JP5939230B2 - 車両位置同定システム及び車両位置同定方法 - Google Patents

車両位置同定システム及び車両位置同定方法 Download PDF

Info

Publication number
JP5939230B2
JP5939230B2 JP2013229330A JP2013229330A JP5939230B2 JP 5939230 B2 JP5939230 B2 JP 5939230B2 JP 2013229330 A JP2013229330 A JP 2013229330A JP 2013229330 A JP2013229330 A JP 2013229330A JP 5939230 B2 JP5939230 B2 JP 5939230B2
Authority
JP
Japan
Prior art keywords
vehicle
distance
absolute
information
position coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013229330A
Other languages
English (en)
Other versions
JP2015090285A (ja
Inventor
亮 根山
亮 根山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013229330A priority Critical patent/JP5939230B2/ja
Priority to US15/031,961 priority patent/US9714836B2/en
Priority to PCT/IB2014/002437 priority patent/WO2015068030A1/en
Publication of JP2015090285A publication Critical patent/JP2015090285A/ja
Application granted granted Critical
Publication of JP5939230B2 publication Critical patent/JP5939230B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、不特定多数の車両の位置又は自車両の位置を同定するための車両位置同定システム及び車両位置同定方法に関する。
従来より、車両の位置を同定する手法として、GPS(Global Positioning System)を用いた電波航法、車速及び方位を用いた自立航法が知られている。GPSを用いた電波航法では、車両の位置として、緯度・経度を含む絶対位置座標が得られる。また自立航法では、車速及び方位を用いて基準となる位置からの移動距離及び移動方向を算出することにより、車両の位置として、その基準位置からの相対位置座標が得られる。そして現在、車両の位置の同定には、これら両方の航法が用いられている。
さらに車両の位置の同定には、これらの航法に加え、車両の走行軌跡を、道路地図情報が示す道路の形状にマッチングさせる、いわゆるマップマッチング等も行われている。このマップマッチングでは、走行軌跡が道路形状に合致しない場合に、車両位置を道路上の適切な位置に補正することによって、車両の位置の精度を高めるようにしている。
一方、上記GPSを用いた電波航法では、得られる絶対位置座標に数m〜十数m程度の誤差が生じたり、高層ビルの間や山間部等では電波の受信状態が悪化する等して、測位精度が低下することがある。また自立航法では、単位移動距離あたりの誤差がGPSによる測位誤差よりは小さいものの、その性質上、誤差が累積する傾向にあるため、走行距離が長くなるに伴い誤差も大きくなる。またマップマッチングでは、交差点の右折時・左折時等には車両位置の同定精度を向上できるものの、道路の前後方向における位置精度となると、その定常的な同定精度の向上は望めない。
そこで近年は、これらの手法の短所を互いに補うべく、基準位置からの車両の移動距離が、GPSから受信した測位データに含まれる測位誤差範囲以内であるか否かを判断する装置なども提案されている(例えば、特許文献1参照)。この装置は、上記自立航法によって前回の自車位置に対する相対位置を求めるとともに、上記電波航法によって絶対位置情報や測位度差範囲情報などを含む測位データを得る。そして、前回の自車位置からの車両の移動距離が測位誤差範囲以内である場合には、求めた相対位置を自車位置とする。また、前回の自車位置からの移動距離が測位誤差範囲外である場合には、電波航法により得られる絶対位置情報に基づく位置を自車位置とする。
