JP2009204208A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2009204208A
JP2009204208A JP2008045883A JP2008045883A JP2009204208A JP 2009204208 A JP2009204208 A JP 2009204208A JP 2008045883 A JP2008045883 A JP 2008045883A JP 2008045883 A JP2008045883 A JP 2008045883A JP 2009204208 A JP2009204208 A JP 2009204208A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure side
pressure
side pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008045883A
Other languages
Japanese (ja)
Inventor
Masami Negishi
正美 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2008045883A priority Critical patent/JP2009204208A/en
Publication of JP2009204208A publication Critical patent/JP2009204208A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration device for accurately estimating high-pressure side pressure by temperature of refrigerant and easily improving the operation efficiency. <P>SOLUTION: The refrigeration device (1) includes refrigerant temperature detection means (20, 22, 24) for detecting the refrigerant temperatures of an inlet part (14), an outlet part (16), and an intermediate part (18) positioned between the inlet/outlet parts of a radiator (6), a high-pressure side pressure estimating means (26) for estimating the high-pressure side pressure of the refrigerant in a high-pressure route part (2a) based on the refrigerant temperatures of the inlet part, the outlet part, and the intermediate part detected by the refrigerant temperature detection means, and a control means (26) for controlling at least either a compressor (4) or an expansion valve (8) to set the high-pressure side pressure of the refrigerant estimated by the high-pressure side pressure estimating means to be predetermined target high-pressure side pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷凍装置に係り、詳しくは、二酸化炭素冷媒を使用した空調機やヒートポンプ式給湯機に組み込まれて好適な冷凍装置に関する。   The present invention relates to a refrigeration apparatus, and more particularly, to a refrigeration apparatus suitable for being incorporated in an air conditioner or a heat pump type water heater using a carbon dioxide refrigerant.

この種の冷凍装置は、圧縮機から放熱器を経て膨張弁に至る高圧経路部及び膨張弁から蒸発器を経て圧縮機に至る低圧経路部を有し、超臨界状態となりうる二酸化炭素冷媒が封入された冷媒循環経路を備え、放熱器の入口や出口の冷媒温度を検出することにより、高圧経路部における冷媒の高圧側圧力を推定し、この推定された高圧側圧力により圧縮機の回転数や膨張弁の開度を制御している(例えば特許文献1〜3参照)。
特開2007−155157号公報 特開2002−81766号公報 特許第2931668号公報
This type of refrigeration system has a high-pressure path from the compressor to the expansion valve through the radiator and a low-pressure path from the expansion valve to the compressor through the evaporator, and contains carbon dioxide refrigerant that can be in a supercritical state. The refrigerant circulation path is provided, and the refrigerant temperature at the inlet and outlet of the radiator is detected to estimate the high-pressure side pressure of the refrigerant in the high-pressure path, and the compressor rotation speed and the The opening degree of the expansion valve is controlled (for example, refer to Patent Documents 1 to 3).
JP 2007-155157 A JP 2002-81766 A Japanese Patent No. 2931668

しかしながら、上記各従来技術では、放熱器内において変化する冷媒からの放熱量、換言すると冷媒と被放熱媒体との熱交換量について格別な配慮がなされていないため、冷凍装置の運転状態に伴い変化する高圧側圧力を精度良く推定できず、冷凍装置を効率良く運転できないという問題がある。
そこで、高圧側圧力を圧力センサで直接に測定することが考えられるが、圧力センサーは高価であり、且つ冷凍装置の組み立てコストが高くなるため、冷凍装置のコストが高くなるという問題がある。
However, in each of the above prior arts, no particular consideration is given to the amount of heat released from the refrigerant that changes in the radiator, in other words, the amount of heat exchange between the refrigerant and the medium to be radiated. There is a problem that the high-pressure side pressure cannot be accurately estimated and the refrigeration apparatus cannot be operated efficiently.
Therefore, it is conceivable to directly measure the high-pressure side pressure with a pressure sensor. However, the pressure sensor is expensive, and there is a problem that the cost of the refrigeration apparatus increases because the assembly cost of the refrigeration apparatus increases.

本発明は、このような課題に鑑みてなされたもので、冷媒温度によって高圧側圧力の精度良く推定し、簡易にして運転効率を向上することができる冷凍装置を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a refrigeration apparatus that can accurately estimate the high-pressure side pressure based on the refrigerant temperature and can simply improve the operation efficiency.

上記の目的を達成するべく、請求項1記載の冷凍装置は、圧縮機から放熱器を経て膨張弁に至る高圧経路部及び膨張弁から蒸発器を経て圧縮機に至る低圧経路部を有し、超臨界状態となりうる冷媒が封入された冷媒循環経路と、放熱器の入口部、及び出口部、並びに入口部と出口部との間に位置づけられる中間部の冷媒温度を検出する冷媒温度検出手段と、冷媒温度検出手段にて検出された入口部、及び出口部、並びに中間部の冷媒温度に基づいて高圧経路部における冷媒の高圧側圧力を推定する高圧側圧力推定手段と、高圧側圧力推定手段にて推定された冷媒の高圧側圧力を所定の目標高圧側圧力にするべく、少なくとも圧縮機または膨張弁のいずれか一方を制御する制御手段とを備えることを特徴としている。   In order to achieve the above object, the refrigeration apparatus according to claim 1 has a high-pressure path section extending from the compressor to the expansion valve via the radiator and a low-pressure path section extending from the expansion valve to the compressor via the evaporator, A refrigerant circulation path in which a refrigerant that can be in a supercritical state is enclosed; an inlet portion and an outlet portion of the radiator; and a refrigerant temperature detecting means that detects an intermediate portion of the refrigerant temperature positioned between the inlet portion and the outlet portion. A high-pressure side pressure estimating means for estimating the high-pressure side pressure of the refrigerant in the high-pressure path section based on the refrigerant temperatures at the inlet, outlet and intermediate parts detected by the refrigerant temperature detecting means, and a high-pressure side pressure estimating means And a control means for controlling at least one of the compressor and the expansion valve so that the high pressure side pressure of the refrigerant estimated in step 1 becomes a predetermined target high pressure side pressure.

