JP2008139007A - Radiation type air conditioner - Google Patents

Radiation type air conditioner Download PDF

Info

Publication number
JP2008139007A
JP2008139007A JP2007238599A JP2007238599A JP2008139007A JP 2008139007 A JP2008139007 A JP 2008139007A JP 2007238599 A JP2007238599 A JP 2007238599A JP 2007238599 A JP2007238599 A JP 2007238599A JP 2008139007 A JP2008139007 A JP 2008139007A
Authority
JP
Japan
Prior art keywords
radiation
room
air conditioner
fan
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007238599A
Other languages
Japanese (ja)
Inventor
Yasushi Nakayama
靖士 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2007238599A priority Critical patent/JP2008139007A/en
Publication of JP2008139007A publication Critical patent/JP2008139007A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation type air conditioner for cooling/heating a whole room to be kept at a set temperature without installing a plurality of radiation panels in the room or installing a large radiation panel near the selective wall face of the room. <P>SOLUTION: The radiation type air conditioner comprises a radiation panel 1 for circulating cold/hot water in a liquid medium circulation pipe 6 installed inside and heat exchanging it with room air via a heat radiation plate 8 provided on the surface side to perform cooling/heating with radiation, and a ceiling fan 4 for stirring room air. The ceiling fan 4 is rotated depending on the operated condition of the cooling/heating with the radiation panel 1. During both cooling operation and heating operation with the radiation panel 1, the rotation of the ceiling fan 4 generates an air stream near the front face side of the radiation panel 1 in the opposite direction to the vertical direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、輻射式空調装置に関する。   The present invention relates to a radiation type air conditioner.

対流を利用する送風式空調装置(エアコン)では、冷風又は温風が直接人体にあたるので不快感を与えることがある。このため、送風式空調装置のように対流を利用するのではなく、輻射パネル内に冷水又は温水を循環させ、輻射パネルの表面を介して室内空気と熱交換を行う、いわゆる輻射式の空調装置が従来より知られている(例えば、特許文献1参照)。   In an air-conditioning apparatus (air conditioner) that uses convection, cold air or hot air directly hits the human body, which may cause discomfort. For this reason, instead of using convection like a blower type air conditioner, a so-called radiant type air conditioner that circulates cold water or hot water in the radiant panel and exchanges heat with room air via the surface of the radiant panel. Is conventionally known (see, for example, Patent Document 1).

前記特許文献1のような輻射式の空調装置では、輻射パネル(熱交換パネル)を部屋の任意の壁面付近に衝立状に設置するようにして使用される。
特開2005−127606号公報
In the radiation type air conditioner as described in Patent Document 1, a radiation panel (heat exchange panel) is used in the form of a partition in the vicinity of an arbitrary wall surface of a room.
JP 2005-127606 A

ところで、前記特許文献1の空調装置に用いられる輻射パネル(熱交換パネル)の表面の熱交換効率は一般に高くなく、また、この輻射パネルは通常部屋の任意の壁面付近に衝立状に設置される。このため、部屋全体が設定温度になるように冷却又は暖房するには、部屋内に複数の輻射パネルを設置したり、部屋の任意の壁面付近に大型の輻射パネルを設置したりする必要があった。   By the way, the heat exchange efficiency of the surface of the radiation panel (heat exchange panel) used in the air conditioner of Patent Document 1 is generally not high, and this radiation panel is usually installed in the form of a partition near any wall surface in the room. . For this reason, to cool or heat the entire room to the set temperature, it is necessary to install multiple radiant panels in the room or install a large radiant panel near any wall in the room. It was.

そこで、本発明は、部屋内に複数の輻射パネルを設置したり、部屋の任意の壁面付近に大型の輻射パネルを設置したりすることなく部屋全体を設定温度に保つように冷却又は暖房することができる輻射式空調装置を提供することを目的とする。   Therefore, the present invention cools or heats the entire room to keep the set temperature without installing a plurality of radiation panels in the room or installing a large radiation panel near any wall in the room. An object of the present invention is to provide a radiation type air conditioner capable of performing

前記目的を達成するために請求項1に係る発明は、冷水又は温水を内部に設置した液媒循環パイプに循環させ、表面側に設けた放熱板を介して室内空気と熱交換させることにより輻射によって冷房又は暖房を行う輻射パネルと、室内の空気を攪拌する少なくとも一つのファンと、を有し、前記輻射パネルによる冷房又は暖房の運転状況に応じて前記ファンを回転させ、かつ前記輻射パネルによる冷房運転時と暖房運転時とで前記輻射パネルの前面側近傍での気流の向きが上下方向に対して逆方向となるような気流を前記ファンの回転によって発生させることを特徴としている。   In order to achieve the above object, the invention according to claim 1 radiates cold water or hot water by circulating it through a liquid medium circulation pipe installed therein and exchanging heat with room air via a heat radiating plate provided on the surface side. A radiant panel that performs cooling or heating by means of, and at least one fan that stirs the air in the room, and rotates the fan according to the operating state of cooling or heating by the radiant panel, and by the radiant panel In the cooling operation and the heating operation, an air flow is generated by the rotation of the fan so that the direction of the air flow in the vicinity of the front side of the radiation panel is opposite to the vertical direction.

また、請求項2に係る発明は、前記輻射パネルを室内の壁面に設置し、前記ファンを室内の天井の略中央部に設置したことを特徴としている。   The invention according to claim 2 is characterized in that the radiation panel is installed on a wall surface of the room and the fan is installed at a substantially central part of the ceiling of the room.

また、請求項3に係る発明は、前記ファンを前記放熱板の前面側の下部に設置し、前記ファンの回転によって前記放熱板の表面に沿って上下方向の気流を発生させることを特徴としている。   The invention according to claim 3 is characterized in that the fan is installed in a lower part on the front side of the heat radiating plate, and a vertical air flow is generated along the surface of the heat radiating plate by the rotation of the fan. .

本発明に係る輻射式空調装置によれば、輻射パネルによる冷房又は暖房の運転状況に応じてファンを回転させ、かつ輻射パネルによる冷房運転時と暖房運転時とで輻射パネルの前面側近傍での気流の向きが上下方向に対して逆方向となるような気流をファンの回転によって発生させることにより、部屋内の空間に発生する対流によって輻射パネルの前面側近傍に生じた上向き又は下向きの気流によって放熱板の表面からの放射を促進することができるので、大面積の輻射パネルを用いることなく、部屋全体を輻射パネルによる輻射によって短時間で設定暖房温度以上に保つようにすることが可能となる。   According to the radiant type air conditioner according to the present invention, the fan is rotated according to the cooling or heating operation state by the radiant panel, and the front side of the radiant panel is near during the cooling operation and the heating operation by the radiant panel. By generating an airflow in which the direction of the airflow is opposite to the vertical direction by rotating the fan, the upward or downward airflow generated in the vicinity of the front side of the radiant panel due to the convection generated in the space in the room Since radiation from the surface of the heat sink can be promoted, it becomes possible to keep the entire room above the set heating temperature in a short time by radiation from the radiation panel without using a large area radiation panel. .