特開平8−334335号公報
ところで、上述したように、GPSによる測位誤差は、GPS側の要因だけでなく、車両が走行する道路環境の要因が大きく寄与するが、上記した測位データに含まれる測位誤差範囲は、道路環境等、車両の走行環境に関する要因が考慮されていない。このため、上記の装置であれ、車両の位置の同定精度自体が、なお改善の余地を残すものとなっている。
本発明は、このような実情に鑑みてなされたものであり、その目的は、車両の位置に対する同定精度をより高めることのできる車両位置同定システム及び車両位置同定方法を提供することにある。
以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する車両位置同定システムは、電波航法に基づく絶対位置座標、及び少なくとも車速に基づく相対位置座標を用いて車両の位置を同定する車両位置同定システムにおいて、車両から前記絶対位置座標及び車速を含む走行履歴情報を取得する履歴情報取得部と、取得した複数の走行履歴情報の間で走行領域が共通する参照用区間を設定する参照用区間生成部と、同一の車両についての前記参照用区間内の異なる地点で送信された2つの絶対位置座標を読み込み、それらの2つの前記絶対位置座標の間の距離を、道路地図情報に基づき第1の距離として算出する第1の距離演算部と、同じく前記2つの絶対位置座標を読み込み、それら2つの絶対位置座標の間の距離を、前記走行履歴情報に含まれる車速に基づき第2の距離として算出する第2の距離演算部と、前記第1の距離及び前記第2の距離の差分の絶対値に応じて、電波航法に基づく絶対位置座標を用いた車両位置の同定、及び車速積分値を用いた車両位置の同定、及びそれら電波航法に基づく絶対位置座標と車速積分値との両方を用いた車両位置の同定のうちの一つを選択的に行う位置同定部と、を備える。
上記課題を解決する車両位置同定方法は、電波航法に基づく絶対位置座標、及び少なくとも車速に基づく相対位置座標を用いて車両の位置を同定する車両位置同定方法において、履歴情報取得部が、車両から前記絶対位置座標及び車速を含む走行履歴情報取得するステップと、参照用区間生成部が、取得した複数の走行履歴情報の間で走行領域が共通する参照用区間を設定するステップと、第1の距離演算部が、同一の車両についての前記参照用区間内の異なる地点で送信された2つの前記絶対位置座標を読み込み、それらの2つの前記絶対位置座標の間の距離を、道路地図情報に基づき第1の距離として算出するステップと、第2の距離演算部が、同じく前記2つの絶対位置座標を読み込み、それら2つの絶対位置座標の間の距離を、前記走行履歴情報に含まれる車速に基づき第2の距離として算出するステップと、位置同定部が、前記第1の距離及び前記第2の距離の差分の絶対値に応じて、電波航法に基づく絶対位置座標を用いた車両位置の同定、及び車速積分値を用いた車両位置の同定、及びそれら電波航法に基づく絶対位置座標と車速積分値との両方を用いた車両位置の同定のうちの一つを選択的に行うステップとを含む。
これらの構成又は方法によれば、電波航法に基づく第1の距離と車速積分値に基づく第2の距離との差分の絶対値は、車両の走行環境電波航法の測位精度に応じて変動する。例えば電波航法の測位精度が悪い場合は、その差分の絶対値は大きくなる傾向にある。従って参照用区間について演算された差分の絶対値に応じて、その参照用区間内における車両位置の同定の方法を適宜選択することにより、車両位置の誤差要因となる情報を排除して車両位置の同定を行うことができるため、同定される車両位置の精度が高められる。
好ましい構成として、前記位置同定部は、前記電波航法に基づく絶対位置座標と車速積分値との両方を用いた車両位置の同定に際し、前記第1の距離と前記第2の距離との差分の絶対値が小さい参照用区間については、前記参照用区間の少なくとも一部の道路区間について前記取得された走行履歴情報に基づき算出された車速積分値と当該道路区間の距離であって前記道路地図情報から求めた距離との比率を求め、該求めた比率を、位置同定対象の前記走行履歴情報に基づく車速積分値に乗算して、前記2つの絶対位置座標の間の車両位置を同定する。
