can circulate through the water circuit 311.

また、上記第2の床冷暖房ユニット300は、例えばサーミスタからなる第1,第2の水温センサ312,313と、例えばサーミスタからなる第1の冷媒温センサ314と、第1の圧力センサ315と、床冷暖房ユニット用制御装置316とを有している。なお、第1の冷媒温センサ314は第1の1相域用温度センサの一例である。また、圧力センサ315は、2相域温度検出部の一例であり,圧力センサの一例でもある。   The second floor cooling / heating unit 300 includes, for example, first and second water temperature sensors 312, 313 made of a thermistor, a first refrigerant temperature sensor 314 made of, for example, a thermistor, a first pressure sensor 315, And a floor cooling / heating unit control device 316. The first refrigerant temperature sensor 314 is an example of a first one-phase temperature sensor. The pressure sensor 315 is an example of a two-phase region temperature detection unit, and is also an example of a pressure sensor.

上記第1の水温センサ312は、二重管式水熱交換器301から第3,第4の床冷暖房パネル403,404へ向って流れる温水または冷水の温度を検出する。   The first water temperature sensor 312 detects the temperature of hot water or cold water flowing from the double-pipe water heat exchanger 301 toward the third and fourth floor cooling / heating panels 403 and 404.

上記第2の水温センサ313は、第3,第4の床冷暖房パネル403,404から二重管式水熱交換器301へ向かって流れる温水または冷水の温度を検出する。   The second water temperature sensor 313 detects the temperature of hot water or cold water flowing from the third and fourth floor cooling / heating panels 403 and 404 toward the double-pipe water heat exchanger 301.

上記第1の冷媒温センサ314は二重管式水熱交換器301近傍に設置されている。この第1の冷媒温センサ314は、第2の電動膨張弁105と二重管式水熱交換器301の間の冷媒の温度を検出する。より詳しくは、第1の冷媒温センサ314は、暖房運転時、二重管式水熱交換器301から出た直後の冷媒の温度を検出する。   The first refrigerant temperature sensor 314 is installed in the vicinity of the double pipe type water heat exchanger 301. The first refrigerant temperature sensor 314 detects the temperature of the refrigerant between the second electric expansion valve 105 and the double pipe water heat exchanger 301. More specifically, the first refrigerant temperature sensor 314 detects the temperature of the refrigerant immediately after coming out of the double-pipe water heat exchanger 301 during the heating operation.

上記圧力センサ315は、熱媒回路601の二重管式水熱交換器301近傍の部分に接続されている。また、圧力センサ315は、四方弁102の第4ポート102dと二重管式水熱交換器301との間の冷媒の圧力を検出し、この圧力を示す信号を床冷暖房ユニット用制御装置316に送出する。   The pressure sensor 315 is connected to a portion in the vicinity of the double-pipe hydrothermal exchanger 301 of the heat medium circuit 601. The pressure sensor 315 detects the refrigerant pressure between the fourth port 102d of the four-way valve 102 and the double-pipe hydrothermal exchanger 301, and sends a signal indicating this pressure to the floor cooling / heating unit controller 316. Send it out.

上記床冷暖房ユニット用制御装置316は、圧力センサ315からの信号に基づいて、二重管式水熱交換器301内の冷媒の圧力を求め、この冷媒の圧力を示す信号を室外機用制御装置100に送出する。また、床冷暖房ユニット用制御装置316は、第3,第4の床冷暖房パネル403,404の設定温度を示す信号なども室外機用制御装置100に送出する。また、床冷暖房ユニット用制御装置316は、第3,第4の床冷暖房パネル403,404の設定温度や、第1,第2の水温センサ312,313が検出した温水または冷水の温度などに基づいて、循環ポンプ303および第1〜第4の熱動弁306〜309などを制御する。   The floor cooling / heating unit control device 316 obtains the pressure of the refrigerant in the double-pipe hydrothermal exchanger 301 based on the signal from the pressure sensor 315, and uses the signal indicating the pressure of the refrigerant as the outdoor unit control device. To 100. The floor cooling / heating unit control device 316 also sends signals indicating the set temperatures of the third and fourth floor cooling / heating panels 403, 404 to the outdoor unit control device 100. The floor cooling / heating unit control device 316 is based on the set temperature of the third and fourth floor cooling / heating panels 403, 404, the temperature of hot water or cold water detected by the first and second water temperature sensors 312, 313, and the like. The circulation pump 303 and the first to fourth thermal valves 306 to 309 are controlled.

また、上記第2の床冷暖房ユニット300は、二重管式水熱交換器301に取り付けられ、例えばサーミスタからなる第2,第3の冷媒温センサ317,318を有している。この第2の冷媒温センサ317は、二重管式水熱交換器301の冷媒流れ方向の略中央部に対向している。一方、第3の冷媒温センサ318は、二重管式水熱交換器301の冷媒流れ方向の一端部に対向している。なお、第2,第3の冷媒温センサ317,318は、2相域温度検出部の一例であり、2相域用温度センサの一例でもある。   The second floor cooling / heating unit 300 is attached to the double-pipe hydrothermal exchanger 301 and has second and third refrigerant temperature sensors 317 and 318 made of, for example, thermistors. The second refrigerant temperature sensor 317 is opposed to a substantially central portion of the double pipe type water heat exchanger 301 in the refrigerant flow direction. On the other hand, the third refrigerant temperature sensor 318 is opposed to one end of the double-pipe hydrothermal exchanger 301 in the refrigerant flow direction. The second and third refrigerant temperature sensors 317 and 318 are an example of a two-phase region temperature detection unit and an example of a two-phase region temperature sensor.

〔第1〜第4の床冷暖房パネル401〜404の構成〕
上記第1〜第4の床冷暖房パネル401〜404は、蛇行形状に形成された第1〜第4の水循環パイプ411〜414を有している。この第1,第2の水循環パイプ411,412内には、二重管式水熱交換器201からの温水または冷水が流れる。一方、第3,第4の水循環パイプ413,414内では、二重管式水熱交換器301からの温水または冷水が流れる。
[Configuration of the first to fourth floor cooling and heating panels 401 to 404]
The first to fourth floor cooling / heating panels 401 to 404 have first to fourth water circulation pipes 411 to 414 formed in a meandering shape. In the first and second water circulation pipes 411 and 412, hot water or cold water from the double-pipe hydrothermal exchanger 201 flows. On the other hand, in the third and fourth water circulation pipes 413 and 414, hot water or cold water from the double-pipe water heat exchanger 301 flows.