以下、本発明を図示の実施形態に基づいて説明する。
〈実施形態1〉
図1は、本発明の実施形態1に係る輻射式空調装置を示す概略構成図、図2は、本発明の実施形態1に係る輻射式空調装置を設けた部屋を示す図である。
Hereinafter, the present invention will be described based on illustrated embodiments.
<Embodiment 1>
FIG. 1 is a schematic configuration diagram illustrating a radiation type air conditioner according to Embodiment 1 of the present invention, and FIG. 2 is a diagram illustrating a room provided with the radiation type air conditioner according to Embodiment 1 of the present invention.

図1に示すように、本実施形態に係る輻射式空調装置は、部屋の任意の壁面Aに設置された1枚の輻射パネル1と、屋外に設置された空調室外機2と、液媒(冷水や温水)を輻射パネル1と空調室外機2との間で循環させるための配管3a,3bと、部屋の天井Bに設置された低速回転するシーリングファン(天井扇)4と、空調室外機2の運転やシーリングファン4の回転のON/OFFなどを制御する操作盤5を備えている。なお、操作盤5は温度センサ(不図示)を有している。   As shown in FIG. 1, the radiation type air conditioner according to this embodiment includes a single radiation panel 1 installed on an arbitrary wall surface A of the room, an air conditioner outdoor unit 2 installed outdoors, and a liquid medium ( Pipes 3a and 3b for circulating cold water and hot water between the radiation panel 1 and the air conditioner outdoor unit 2, a ceiling fan 4 that rotates at a low speed installed on the ceiling B of the room, and an air conditioner outdoor unit An operation panel 5 is provided for controlling the operation of No. 2 and ON / OFF of the rotation of the ceiling fan 4. The operation panel 5 has a temperature sensor (not shown).

輻射パネル1は、図2に示すように、部屋の壁面Aの中央付近に固定されている。輻射パネル1は、その背面側(壁面側)に液媒循環パイプ6によって形成された液媒流路が表面側に埋設されている断熱板7と、断熱板7の表面側(壁面Aと反対側)に設けた放熱板8とで構成されており、液媒循環パイプ6の一端側に液媒が供給される側の配管3aが接続されるとともに、液媒循環パイプ6の他端側に液媒を空調室外機2側へ戻すための配管3bが接続されている。   As shown in FIG. 2, the radiation panel 1 is fixed near the center of the wall surface A of the room. The radiation panel 1 includes a heat insulating plate 7 in which a liquid medium flow path formed by a liquid medium circulation pipe 6 is embedded on the back side (wall surface side) on the surface side, and a surface side of the heat insulating plate 7 (opposite to the wall surface A). The pipe 3a on the side to which the liquid medium is supplied is connected to one end side of the liquid medium circulation pipe 6 and the other end side of the liquid medium circulation pipe 6 is connected. A pipe 3b for returning the liquid medium to the air conditioner outdoor unit 2 side is connected.

また、放熱板8の下部にはドレインパン9が設けられており、液媒循環パイプ6に冷水(液媒)を循環させる冷房運転時に、放熱板8の表面に室内空気中の水分が結露してその結露水が床面Cに落下するのを防止するようにしている。   In addition, a drain pan 9 is provided below the heat radiating plate 8, and moisture in the room air is condensed on the surface of the heat radiating plate 8 during cooling operation in which cold water (liquid medium) is circulated through the liquid medium circulation pipe 6. The condensed water is prevented from falling on the floor surface C.

空調室外機2は、冷房運転時には冷水(液媒)を生成し、暖房運転時には温水(液媒)を生成するように構成されており、空調室外機2で生成された冷水又は温水は配管3aを通して液媒循環パイプ6に供給され、液媒循環パイプ6を通った冷水又は温水は配管3bを通して再び空調室外機2に戻される。   The air conditioning outdoor unit 2 is configured to generate cold water (liquid medium) during the cooling operation and generate hot water (liquid medium) during the heating operation, and the cold water or hot water generated by the air conditioning outdoor unit 2 is pipe 3a. The cold water or hot water that has passed through the liquid medium circulation pipe 6 is returned to the air conditioner outdoor unit 2 again through the pipe 3b.

シーリングファン4は、部屋の略中央部付近の天井Bに設けられており、操作ユニット5からの信号に基づいて、冷房運転時にはシーリングファン4の回転によりその直下に下向き気流を発生させ、暖房運転時にはシーリングファン4の回転によりその直下に上向き気流を発生させるように回転方向を切替えることができる。これにより、部屋内の空間に発生する対流によって輻射パネル1の前面側近傍に、冷房運転時には上向きの気流が発生し、暖房運転時には下向きの気流が発生する。なお、シーリングファン4の回転によってその直下に発生される下向き又は上向き気流は、人体に感じない程度の緩やかな気流である。シーリングファン4の能力としては、風速が3m/s以下で風量が400m/h以上であるものが好ましい。 The ceiling fan 4 is provided on the ceiling B near the center of the room. Based on a signal from the operation unit 5, the ceiling fan 4 generates a downward airflow by the rotation of the ceiling fan 4 during the cooling operation. Sometimes, the rotation direction can be switched so that an upward airflow is generated immediately below the ceiling fan 4 by the rotation of the ceiling fan 4. Thus, an upward air flow is generated in the vicinity of the front surface side of the radiation panel 1 by the convection generated in the space in the room during the cooling operation, and a downward air flow is generated during the heating operation. The downward or upward airflow generated immediately below the ceiling fan 4 is a gentle airflow that is not felt by the human body. The ceiling fan 4 preferably has a wind speed of 3 m / s or less and an air volume of 400 m 3 / h or more.