この構成によれば、第1の距離と第2の距離との差分の絶対値が小さい参照用区間、即ち電波航法の測位精度の良い参照用区間では、電波航法に基づく絶対位置座標の間について、車速積分値に基づく相対移動距離によって補間される。そして、車速積分値を用いた相対移動距離の演算では、車速積分値に走行履歴情報に基づく車速積分値と道路地図情報に基づく距離との比率を乗算することで、車速積分値に基づく相対移動距離が正規化される。従って、例えば車線変更が頻繁に行われる参照用区間、交差点近傍の参照用区間のように、走行軌跡が車両によって異なる場合であっても、相対位置座標に含まれる累積誤差の影響を低減することができる。
好ましい構成として、前記位置同定部は、前記第1の距離と前記第2の距離との差分の絶対値が小さい参照用区間内の各地点で検出される絶対位置座標のうち、当該参照用区間の両側の端部に最も近い絶対位置座標を選択し、それらの間については、前記比率を前記車速積分値に乗算した相対移動距離で補間することによって車両位置を同定する。
この構成によれば、第1の距離と第2の距離の差分の絶対値が小さい参照用区間については、参照用区間内の大部分の領域が正規化された相対移動距離で補間されるので、参照用区間の長さの設定次第で、同定される車両位置の精度を高めることができる。
好ましい構成として、前記取得した走行履歴情報毎に、前記第1の距離及び前記第2の距離の差分の絶対値を算出するとともに、前記取得した走行履歴情報からそれぞれ算出された前記差分の絶対値を用いてそれらの分散を求める分散演算部を備え、分散が小さい前記参照用区間については、少なくとも前記絶対位置座標を用いて車両の位置を同定する。
この構成によれば、走行履歴情報毎に、第1の距離及び第2の距離の差分の絶対値が算出され、それらの差分の絶対値を用いて分散が算出される。さらに分散が小さい参照用区間については、少なくとも電波航法に基づく絶対位置座標を用いた車両位置の同定が行われる。即ち、一つの走行履歴情報のみを用いて第1の距離及び第2の距離の検証を行う場合に比べ、車両要因による誤差や、一時的な電波受信状況の不調等による誤差の影響を低減することができる。
好ましい構成として、前記参照用区間生成部は、車速積分値に基づく相対移動距離のみで位置同定したときの累積誤差を含む距離が、電波航法を用いた測位システム側の測位誤差範囲内となる長さに、前記参照用区間の長さを設定する。
この構成によれば、車速積分値に基づく相対移動距離のみを用いて車両の位置を同定しても、その累積誤差を含む距離が、電波測位システム自体の測位誤差範囲を超えない。即ち参照用区間内では、車速積分値に基づく相対移動距離のみを用いて同定された車両の位置の誤差を、電波航法のみによって同定された車両の位置の誤差よりも小さくすることができる。従って、電波航法の測位精度が悪い場合には、車速積分値のみを用いて車両の位置を同定することで、車両位置の誤差を低減することができる。
好ましい構成として、前記位置同定部は、前記第1の距離及び前記第2の距離の差分の絶対値が大きい参照用区間については、車速積分値に基づく相対移動距離のみを用いて車両位置を同定する。
この構成によれば、第1の距離及び第2の距離の差分の絶対値が大きい参照用区間では、車速積分値に基づく相対移動距離のみによって車両位置が演算される。従って、絶対位置座標の測位精度が低い場合に、車両位置の誤差要因となる情報を排除して車両位置の同定を行うことができるため、少なくとも絶対位置座標を用いて車両位置を同定する場合に比べ、同定される車両位置の精度が高められる。
好ましい構成として、前記第1の距離演算部は、前記参照用区間内の各地点で検出される絶対位置座標のうち、当該参照用区間の両側の端部に最も近い絶対位置座標を選択するとともに、それらの選択した絶対位置座標を前記道路地図情報に基づき道路上の位置としてマッチングし、このマッチングした位置の間の距離を、前記道路地図情報に含まれる道路形状に沿って前記第1の距離として算出する。
この構成によれば、第1の距離は、道路形状に沿って算出されるため、第1の距離を、実際の道路の距離に近付けることが可能となる。
好ましい構成として、前記履歴情報取得部、前記参照用区間生成部、前記第1の距離演算部、前記第2の距離演算部、及び前記位置同定部は、プローブ・カー・システムを構成してプローブ情報を収集する情報収集装置に対して設けられてなることを要旨とする。
この構成によれば、情報収集装置によって、道路を走行する車両の位置を上記した方法で同定することができるので、大規模な装置群を用いて的確な交通案内情報等を生成することができる。