〔室内熱交換器501の構成〕
上記室内熱交換器501は、一端が第3の電動膨張弁106に接続されていると共に、他端が四路弁102の第4ポート102dに接続されている。この室内熱交換器501には、室内熱交換器501内の冷媒の温度を検出するために、例えばサーミスタからなる第1の温度センサ502が取り付けられている。また、室内熱交換器501の近傍には、室温を検出するために、例えばサーミスタからなる第2の温度センサ503が配置されている。
[Configuration of indoor heat exchanger 501]
The indoor heat exchanger 501 has one end connected to the third electric expansion valve 106 and the other end connected to the fourth port 102 d of the four-way valve 102. In order to detect the temperature of the refrigerant in the indoor heat exchanger 501, a first temperature sensor 502 made of, for example, a thermistor is attached to the indoor heat exchanger 501. Further, a second temperature sensor 503 made of, for example, a thermistor is disposed in the vicinity of the indoor heat exchanger 501 in order to detect the room temperature.

また、図示しないが、室内熱交換器501の近傍には室内ファンが配置されている。   Although not shown, an indoor fan is disposed in the vicinity of the indoor heat exchanger 501.

〔温調システムの暖房運転〕
上記温調システムでは、暖房運転時、圧縮機101から吐出された冷媒は、四路弁102の第1,第4ポート102a,102dを通過して、一部が二重管式水熱交換器201内へ流入し、他の一部が二重管式水熱交換器301内へ流入する。そして、二重管式水熱交換器201,301において水と熱交換されて凝縮した冷媒は、第1,第2の電動膨張弁104,105により膨張して、室外熱交換器103で蒸発して室外の空気から吸熱した後、四路弁102の第2,第3ポート102b,102cと、アキュムレータ107とを通過して、圧縮機101に戻る。このとき、二重管式水熱交換器201,301を流れる水は、冷媒との熱交換により、温水となって、第1〜第4の床冷暖房パネル401〜404へ向かって流れる。
[Heating operation of temperature control system]
In the temperature control system, during heating operation, the refrigerant discharged from the compressor 101 passes through the first and fourth ports 102a and 102d of the four-way valve 102, and a part thereof is a double-pipe water heat exchanger. The other part flows into the double pipe type water heat exchanger 301. Then, the refrigerant condensed by heat exchange with water in the double-pipe water heat exchangers 201 and 301 expands by the first and second electric expansion valves 104 and 105 and evaporates in the outdoor heat exchanger 103. After absorbing heat from outdoor air, the air passes through the second and third ports 102b and 102c of the four-way valve 102 and the accumulator 107 and returns to the compressor 101. At this time, the water flowing through the double-pipe water heat exchangers 201 and 301 becomes hot water by heat exchange with the refrigerant and flows toward the first to fourth floor cooling and heating panels 401 to 404.

このような暖房運転時、室外機用制御装置117は、二重管式水熱交換器201,301内の冷媒の2つの1相域(過冷却液域,過熱ガス域)の大きさと、二重管式水熱交換器201,301内の冷媒の1つの2相域(飽和域)の大きさとを制御する。このとき、室外機用制御装置117は、二重管式水熱交換器201,301内の熱媒の2相域と、二重管式水熱交換器201,301内の熱媒の1相域(過冷却液域)との温度差に基づいて、その1相域の大きさを制御する。すなわち、上記1相域の大きさの制御は、いわゆる過冷却度に基づいて行われる。   During such heating operation, the outdoor unit control device 117 has two one-phase regions (supercooled liquid region and superheated gas region) of the refrigerant in the double-pipe hydrothermal exchangers 201 and 301, and two The size of one two-phase region (saturation region) of the refrigerant in the double pipe type water heat exchangers 201 and 301 is controlled. At this time, the outdoor unit control device 117 includes two phases of the heat medium in the double pipe water heat exchangers 201 and 301 and one phase of the heat medium in the double pipe water heat exchangers 201 and 301. Based on the temperature difference from the zone (supercooled liquid zone), the size of the one-phase zone is controlled. That is, the control of the size of the one-phase region is performed based on a so-called supercooling degree.

例えば、図2に示すように、第1,第3の床冷暖房パネル401,403の設定温度が50℃で、第2,第4の床冷暖房パネル402,404の設定温度が45℃である場合、室外機用制御装置117は、二重管式水熱交換器201,301の熱伝達効率が大きくなるように、二重管式水熱交換器201,301内の過冷却液域および過熱ガス域の大きさと、二重管式水熱交換器201,301内の冷媒の飽和域の大きさとを制御する。このとき、戻り水温A,B(二重管式水熱交換器201,301に入る水の温度)の水が二重管式水熱交換器201,301内の冷媒と熱交換して、往き水温A2,B(二重管式水熱交換器201,301から出る温水の温度)が50℃となるように、第1,第2の弁開度調節部117a,117bが第1,第2の電動膨張弁104,105の開度を調節する。 For example, as shown in FIG. 2, when the set temperature of the first and third floor cooling and heating panels 401 and 403 is 50 ° C., and the set temperature of the second and fourth floor cooling and heating panels 402 and 404 is 45 ° C. The outdoor unit control device 117 is configured so that the supercooled liquid region and the superheated gas in the double pipe water heat exchangers 201 and 301 are increased so that the heat transfer efficiency of the double pipe water heat exchangers 201 and 301 is increased. The size of the area and the size of the saturation area of the refrigerant in the double-pipe water heat exchangers 201 and 301 are controlled. At this time, the water of the return water temperatures A 1 and B 1 (temperature of water entering the double-pipe water heat exchangers 201 and 301) exchanges heat with the refrigerant in the double-pipe water heat exchangers 201 and 301. The first and second valve opening degree adjustment units 117a and 117b are arranged so that the outgoing water temperatures A 2 and B 2 (the temperature of the hot water discharged from the double-pipe water heat exchangers 201 and 301) are 50 ° C. 1, the opening degree of the second electric expansion valves 104 and 105 is adjusted.

ここで、上記二重管式水熱交換器201,301の熱伝達効率を大きくすることは、二重管式水熱交換器201,301内の冷媒の飽和域を大きくすることと同じである。このため、二重管式水熱交換器301内の冷媒の飽和域の大きさは、二重管式水熱交換器201内の冷媒の飽和域の大きさと略同じになる。   Here, increasing the heat transfer efficiency of the double pipe water heat exchangers 201 and 301 is the same as increasing the saturation region of the refrigerant in the double pipe water heat exchangers 201 and 301. . For this reason, the size of the saturation region of the refrigerant in the double tube water heat exchanger 301 is substantially the same as the size of the saturation region of the refrigerant in the double tube water heat exchanger 201.