また、請求項2記載の発明では、請求項1において、中間部は放熱器における冷媒の全放熱量の所定の比率の放熱がなされる部位に位置づけられ、高圧側圧力推定手段は、冷凍装置の冷凍サイクル固有のモリエル線図に基づくデータテーブルを備え、データテーブルは、冷媒温度検出手段にて検出された入口部、及び出口部、並びに中間部の冷媒温度ごとに、入口部、及び出口部の冷媒のエンタルピーと、これらのエンタルピー差と、該各エンタルピー及び該エンタルピー差から中間部における放熱の所定の比率と同比率となる中間部の冷媒の中間エンタルピーとが参照可能に構成され、高圧側圧力推定手段は、データテーブルを参照することにより、中間エンタルピーと中間部の冷媒温度とにより一義に決まる冷媒圧力を高圧側圧力と推定することを特徴としている。   Further, in the invention according to claim 2, in claim 1, the intermediate portion is positioned at a portion where heat is dissipated at a predetermined ratio of the total heat dissipation amount of the refrigerant in the radiator, and the high pressure side pressure estimating means is A data table based on a Mollier diagram specific to the refrigeration cycle is provided, and the data table includes an inlet portion and an outlet portion for each of the inlet portion and the outlet portion detected by the refrigerant temperature detecting means and the intermediate portion of the refrigerant temperature. The high pressure side pressure is configured so that the enthalpy of the refrigerant, these enthalpy differences, and each enthalpy and the intermediate enthalpy of the intermediate refrigerant that has the same ratio as the predetermined ratio of heat dissipation in the intermediate part from the enthalpy difference can be referred to. The estimation means estimates the refrigerant pressure uniquely determined by the intermediate enthalpy and the refrigerant temperature of the intermediate portion as the high pressure side pressure by referring to the data table. It is characterized by a Rukoto.

更に、請求項3記載の発明では、請求項2において、中間部は、放熱器における冷媒の全放熱量の25%以上75%以下の放熱がなされる部位に位置づけられることを特徴としている。
更にまた、請求項4記載の発明では、請求項3において、中間部は、放熱器における冷媒の全放熱量の50%の放熱がなされる部位を含む複数の部位に位置づけられることを特徴としている。
Further, the invention according to claim 3 is characterized in that, in claim 2, the intermediate portion is positioned at a portion where 25% or more and 75% or less of the total heat dissipation amount of the refrigerant in the radiator is radiated.
Furthermore, the invention according to claim 4 is characterized in that, in claim 3, the intermediate portion is positioned at a plurality of parts including a part where 50% of the total heat radiation amount of the refrigerant in the radiator is radiated. .

また、請求項5記載の発明では、請求項1乃至4の何れかにおいて、冷媒温度検出手段は、放熱器において冷媒が流れる冷媒管の管表面温度を測定し、該管表面温度を放熱器において放熱がなされる被放熱媒体の温度に応じて補正した温度を検出した冷媒温度とすることを特徴としている。
更に、請求項6記載の発明では、請求項1乃至4の何れかにおいて、冷媒温度検出手段は、放熱器において放熱がなされる被放熱媒体が流れる被放熱媒体管の管表面温度を測定し、該管表面温度を被放熱媒体の温度及び被放熱媒体管が曝される温度に応じて補正した温度を検出した冷媒温度とすることを特徴としている。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the refrigerant temperature detecting means measures a pipe surface temperature of a refrigerant pipe through which the refrigerant flows in the radiator, and the pipe surface temperature is measured in the radiator. It is characterized in that the temperature corrected according to the temperature of the heat radiating medium that radiates heat is used as the detected refrigerant temperature.
Furthermore, in invention of Claim 6, in any one of Claim 1 thru | or 4, a refrigerant | coolant temperature detection means measures the pipe | tube surface temperature of the to-be-radiated medium pipe | tube through which the to-be-radiated medium radiated | radiated in a heat radiator flows, The tube surface temperature is set to a detected refrigerant temperature, which is a temperature corrected according to the temperature of the heat radiating medium and the temperature to which the heat radiating medium pipe is exposed.

請求項1記載の本発明の冷凍装置によれば、高圧側経路部における冷媒の高圧側圧力を入口部、及び出口部、並びに中間部の冷媒温度に基づいて推定することにより、高圧側経路部の冷媒の圧力を直接検出しなくても、放熱器内において変化する放熱量、換言すると熱交換量を加味して高圧側圧力を精度良く推定することができるため、簡易にして冷凍装置の運転効率を向上することができる。   According to the refrigeration apparatus of the first aspect of the present invention, the high-pressure side passage portion is estimated by estimating the high-pressure side pressure of the refrigerant in the high-pressure side passage portion based on the refrigerant temperatures of the inlet portion, the outlet portion, and the intermediate portion. Even if the pressure of the refrigerant is not detected directly, the high-pressure side pressure can be accurately estimated by taking into account the amount of heat dissipated in the radiator, in other words, the amount of heat exchange. Efficiency can be improved.