本発明にかかる車両同定システム及び車両同定方法の第1の実施形態について、車両同定システムを構成する位置同定装置及び車両の概略構成を示すブロック図。 車両から送信されるプローブ情報のデータ構成を説明する模式図。 同プローブ情報を送信する車両の走行環境と、走行環境に応じた電波受信状態とを説明する模式図。 位置同定装置により行われるオフライン処理の一部であって、トリップ及びそれに対して設定される共通区間を説明する概念図。 位置同定装置により行われるオフライン処理の一部であって、参照用区間の設定の手法を説明する概念図。 参照用区間の最大長さについて説明する概念図。 参照用区間について算出される第1の距離を説明する図であって、(a)は第1の距離を算出するために設定される観測区間の概念図、(b)はその観測区間について算出された第1の距離の概念図。 参照用区間について算出される第2の距離を説明する概念図。 複数の参照用区間について車両位置を同定する手法の選択例を説明する概念図。 車両位置を同定する手法を説明する図であって、(a)は絶対位置座標及び相対移動距離を用いて同定する場合の概念図、(b)は相対移動距離のみを用いて同定する場合の概念図。 位置同定装置により行われるオフライン処理の手順を示すフローチャート。 位置同定装置により行われる車両位置の同定の手順を示すフローチャート。 本発明にかかる車両同定システム及び車両同定方法の第2の実施形態について、車両同定システムを構成する車両の概略構成を示すブロック図。 変形例におけるプローブ情報のデータ構成を説明する模式図。
(第1の実施形態)
以下、車両位置同定システム及び車両位置同定方法を具体化した第1の実施形態を説明する。
本実施形態では、車両位置同定システムを、車両で生成された走行履歴情報をプローブ情報として収集し、収集したプローブ情報に基づき車両の位置を同定するプローブ・カー・システムに具体化して説明する。なお、このシステムは、プローブ情報を送信した車両の位置を同定した上で、プローブ情報に含まれる運転履歴や走行履歴に基づき、経路案内情報や道路案内情報等の支援情報を生成し、道路上の車両に送信するものとする。
図1に示すように、車両位置同定システムは、プローブ情報Prbを生成し送信する車両100、及び情報収集装置としての位置同定装置11によって構成されている。位置同定装置11は、プローブ情報Prbを無線通信にて受信する基地局を含むネットワーク102を介して、各車両100と接続されている。
車両100は、GPS受信部12、車速センサ13、ジャイロ14、車載制御部15及び車載通信部16を備えている。GPS受信部12は、GPS衛星から受信した電波に基づいた信号を車載制御部15に出力する。車載制御部15は、GPS受信部12から入力した信号に基づき、自車位置の緯度及び経度を、絶対位置座標として算出する。
車載制御部15は、車速センサ13から出力される車輪速パルスに基づき、車速を演算する。また車載制御部15は、ジャイロ14から出力されるヨーレートを示す信号に基づき、基準となる位置からの自車両の方位の変化量を演算する。また車載制御部15は、車速を時間で積分した相対移動距離Δdと、方位の変化量とを算出するとともに、それらに基づき、既に求められた直前の車両位置に対する相対位置座標を求める。また車載制御部15は、車載通信部16を介して、自車両の走行履歴を示すプローブ情報Prbを位置同定装置11に送信する。
図2に示すように、プローブ情報Prbは、車両識別子Prb1、絶対位置座標情報Prb2、車速情報Prb3、方位情報Prb4、時刻情報Prb5を含む。車両識別子Prb1は、送信元の車両を位置同定装置11側で識別するための識別子である。絶対位置座標情報Prb2は、車載制御部15が、GPS受信部12からの入力信号に基づき電波航法を用いて算出した座標を示す。車速情報Prb3、方位情報Prb4及び時刻情報Prb5は、送信元の車両100が算出又は検出した車速、方位、時刻を示す。さらに、このプローブ情報Prbには、操舵角、ブレーキペダルの踏込の有無、方向指示器のオン/オフ情報等の運転履歴、加減速度等の走行履歴が含まれていてもよい。
ところで図3に示すように、車両100におけるGPS衛星からの電波受信状況は、車両の走行環境に応じて変動する。例えば領域Z1のように、高層ビル群104内の道路101では、GPSの電波が建物等に反射して複数の電波経路をとる多重波伝播(マルチパス)が発生し、GPSの測位誤差が大きくなることがある。また領域Z3のように高架道路103の下の道路を走行するときや、樹木等の電波の障害物が多い道路や、山間部の道路等を走行するときには、GPS受信状況が悪化するとともに、領域Z1と同様にマルチパスが発生する可能性がある。加えて、GPS衛星自体の精度が一時的に低下することもある。一方、GPS衛星の精度が通常の良好な状態であって、道路の近傍に電波の障害物がない領域Z2では、GPS測位精度が比較的高くなる。即ち、車両100が道路101を走行する間にも、その走行環境に応じて、GPSの測位精度が変動する。