また、例えば、図3に示すように、第1の床冷暖房パネル401の設定温度が50℃で、第2の床冷暖房パネル402の設定温度が45℃で、第3の床冷暖房パネル403の設定温度が40℃で、第4の床冷暖房パネル404の設定温度が30℃である場合、室外機用制御装置117は、二重管式水熱交換器201の熱伝達効率が大きくなるように、二重管式水熱交換器201内の過冷却液域および過熱ガス域の大きさと、二重管式水熱交換器201内の冷媒の飽和域の大きさとを制御する。また、室外機用制御装置117は、二重管式水熱交換器301の熱伝達効率が小さくなるように、二重管式水熱交換器301内の過冷却液域および過熱ガス域の大きさと、二重管式水熱交換器301内の冷媒の飽和域の大きさとを制御する。このとき、戻り水温A,Bの水が二重管式水熱交換器201,301内の冷媒と熱交換して、往き水温Aが50℃となると共に、往き水温Bが40℃となるように、第1,第2の弁開度調節部117a,117bが第1,第2の電動膨張弁104,105の開度を調節する。これにより、二重管式水熱交換器201内に流入する冷媒の量に比べて、二重管式水熱交換器301内に流入する冷媒の量が少なくなる。 For example, as shown in FIG. 3, the setting temperature of the first floor cooling / heating panel 401 is 50 ° C., the setting temperature of the second floor cooling / heating panel 402 is 45 ° C., and the setting of the third floor cooling / heating panel 403 is performed. When the temperature is 40 ° C. and the set temperature of the fourth floor cooling / heating panel 404 is 30 ° C., the outdoor unit controller 117 is configured so that the heat transfer efficiency of the double-pipe water heat exchanger 201 is increased. The size of the supercooled liquid region and superheated gas region in the double tube water heat exchanger 201 and the size of the refrigerant saturation region in the double tube water heat exchanger 201 are controlled. In addition, the outdoor unit control device 117 is configured to increase the size of the supercooled liquid region and the superheated gas region in the double-pipe water heat exchanger 301 so that the heat transfer efficiency of the double-pipe type water heat exchanger 301 is reduced. And the size of the saturation region of the refrigerant in the double-pipe water heat exchanger 301 are controlled. At this time, the water of the return water temperatures A 1 and B 1 exchanges heat with the refrigerant in the double-pipe water heat exchangers 201 and 301, the outgoing water temperature A 2 becomes 50 ° C., and the outgoing water temperature B 2 becomes 40 The first and second valve opening degree adjustment units 117a and 117b adjust the opening degree of the first and second electric expansion valves 104 and 105 so that the temperature becomes 0 ° C. Thereby, compared with the quantity of the refrigerant | coolant which flows in in the double pipe type water heat exchanger 201, the quantity of the refrigerant | coolant which flows in in the double pipe type water heat exchanger 301 becomes small.

ここで、上記二重管式水熱交換器301の熱伝達効率を小さくすることは、二重管式水熱交換器301内の冷媒の飽和域を小さくすることと同じである。このため、二重管式水熱交換器301内の冷媒の飽和域の大きさは、二重管式水熱交換器201内の冷媒の飽和域の大きさよりも小さくなる。   Here, reducing the heat transfer efficiency of the double pipe water heat exchanger 301 is the same as reducing the saturation region of the refrigerant in the double pipe water heat exchanger 301. For this reason, the size of the saturation region of the refrigerant in the double-pipe water heat exchanger 301 is smaller than the size of the saturation region of the refrigerant in the double-pipe water heat exchanger 201.

また、上記第1,第2の弁開度調節部117a,117bによる第1,第2の電動膨張弁104,105の開度の調節は、例えば、二重管式水熱交換器201の過冷却度の目標値よりも、二重管式水熱交換器301の過冷却度の目標値を大きく設定することで開始するようになっている。   In addition, the adjustment of the opening degree of the first and second electric expansion valves 104 and 105 by the first and second valve opening degree adjustment units 117a and 117b is, for example, an excess of the double pipe type water heat exchanger 201. The process is started by setting the target value of the supercooling degree of the double-pipe hydrothermal exchanger 301 to be larger than the target value of the cooling degree.

このように、上記二重管式水熱交換器201,301内の水が冷媒と熱交換するとき、二重管式水熱交換器201内の過冷却液域および過熱ガス域の大きさと、二重管式水熱交換器201内の冷媒の飽和域の大きさとを変えることにより、二重管式水熱交換器201,301内の水と冷媒の熱交換量を変更できるので、二重管式水熱交換器201,301から出る温水の温度が第1〜第4の床冷暖房パネル401〜404の設定温度から大きく外れるのを防ぐことができる。その結果、第1〜第4の床冷暖房パネル401〜404の温度変動を低減できる。   Thus, when the water in the double pipe water heat exchanger 201, 301 exchanges heat with the refrigerant, the size of the supercooled liquid area and the superheated gas area in the double pipe water heat exchanger 201, Since the amount of heat exchange between the water and the refrigerant in the double tube water heat exchangers 201 and 301 can be changed by changing the size of the saturation region of the refrigerant in the double tube water heat exchanger 201, It can prevent that the temperature of the warm water which comes out from the tubular water heat exchangers 201 and 301 largely deviates from the set temperature of the first to fourth floor cooling / heating panels 401 to 404. As a result, temperature fluctuations of the first to fourth floor cooling / heating panels 401 to 404 can be reduced.

また、上記二重管式水熱交換器201,301から出る温水の温度が第1〜第4の床冷暖房パネル401〜404の設定温度から大きく外れるのを防ぐことができるので、第1,第2の熱動弁206,207や、第1,第2の熱動弁306,307を間欠的に開いたとしても、圧縮機101の発停を減らすことができる。その結果、上記温調システムの機器効率を向上させることができる。   Moreover, since it can prevent that the temperature of the warm water which comes out of the said double tube type water heat exchanger 201,301 deviates largely from the setting temperature of the 1st-4th floor cooling-heating panel 401-404, it is 1st, 1st. Even if the second thermal valves 206 and 207 and the first and second thermal valves 306 and 307 are opened intermittently, the start and stop of the compressor 101 can be reduced. As a result, the device efficiency of the temperature control system can be improved.

上述したような暖房運転時の制御を室内熱交換器501に行うことは好ましくなない。何故なら、上記制御は、二重管式水熱交換器301の能力の一部を殺すことになるからである。   It is not preferable to perform the control during the heating operation as described above on the indoor heat exchanger 501. This is because the above control kills a part of the capacity of the double-pipe water heat exchanger 301.