本実施形態に係る輻射式空調装置は前記ように構成されており、冷房運転時には空調室外機2により生成された冷水が配管3aを通して輻射パネル1の液媒循環パイプ6に供給される。液媒循環パイプ6に冷水が供給されると、放熱板8の表面を介して室内空気と熱交換されることにより、放熱板8の表面が冷やされる。これにより、放熱板8の表面からの輻射によって部屋内が冷却される。液媒循環パイプ6を流れた冷水は配管3bを通して再び空調室外機2に戻され、以下同様に冷水を液媒循環パイプ6に循環させる。なお、冷房運転時に放熱板8の表面に付着した結露水は、放熱板8の下部に設けたドレインパン9により回収される。   The radiation type air conditioner according to the present embodiment is configured as described above, and cold water generated by the air conditioning outdoor unit 2 is supplied to the liquid medium circulation pipe 6 of the radiation panel 1 through the pipe 3a during the cooling operation. When cold water is supplied to the liquid medium circulation pipe 6, the surface of the heat radiating plate 8 is cooled by heat exchange with room air via the surface of the heat radiating plate 8. Thereby, the inside of the room is cooled by radiation from the surface of the heat sink 8. The cold water that has flowed through the liquid medium circulation pipe 6 is returned again to the air-conditioning outdoor unit 2 through the pipe 3b, and the cold water is circulated through the liquid medium circulation pipe 6 in the same manner. The condensed water adhering to the surface of the heat radiating plate 8 during the cooling operation is collected by a drain pan 9 provided at the lower portion of the heat radiating plate 8.

そして、図2に示すように、この冷房運転開始と同時に操作盤5からの信号に基づいてシーリングファン4を所定時間(例えば、冷房運転開始から30分〜1時間程度)だけ所定方向に低速回転させて、シーリングファン4の直下に下向き気流を発生させる。また、冷房運転中(このときはシーリングファン4は停止状態)において、操作盤5の温度センサ(不図示)が、外気温度の上昇等により室温が予め設定している温度(設定冷房温度)から少し越えたことを検知した場合にも同様に、操作盤5からの信号に基づいてシーリングファン4を所定時間だけ所定方向に低速回転させて、シーリングファン4の直下に下向き気流を発生させる。   Then, as shown in FIG. 2, simultaneously with the start of the cooling operation, the ceiling fan 4 is rotated at a low speed in a predetermined direction for a predetermined time (for example, about 30 minutes to 1 hour from the start of the cooling operation) based on a signal from the operation panel 5. Thus, a downward airflow is generated immediately below the ceiling fan 4. Further, during the cooling operation (in this case, the ceiling fan 4 is in a stopped state), the temperature sensor (not shown) of the operation panel 5 causes the room temperature to be set from a preset temperature (set cooling temperature) due to an increase in the outside air temperature or the like. Similarly, when it is detected that the distance is slightly exceeded, the ceiling fan 4 is rotated at a low speed in a predetermined direction for a predetermined time based on a signal from the operation panel 5, and a downward airflow is generated immediately below the ceiling fan 4.

これにより、部屋の天井Bと床Cとの間で人体に感じない程度の緩やかな対流が発生することにより、輻射パネル1の放熱板8近傍に上向きの気流が発生する。また、天井Bと床Cとの間に発生した対流により、天井B付近よりも温度の低い床C付近の空気を部屋全体に均一に、かつ素早く拡散させることができる。よって、冷房運転開始直後から所定時間の間や、冷房運転中に室温が設定冷房温度を超えた場合に、輻射パネル1の放熱板8の表面に沿った上向き気流により放熱板8の表面からの放冷を促進することができるので、一壁面全体を覆うような大面積の輻射パネルを用いることなく、部屋全体を輻射パネル1による輻射によって短時間で設定冷房温度に保つようにすることが可能となる。   As a result, gentle convection is generated between the ceiling B and the floor C of the room so as not to be felt by the human body, so that an upward air flow is generated in the vicinity of the heat radiating plate 8 of the radiation panel 1. Further, due to the convection generated between the ceiling B and the floor C, the air in the vicinity of the floor C whose temperature is lower than that in the vicinity of the ceiling B can be uniformly and quickly diffused throughout the room. Therefore, when the room temperature exceeds the set cooling temperature for a predetermined time immediately after the start of the cooling operation or during the cooling operation, the upward air flow along the surface of the heat dissipation plate 8 of the radiation panel 1 causes the airflow from the surface of the heat dissipation plate 8. Cooling can be promoted, so that the entire room can be kept at the set cooling temperature in a short time by radiation from the radiation panel 1 without using a large area radiation panel covering the entire wall. It becomes.

また、暖房運転時には空調室外機2により生成された温水が配管3aを通して輻射パネル1の液媒循環パイプ6に供給される。液媒循環パイプ6に温水が供給されると放熱板8の表面を介して室内空気と熱交換されることにより、放熱板8の表面が温められる。これにより、放熱板8の表面からの輻射によって部屋内が暖房される。液媒循環パイプ6を流れた温水は配管3bを通して再び空調室外機2に戻され、以下同様に温水を液媒循環パイプ7に循環させる。   Moreover, the warm water produced | generated by the air-conditioning outdoor unit 2 at the time of heating operation is supplied to the liquid medium circulation pipe 6 of the radiation panel 1 through the piping 3a. When hot water is supplied to the liquid medium circulation pipe 6, the surface of the heat radiating plate 8 is warmed by heat exchange with room air via the surface of the heat radiating plate 8. Thereby, the room is heated by radiation from the surface of the heat sink 8. The hot water that has flowed through the liquid medium circulation pipe 6 is returned to the air-conditioning outdoor unit 2 again through the pipe 3b, and the hot water is circulated through the liquid medium circulation pipe 7 in the same manner.

そして、前記した冷房時と同様に、この暖房運転開始と同時に操作盤5からの信号に基づいてシーリングファン4を所定時間(例えば、暖房運転開始から30分〜1時間程度)だけ冷房時と逆方向に低速回転させて、シーリングファン4の直下に上向き気流を発生させる。また、暖房運転中(このときはシーリングファン4は停止状態)において、操作盤5の温度センサ(不図示)が、外気温度の低下等により室温が予め設定している温度(設定暖房温度)から少し下がったことを検知した場合にも同様に、操作盤5からの信号に基づいてシーリングファン4を所定時間だけ冷房時と逆方向に低速回転させて、シーリングファン4の直下に上向き気流を発生させる。   Similarly to the cooling operation described above, the ceiling fan 4 is reversed for a predetermined time (for example, about 30 minutes to 1 hour from the start of the heating operation) based on a signal from the operation panel 5 simultaneously with the start of the heating operation. The airflow is rotated at a low speed in the direction to generate an upward airflow immediately below the ceiling fan 4. Further, during the heating operation (in this case, the ceiling fan 4 is in a stopped state), the temperature sensor (not shown) of the operation panel 5 detects that the room temperature has been set in advance due to a decrease in the outside air temperature (set heating temperature). Similarly, when a slight drop is detected, the ceiling fan 4 is rotated at a low speed in a direction opposite to that during cooling for a predetermined time based on a signal from the operation panel 5 to generate an upward airflow immediately below the ceiling fan 4. Let