このため、例えば測位精度が低い領域Z1の近傍で、路上駐車、故障車両等といった、他の車両に対して案内が必要な事象について、事象が発生した地点周辺の車両を対象として、案内を通知する支援を行うとき、その事象が生じた位置をプローブ情報Prbに基づき精度よく同定する必要がある。同定の精度が低い場合、例えば事象発生地点が正しくない情報を送信してしまう等、的確な情報を送信できないことがある。このため、位置同定装置11は、プローブ情報Prbに含まれる絶対位置座標情報Prb2の精度を検証し、その検証結果に応じて、検証結果に適した手法を選択して車両位置の同定を行っている。
図1に示すように、位置同定装置11は、履歴情報取得部としての通信部20、及びプローブ情報記憶部21を備える。位置同定装置11は、通信部20を介してプローブ情報Prbを受信すると、受信したプローブ情報Prbをプローブ情報記憶部21に格納する。
また位置同定装置11は、トリップ抽出部22、参照用区間生成部23、第1距離演算部24、第2距離演算部25、分散演算部26を備える。これらは、オフライン処理で、絶対位置座標情報Prb2の精度を検証する。また位置同定装置11は、検証に用いるための道路地図情報29を格納した道路地図情報記憶部28を備える。
トリップ抽出部22は、蓄積されたプローブ情報Prbの中から、共通の条件の下で生成されたプローブ情報Prbを読み込む。例えばトリップ抽出部22は、高速道路、幹線道路の所定の走行領域内で生成されたプローブ情報Prb、またその所定の領域内で特定の時間帯に生成されたプローブ情報Prb等を読み込む。そしてトリップ抽出部22は、読み込んだプローブ情報Prbのうち、一台の車両100から送信された複数のプローブ情報Prbを送信された順に時系列に並べたものを、一つのトリップ情報Trpとする。
例えば図3に示すように、プローブ情報Prbの送信元となる車両100が、道路101のうち所定の道路区間を走行するときには、走行中に複数のプローブ情報Prbを送信する。トリップ抽出部22は、領域Z3で送信されたプローブ情報Prb、領域Z2で送信されたプローブ情報Prb、領域Z1で送信されたプローブ情報Prb・・・を一つのトリップ情報Trpとして扱う。即ち、読み込まれたプローブ情報Prbが、一台の車両100から送信された情報のみからなる場合には、一台分のトリップ情報Trpが生成される。また読み込まれたプローブ情報Prbが、複数台の車両100から送信された情報からなる場合には、その台数分のトリップ情報Trpが生成される。なお、ここで一つのトリップ情報Trpしか生成されない場合には、条件を変えて、プローブ情報Prbを読み込み直すようにしてもよい。
参照用区間生成部23は、トリップ情報Trpに基づき、参照用区間Iiを生成する。この参照用区間Iiは、当該区間での絶対位置座標情報Prb2の精度を検証するための区間である。また参照用区間Iiは、検証の結果に応じて、絶対位置座標情報Prb2に基づく絶対位置座標と、車速積分値に基づく相対移動距離Δdとを用いた車両位置の同定、及び相対移動距離Δdのみを用いた車両位置の同定が選択的に行われる区間としても用いられる。
図4〜図6を参照して参照用区間の設定方法について説明する。図4に示すように、まず参照用区間生成部23は、トリップ抽出部22によって取得されたトリップ情報Trpを読み込み、それらのトリップ情報Trpの共通区間Tzを設定する。なお、図4ではトリップ情報Trpによって表される走行経路を模式的に示している。
共通区間Tzは、それらのトリップ情報Trpによって表わされる走行経路のうち、互いに共通する走行区間である。収集されたトリップ情報Trpが少ない場合、トリップ情報Trpに共通区間Tzの始端から終端までの全てが含まれるように共通区間Tzを設定すると、共通区間Tzが設定できないか、又は設定した共通区間が著しく短くなる可能性がある。このためトリップ情報Trpによって表される走行経路は、必ずしも共通区間Tzの全てを含んでいる必要はなく、少なくとも一部を含んでいればよい。