また、上記制御をしなくても、室内熱交換器501であれば、室内ファンの回転数を落とすことで、室内温度を下げることができるからである。   Moreover, even if it does not perform the said control, if it is the indoor heat exchanger 501, indoor temperature can be lowered | hung by reducing the rotation speed of an indoor fan.

したがって、上記制御は、室内熱交換器501の制御とは無関係であり、当業者といえども、室内熱交換器501の制御から容易に想到できないものである。   Therefore, the above control is irrelevant to the control of the indoor heat exchanger 501, and even a person skilled in the art cannot easily conceive from the control of the indoor heat exchanger 501.

また、上記圧力センサ215,315は、熱媒回路601の二重管式水熱交換器201,301近傍の部分に接続されているので、二重管式水熱交換器201,301内の熱媒の圧力を正確に検出することができる。したがって、室外機用制御装置117は、暖房運転時、二重管式水熱交換器201,301内の熱媒の圧力に基づいて、二重管式水熱交換器201,301内の熱媒の2相域の温度を正確に検出することができる。したがって、室外機用制御装置117は、暖房運転時、二重管式水熱交換器201,301内の熱媒の2相域の温度に基づいて、その2相域の大きさを非常に良好に制御することができる。   Further, since the pressure sensors 215 and 315 are connected to the portion of the heat medium circuit 601 in the vicinity of the double-pipe water heat exchangers 201 and 301, the heat in the double-pipe water heat exchangers 201 and 301 is connected. The pressure of the medium can be accurately detected. Therefore, the outdoor unit controller 117 uses the heat medium in the double pipe water heat exchangers 201 and 301 based on the pressure of the heat medium in the double pipe water heat exchangers 201 and 301 during the heating operation. The temperature in the two-phase region can be accurately detected. Therefore, the outdoor unit control device 117 has a very good size of the two-phase region based on the temperature of the two-phase region of the heat medium in the double-pipe hydrothermal exchangers 201 and 301 during the heating operation. Can be controlled.

また、上記室外機用制御装置117は、暖房運転時、二重管式水熱交換器201,301内の熱媒の2相域と、二重管式水熱交換器201,301内の熱媒の1相域との温度差に基づいて、二重管式水熱交換器201,301内の熱媒の1相域の大きさを制御するので、この制御の信頼性を高めることができる。   In addition, the outdoor unit control device 117 is configured so that the two-phase region of the heat medium in the double-pipe water heat exchangers 201 and 301 and the heat in the double-pipe water heat exchangers 201 and 301 during heating operation. Since the size of the one-phase region of the heat medium in the double-pipe hydrothermal exchangers 201 and 301 is controlled based on the temperature difference from the one-phase region of the medium, the reliability of this control can be improved. .

〔温調システムの冷房運転〕
上記温調システムは、冷房運転時、圧縮機101から吐出された冷媒が、四路弁102の第1,第2ポート102a,102bを通過して、室外熱交換器103で室外の空気と熱交換されて凝縮する。この凝縮した冷媒は、第1,第2の電動膨張弁104,105により膨張して、二重管式水熱交換器201内で蒸発して二重管式水熱交換器201内の水から吸熱した後、四路弁102の第3,第4ポート102c,102dと、アキュムレータ107とを通過して、圧縮機101に戻る。このとき、二重管式水熱交換器201内を流れる水は、冷媒との熱交換により、冷水となって、第1〜第4の床冷暖房パネル401〜404へ向かって流れる。
[Cooling operation of temperature control system]
In the temperature control system, during cooling operation, the refrigerant discharged from the compressor 101 passes through the first and second ports 102a and 102b of the four-way valve 102, and the outdoor heat exchanger 103 and the outdoor air and heat It is exchanged and condensed. The condensed refrigerant is expanded by the first and second electric expansion valves 104 and 105, evaporated in the double pipe water heat exchanger 201, and from the water in the double pipe water heat exchanger 201. After absorbing the heat, it passes through the third and fourth ports 102 c and 102 d of the four-way valve 102 and the accumulator 107 and returns to the compressor 101. At this time, the water flowing in the double-pipe water heat exchanger 201 becomes cold water by heat exchange with the refrigerant and flows toward the first to fourth floor cooling / heating panels 401 to 404.

このような冷房運転時、室外機用制御装置117は、二重管式水熱交換器201,301内の冷媒の1つの1相域(過熱ガス域)の大きさと、二重管式水熱交換器201,301内の冷媒の1つの2相域(飽和域)の大きさとを制御する。このとき、室外機用制御装置117は、二重管式水熱交換器201,301内の熱媒の2相域と、二重管式水熱交換器201,301内の熱媒の1相域との温度差に基づいて、その1相域の大きさを制御する。すなわち、上記1相域の大きさの制御は、いわゆる過熱度に基づいて行われる。   During such cooling operation, the outdoor unit control device 117 determines the size of one phase region (superheated gas region) of the refrigerant in the double-pipe water heat exchangers 201 and 301, and the double-pipe type water heat. The size of one two-phase region (saturation region) of the refrigerant in the exchangers 201 and 301 is controlled. At this time, the outdoor unit control device 117 includes two phases of the heat medium in the double pipe water heat exchangers 201 and 301 and one phase of the heat medium in the double pipe water heat exchangers 201 and 301. The size of the one phase region is controlled based on the temperature difference from the region. That is, the control of the size of the one-phase region is performed based on the so-called superheat degree.

例えば、図4に示すように、第1,第3の床冷暖房パネル401,403の設定温度が10℃で、第2,第4の床冷暖房パネル402,404の設定温度が15℃である場合、室外機用制御装置117は、二重管式水熱交換器201,301の熱伝達効率が大きくなるように、二重管式水熱交換器201,301内の過熱ガス域の大きさと、二重管式水熱交換器201,301内の冷媒の飽和域の大きさとを制御する。このとき、戻り水温A,B(二重管式水熱交換器201,301に入る水の温度)の水が二重管式水熱交換器201,301内の冷媒と熱交換して、往き水温A,B(二重管式水熱交換器201,301から出る温水の温度)が10℃となるように、第1,第2の弁開度調節部117a,117bが第1,第2の電動膨張弁104,105の開度を調節する。 For example, as shown in FIG. 4, when the set temperature of the first and third floor cooling and heating panels 401 and 403 is 10 ° C., and the set temperature of the second and fourth floor cooling and heating panels 402 and 404 is 15 ° C. The outdoor unit control device 117 has a size of the superheated gas region in the double pipe water heat exchangers 201 and 301 so that the heat transfer efficiency of the double pipe water heat exchangers 201 and 301 is increased. The size of the saturation region of the refrigerant in the double-pipe water heat exchangers 201 and 301 is controlled. At this time, the water of the return water temperatures A 1 and B 1 (temperature of water entering the double-pipe water heat exchangers 201 and 301) exchanges heat with the refrigerant in the double-pipe water heat exchangers 201 and 301. The first and second valve opening degree adjustment units 117a and 117b are arranged so that the outgoing water temperatures A 2 and B 2 (the temperature of the hot water discharged from the double-pipe water heat exchangers 201 and 301) are 10 ° C. 1, the opening degree of the second electric expansion valves 104 and 105 is adjusted.