また、請求項2記載の発明によれば、高圧側圧力推定手段は、冷凍装置の冷凍サイクルのモリエル線図に基づくデータテーブルを備え、このデータテーブルを参照することにより、中間エンタルピーと冷媒の中間温度とにより一義に決まる冷媒圧力を高圧側圧力と推定する。これにより、データテーブル、即ちモリエル線図において、冷媒温度及びエンタルピーから冷媒圧力を読み取る際に、中間エンタルピー、換言すると中間放熱量近傍のデータを使用することとなる。ここで、一般に、中間放熱量近傍はモリエル線図上の等温線の傾きがほぼゼロで水平になることから、冷媒温度及びエンタルピーから冷媒圧力を精度良く読み取り可能であり、高圧側圧力の推定に関しては概して感度の良い領域となっていることから、中間放熱量近傍のデータを使用することにより、高圧側圧力をより一層精度良く推定することができ、冷凍装置の運転効率を更に向上することができる。   According to the second aspect of the present invention, the high pressure side pressure estimation means includes a data table based on the Mollier diagram of the refrigeration cycle of the refrigeration apparatus, and by referring to this data table, the intermediate enthalpy and the refrigerant are intermediated. The refrigerant pressure that is uniquely determined by the temperature is estimated as the high-pressure side pressure. Thereby, in the data table, that is, the Mollier diagram, when reading the refrigerant pressure from the refrigerant temperature and the enthalpy, the intermediate enthalpy, in other words, data in the vicinity of the intermediate heat radiation amount is used. Here, generally, since the gradient of the isotherm on the Mollier diagram is horizontal near the intermediate heat dissipation level and becomes horizontal, the refrigerant pressure can be accurately read from the refrigerant temperature and enthalpy, and the high pressure side pressure is estimated. Is generally a sensitive area, the use of data in the vicinity of the intermediate heat release allows the high-pressure side pressure to be estimated more accurately and further improves the operating efficiency of the refrigeration system. it can.

具体的には、請求項3記載の発明によれば、中間部は放熱器における冷媒の全放熱量の25%以上75%以下の放熱がなされる部位に位置づけられることにより、高圧側圧力の推定において確実に感度の良い領域を使用することができる。
更に好ましくは、請求項4記載の発明によれば、中間部は放熱器における冷媒の全放熱量の50%の放熱がなされる部位を含む複数の部位に位置づけられることにより、推定された高圧側圧力の信頼性を高めることができるため、冷凍装置の運転効率をより一層確実に向上することができる。
Specifically, according to the invention described in claim 3, the intermediate portion is positioned at a portion where 25% or more and 75% or less of the total heat dissipation amount of the refrigerant in the radiator is radiated, thereby estimating the high pressure side pressure. In this case, it is possible to reliably use an area with high sensitivity.
More preferably, according to the invention of claim 4, the intermediate portion is positioned at a plurality of parts including a part that radiates 50% of the total heat release amount of the refrigerant in the radiator. Since the pressure reliability can be increased, the operating efficiency of the refrigeration apparatus can be improved more reliably.

また、請求項5記載の発明によれば、冷媒温度検出手段は、放熱器において冷媒が流れる冷媒管の管表面温度を測定し、該表面温度を放熱器において放熱がなされる被放熱媒体の温度に応じて補正した温度を検出した冷媒温度とすることにより、特に中間部の冷媒温度検出を簡素化できるため、更に簡易にして冷凍装置の運転効率を向上することができる。   According to the invention described in claim 5, the refrigerant temperature detecting means measures the pipe surface temperature of the refrigerant pipe through which the refrigerant flows in the radiator, and the surface temperature is the temperature of the radiated medium that radiates heat in the radiator. By making the temperature corrected according to the detected refrigerant temperature, particularly the refrigerant temperature detection at the intermediate portion can be simplified, the operation efficiency of the refrigeration apparatus can be further simplified.

更に、請求項6記載の発明によれば、冷媒温度検出手段は、放熱器において放熱がなされる被放熱媒体が流れる被放熱媒体管の表面温度を測定し、該表面温度を被放熱媒体の温度及び被放熱媒体管が曝される温度に応じて補正した温度を検出した冷媒温度とすることにより、この場合にも、中間部の冷媒温度検出を精度良く簡素化でき、簡易にして冷凍装置の運転効率を向上することができる。   Furthermore, according to the invention described in claim 6, the refrigerant temperature detecting means measures the surface temperature of the radiated medium pipe through which the radiated medium to be radiated in the radiator flows, and the surface temperature is determined as the temperature of the radiated medium. In this case, the refrigerant temperature detection at the intermediate portion can be simplified with high accuracy, and the refrigeration apparatus can be easily simplified. Operation efficiency can be improved.

以下、図面により本発明の一実施形態について説明する。
図1は、例えば車両の空調システムに組み込まれる冷凍装置1を概略的に示しており、この冷凍装置1は冷媒循環経路2を備え、冷媒循環経路2内には超臨界状態となりうる例えばCOガス冷媒が封入され、圧縮機4、ガスクーラ(放熱器)6、膨張弁8及び蒸発器10が順次介挿されている。そして、冷媒循環経路2は、圧縮機4からガスクーラ6を経て膨張弁8に至る部位は冷媒循環経路2の高圧経路部2aと、膨張弁8から蒸発器10を経て圧縮機4に至る部位は冷媒循環経路2の低圧経路部2bとから構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a refrigeration apparatus 1 incorporated into, for example, an air conditioning system of a vehicle. The refrigeration apparatus 1 includes a refrigerant circulation path 2, and can enter a supercritical state in the refrigerant circulation path 2, for example, CO 2. A gas refrigerant is enclosed, and a compressor 4, a gas cooler (heat radiator) 6, an expansion valve 8 and an evaporator 10 are sequentially inserted. In the refrigerant circulation path 2, the part from the compressor 4 through the gas cooler 6 to the expansion valve 8 is the high-pressure path part 2 a of the refrigerant circulation path 2, and the part from the expansion valve 8 to the compressor 4 through the evaporator 10 is The low-pressure path portion 2b of the refrigerant circulation path 2 is configured.