図5に示すように、参照用区間生成部23は、共通区間Tzを設定すると、共通区間Tzを参照用区間Iiに区画する。基本的には共通区間Tzを複数の参照用区間Iiに分割するが、共通区間Tzが短い場合は、共通区間Tzを1つの参照用区間Iiとしてもよい。また参照用区間Iiは均等に分割されてもよいし、不均等であってもよい。例えば交差点の周辺、又は市街地等の走行環境に応じて、参照用区間の長さを変動させてもよい。
また、参照用区間生成部23は、参照用区間Iiの長さを、予め設定された最大長さLmax以下に設定する。即ち、車速積分値の誤差は距離が長くなるに従い累積していくため、車速積分値に基づく相対移動距離の単位長さあたりに生じうる誤差をαとすると、実際に車両100が走行した距離が、「距離L」であるにも関わらず、最大で「距離αL」として算出される場合がある。
一方、上述したように参照用区間Ii内では、相対移動距離Δdのみを用いて車両位置が同定される可能性もありうる。相対移動距離Δdに基づき算出された車両位置は、走行距離が短い区間に限っていえば、GPSによる絶対位置座標よりも誤差が小さいという利点があるが、上述したように走行距離が長くなるに伴い誤差が累積していくという性質がある。
従って、累積誤差を含む距離「αL」が、GPSの測位範囲誤差Egの直径2εを超えると、累積誤差が、GPSの測位範囲誤差Egを超えることとなる。この場合、絶対位置座標の測位精度が低いときに相対移動距離のみで車両位置を同定すると、絶対位置座標を使用しない利点がなくなる。
即ち図6に示すように、累積誤差を含む距離「αL」がGPSの測位範囲誤差Egの直径2ε以下となることが好ましいので、下記の式(1)のように、累積誤差を含む距離「αL」が、GPSの測位範囲誤差Egの直径2εと等しくなるような距離を、参照用区間Iiの最大長さLmaxとする。
Figure 0005939230
次に第1距離演算部24及び第2距離演算部25による演算の手法について説明する。第1距離演算部24及び第2距離演算部25は、絶対位置座標の精度を検証するための第1の距離LAj及び第2の距離LBjをトリップ情報Trpj毎に演算する。
図7(a)に示すように、第1距離演算部24は、参照用区間Iiを含むn個のトリップ情報Trp1〜Trpnのうち一つのトリップ情報Trpj(j=1,2,・・・n)を取得し、そのトリップ情報Trpjを構成するプローブ情報Prbの絶対位置座標情報Prb2を読み込む。第1距離演算部24は、読み込んだ絶対位置座標情報Prb2に基づく、絶対位置座標Pijk(Pij1,Pij2…,Pijm)のうち、参照用区間Iiの端に近い絶対位置座標Pijk(k=1,2,・・・m)を取得する。図7(a)の例では、第1距離演算部24は、絶対位置座標Pij1,Pijmを取得する。そして、取得した絶対位置座標Pij1,Pijmを両端とする観測区間Oijを設定する。なお、トリップ情報Trpjを区別しないで説明する場合には単にトリップ情報Trpとして説明する。また一つのトリップ情報Trpjの参照用区間Iiに含まれる絶対位置座標Pijkを区別にしないで説明する場合も単に絶対位置座標Pijとして説明する。
図7(b)に示すように、第1距離演算部24は、道路地図情報記憶部28から観測区間Oijに対応する道路地図情報29を読み込み、道路地図情報29のうち観測区間Oijの道路形状の情報を取得して、観測区間Oijの距離をその道路形状に沿って算出する。道路地図情報29は、例えば絶対位置座標を示すノードと、ノードの間に設定された形状補間点とを含み、第1距離演算部24は形状補間点の間の距離を累積していくことで、距離を算出する。またこのとき第1距離演算部24は、絶対位置座標Pij1,Pijmと、プローブ情報Prbに含まれる車速情報Prb3及び方位情報Prb4に基づく走行軌跡とを用いて、絶対位置座標Pij1,Pijmを道路上にマッチングする。さらにマッチングした絶対位置座標Pij1,Pijmの間のノードや形状補間点に基づき、絶対位置座標Pij1,Pijmの間の距離を第1の距離LAjとして算出する。
次に図8を参照して、第2距離演算部25による第2の距離の演算方法について説明する。第2距離演算部25は、取得したトリップ情報Trpjのうち、参照用区間Iiに含まれる絶対位置座標Pijkと、絶対位置座標Pijkとともに送信された車速情報Prb3及び時刻情報Prb5を読み込む。そして第2距離演算部25は、車速情報Prb3の値である車速Vを、時刻情報Prb5に基づく時間を用いて積分した相対移動距離Δdkをそれぞれ算出する。そして、それらの相対移動距離Δd1,Δd2,…Δd(m−1)を加算した距離を、第2の距離LBjとする。