ここで、上記二重管式水熱交換器201,301の熱伝達効率を大きくすることは、二重管式水熱交換器201,301内の冷媒の飽和域を大きくすることと同じである。このため、二重管式水熱交換器301内の冷媒の飽和域の大きさは、二重管式水熱交換器201内の冷媒の飽和域の大きさと略同じになる。   Here, increasing the heat transfer efficiency of the double pipe water heat exchangers 201 and 301 is the same as increasing the saturation region of the refrigerant in the double pipe water heat exchangers 201 and 301. . For this reason, the size of the saturation region of the refrigerant in the double tube water heat exchanger 301 is substantially the same as the size of the saturation region of the refrigerant in the double tube water heat exchanger 201.

また、例えば、図5に示すように、第1の床冷暖房パネル401の設定温度が10℃で、第2の床冷暖房パネル402の設定温度が15℃で、第3の床冷暖房パネル403の設定温度が10℃で、第4の床冷暖房パネル404の設定温度が18℃である場合、室外機用制御装置117は、二重管式水熱交換器201の熱伝達効率が大きくなるように、二重管式水熱交換器201内の過冷却液域および過熱ガス域の大きさと、二重管式水熱交換器201内の冷媒の飽和域の大きさとを制御する。また、室外機用制御装置117は、二重管式水熱交換器301の熱伝達効率が小さくなるように、二重管式水熱交換器301内の過熱ガス域の大きさと、二重管式水熱交換器301内の冷媒の飽和域の大きさとを制御する。このとき、戻り水温A,Bの水が二重管式水熱交換器201,301内の冷媒と熱交換して、往き水温A2が10℃となると共に、往き水温Bが15℃となるように、第1,第2の弁開度調節部117a,117bが第1,第2の電動膨張弁104,105の開度を調節する。これにより、二重管式水熱交換器201内に流入する冷媒の量に比べて、二重管式水熱交換器301内に流入する冷媒の量が少なくなる。 For example, as shown in FIG. 5, the setting temperature of the first floor cooling / heating panel 401 is 10 ° C., the setting temperature of the second floor cooling / heating panel 402 is 15 ° C., and the setting of the third floor cooling / heating panel 403 is performed. When the temperature is 10 ° C. and the set temperature of the fourth floor cooling / heating panel 404 is 18 ° C., the outdoor unit controller 117 is configured so that the heat transfer efficiency of the double-pipe water heat exchanger 201 is increased. The size of the supercooled liquid region and superheated gas region in the double tube water heat exchanger 201 and the size of the refrigerant saturation region in the double tube water heat exchanger 201 are controlled. In addition, the outdoor unit control device 117 is configured so that the size of the superheated gas region in the double pipe water heat exchanger 301 and the double pipe are reduced so that the heat transfer efficiency of the double pipe water heat exchanger 301 is reduced. The size of the saturation region of the refrigerant in the water heater 301 is controlled. At this time, the water of the return water temperatures A 1 and B 1 exchanges heat with the refrigerant in the double-pipe water heat exchangers 201 and 301, the outgoing water temperature A 2 becomes 10 ° C., and the outgoing water temperature B 2 is 15 The first and second valve opening degree adjustment units 117a and 117b adjust the opening degree of the first and second electric expansion valves 104 and 105 so that the temperature becomes 0 ° C. Thereby, compared with the quantity of the refrigerant | coolant which flows in in the double pipe type water heat exchanger 201, the quantity of the refrigerant | coolant which flows in in the double pipe type water heat exchanger 301 becomes small.

ここで、上記二重管式水熱交換器301の熱伝達効率を小さくすることは、二重管式水熱交換器301内の冷媒の飽和域を小さくすることと同じである。このため、二重管式水熱交換器301内の冷媒の飽和域の大きさは、二重管式水熱交換器201内の冷媒の飽和域の大きさよりも小さくなる。   Here, reducing the heat transfer efficiency of the double pipe water heat exchanger 301 is the same as reducing the saturation region of the refrigerant in the double pipe water heat exchanger 301. For this reason, the size of the saturation region of the refrigerant in the double-pipe water heat exchanger 301 is smaller than the size of the saturation region of the refrigerant in the double-pipe water heat exchanger 201.

また、上記第1,第2の弁開度調節部117a,117bによる第1,第2の電動膨張弁104,105の開度の調節は、例えば、二重管式水熱交換器201の過熱度の目標値よりも、二重管式水熱交換器301の過熱度の目標値を大きく設定することで開始するようになっている。   Moreover, the adjustment of the opening degree of the first and second electric expansion valves 104 and 105 by the first and second valve opening degree adjustment units 117a and 117b is, for example, overheating of the double-pipe water heat exchanger 201. This is started by setting the target value of the superheat degree of the double-pipe water heat exchanger 301 to be larger than the target value of the degree.

このように、上記二重管式水熱交換器201,301内の水が冷媒と熱交換するとき、二重管式水熱交換器201,301内の冷媒の1つの過熱ガス域の大きさと、二重管式水熱交換器201,301内の冷媒の1つの飽和域の大きさとを変えることにより、二重管式水熱交換器201,301内の水と冷媒の熱交換量を変更できるので、二重管式水熱交換器201,301から出る冷水の温度が第1〜第4の床冷暖房パネル401〜404の設定温度から大きく外れるのを防ぐことができる。その結果、第1〜第4の床冷暖房パネル401〜404の温度変動を低減できる。   As described above, when the water in the double pipe water heat exchangers 201 and 301 exchanges heat with the refrigerant, the size of one superheated gas region of the refrigerant in the double pipe water heat exchangers 201 and 301 The amount of heat exchange between water and refrigerant in the double pipe water heat exchangers 201 and 301 is changed by changing the size of one saturation region of the refrigerant in the double pipe water heat exchangers 201 and 301. Since it can do, it can prevent that the temperature of the cold water which comes out of the double pipe type water heat exchanger 201,301 deviates largely from the setting temperature of the 1st-4th floor cooling / heating panels 401-404. As a result, temperature fluctuations of the first to fourth floor cooling / heating panels 401 to 404 can be reduced.