図2のガスクーラ6の要部拡大断面図に示されるように、ガスクーラ6にて冷媒が流れる冷媒管12には図示しない送風機により車室内の空気が送風され、冷媒管12を流れる冷媒と送風空気との熱交換により車室の空調が行われる。冷媒管12の入口部14、及び出口部16、並びに入口部14と出口部16との間に位置づけられる中間部18の各管表面12aには、それぞれサーミスタ(冷媒温度検出手段)20,22,24がアルミテープなどで貼り付けられ、これらサーミスタ20,22,24は、それぞれ各部14,16,18を流れる冷媒の入口、出口、中間温度Ti,To,Tmを間接的に測定している。   As shown in the enlarged cross-sectional view of the main part of the gas cooler 6 in FIG. 2, air in the vehicle compartment is blown to the refrigerant pipe 12 through which the refrigerant flows in the gas cooler 6 by a blower (not shown), and the refrigerant and blown air flowing through the refrigerant pipe 12. The passenger compartment is air-conditioned by heat exchange with the vehicle. The thermistors (refrigerant temperature detection means) 20, 22, respectively are provided on the pipe surfaces 12 a of the inlet part 14 and the outlet part 16 of the refrigerant pipe 12 and the intermediate part 18 positioned between the inlet part 14 and the outlet part 16. 24 is affixed with aluminum tape or the like, and these thermistors 20, 22, and 24 indirectly measure the inlet and outlet of the refrigerant flowing through the respective parts 14, 16, and 18 and intermediate temperatures Ti, To, and Tm.

各サーミスタ20,22,24は、圧縮機4や膨張弁8の図示しない駆動部とともに、冷凍装置1の制御ユニット(高圧側圧力推定手段、制御手段)26に電気的に接続されており、制御ユニット26は、冷媒温度Ti,To,Tmに基づいて高圧経路部2aにおける冷媒の高圧側圧力Pdを推定し、この推定された高圧側圧力Pdを冷凍装置1における所定の目標高圧側圧力Pdsにするべく圧縮機4の回転数や膨張弁8の開度を制御している。   Each thermistor 20, 22, 24 is electrically connected to a control unit (high pressure side pressure estimating means, control means) 26 of the refrigeration apparatus 1 together with a drive unit (not shown) of the compressor 4 and the expansion valve 8. The unit 26 estimates the high-pressure side pressure Pd of the refrigerant in the high-pressure path portion 2a based on the refrigerant temperatures Ti, To, Tm, and the estimated high-pressure side pressure Pd is set to a predetermined target high-pressure side pressure Pds in the refrigeration apparatus 1. Therefore, the rotational speed of the compressor 4 and the opening degree of the expansion valve 8 are controlled as much as possible.

図3に示されるように、制御ユニット26には、冷凍装置1の冷凍サイクル固有の後述するモリエル線図(図4)に基づいて予め形成されたデータテーブル28が格納されている。
データテーブル28は、モリエル線図の等温線上のエンタルピーデータを利用することにより、冷媒温度Ti,To,Tmごとに、入口部14の入口エンタルピーHi、出口部16の出口エンタルピーHoと、これらのエンタルピー差ΔHとが参照可能に構成され、更に、これらHi,Ho,ΔHのエンタルピーデータにより中間部18の中間エンタルピーHm、ひいては高圧側圧力Pdを推定可能に構成されている。
As shown in FIG. 3, the control unit 26 stores a data table 28 formed in advance based on a later-described Mollier diagram (FIG. 4) unique to the refrigeration cycle of the refrigeration apparatus 1.
The data table 28 uses the enthalpy data on the isotherm of the Mollier diagram, and for each refrigerant temperature Ti, To, Tm, the inlet enthalpy Hi of the inlet section 14, the outlet enthalpy Ho of the outlet section 16, and these enthalpies. The difference ΔH can be referred to, and the intermediate enthalpy Hm of the intermediate portion 18 and the high-pressure side pressure Pd can be estimated from the enthalpy data of Hi, Ho, and ΔH.

詳しくは、中間部18はガスクーラ6における冷媒の全放熱量Qの50%の所定の比率の放熱(放熱量Q/2)がなされる部位に位置づけられており、この位置はガスクーラ6における熱交換シミュレーションなどの実験により予め決定される。そして、データテーブル28では、入口及び出口エンタルピーHi,Ho及びエンタルピー差ΔHから中間部18における全放熱量Qに対する中間放熱量Q/2の比率50%と同比率となる中間エンタルピーHm(=Ho+ΔH/2)が算出される。   Specifically, the intermediate portion 18 is positioned at a portion where heat is released at a predetermined ratio (heat release amount Q / 2) of 50% of the total heat release amount Q of the refrigerant in the gas cooler 6, and this position is heat exchange in the gas cooler 6. It is determined in advance by an experiment such as simulation. In the data table 28, the intermediate enthalpy Hm (= Ho + ΔH /) which is the same ratio as the ratio 50% of the intermediate heat release amount Q / 2 to the total heat release amount Q in the intermediate portion 18 from the inlet and outlet enthalpies Hi, Ho and the enthalpy difference ΔH. 2) is calculated.