分散演算部26は、第1距離演算部24が算出した第1の距離LAj、及び第2距離演算部25が算出した第2の距離LBjを読み込む。そして、以下の式(2)に示すように、第1の距離LAj及び第2の距離LBjの差分の絶対値を、差分絶対値Dijとして算出する。
Figure 0005939230
同様にして、第1距離演算部24及び第2距離演算部25は、参照用区間Iiを含むトリップ情報Trpj毎に、差分絶対値Dij(Di1,Di2,…Din)を算出する。そして、参照用区間Iiを含む全てのトリップ情報Trpjに対して、差分絶対値Dijを算出すると、それらの差分絶対値Dijを用いて、式(3)に示すように、差分絶対値Dijの分散Ui(不偏分散)を算出する。
Figure 0005939230
分散演算部26は、同様にして、対象となる全ての参照用区間Iiに対して、分散Uiを算出する。そして全ての参照用区間Iiに対して分散Uiを算出すると(U1,U2,U3・・・)、分散演算部26は、それらの分散Uiに関連付けられた参照用区間Iiが判別可能な状態にした上で、値が小さい順に分散Uiをソートし、順位付けを行う。
図9に示す例では、参照用区間I1の分散U1が最も小さく1位であり、参照用区間I3の分散U3が2番目に小さく、2位である。さらに参照用区間I5の分散U5が3番目に小さく、3位である。
図1に示すように、位置同定部27は、位置同定部27、及び位置同定済み情報31を格納した同定情報記憶部30を備える。位置同定部27は、このようにオフライン処理で算出された順位付けを用いて、トリップ情報Trp毎に、そのトリップ情報Trpを送信した車両の位置の同定を行う。
また位置同定装置11に設けられた支援情報生成部32は、位置同定部27によって同定された車両位置、及びプローブ情報Prbに含まれる運転履歴や走行履歴に基づき、支援の対象となる区間又は地点周辺を走行する車両100に対して送信される支援情報を生成し、生成した支援情報を、通信部20を介して支援対象の車両100に送信する。
位置同定部27は、順位付けに基づき、予め設定された順位までの高い順位の参照用区間Iiについては、絶対位置座標及び相対移動距離Δdを用いて車両位置の同定を行う手法を選択する。また、位置同定部27は、それ以外の低い順位の参照用区間Iiについては、車速積分値に基づく相対移動距離Δdを用いて車両位置の同定を行う手法を選択する。
図9に示す例では、1位の参照用区間I1、2位の参照用区間I3、3位の参照用区間I5については、GPSを利用する区間、即ち絶対位置座標及び相対移動距離Δdを用いて車両位置の同定を行う区間として設定される。また、それ以外の参照用区間I2,I4等は、GPSを利用しない区間、即ち相対移動距離Δdを用いて車両位置の同定を行う区間として設定される。
絶対位置座標及び相対移動距離Δdを用いて車両位置を同定する場合は、先ず、位置同定部27は、1つのトリップ情報Trp1を読み込む。このトリップ情報Trpは、一台の車両100から連続的に送信されたプローブ情報群である。
そして図10(a)に示すように、位置同定部27は、読み込んだプローブ情報Prbに含まれる絶対位置座標情報Prb2に対応する絶対位置座標Pijk(Pij1,Pij2…Pijm)のうち、参照用区間Iiの両端に最も近い絶対位置座標Pij1,Pijmを求める。さらに、位置同定部27は、絶対位置座標Pij1,Pijmの間に送信されたプローブ情報Prbに含まれる車速情報Prb3を取得し、取得した車速情報Prb3に基づく車速Vを積分した値を用いた相対移動距離Δd(Δd1,Δd2・・・,Δd(m−1))を用いて、絶対位置座標Pij1,Pijmの間を補間する。
またこのとき、位置同定部27は、参照用区間Ii内の任意の区間において、道路地図情報29に基づき算出した道路形状に沿った理論上の距離Lmpと、トリップ情報Trpjに含まれる車速情報Prb3の積分値に基づく相対移動距離Lvとを、トリップ情報Trpj毎に求めておく。そして、車両位置同定部27は、理論上の距離Lmpと、相対移動距離Lvとの比率kj(=Lmp/Lv)をトリップ情報Trpj毎に求める。さらに、それらのトリップ情報Trpj毎の比率kjの平均値、又はそれらの比率kjの中央値等を、比率Kとして算出する。