これにより、部屋の天井Bと床Cとの間で人体に感じない程度の緩やかな対流が発生することにより、輻射パネル1の放熱板8近傍に下向きの気流が発生する。また、天井Bと床Cとの間に発生した対流により、天井B付近よりも温度の低い床C付近の空気を部屋全体に均一に、かつ素早く拡散させることができる。よって、暖房運転開始直後から所定時間の間や、暖房運転中に室温が設定暖房温度よりも下がった場合に、輻射パネル1の放熱板8の表面に沿った下向き気流により放熱板8の表面からの放熱を促進することができるので、一壁面全体を覆うような大面積の輻射パネルを用いることなく、部屋全体を輻射パネル1による輻射によって短時間で設定暖房温度に保つようにすることが可能となる。   As a result, gentle convection is generated between the ceiling B and the floor C of the room so as not to be felt by the human body, and a downward airflow is generated in the vicinity of the heat radiating plate 8 of the radiation panel 1. Further, due to the convection generated between the ceiling B and the floor C, the air in the vicinity of the floor C whose temperature is lower than that in the vicinity of the ceiling B can be uniformly and quickly diffused throughout the room. Therefore, when the room temperature falls below the set heating temperature for a predetermined time immediately after the start of the heating operation or during the heating operation, the downward airflow along the surface of the heat dissipation plate 8 of the radiation panel 1 causes the surface of the heat dissipation plate 8 to It is possible to keep the entire room at the set heating temperature in a short time by radiation from the radiation panel 1 without using a large area radiation panel that covers the entire wall. It becomes.

なお、実施形態1では、部屋の天井Bの略中央部付近にシーリングファン4を設置した構成であったが、この位置に限らず、例えばシーリングファン4を、壁面Aに設置した輻射パネル1の上方付近の天井Bに設けてもよい。また、複数のシーリングファンを天井や壁面に設けてもよく、更に、冷房時に回転させるシーリングファンと暖房時に回転させるシーリングファンをそれぞれ別個に天井などに設けるようにしてもよい。   In the first embodiment, the ceiling fan 4 is installed near the substantially central portion of the ceiling B of the room. However, the present invention is not limited to this position. For example, the ceiling fan 4 is installed on the wall surface A of the radiation panel 1. You may provide in the ceiling B near upper direction. In addition, a plurality of ceiling fans may be provided on the ceiling or wall surface, and a ceiling fan that rotates during cooling and a ceiling fan that rotates during heating may be separately provided on the ceiling or the like.

前記した実施形態1の輻射式空調装置の効果を評価するために、図3に示す比較例のように、部屋の壁面Aに実施形態1と同様の輻射パネル1のみを設置して、冷房効果を比較した。なお、この比較例の輻射式空調装置は、天井にシーリングファンは設けていない以外は実施形態1と同様である。   In order to evaluate the effect of the radiation type air conditioner of the first embodiment, only the radiation panel 1 similar to that of the first embodiment is installed on the wall surface A of the room as in the comparative example shown in FIG. Compared. The radiation type air conditioner of this comparative example is the same as that of the first embodiment except that the ceiling fan is not provided on the ceiling.

運転条件は両方とも、外気温が32℃で輻射パネル1に流す冷水の温度を10℃、設定冷房温度を27℃に設定し、また、実施形態1の輻射式空調装置では、室温が28℃を超えるとシーリングファン4を回転させるように設定した。前記の運転条件において、実施形態1の輻射式空調装置を運転した場合は室温が27℃であったが、輻射パネル1のみを設置した比較例の場合は室温が32℃まで上昇し、実施形態1の輻射式空調装置による冷房効果が確認された。   In both operating conditions, the outside air temperature is 32 ° C., the temperature of the cold water flowing through the radiation panel 1 is set to 10 ° C., the set cooling temperature is set to 27 ° C., and in the radiation type air conditioner of Embodiment 1, the room temperature is 28 ° C. The ceiling fan 4 is set to rotate when the value exceeds. Under the above operating conditions, when the radiation type air conditioner of Embodiment 1 was operated, the room temperature was 27 ° C., but in the case of the comparative example in which only the radiation panel 1 was installed, the room temperature rose to 32 ° C. The cooling effect by the radiation type air conditioner 1 was confirmed.

〈実施形態2〉
図4は、本発明の実施形態2に係る輻射式空調装置を示す概略構成図、図5は、本発明の実施形態2に係る輻射式空調装置の輻射パネルを示す概略側面図である。なお、図1、図2に示した実施形態1に係る輻射式空調装置と同一機能を有する部材には同一符号を付し、重複する説明は省略する。
<Embodiment 2>
FIG. 4 is a schematic configuration diagram showing a radiation type air conditioner according to Embodiment 2 of the present invention, and FIG. 5 is a schematic side view showing a radiation panel of the radiation type air conditioner according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as the radiation type air conditioner based on Embodiment 1 shown in FIG. 1, FIG. 2, and the overlapping description is abbreviate | omitted.

前記実施形態1では部屋の天井にシーリングファンを設けた構成であったが、本実施形態2に係る輻射式空調装置では、図4、図5に示すように、部屋の壁面Aに設置された輻射パネル1aの前面側の下部に沿ってラインフローファン10を設置した構成である。他の構成は実施形態1と同様である。   In the first embodiment, the ceiling fan is provided on the ceiling of the room. However, in the radiation type air conditioner according to the second embodiment, the ceiling fan is installed on the wall surface A of the room as shown in FIGS. It is the structure which installed the line flow fan 10 along the lower part of the front side of the radiation panel 1a. Other configurations are the same as those of the first embodiment.

ラインフローファン10を収納した容器11の前面側と上面側には開口部11a,11bがそれぞれ形成されており、冷房運転時には前面側の開口部11aから容器11内に導入した空気を上面側の開口部11bから排出するようにラインフローファン10が回転され、暖房運転時には逆に上面側の開口部11bから容器11内に導入した空気を前面側の開口部11aから排出するようにラインフローファン10が回転される。   Openings 11a and 11b are respectively formed on the front side and the top side of the container 11 containing the line flow fan 10, and air introduced into the container 11 from the opening 11a on the front side is provided on the top side during cooling operation. The line flow fan 10 is rotated so as to be discharged from the opening 11b, and conversely, during the heating operation, the line flow fan is discharged so that air introduced into the container 11 from the opening 11b on the upper surface side is discharged from the opening 11a on the front surface side. 10 is rotated.