具体的には、サーミスタ20,22により、入口部14の冷媒温度である入口温度Tiが90℃、出口部16の冷媒温度である出口温度Toが20℃として検出された場合、データテーブル28を構成する複数のテーブルのうち、Ti=90℃、To=20℃のデータが掲載されたテーブルを参照し、更に、サーミスタ24により、中間部18の冷媒温度である中間温度Tmが46℃として検出されたと仮定する。この場合には、データテーブル28から、入口エンタルピーHiは485kJ/kg、出口エンタルピーHoは240kJ/kg、中間エンタルピーHmは363kJ/kgとなり、ひいては高圧側圧力Pdが10mPaとなることが推定される。即ち、冷媒温度Ti,To,Tmが検出されれば、データテーブル28を参照することにより、中間部18が放熱量Q/2の放熱がなされる部位に位置づけられる以上、検出された中間温度Tm、及び算出された中間エンタルピーHmにより一義に決まる冷媒圧力Pが高圧側圧力Pdと推定される。   Specifically, when the thermistors 20 and 22 detect that the inlet temperature Ti that is the refrigerant temperature of the inlet portion 14 is 90 ° C. and the outlet temperature To that is the refrigerant temperature of the outlet portion 16 is 20 ° C., the data table 28 is stored. Of the plurality of tables, a table in which data of Ti = 90 ° C. and To = 20 ° C. is referenced, and the thermistor 24 detects that the intermediate temperature Tm, which is the refrigerant temperature of the intermediate portion 18, is 46 ° C. Suppose that In this case, it is estimated from the data table 28 that the inlet enthalpy Hi is 485 kJ / kg, the outlet enthalpy Ho is 240 kJ / kg, the intermediate enthalpy Hm is 363 kJ / kg, and the high-pressure side pressure Pd is 10 mPa. That is, if the refrigerant temperatures Ti, To, and Tm are detected, the detected intermediate temperature Tm is determined as long as the intermediate portion 18 is positioned at a position where the heat dissipation amount Q / 2 is radiated by referring to the data table 28. The refrigerant pressure P that is uniquely determined by the calculated intermediate enthalpy Hm is estimated as the high-pressure side pressure Pd.

このことは、図4のデータテーブル28の基準となる冷凍装置1の冷凍サイクルを示すモリエル線図からも明らかであり、この線図を参照すると、中間部18のガスクーラ6の放熱量が中間放熱量Q/2、即ち冷媒のエンタルピーHが中間エンタルピーHmとなる領域は、モリエル線図上の等温線の傾きがほぼゼロで水平になる部分が多いことがわかる。これより、中間エンタルピーHm近傍は、この部分の各データを補間処理を施して使用することにより、冷媒の圧力Pを精度良く読み取り可能であって、高圧側圧力Pdの推定に関して感度の良い領域となっている。   This is also apparent from the Mollier diagram showing the refrigeration cycle of the refrigeration apparatus 1 which is the reference of the data table 28 in FIG. 4. With reference to this diagram, the heat release amount of the gas cooler 6 in the intermediate section 18 is intermediate. It can be seen that in the region where the heat quantity Q / 2, that is, the enthalpy H of the refrigerant becomes the intermediate enthalpy Hm, there are many portions where the inclination of the isotherm on the Mollier diagram is almost zero and horizontal. As a result, in the vicinity of the intermediate enthalpy Hm, each piece of data in this part is interpolated and used, so that the refrigerant pressure P can be read with high accuracy and the high pressure side pressure Pd is estimated with a sensitive area. It has become.

ここで、図4中において、丸印は入口部14、三角印は出口部16、黒塗り丸印は中間部18の冷媒状態を示しており、図3の例のように、中間放熱量Q/2となる部位に中間部18を位置づけるのみならず、図4に示す如く、全放熱量Qの25%及び75%の放熱がなされる中間放熱量Q/4、3Q/4となる部位を含む合計3箇所に中間部18、ひいてはサーミスタ24を設け、圧力Pごとに合計5点のエンタルピーデータをデータテーブル28に掲載するようにしても良い。   Here, in FIG. 4, circles indicate the refrigerant state of the inlet portion 14, triangles indicate the outlet portion 16, and black circles indicate the refrigerant state of the intermediate portion 18. As in the example of FIG. In addition to positioning the intermediate portion 18 at the part that becomes / 2, as shown in FIG. 4, the parts that become the intermediate heat dissipation quantity Q / 4 and 3Q / 4 where 25% and 75% of the total heat release quantity Q are released The intermediate portion 18 and thus the thermistor 24 may be provided in a total of three locations, and a total of five enthalpy data for each pressure P may be posted in the data table 28.

また、これに限らず、中間部18、ひいてはサーミスタ24を全放熱量Qの25%以上75%以下の放熱がなされる部位に複数或いは一つだけ位置づけることにより、高圧側圧力Pdの推定に関して感度の良い領域を使用できて好ましい。
更に、本実施形態では、サーミスタ20,22,24にて測定された管表面12aの温度を冷媒管22が曝される送風空気の温度を含めた外気温度に応じて制御ユニット26にて補正し、この補正後のデータを各冷媒温度Ti,To,Tmの検出結果として使用している。
In addition, the sensitivity of the estimation of the high-pressure side pressure Pd is not limited to this by positioning the intermediate portion 18 and thus the thermistor 24 in a portion where only 25% or more and 75% or less of the total heat dissipation amount Q is radiated. It is preferable that a good area can be used.
Further, in this embodiment, the temperature of the tube surface 12a measured by the thermistors 20, 22, and 24 is corrected by the control unit 26 according to the outside air temperature including the temperature of the blown air to which the refrigerant tube 22 is exposed. The corrected data is used as the detection result of each refrigerant temperature Ti, To, Tm.

例えば、実際にはサーミスタ24によりTm=48℃と測定された場合であっても、冷媒管12の断熱効果により温度低下した分を補正することにより、実際の冷媒温度に近づけるべく例えばTm=50℃に補正され、この値が中間温度Tmの検出結果として制御ユニット26にて使用される。なお、この補正に係る補正係数はガスクーラ6における断熱シミュレーションなどの実験により予め決定される。   For example, even if Tm = 48 ° C. is actually measured by the thermistor 24, for example, Tm = 50 in order to approximate the actual refrigerant temperature by correcting the temperature drop due to the heat insulating effect of the refrigerant pipe 12. The value is corrected to ° C., and this value is used by the control unit 26 as the detection result of the intermediate temperature Tm. The correction coefficient related to this correction is determined in advance by experiments such as adiabatic simulation in the gas cooler 6.