また、上記二重管式水熱交換器201,301から出る冷水の温度が第1〜第4の床冷暖房パネル401〜404の設定温度から大きく外れるのを防ぐことができるので、第1,第2の熱動弁206,207や、第1,第2の熱動弁306,307を間欠的に開いたとしても、圧縮機101の発停を減らすことができる。その結果、上記温調システムの機器効率を向上させることができる。   Moreover, since it can prevent that the temperature of the cold water which comes out of the said double pipe type water heat exchanger 201,301 remove | deviates greatly from the setting temperature of the 1st-4th floor air conditioning panel 401-404, it is the 1st, 1st. Even if the second thermal valves 206 and 207 and the first and second thermal valves 306 and 307 are opened intermittently, the start and stop of the compressor 101 can be reduced. As a result, the device efficiency of the temperature control system can be improved.

上述したような冷房運転時の制御を室内熱交換器501に行うことは好ましくなない。何故なら、上記制御は、二重管式水熱交換器301の能力の一部を殺すことになるからである。   It is not preferable to perform the control during the cooling operation as described above on the indoor heat exchanger 501. This is because the above control kills a part of the capacity of the double-pipe water heat exchanger 301.

また、上記制御をしなくても、室内熱交換器501であれば、室内ファンの回転数を落とすことで、室内温度を下げることができるからである。   Moreover, even if it does not perform the said control, if it is the indoor heat exchanger 501, indoor temperature can be lowered | hung by reducing the rotation speed of an indoor fan.

また、上記制御が室内熱交換器501で行われると、室内熱交換器501の近傍で結露が生じ、室内ファンの風がその結露を室内へ飛ばしてしまうからである。   In addition, when the above control is performed by the indoor heat exchanger 501, condensation occurs near the indoor heat exchanger 501, and the wind of the indoor fan blows the condensation into the room.

したがって、上記制御は、室内熱交換器501の制御とは無関係であり、当業者といえども、室内熱交換器501の制御から容易に想到できないものである。   Therefore, the above control is irrelevant to the control of the indoor heat exchanger 501, and even a person skilled in the art cannot easily conceive from the control of the indoor heat exchanger 501.

また、上記圧力センサ215,315は、熱媒回路601の二重管式水熱交換器201,301近傍の部分に接続されているので、二重管式水熱交換器201,301内の熱媒の圧力を正確に検出することができる。したがって、室外機用制御装置117は、冷房運転時、二重管式水熱交換器201,301内の熱媒の圧力に基づいて、二重管式水熱交換器201,301内の熱媒の2相域の温度を正確に検出することができる。したがって、室外機用制御装置117は、冷房運転時、二重管式水熱交換器201,301内の熱媒の2相域の温度に基づいて、その2相域の大きさを非常に良好に制御することができる。   Further, since the pressure sensors 215 and 315 are connected to the portion of the heat medium circuit 601 in the vicinity of the double-pipe water heat exchangers 201 and 301, the heat in the double-pipe water heat exchangers 201 and 301 is connected. The pressure of the medium can be accurately detected. Therefore, the outdoor unit controller 117 uses the heat medium in the double pipe water heat exchangers 201 and 301 based on the pressure of the heat medium in the double pipe water heat exchangers 201 and 301 during the cooling operation. The temperature in the two-phase region can be accurately detected. Therefore, the control unit 117 for the outdoor unit has a very good size of the two-phase area based on the temperature of the two-phase area of the heat medium in the double-pipe water heat exchangers 201 and 301 during the cooling operation. Can be controlled.

また、上記室外機用制御装置117は、冷房運転時、二重管式水熱交換器201,301内の熱媒の2相域と、二重管式水熱交換器201,301内の熱媒の1相域との温度差に基づいて、水熱交換器内の熱媒の1相域の大きさを制御するので、この制御の信頼性を高めることができる。   In addition, the outdoor unit control device 117 is configured so that the two-phase region of the heat medium in the double pipe water heat exchangers 201 and 301 and the heat in the double pipe water heat exchangers 201 and 301 during the cooling operation. Since the size of the one phase region of the heat medium in the water heat exchanger is controlled based on the temperature difference from the one phase region of the medium, the reliability of this control can be improved.

上記実施形態では、温調システムは、第1〜第4の床冷暖房パネル401〜404で暖房および冷房を行えるものであったが、第1〜第4の床冷暖房パネル401〜404で暖房と冷房の一方のみを行えるものであってもよい。   In the above embodiment, the temperature control system can perform heating and cooling with the first to fourth floor cooling / heating panels 401 to 404, but heating and cooling with the first to fourth floor cooling / heating panels 401 to 404 are possible. It is also possible to perform only one of the above.

上記実施形態では、第1〜第3の弁開度調節部117a,117bは、ソフトウェアで構成したが、スイッチ、タイマ、比較器、および増幅器等のハードウェアで構成してもよい。   In the above embodiment, the first to third valve opening degree adjustment units 117a and 117b are configured by software, but may be configured by hardware such as a switch, a timer, a comparator, and an amplifier.

上記実施形態では、第1,第2の床冷暖房ユニット200,300は、二重管式水熱交換器201,301を水熱交換器の一例として有していたが、例えばプレート式水熱交換器を水熱交換器の一例として有してもよい。   In the above embodiment, the first and second floor cooling / heating units 200 and 300 have the double-pipe water heat exchangers 201 and 301 as an example of the water heat exchanger. You may have a vessel as an example of a water heat exchanger.

上記実施形態において、圧力センサ215,315の代わりに、圧力スイッチを設けてもよい。   In the above embodiment, a pressure switch may be provided instead of the pressure sensors 215 and 315.

上記実施形態において、循環ポンプ203,303は、第1〜第4の床冷暖房パネル401〜404へ温水または冷水を連続的に流してもよいし、あるいは、断続的に流してもよい。   In the above embodiment, the circulation pumps 203 and 303 may continuously flow hot water or cold water to the first to fourth floor cooling and heating panels 401 to 404, or may flow intermittently.

上記実施形態において、循環ポンプ203の吐出量は、循環ポンプ303の吐出量と同じにしてもよいし、あるいは、循環ポンプ303の吐出量と異なるようにしてもよい。   In the above embodiment, the discharge amount of the circulation pump 203 may be the same as the discharge amount of the circulation pump 303, or may be different from the discharge amount of the circulation pump 303.