そして、本実施形態では、図5に示すように、冷房運転時において冷房運転開始と同時に操作盤5からの信号に基づいてラインフローファン10を所定時間(例えば、冷房運転開始から30分〜1時間程度)だけ所定方向に回転させて、輻射パネル1aの放熱板8の表面に沿って上向き気流を発生させる。また、冷房運転中(このときはラインフローファン10は停止状態)において、上記所定時間の経過後に、操作盤5の温度センサ(不図示)が、外気温度上昇等により室温が予め設定している温度(設定冷房温度)から少し越えたことを検知した場合にも同様に、操作盤5からの信号に基づいてラインフローファン10を所定時間だけ所定方向に回転させて、輻射パネル1aの放熱板8の表面に沿って上向き気流を発生させる。   In the present embodiment, as shown in FIG. 5, during the cooling operation, the line flow fan 10 is kept for a predetermined time (for example, 30 minutes to 1 from the start of the cooling operation) based on the signal from the operation panel 5 simultaneously with the start of the cooling operation. Rotate in a predetermined direction for a certain amount of time to generate an upward air flow along the surface of the radiator plate 8 of the radiation panel 1a. Further, during the cooling operation (in this case, the line flow fan 10 is in a stopped state), after the predetermined time has elapsed, a temperature sensor (not shown) of the operation panel 5 presets the room temperature due to an outside air temperature rise or the like. Similarly, when it is detected that the temperature (set cooling temperature) is slightly exceeded, the line flow fan 10 is rotated in a predetermined direction for a predetermined time on the basis of a signal from the operation panel 5, and the heat radiating plate of the radiation panel 1a An upward airflow is generated along the surface of 8.

これにより、輻射パネル1aの放熱板8の表面に沿って発生された上向き気流により、部屋の天井Bと床Cとの間で人体に感じない程度の緩やかな対流が発生することによって、天井B付近よりも温度の低い床C付近の空気を部屋全体に均一に、かつ素早く拡散させることができる。よって、冷房運転開始直後から所定時間の間や、冷房運転中に室温が設定冷房温度を超えた場合に、輻射パネル1aの放熱板8の表面に沿った上向き気流により放熱板8の表面からの放冷を促進することができるので、一壁面全体を覆うような大面積の輻射パネルを用いることなく、部屋全体を輻射パネル1aによる輻射によって短時間で設定冷房温度に保つようにすることが可能となる。   As a result, the upward airflow generated along the surface of the radiator plate 8 of the radiant panel 1a causes a gentle convection between the ceiling B and the floor C of the room that is not felt by the human body, thereby causing the ceiling B Air in the vicinity of the floor C having a lower temperature than the vicinity can be uniformly and quickly diffused throughout the room. Therefore, when the room temperature exceeds the set cooling temperature for a predetermined time immediately after the start of the cooling operation or during the cooling operation, the upward air flow along the surface of the heat dissipation plate 8 of the radiation panel 1a causes Since it is possible to promote cooling, it is possible to keep the entire room at the set cooling temperature in a short time by radiation from the radiation panel 1a without using a large area radiation panel covering the entire wall surface. It becomes.

そして、前記した冷房時と同様に、この暖房運転開始と同時に操作盤5からの信号に基づいてラインフローファン10を所定時間(例えば、暖房運転開始から30分〜1時間程度)だけ冷房時と逆方向に低速回転させて、輻射パネル1aの放熱板8の表面に沿って下向き気流を発生させる。また、暖房運転中(このときはラインフローファン10は停止状態)において、上記所定時間の経過後に、操作盤5の温度センサ(不図示)が、外気温度低下等により室温が予め設定している温度(設定暖房温度)から少し下がったことを検知した場合にも同様に、操作盤5からの信号に基づいてラインフローファン10を所定時間だけ冷房時と逆方向に回転させて、輻射パネル1aの放熱板8の表面に沿って下向き気流を発生させる。   Similarly to the above-described cooling operation, the line flow fan 10 is cooled for a predetermined time (for example, about 30 minutes to 1 hour from the start of the heating operation) based on a signal from the operation panel 5 simultaneously with the start of the heating operation. The air is rotated at a low speed in the reverse direction, and a downward airflow is generated along the surface of the radiator plate 8 of the radiation panel 1a. Further, during the heating operation (in this case, the line flow fan 10 is stopped), after the predetermined time has elapsed, the temperature sensor (not shown) of the operation panel 5 presets the room temperature due to a decrease in the outside air temperature or the like. Similarly, when it is detected that the temperature (set heating temperature) has fallen slightly, the line flow fan 10 is rotated in a direction opposite to that during cooling for a predetermined time on the basis of a signal from the operation panel 5 to radiate the panel 1a. A downward airflow is generated along the surface of the heat sink 8.

これにより、部屋の天井Bと床Cとの間で人体に感じない程度の緩やかな対流が発生することにより、天井B付近よりも温度の低い床C付近の空気を部屋全体に均一に、かつ素早く拡散させることができる。よって、暖房運転開始直後から所定時間の間や、暖房運転中に室温が設定暖房温度よりも下がった場合に、輻射パネル1aの放熱板8の表面に沿った下向き気流により放熱板8の表面からの放熱を促進することができるので、一壁面全体を覆うような大面積の輻射パネルを用いることなく、部屋全体を輻射パネル1aによる輻射によって短時間で設定暖房温度に保つようにすることが可能となる。   As a result, gentle convection is generated between the ceiling B and the floor C of the room so as not to be felt by the human body, so that the air in the vicinity of the floor C having a temperature lower than that in the vicinity of the ceiling B is uniformly distributed throughout the room. Can diffuse quickly. Therefore, when the room temperature falls below the set heating temperature for a predetermined time immediately after the start of the heating operation or during the heating operation, the downward airflow along the surface of the heat dissipation plate 8 of the radiation panel 1a causes It is possible to keep the entire room at the set heating temperature in a short time by radiation from the radiation panel 1a without using a large-area radiation panel that covers the entire wall. It becomes.

実施の形態2の輻射式空調装置とファン無しの輻射式空調装置(以下、ファン無しの比較例と称する)と既存の対流式空調装置(以下、対流式の比較例と称する)とを用いて、冷房運転をおこなった場合の温度分布の測定結果を図6に示し、暖房運転を行った場合の温度分布の測定結果を図7に示している。   Using the radiation type air conditioner according to the second embodiment, the radiation type air conditioner without a fan (hereinafter referred to as a comparative example without a fan) and the existing convection type air conditioner (hereinafter referred to as a convective type comparative example) FIG. 6 shows the measurement results of the temperature distribution when the cooling operation is performed, and FIG. 7 shows the measurement results of the temperature distribution when the heating operation is performed.

なお、この測定は、縦横が4.8m、2.7mで、高さが2.4mの部屋を用い、輻射パネル1として、面積が4.5m程度(例えば、1.8m×0.85m程度)のものを用いて行った。
また、冷房運転は、平均外気温26.4℃、運転設定温度26℃で行い、一方、暖房運転は、平均外気温4.1℃、運転設定23℃で行った。
In this measurement, a room having a height and width of 4.8 m, 2.7 m and a height of 2.4 m is used, and the area of the radiation panel 1 is about 4.5 m 2 (for example, 1.8 m × 0.85 m). Grade).
The cooling operation was performed at an average outside air temperature of 26.4 ° C. and an operation set temperature of 26 ° C., while the heating operation was performed at an average outside air temperature of 4.1 ° C. and an operation setting of 23 ° C.