このようにして推定された高圧側圧力Pdが目標高圧側圧力Pdsより小さい場合には、制御ユニット26は、例えば圧縮機4の回転数を増加させ、一方、高圧側圧力Pdが目標高圧側圧力Pdsより大きい場合には、圧縮機4の回転数を減少させることにより、冷凍装置1が最適な実高圧側圧力Pdrにて運転される。
以上のように、本実施形態では、高圧側経路部2aにおける冷媒の高圧側圧力Pdを入口部14、及び出口部16、並びに中間部18の冷媒温度Ti,To,Tmに基づいて推定することにより、高圧側経路部2aの冷媒の圧力を直接検出しなくても、ガスクーラ6内において変化する放熱量、換言すると熱交換量を加味して高圧側圧力Pdを精度良く推定することができるため、簡易にして冷凍装置1の運転効率を向上することができる。
When the high pressure side pressure Pd estimated in this way is smaller than the target high pressure side pressure Pds, the control unit 26 increases the rotational speed of the compressor 4, for example, while the high pressure side pressure Pd is the target high pressure side pressure Pd. If it is greater than Pds, the refrigeration apparatus 1 is operated at the optimum actual high-pressure side pressure Pdr by decreasing the rotational speed of the compressor 4.
As described above, in the present embodiment, the high pressure side pressure Pd of the refrigerant in the high pressure side path portion 2a is estimated based on the refrigerant temperatures Ti, To, Tm of the inlet portion 14, the outlet portion 16, and the intermediate portion 18. Thus, the high pressure side pressure Pd can be accurately estimated by taking into consideration the amount of heat that changes in the gas cooler 6, in other words, the heat exchange amount, without directly detecting the pressure of the refrigerant in the high pressure side passage portion 2a. Thus, the operation efficiency of the refrigeration apparatus 1 can be improved in a simple manner.

詳しくは、冷凍装置1の冷凍サイクルを示したモリエル線図に基づくデータテーブル28をを参照することにより、中間エンタルピーHmと中間温度Tmとにより一義に決まる冷媒圧力Pを高圧側圧力Pdと推定する。これにより、データテーブル28、即ちモリエル線図において、高圧側圧力Pdの推定に関し、モリエル線図上の等温線の傾きがほぼゼロで水平になる感度の良い領域を使用することができ、高圧側圧力Pdをより一層精度良く推定することができるため、冷凍装置1の運転効率を更に向上することができる。   Specifically, by referring to the data table 28 based on the Mollier diagram showing the refrigeration cycle of the refrigeration apparatus 1, the refrigerant pressure P that is uniquely determined by the intermediate enthalpy Hm and the intermediate temperature Tm is estimated as the high pressure side pressure Pd. . Thereby, in the data table 28, that is, the Mollier diagram, regarding the estimation of the high pressure side pressure Pd, it is possible to use a sensitive region where the slope of the isotherm on the Mollier diagram is almost zero and horizontal, and the high pressure side Since the pressure Pd can be estimated with higher accuracy, the operating efficiency of the refrigeration apparatus 1 can be further improved.

具体的には、中間部18がガスクーラ6における冷媒の全放熱量Qの25%以上75%以下の放熱がなされる部位に位置づけられることにより、高圧側圧力Pdの推定において確実に感度の良い領域を使用することができる。
更に好ましくは、中間部18がガスクーラ6における冷媒の全放熱量Qの50%の放熱がなされる部位を含む複数の部位に位置づけられることにより、推定された高圧側圧力Pdの信頼性を高めることができるため、冷凍装置1の運転効率をより一層確実に向上することができる。
Specifically, the intermediate portion 18 is positioned in a portion where 25 to 75% of the total heat dissipation amount Q of the refrigerant in the gas cooler 6 is radiated, so that the high pressure side pressure Pd is reliably sensitive. Can be used.
More preferably, the reliability of the estimated high-pressure side pressure Pd is improved by positioning the intermediate portion 18 at a plurality of locations including a location where 50% of the total heat dissipation amount Q of the refrigerant in the gas cooler 6 is released. Therefore, the operating efficiency of the refrigeration apparatus 1 can be further reliably improved.

また、各サーミスタ20,22,24は、ガスクーラ6において冷媒が流れる冷媒管12の管表面温度を測定し、該管表面温度をガスクーラ6において放熱がなされる送風空気の温度に応じて補正した温度を検出した冷媒温度Ti,To,Tmとすることにより、特に中間部18の冷媒温度検出を簡素化できるため、更に簡易にして冷凍装置1の運転効率を向上することができる。   Each thermistor 20, 22, 24 measures the tube surface temperature of the refrigerant tube 12 through which the refrigerant flows in the gas cooler 6, and corrects the tube surface temperature according to the temperature of the blown air that radiates heat in the gas cooler 6. By using the detected refrigerant temperatures Ti, To, and Tm, in particular, the refrigerant temperature detection of the intermediate portion 18 can be simplified, so that the operation efficiency of the refrigeration apparatus 1 can be further simplified.

以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、冷凍装置1は車両の空調システムに組み込まれるが、図5に示されるように、家庭用の給湯システムに組み込んでも良い。この場合には、ガスクーラ6において放熱がなされる水が流れる給湯管(被放熱媒体管)30の管表面30aにサーミスタ24を貼り付けて管表面30aの温度を測定し、この表面温度を中間部18を流れる水温度及び給湯管30が曝される外気温度に応じて補正した温度を中間温度Tmとして使用する。従って、この場合にも、上記と同様に中間部18の冷媒温度検出を精度良く簡素化することができ、簡易にして冷凍装置1の運転効率を向上することができる。
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the refrigeration apparatus 1 is incorporated into an air conditioning system of a vehicle, but may be incorporated into a domestic hot water supply system as shown in FIG. In this case, the thermistor 24 is attached to the pipe surface 30a of the hot water supply pipe (heat radiating medium pipe) 30 through which water to be radiated in the gas cooler 6 flows, and the temperature of the pipe surface 30a is measured. The temperature corrected according to the water temperature flowing through 18 and the outside air temperature to which the hot water supply pipe 30 is exposed is used as the intermediate temperature Tm. Accordingly, in this case as well, the refrigerant temperature detection of the intermediate portion 18 can be simplified with high accuracy as described above, and the operation efficiency of the refrigeration apparatus 1 can be improved easily.