上記実施形態では、冷媒回路601に、第1,第2の電動膨張弁104,105を設けていたが、膨張機構の一例としての例えばキャピラリチューブを設けてもよい。   In the above embodiment, the first and second electric expansion valves 104 and 105 are provided in the refrigerant circuit 601, but a capillary tube as an example of an expansion mechanism may be provided.

上記実施形態において、第1〜第4の床冷暖房パネル401〜404のうちの少なくとも一つを、天井冷暖房パネル、天井冷房パネル、天井暖房パネル、壁冷暖房パネル、壁冷房パネル、壁暖房パネル、または、室内設置型ラジエタに換えてもよい。   In the above embodiment, at least one of the first to fourth floor cooling / heating panels 401 to 404 is a ceiling cooling / heating panel, ceiling cooling panel, ceiling heating panel, wall cooling / heating panel, wall cooling panel, wall heating panel, or Alternatively, it may be replaced with an indoor installation type radiator.

上記実施形態では、暖房運転時および冷房運手時、圧力センサ215,315を用いて、二重管式水熱交換器201,301内の熱媒の2相域の温度を検出していたが、第2,第3の冷媒温センサ217,218,317,318を用いて、二重管式水熱交換器201,301内の熱媒の2相域の温度を検出するようにしてもよい。   In the above embodiment, the temperature of the two-phase region of the heat medium in the double-pipe water heat exchangers 201 and 301 is detected using the pressure sensors 215 and 315 during heating operation and cooling operation. The temperature of the two-phase region of the heat medium in the double-pipe water heat exchangers 201 and 301 may be detected using the second and third refrigerant temperature sensors 217, 218, 317, and 318. .

上記実施形態では、暖房運転時、第1,第2の温度センサ108,109を用いて、二重管式水熱交換器201,301内の熱媒の1相域の温度を検出していたが、第1の冷媒温センサ214,314を用いて、二重管式水熱交換器201,301内の熱媒の1相域の温度を検出するようにしてもよい。   In the above embodiment, during the heating operation, the first and second temperature sensors 108 and 109 are used to detect the temperature of one phase region of the heat medium in the double-pipe hydrothermal exchangers 201 and 301. However, you may make it detect the temperature of the 1 phase area | region of the heat medium in the double pipe | tube type water heat exchangers 201 and 301 using the 1st refrigerant | coolant temperature sensor 214,314.

以上、本発明の具体的な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で種々変更して実施することができる。例えば、上記実施形態と上述の変形例とを適宜組み合わせたものを、本発明の一実施形態としてもよい。   Although specific embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. For example, what combined the said embodiment and the above-mentioned modification suitably is good also as one Embodiment of this invention.

101 圧縮機
103 室外熱交換器
104 第1の電動膨張弁
105 第2の電動膨張弁
108 第1の温度センサ
109 第2の温度センサ
112 第5の温度センサ
113 第6の温度センサ
117 室外機用制御装置
201,301 二重管式水熱交換器
203,303 循環ポンプ
214,314 第1の冷媒温センサ
215,315 圧力センサ
217,317 第2の冷媒温センサ
218,318 第3の冷媒温センサ
401 第1の床冷暖房パネル
402 第2の床冷暖房パネル
403 第3の床冷暖房パネル
404 第4の床冷暖房パネル
601 冷媒回路
DESCRIPTION OF SYMBOLS 101 Compressor 103 Outdoor heat exchanger 104 1st electric expansion valve 105 2nd electric expansion valve 108 1st temperature sensor 109 2nd temperature sensor 112 5th temperature sensor 113 6th temperature sensor 117 For outdoor units Control device 201, 301 Double pipe type water heat exchanger 203, 303 Circulation pump 214, 314 First refrigerant temperature sensor 215, 315 Pressure sensor 217, 317 Second refrigerant temperature sensor 218, 318 Third refrigerant temperature sensor 401 First floor cooling / heating panel 402 Second floor cooling / heating panel 403 Third floor cooling / heating panel 404 Fourth floor cooling / heating panel 601 Refrigerant circuit

Claims (8)