そして、この測定時において、風速分布は、本実施の形態2ものが、高さ180cmかつ装置からの距離が90cmの位置で0.001m/s、同様に、高さ30cmで装置からの距離が90cmの位置で、0.09m/sであった。一方、対流式の比較例のものは、前者の位置で0.14〜1.0m/s、後者の位置で0.09m/sであった。このように、風速分布は、実施の形態2のものは、2箇所の風速差が小さいのに対し、対流式の比較例のものは、2箇所の風速差が大きかった。なお、ファン無しの場合は、風速分布は測定していない。   At the time of this measurement, the wind speed distribution of the second embodiment is 0.001 m / s at a position where the height is 180 cm and the distance from the apparatus is 90 cm, and similarly, the distance from the apparatus is 30 cm in height. It was 0.09 m / s at a position of 90 cm. On the other hand, in the comparative example of the convection type, the former position was 0.14 to 1.0 m / s, and the latter position was 0.09 m / s. As described above, the wind speed distribution in the second embodiment has a small difference between the two wind speeds, whereas the convection type comparative example has a large difference in the two wind speeds. In the case of no fan, the wind speed distribution is not measured.

冷房運転時には、図6に示されるように、実施の形態2の輻射式空調装置は、ファン無しの比較例および対流式の比較例と比べて、高さ方向の温度分布にばらつきが少ないのがわかる。
すなわち、図示のように、人の上半身程度に相当する120cmの高さでは、いずれのものも、設定温度である26℃付近で一致しているのに対し、●印で測定点を示す実施の形態2のものは、高さ方向の全体に亘って温度差が0.5℃程度の範囲内に収まっている。それに対し、▲印で測定点を示すファン無しの比較例ものは、高所ほど高温となり、全体で2.0℃程度の温度差が生じた。また、■印で測定点を示す対流式の比較例では、高所と低所の温度が高くなり、全体で1.5℃程度の温度差が生じた。
During cooling operation, as shown in FIG. 6, the radiation type air conditioner of the second embodiment has less variation in temperature distribution in the height direction than the comparative example without a fan and the comparative example with a convection type. Recognize.
In other words, as shown in the figure, at a height of 120 cm corresponding to the upper body level of a person, all of them coincided around the set temperature of 26 ° C., whereas the measurement points are indicated by ● marks. The thing of form 2 has settled in the range whose temperature difference is about 0.5 degreeC over the whole height direction. On the other hand, in the comparative example without a fan, the measurement points indicated by ▲ are higher at higher locations, and a temperature difference of about 2.0 ° C. occurs as a whole. Further, in the convection type comparative example in which the measurement points are indicated by ■, the temperature at the high place and the low place was high, and a temperature difference of about 1.5 ° C. was generated as a whole.

一方、暖房運転時にあっても、図7に示されるように、実施の形態2の輻射式空調装置では、高さ方向の温度分布のばらつきが少ないのが分かる。
すなわち、図示のように、人の上半身程度に相当する120cmの高さでは、いずれの装置でも、設定温度である23℃付近で一致しているのに対し、●印で測定点を示す実施の形態2のものは、高さ方向の全体に亘って温度差が2℃程度の範囲内に収まっている。それに対し、▲印で測定点を示すファン無しの比較例のものは、高所の天井部分が最も高温で、低所ほど低温となり、全体で4℃程度の温度差が生じた。また、■印で測定点を示す対流式の比較例のものでは、180cm程の高さが最も高温になり、全体で6℃程度の温度差が生じた。
On the other hand, even during the heating operation, as shown in FIG. 7, it can be seen that the radiation type air conditioner of the second embodiment has little variation in the temperature distribution in the height direction.
In other words, as shown in the figure, at a height of 120 cm, which is equivalent to the upper body of a person, all the devices match at around the set temperature of 23 ° C., whereas the measurement points are indicated by ● marks. The thing of form 2 has settled in the range whose temperature difference is about 2 degreeC over the whole height direction. On the other hand, in the comparative example without a fan whose measurement point is indicated by a mark ▲, the ceiling part at the highest place is the hottest, and the temperature becomes lower at the lower place, resulting in a temperature difference of about 4 ° C. Moreover, in the comparative example of the convection type in which the measurement points are indicated by ■, the height of about 180 cm is the highest temperature, and a temperature difference of about 6 ° C. occurs as a whole.

また、図8は、実施の形態2の輻射式空調装置と対流式空調装置との冷房運転時の絶対湿度および外気湿度(二点差線で示す)を比較した湿度特性図であり、一点鎖線で示す実施の形態2のものは、実践で示す対流式のものと比較して、低湿度の環境を形成できるとともに、時間経過に伴う湿度変化が小さく安定しているのが分かる。   FIG. 8 is a humidity characteristic diagram comparing the absolute humidity and the outside air humidity (indicated by a two-dotted line) during the cooling operation of the radiation type air conditioner and the convection type air conditioner according to the second embodiment. It can be seen that the second embodiment shown can form a low-humidity environment as compared with the convection-type one shown in practice, and the humidity change over time is small and stable.

すなわち、実施の形態2のものは、対流式の比較例と比較して、面積の大きな輻射パネル1を備えているため、除湿性能が高く、低湿度の環境を形成できる。また、輻射ならびに微風により、室内空気を部屋全体に均一に拡散するため、時間経過に伴う湿度変化が小さく湿度の安定化を図ることができる。   That is, since the thing of Embodiment 2 is equipped with the radiation panel 1 with a large area compared with the comparative example of a convection type | formula, dehumidification performance is high and can form a low-humidity environment. In addition, since indoor air is uniformly diffused throughout the room by radiation and light winds, the humidity change with time can be small and the humidity can be stabilized.

また、図9は、実施の形態2の輻射式空調装置と、ファン無しの比較例と、対流式の比較例と、の快適指数(PMV)の測定結果を示す特性比較図である。
快適指数(PMV)は、一般に±0.5の範囲内が快適推奨域とされており、本実施の形態2のものおよびファン無しの比較例は、暖房時と冷房時とのいずれも、この快適推奨域に収まっている。
この快適指数(PMV)は、高さ180cmで各空調装置からの距離が90cmの位置における、各要素(室温、平均放射温度、相対湿度、平均風速、着衣量、作業量)から求めている。
FIG. 9 is a characteristic comparison diagram showing measurement results of the comfort index (PMV) of the radiation type air conditioner of the second embodiment, a comparative example without a fan, and a comparative example with a convection type.
The comfort index (PMV) is generally within the range of ± 0.5 as the recommended comfort range, and the comparative example with no fan and the comparative example without the fan are both in the heating time and the cooling time. It is within the recommended comfort range.
This comfort index (PMV) is obtained from each element (room temperature, average radiation temperature, relative humidity, average wind speed, amount of clothes, amount of work) at a position where the height is 180 cm and the distance from each air conditioner is 90 cm.