本発明の一実施形態に係る冷凍装置を概略的に示した模式図である。It is the schematic diagram which showed schematically the freezing apparatus which concerns on one Embodiment of this invention. 図1のガスクーラの要部断面図と冷凍装置を制御する制御ユニットとを示した図である。It is the figure which showed the principal part sectional drawing of the gas cooler of FIG. 1, and the control unit which controls a freezing apparatus. 図2の制御ユニットに格納されるデータテーブルを示した図である。It is the figure which showed the data table stored in the control unit of FIG. 図3のデータテーブルの基準となる冷凍装置の冷凍サイクルを示したモリエル線図である。It is the Mollier diagram which showed the refrigerating cycle of the freezing apparatus used as the reference | standard of the data table of FIG. 図2のガスクーラの変形例を示した要部断面図である。It is principal part sectional drawing which showed the modification of the gas cooler of FIG.

符号の説明Explanation of symbols

1 冷凍装置
2 冷媒循環経路
2a 高圧経路部
2b 低圧経路部
4 圧縮機
6 ガスクーラ(放熱器)
8 膨張弁
10 蒸発器
12 冷媒管
14 入口部
16 出口部
18 中間部
20,22,24 サーミスタ(冷媒温度検出手段)
26 制御ユニット(高圧側圧力推定手段、制御手段)
28 データテーブル
30 給湯管(被放熱媒体管)
DESCRIPTION OF SYMBOLS 1 Refrigerating device 2 Refrigerant circulation path 2a High pressure path part 2b Low pressure path part 4 Compressor 6 Gas cooler (heat radiator)
DESCRIPTION OF SYMBOLS 8 Expansion valve 10 Evaporator 12 Refrigerant pipe 14 Inlet part 16 Outlet part 18 Intermediate | middle part 20, 22, 24 Thermistor (refrigerant temperature detection means)
26 Control unit (high pressure side pressure estimation means, control means)
28 Data table 30 Hot water supply pipe (heat radiating medium pipe)

Claims (6)

圧縮機から放熱器を経て膨張弁に至る高圧経路部及び前記膨張弁から蒸発器を経て前記圧縮機に至る低圧経路部を有し、超臨界状態となりうる冷媒が封入された冷媒循環経路と、
前記放熱器の入口部、及び出口部、並びに該入口部と該出口部との間に位置づけられる中間部の冷媒温度を検出する冷媒温度検出手段と、
前記冷媒温度検出手段にて検出された前記入口部、及び前記出口部、並びに前記中間部の冷媒温度に基づいて前記高圧経路部における冷媒の高圧側圧力を推定する高圧側圧力推定手段と、
前記高圧側圧力推定手段にて推定された冷媒の高圧側圧力を所定の目標高圧側圧力にするべく、少なくとも前記圧縮機または前記膨張弁のいずれか一方を制御する制御手段と
を備えることを特徴とする冷凍装置。
A refrigerant circulation path having a high-pressure path section extending from the compressor to the expansion valve via the radiator and a low-pressure path section extending from the expansion valve to the compressor via the evaporator and filled with a refrigerant that can be in a supercritical state;
Refrigerant temperature detection means for detecting the refrigerant temperature of the inlet portion and the outlet portion of the radiator, and an intermediate portion positioned between the inlet portion and the outlet portion;
High-pressure side pressure estimating means for estimating a high-pressure side pressure of the refrigerant in the high-pressure path section based on the refrigerant temperatures of the inlet portion, the outlet portion, and the intermediate portion detected by the refrigerant temperature detecting means;
Control means for controlling at least one of the compressor and the expansion valve so that the high pressure side pressure of the refrigerant estimated by the high pressure side pressure estimating means becomes a predetermined target high pressure side pressure. Refrigeration equipment.
前記中間部は前記放熱器における冷媒の全放熱量の所定の比率の放熱がなされる部位に位置づけられ、
前記高圧側圧力推定手段は、前記冷凍装置の冷凍サイクル固有のモリエル線図に基づくデータテーブルを備え、
前記データテーブルは、前記冷媒温度検出手段にて検出された前記入口部、及び前記出口部、並びに前記中間部の冷媒温度ごとに、前記入口部及び前記出口部の冷媒のエンタルピーと、これらのエンタルピー差と、該各エンタルピー及び該エンタルピー差から前記中間部における放熱の所定の比率と同比率となる前記中間部の冷媒の中間エンタルピーとが参照可能に構成され、
前記高圧側圧力推定手段は、前記データテーブルを参照することにより、前記中間エンタルピーと前記中間部の冷媒温度とにより一義に決まる冷媒圧力を前記高圧側圧力と推定することを特徴とする請求項1に記載の冷凍装置。
The intermediate portion is positioned at a portion where heat is released at a predetermined ratio of the total heat dissipation amount of the refrigerant in the radiator,
The high pressure side pressure estimation means includes a data table based on a Mollier diagram specific to the refrigeration cycle of the refrigeration apparatus,
The data table includes the enthalpy of the refrigerant at the inlet and the outlet and the enthalpy of the refrigerant for each of the refrigerant temperatures at the inlet, the outlet, and the intermediate detected by the refrigerant temperature detecting means. It is configured to be able to refer to the difference and the intermediate enthalpy of the refrigerant in the intermediate portion that has the same ratio as the predetermined ratio of heat dissipation in the intermediate portion from each enthalpy and the enthalpy difference,
2. The high pressure side pressure estimating means estimates a refrigerant pressure uniquely determined by the intermediate enthalpy and the refrigerant temperature of the intermediate portion as the high pressure side pressure by referring to the data table. The refrigeration apparatus described in 1.
前記中間部は、前記放熱器における冷媒の全放熱量の25%以上75%以下の放熱がなされる部位に位置づけられることを特徴とする請求項2に記載の冷凍装置。   The refrigeration apparatus according to claim 2, wherein the intermediate portion is positioned at a portion where heat is radiated in an amount of 25% to 75% of the total heat dissipation amount of the refrigerant in the radiator. 前記中間部は、前記放熱器における冷媒の全放熱量の50%の放熱がなされる部位を含む複数の部位に位置づけられることを特徴とする請求項3に記載の冷凍装置。   The refrigeration apparatus according to claim 3, wherein the intermediate portion is positioned at a plurality of portions including a portion where 50% of the total heat dissipation amount of the refrigerant in the radiator is radiated. 前記冷媒温度検出手段は、前記放熱器において冷媒が流れる冷媒管の管表面温度を測定し、該管表面温度を前記放熱器において放熱がなされる被放熱媒体の温度に応じて補正した温度を検出した前記冷媒温度とすることを特徴とする請求項1乃至4の何れかに記載の冷凍装置。   The refrigerant temperature detecting means measures a pipe surface temperature of a refrigerant pipe through which the refrigerant flows in the radiator, and detects a temperature obtained by correcting the pipe surface temperature according to a temperature of a radiated medium that radiates heat in the radiator. The refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigerant temperature is set to the above-described temperature. 前記冷媒温度検出手段は、前記放熱器において放熱がなされる被放熱媒体が流れる被放熱媒体管の管表面温度を測定し、該管表面温度を前記被放熱媒体の温度及び前記被放熱媒体管が曝される温度に応じて補正した温度を検出した前記冷媒温度とすることを特徴とする請求項1乃至4の何れかに記載の冷凍装置。   The refrigerant temperature detecting means measures a tube surface temperature of a radiated medium tube through which a radiated medium to be radiated in the radiator flows, and the tube surface temperature is determined based on the temperature of the radiated medium and the radiated medium tube. The refrigeration apparatus according to any one of claims 1 to 4, wherein a temperature corrected according to an exposure temperature is set as the detected refrigerant temperature.
JP2008045883A 2008-02-27 2008-02-27 Refrigeration device Pending JP2009204208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045883A JP2009204208A (en) 2008-02-27 2008-02-27 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045883A JP2009204208A (en) 2008-02-27 2008-02-27 Refrigeration device