室外熱交換器(103)、圧縮機(101)、複数の水熱交換器(201,301)および複数の膨張機構(104,105)が順に連結された熱媒回路(601)と、
上記複数の水熱交換器(201,301)の各々に接続された複数の温調パネル(401,402,403,404)と、
上記水熱交換器(201,301)を通過する熱媒と熱交換した温水または冷水を上記温調パネル(401,402,403,404)に送るポンプ(203,303)と、
制御装置(117)と
を備え、
上記制御装置(117)は、上記複数の水熱交換器(201,301)の各々に接続された上記複数の温調パネル(401,402,403,404)同士間における設定温度の差に基づいて、上記各水熱交換器(201,301)内の熱媒の1相域の大きさと、上記各水熱交換器(201,301)内の熱媒の2相域の大きさとを制御することを特徴とする温調システム。
A heat medium circuit (601) in which an outdoor heat exchanger (103), a compressor (101), a plurality of water heat exchangers (201, 301), and a plurality of expansion mechanisms (104, 105) are sequentially connected;
A plurality of temperature control panels (401, 402, 403, 404) connected to each of the plurality of water heat exchangers (201, 301);
A pump (203, 303) for sending hot water or cold water heat-exchanged with the heat medium passing through the water heat exchanger (201, 301) to the temperature control panel (401, 402, 403, 404);
A control device (117),
The control device (117) is based on a difference in set temperature between the plurality of temperature control panels (401, 402, 403, 404) connected to each of the plurality of water heat exchangers (201, 301). Thus, the size of the one-phase region of the heat medium in each of the water heat exchangers (201, 301) and the size of the two-phase region of the heat medium in each of the water heat exchangers (201, 301) are controlled. A temperature control system characterized by that.
請求項1に記載の温調システムにおいて、
上記制御装置(117)は、暖房運転時、上記各水熱交換器(201,301)内の熱媒の2つの1相域の大きさと、上記各水熱交換器(201,301)内の熱媒の1つの2相域の大きさとを制御することを特徴とする温調システム。
In the temperature control system according to claim 1,
During the heating operation, the control device (117) is configured such that the size of the two one-phase regions of the heat medium in each of the water heat exchangers (201, 301) and the amount of heat in each of the water heat exchangers (201, 301). A temperature control system that controls the size of one two-phase region of the heat medium.
請求項1または2に記載の温調システムにおいて、
上記制御装置(117)は、冷房運転時、上記各水熱交換器(201,301)内の熱媒の1つの1相域の大きさと、上記各水熱交換器(201,301)内の熱媒の1つの2相域の大きさとを制御することを特徴とする温調システム。
In the temperature control system according to claim 1 or 2,
During the cooling operation, the control device (117) is configured such that the size of one phase region of the heat medium in each of the water heat exchangers (201, 301) and the size of each of the water heat exchangers (201, 301). A temperature control system that controls the size of one two-phase region of the heat medium.
請求項1から3までのいずれか一項に記載の温調システムにおいて、
上記水熱交換器(201,301)内の熱媒の2相域の温度を検出するための2相域温度検出部(215,217,218,315,317,318)を備えることを特徴とする温調システム。
In the temperature control system as described in any one of Claim 1 to 3,
It comprises a two-phase region temperature detector (215, 217, 218, 315, 317, 318) for detecting the temperature of the two-phase region of the heat medium in the water heat exchanger (201, 301). Temperature control system.
請求項4に記載の温調システムにおいて、
上記2相域温度検出部(215,315)は、上記熱媒回路(601)の上記水熱交換器(201,301)近傍の部分に接続された圧力センサ(215,315)であることを特徴とする温調システム。
In the temperature control system according to claim 4,
The two-phase region temperature detection unit (215, 315) is a pressure sensor (215, 315) connected to a portion in the vicinity of the water heat exchanger (201, 301) of the heating medium circuit (601). Characteristic temperature control system.
請求項4に記載の温調システムにおいて、
上記2相域温度検出部(217,218,317,318)は、上記水熱交換器(201,301)に取り付けられた2相域用温度センサ(217,218,317,318)であることを特徴とする温調システム。
In the temperature control system according to claim 4,
The two-phase region temperature detector (217, 218, 317, 318) is a two-phase region temperature sensor (217, 218, 317, 318) attached to the water heat exchanger (201, 301). Temperature control system characterized by
請求項4から6までのいずれか一項に記載の温調システムにおいて、
暖房運転時に上記水熱交換器(201,301)内の熱媒の1相域の温度を検出するための第1の1相域用温度センサ(108,109,214,314)を備え、
上記制御装置(117)は、暖房運転時、上記水熱交換器(201,301)内の熱媒の2相域と、上記水熱交換器(201,301)内の熱媒の1相域との温度差に基づいて、上記水熱交換器(201,301)内の熱媒の1相域の大きさを制御することを特徴とする温調システム。
In the temperature control system according to any one of claims 4 to 6,
A first one-phase region temperature sensor (108, 109, 214, 314) for detecting the temperature of the one-phase region of the heat medium in the water heat exchanger (201, 301) during the heating operation;
During the heating operation, the control device (117) includes a two-phase region of the heat medium in the water heat exchanger (201, 301) and a one-phase region of the heat medium in the water heat exchanger (201, 301). The temperature control system is characterized in that the size of one phase region of the heat medium in the water heat exchanger (201, 301) is controlled based on the temperature difference between the water heat exchanger (201, 301).
請求項4から6までのいずれか一項に記載の温調システムにおいて、
冷房運転時に上記水熱交換器(201,301)内の熱媒の1相域の温度を検出するための第2の1相域用温度センサ(112,113)を備え、
上記制御装置(117)は、冷房運転時、上記水熱交換器(201,301)内の熱媒の2相域と、上記水熱交換器(201,301)内の熱媒の1相域との温度差に基づいて、上記水熱交換器(201,301)内の熱媒の1相域の大きさを制御することを特徴とする温調システム。
In the temperature control system according to any one of claims 4 to 6,
A second one-phase region temperature sensor (112, 113) for detecting the temperature of the one-phase region of the heat medium in the water heat exchanger (201, 301) during the cooling operation;
During the cooling operation, the control device (117) includes a two-phase region of the heat medium in the water heat exchanger (201, 301) and a one-phase region of the heat medium in the water heat exchanger (201, 301). The temperature control system is characterized in that the size of one phase region of the heat medium in the water heat exchanger (201, 301) is controlled based on the temperature difference between the water heat exchanger (201, 301).
JP2013014321A 2013-01-29 2013-01-29 Temperature control system Active JP6248393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014321A JP6248393B2 (en) 2013-01-29 2013-01-29 Temperature control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014321A JP6248393B2 (en) 2013-01-29 2013-01-29 Temperature control system

Publications (2)

Publication Number Publication Date
JP2014145522A JP2014145522A (en) 2014-08-14
JP6248393B2 true JP6248393B2 (en) 2017-12-20

Family

ID=51425912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014321A Active JP6248393B2 (en) 2013-01-29 2013-01-29 Temperature control system

Country Status (1)

Country Link
JP (1) JP6248393B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384320B2 (en) * 2014-12-26 2018-09-05 ダイキン工業株式会社 Temperature control system
KR20210121401A (en) * 2020-03-30 2021-10-08 엘지전자 주식회사 Heat pump and method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175409A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Operation control method of air conditioning system, and air conditioning system
US9366452B2 (en) * 2009-05-12 2016-06-14 Mitsubishi Electric Corporation Air-conditioning apparatus with primary and secondary heat exchange cycles
JP5328933B2 (en) * 2009-11-25 2013-10-30 三菱電機株式会社 Air conditioner
JP2012141113A (en) * 2011-01-06 2012-07-26 Daikin Industries Ltd Air conditioning/water heating device system

Also Published As

Publication number Publication date
JP2014145522A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5447499B2 (en) Refrigeration equipment
JP2018004216A (en) Air conditioner
JP5598353B2 (en) Air conditioner
US9410715B2 (en) Air conditioning apparatus
JP5979112B2 (en) Refrigeration equipment
AU2012392673B2 (en) Air conditioning apparatus
WO2017138107A1 (en) Refrigeration cycle device
JP5892269B2 (en) Temperature control system
JP6950191B2 (en) Air conditioner
JP2008121982A (en) Refrigerating cycle device
US10401060B2 (en) Conditioner determining a closed condition of an expansion valve
JP5681787B2 (en) Two-way refrigeration cycle equipment
JP5881339B2 (en) Air conditioner
JP6248393B2 (en) Temperature control system
US11913694B2 (en) Heat pump system
JP2019196851A5 (en)
JP2018146169A (en) air conditioner
US9939180B2 (en) Heat-recovery-type refrigeration apparatus
JP6250428B2 (en) Refrigeration cycle equipment
JP6468333B1 (en) Refrigerant cycle equipment
JP2014163536A (en) Temperature control system
JP5884422B2 (en) Refrigeration equipment
JPWO2017195294A1 (en) Refrigeration cycle equipment
JP2017150682A (en) Air conditioner
JP2008281243A (en) Heat exchanger pump unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151