この場合、実施の形態2の輻射式空調装置とファン無しの比較例とは、快適推奨域に収まっており、また、両者のうちでは、実施の形態2のものの方がその値が小さく、快適性が高かった。
これに対し、対流式の比較例では、暖房時に、この快適推奨域を超えた値(-0.70)であって、少し寒く感じる値となっており、一方、冷房時には、この快適推奨域を大幅に超えた値(-1.89)であって、寒く感じる値となっている。
In this case, the radiation type air conditioner of the second embodiment and the comparative example without a fan are within the recommended comfort range, and among them, the value of the second embodiment is smaller and comfortable. The nature was high.
On the other hand, in the comparative example of the convection type, it is a value that exceeds the recommended comfort range (-0.70) during heating and is a value that feels a little cold. On the other hand, this comfortable recommended range is greatly increased during cooling. It is a value exceeding 1. (-1.89), and it feels cold.

すなわち、快適性(PMV)の要素には、平均風速が含まれており、風速の小さな実施の形態2およびファン無しの比較例は、風速の大きな対流式の比較例よりも快適性が高い。さらに、実施の形態2とファン無しの比較例とでは、実施の形態2は、微風を生じるラインフローファン10により、温度分布の均一化ならびに湿度の安定化を図ることができることから、より高い快適性が得られる。   That is, the element of comfort (PMV) includes the average wind speed, and the second embodiment with a low wind speed and the comparative example without a fan have higher comfort than the convection type comparative example with a large wind speed. Further, in the second embodiment and the comparative example without a fan, the second embodiment can achieve a more uniform temperature distribution and a stabilized humidity by the line flow fan 10 that generates a breeze. Sex is obtained.

以上説明したように、実施の形態2の輻射式空調装置は、既存のファン無しの輻射式空調装置や、既存の対流式空調装置と比較して、冷房時と暖房時のいずれにあっても、温度分布にばらつきが少なく、しかも、湿度が安定しており、さらに、快適指数(PMV)も快適推奨域に収まっていて、快適性に優れているのが分かる。   As described above, the radiation type air conditioner according to the second embodiment can be used at any time of cooling or heating as compared with an existing fanless radiation type air conditioner or an existing convection type air conditioner. It can be seen that the temperature distribution has little variation, the humidity is stable, and the comfort index (PMV) is also within the recommended comfort range, which is excellent in comfort.

本発明の実施形態1に係る輻射式空調装置を示す概略構成図。The schematic block diagram which shows the radiation type air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る輻射式空調装置を設けた部屋の冷房時における気流の流れを示す図。The figure which shows the flow of the airflow at the time of cooling of the room which provided the radiation type air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施形態1に対する比較用の輻射式空調装置を示す概略構成図。The schematic block diagram which shows the radiation-type air conditioner for a comparison with respect to Embodiment 1 of this invention. 本発明の実施形態2に係る輻射式空調装置を示す概略構成図。The schematic block diagram which shows the radiation type air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る輻射式空調装置を設けた部屋の冷房時における気流の流れを示す図。The figure which shows the flow of the airflow at the time of air_conditioning | cooling of the room which provided the radiation type air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施の形態に係る輻射式空調装置とファン無しの輻射式空調装置と既存の対流式空調装置とを用いて、冷房運転をおこなった場合の温度分布の測定結果を示す温度分布特性図である。Temperature distribution characteristic diagram showing measurement results of temperature distribution when performing cooling operation using a radiation type air conditioner according to an embodiment of the present invention, a radiation type air conditioner without a fan, and an existing convection type air conditioner It is. 本発明の実施の形態に係る輻射式空調装置とファン無しの輻射式空調装置と既存の対流式空調装置とを用いて、暖房運転をおこなった場合の温度分布の測定結果を示す温度分布特性図である。Temperature distribution characteristic diagram showing measurement results of temperature distribution when heating operation is performed using a radiation type air conditioner according to an embodiment of the present invention, a radiation type air conditioner without a fan, and an existing convection type air conditioner It is. 実施の形態2の輻射式空調装置と対流式空調装置との冷房運転時の絶対湿度および外気湿度を比較した湿度特性図である。It is a humidity characteristic diagram which compared the absolute humidity at the time of air_conditionaing | cooling operation of the radiation type air conditioner of Embodiment 2, and a convection type | formula air conditioner, and external air humidity. 実施の形態2の輻射式空調装置と、ファン無し輻射式空調装置と、対流式空調装置と、の快適指数(PMV)の測定結果を示す特性比較図である。It is a characteristic comparison figure which shows the measurement result of the comfort index (PMV) of the radiation type air conditioner of Embodiment 2, a fanless radiation type air conditioner, and a convection type air conditioner.

符号の説明Explanation of symbols

1、1a 輻射パネル
2 空調室外機
4 シーリングファン(ファン)
5 操作盤
6 液媒循環パイプ
7 断熱板
8 放熱板
9 ドレインパン
10 ラインフローファン(ファン)
1, 1a Radiation panel 2 Air-conditioning outdoor unit 4 Ceiling fan (fan)
5 Operation Panel 6 Fluid Circulation Pipe 7 Heat Insulation Plate 8 Heat Dissipation Plate 9 Drain Pan 10 Line Flow Fan (Fan)

Claims (3)

冷水又は温水を内部に設置した液媒循環パイプに循環させ、表面側に設けた放熱板を介して室内空気と熱交換させることにより輻射によって冷房又は暖房を行う輻射パネルと、 室内の空気を攪拌する少なくとも一つのファンと、を有し、
前記輻射パネルによる冷房又は暖房の運転状況に応じて前記ファンを回転させ、かつ前記輻射パネルによる冷房運転時と暖房運転時とで前記輻射パネルの前面側近傍での気流の向きが上下方向に対して逆方向となるような気流を前記ファンの回転によって発生させる、
ことを特徴とする輻射式空調装置。
Cooling water or hot water is circulated through a liquid medium circulation pipe installed inside, and heat radiation is exchanged with room air via a radiator plate provided on the surface side. And having at least one fan
The fan is rotated in accordance with the cooling or heating operation status by the radiant panel, and the direction of the airflow in the vicinity of the front side of the radiant panel is in the vertical direction during the cooling operation and the heating operation by the radiant panel. The airflow that is in the opposite direction is generated by the rotation of the fan,
A radiation type air conditioner characterized by that.
前記輻射パネルを室内の壁面に設置し、前記ファンを室内の天井の略中央部に設置した、
ことを特徴とする請求項1に記載の輻射式空調装置。
The radiant panel was installed on the wall surface of the room, and the fan was installed in the approximate center of the ceiling of the room.
The radiation type air conditioner according to claim 1.
前記ファンを前記放熱板の前面側の下部に設置し、前記ファンの回転によって前記放熱板の表面に沿って上下方向の気流を発生させる、
ことを特徴とする請求項1に記載の輻射式空調装置。
The fan is installed in the lower part on the front side of the heat radiating plate, and a vertical air flow is generated along the surface of the heat radiating plate by the rotation of the fan.
The radiation type air conditioner according to claim 1.
JP2007238599A 2006-11-06 2007-09-14 Radiation type air conditioner Pending JP2008139007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238599A JP2008139007A (en) 2006-11-06 2007-09-14 Radiation type air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006299884 2006-11-06
JP2007238599A JP2008139007A (en) 2006-11-06 2007-09-14 Radiation type air conditioner