Publications (1)

Publication Number Publication Date
JP2009204208A true JP2009204208A (en) 2009-09-10

Family

ID=41146675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045883A Pending JP2009204208A (en) 2008-02-27 2008-02-27 Refrigeration device

Country Status (1)

Country Link
JP (1) JP2009204208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148856A1 (en) * 2010-05-24 2011-12-01 ダイキン工業株式会社 Method for controlling fan for heat source heat exchanger, and air conditioning device
JP2013002645A (en) * 2011-06-13 2013-01-07 Panasonic Corp Refrigerating cycle device
JP2013092282A (en) * 2011-10-25 2013-05-16 Azbil Corp Surface temperature estimating device, surface temperature estimating method, and dew condensation determination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148856A1 (en) * 2010-05-24 2011-12-01 ダイキン工業株式会社 Method for controlling fan for heat source heat exchanger, and air conditioning device
JP2011247455A (en) * 2010-05-24 2011-12-08 Daikin Industries Ltd Method for controlling fan for heat source heat exchanger, and air conditioning device
US9752815B2 (en) 2010-05-24 2017-09-05 Daikin Industries, Ltd. Method of controlling heat source-side heat exchanger fan, and air conditioner
JP2013002645A (en) * 2011-06-13 2013-01-07 Panasonic Corp Refrigerating cycle device
JP2013092282A (en) * 2011-10-25 2013-05-16 Azbil Corp Surface temperature estimating device, surface temperature estimating method, and dew condensation determination device

Similar Documents

Publication Publication Date Title
JP5228023B2 (en) Refrigeration cycle equipment
JP4613526B2 (en) Supercritical heat pump cycle equipment
ES2728577T3 (en) Cooling device
ES2716469T3 (en) Air conditioner
JP6184503B2 (en) Oil level detection device and refrigeration air conditioner equipped with the oil level detection device
JP5898569B2 (en) Radiant air conditioner
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
CN103890501B (en) Conditioner
CN104380002A (en) Radiation-type air conditioner
JP5003542B2 (en) Refrigeration cycle equipment
JP2017121818A (en) Control device for cooling device
KR101656631B1 (en) Radiant air conditioner
JP2009204208A (en) Refrigeration device
JP6071352B2 (en) Heat pump system
JP6768977B2 (en) Geothermal heat pump system and control method of geothermal heat pump system
JP2006266596A (en) Hot water storage type water heater
JP5889347B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
US20210207858A1 (en) Method for defrosting an air conditioner unit
JP2009002564A (en) Refrigerant cooling circuit
JP2009192096A (en) Air conditioner
US10837670B2 (en) Air-conditioning apparatus
JP2007322051A (en) Heat pump type water heater
JP6914451B2 (en) Air conditioner
EP4028702A1 (en) Diagnostic for refrigerant composition verification
ES2731592T3 (en) Multi-type air conditioner and a method to verify the operation of indoor electronic expansion valves of indoor units