Publications (1)

Publication Number Publication Date
JP2008139007A true JP2008139007A (en) 2008-06-19

Family

ID=39600654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238599A Pending JP2008139007A (en) 2006-11-06 2007-09-14 Radiation type air conditioner

Country Status (1)

Country Link
JP (1) JP2008139007A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197992A (en) * 2011-03-22 2012-10-18 Inaba Denki Sangyo Co Ltd Air conditioning device
WO2014046084A1 (en) * 2012-09-21 2014-03-27 シャープ株式会社 Radiant air conditioner
JP2014137347A (en) * 2013-01-18 2014-07-28 Toyota Central R&D Labs Inc Radio communication apparatus and radio communication method
CN106545932A (en) * 2016-10-12 2017-03-29 浙江大学 A kind of radiation cooling air conditioner used in kitchen and integrated kitchenware
JP6328310B1 (en) * 2017-10-17 2018-05-23 旭イノベックス株式会社 Radiant air conditioner with blower and panel blower mounted on this device
CN108123387A (en) * 2017-12-24 2018-06-05 乐清市驰林电气有限公司 There is the low-voltage distribution cabinet of radiating dustproof
KR20200007367A (en) * 2018-07-13 2020-01-22 주식회사 쓰리에이치굿스 Heating-Cooling Device using this pump and Heat Pump with generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53552U (en) * 1976-06-17 1978-01-06
JP2000146209A (en) * 1998-11-17 2000-05-26 Matsushita Electric Ind Co Ltd Heating air conditioning system
JP2001041518A (en) * 1999-07-29 2001-02-16 Sanyo Electric Co Ltd Air cleaner
JP2001296037A (en) * 2000-04-12 2001-10-26 Sanyo Electric Co Ltd Air conditioner
JP2002364894A (en) * 2001-06-07 2002-12-18 Matsushita Electric Ind Co Ltd Circulator
JP2005127606A (en) * 2003-10-23 2005-05-19 P S Kogyo Kk Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53552U (en) * 1976-06-17 1978-01-06
JP2000146209A (en) * 1998-11-17 2000-05-26 Matsushita Electric Ind Co Ltd Heating air conditioning system
JP2001041518A (en) * 1999-07-29 2001-02-16 Sanyo Electric Co Ltd Air cleaner
JP2001296037A (en) * 2000-04-12 2001-10-26 Sanyo Electric Co Ltd Air conditioner
JP2002364894A (en) * 2001-06-07 2002-12-18 Matsushita Electric Ind Co Ltd Circulator
JP2005127606A (en) * 2003-10-23 2005-05-19 P S Kogyo Kk Air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197992A (en) * 2011-03-22 2012-10-18 Inaba Denki Sangyo Co Ltd Air conditioning device
WO2014046084A1 (en) * 2012-09-21 2014-03-27 シャープ株式会社 Radiant air conditioner
JP2014062681A (en) * 2012-09-21 2014-04-10 Sharp Corp Radiation type air conditioner
JP2014137347A (en) * 2013-01-18 2014-07-28 Toyota Central R&D Labs Inc Radio communication apparatus and radio communication method
CN106545932A (en) * 2016-10-12 2017-03-29 浙江大学 A kind of radiation cooling air conditioner used in kitchen and integrated kitchenware
CN106545932B (en) * 2016-10-12 2019-11-08 浙江大学 A kind of radiation cooling air conditioner used in kitchen and integrated kitchenware
JP6328310B1 (en) * 2017-10-17 2018-05-23 旭イノベックス株式会社 Radiant air conditioner with blower and panel blower mounted on this device
JP2019074256A (en) * 2017-10-17 2019-05-16 旭イノベックス株式会社 Radiation-type air-conditioning device with blower and blower for panel mounted in the same
CN108123387A (en) * 2017-12-24 2018-06-05 乐清市驰林电气有限公司 There is the low-voltage distribution cabinet of radiating dustproof
KR20200007367A (en) * 2018-07-13 2020-01-22 주식회사 쓰리에이치굿스 Heating-Cooling Device using this pump and Heat Pump with generator
KR102104904B1 (en) * 2018-07-13 2020-05-29 주식회사 쓰리에이치굿스 Heating-Cooling Device using this pump and Heat Pump with generator

Similar Documents

Publication Publication Date Title
JP2008139007A (en) Radiation type air conditioner
JP6625210B2 (en) Ceiling-mounted air conditioner
JPH07119999A (en) Radiation panel type cooling and heating radiator
US20170067655A1 (en) Air conditioner units having improved apparatus for providing make-up air
JP5856473B2 (en) Air conditioner
KR20160079464A (en) Glass house dryer
JP2000283535A (en) Radiation air conditioner
JP2012141114A (en) Radiation panel type cooling/heating machine
JP2013092282A (en) Surface temperature estimating device, surface temperature estimating method, and dew condensation determination device
JP2005024197A (en) Radiational cooling/heating system
JP3061433B2 (en) Ceiling cooling system
JP6811543B2 (en) Radiant heating and cooling equipment
JP6811542B2 (en) Radiant heating and cooling system
JP6917190B2 (en) Air conditioning system
JP6470991B2 (en) Indoor radiant air conditioning system
JP2011002104A (en) Air conditioning system
JP2008304129A (en) Radiation heating-cooling system
JP6411867B2 (en) Air conditioner indoor unit
JP6708432B2 (en) Radiant cooling/heating system and radiant cooling/heating method
JP2007315690A (en) Air conditioning system
JP2013134005A (en) Air conditioner
KR100692269B1 (en) Water source cooling and heating system using serial connection method
KR20060100065A (en) Air eliminating structure of outdoor unit for air conditioner
JP2018096663A (en) Air conditioning system
JP2008232486A (en) Ventilating air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612