位置同定部27は、絶対位置座標Pij1,Pijmの間を補間するための上記相対移動距離Δdに、比率Kを乗算することによって、相対移動距離Δdを正規化する。即ち、車線変更が頻繁に行われる区間や、交差点近傍の区間では、車両100によって実際の走行距離が異なる。このため車線変更が頻繁に行われる区間等では、進行方向に沿った道路の長さに比べ、実際の走行距離が長くなる傾向にある。このような区間においては、トリップ情報Trpを用いて算出される比率Kは「1」以下となり、比率Kが乗算されることによって相対移動距離Δdが小さくなるように補正される。
従って実際の走行距離が理論上の距離Lmpよりも大きい傾向にある参照用区間Iiでは、正規化された相対移動距離Δd’を用いることによって、相対移動距離Δd’に基づき同定される車両位置が、実際の車両位置に近付けられる。なお、絶対位置座標Pij1,Pijmと参照用区間Iiの端部との間の車両位置も、正規化された相対移動距離Δd’に基づき同定することができる。このように同定された車両位置及び走行の履歴を含む情報は、位置同定済み情報31として位置同定情報記憶部30に格納される。
図10(b)に示すように、相対移動距離Δdを用いて車両位置を同定する場合は、1台の車両100から参照用区間Ii内で送信された複数のプローブ情報Prbを読み込む。そして、そのプローブ情報Prbに含まれる車速情報Prb3が示す車速Vを時間で積分して、相対移動距離Δdを算出し、基準となる位置から道路の進行方向に沿って相対移動距離Δdを加算することで、相対的に車両位置を同定する。このように同定された車両位置及び走行の履歴を含む情報は、位置同定済み情報31として位置同定情報記憶部30に格納される。
次に図11を参照して、位置同定装置11によって行われるオフライン処理について、その動作とともに説明する。
位置同定装置11のトリップ抽出部22は、プローブ情報記憶部21から、車両位置の同定の対象となる道路区間内で、共通の条件の下で送信されたプローブ情報Prbを取得する(ステップS1)。上述したように、共通の条件としては、高速道路、幹線道路の所定の走行領域内で生成されたプローブ情報Prb、またその所定の走行領域内で特定の時間帯に生成されたプローブ情報Prb等である。トリップ抽出部22は、プローブ情報Prbを取得すると、一台の車両100から連続的に送信されたプローブ情報Prbを時系列的に並べたトリップ情報Trpを生成する。
トリップ情報Trpを生成すると、参照用区間生成部23が、トリップ情報Trpの共通区間Tzを設定し、その共通区間Tz内を単数又は複数に区画することで参照用区間Iiを生成する(ステップS2)。なお、上述のように、このとき参照用区間Iiを、最大長さLmaxを超えないように設定する。
参照用区間Iiを生成すると、分散演算部26は、共通区間Tzに含まれる全ての参照用区間Iiに対し分散Uiを演算したか否かを判断する(ステップS3)。このとき、例えばステップS2で設定した参照用区間Iiの個数と、既に分散Uiを演算した参照用区間Iiの個数とを比較することで判断する。
全ての参照用区間Iiに対し分散Uiの演算が完了していないと判断すると(ステップS3においてNO)、第1距離演算部24は、分散Uiの演算対象とする参照用区間Iiを決める。そして、その参照用区間Iiを含むトリップ情報Trpj(Trp1,Trp2,…Trpn)のうち、差分絶対値Dijを演算する対象となるトリップ情報Trpを選択する。またそのトリップ情報Trpjのうち、その参照用区間Iiに対応する絶対位置座標情報Prb2を取得し、その絶対位置座標情報Prb2に基づく絶対位置座標Pijを読み込む。そして、参照用区間Iiの両端に近い絶対位置座標Pij1、Pijmの座標を読み込むとともに、観測区間Oijを決定する(ステップS4)。
トリップ情報Trpjに対し観測区間Oijを決定すると、第1距離演算部24は、道路地図情報29を用いて各トリップ情報Trpjの絶対位置座標Pij1、Pijmを道路上にマッチングする。また第1距離演算部24は、道路地図情報を用いて、絶対位置座標Pij1、Pijmの間の道路形状に沿った距離を、第1の距離LAjとして算出する(ステップS5)。
また第2距離演算部25は、トリップ情報Trpjを構成するプローブ情報Prbに含まれる車速情報Prb3の値を読み込み、その車速Vを時間で積分した車速積分値に基づく第2の距離LBjを算出する(ステップS6)。なお、第1距離演算部24による演算、第2距離演算部25による演算の順序は特に問わない。
分散演算部26は、第1距離演算部24から第1の距離LAjを読み込み、第2距離演算部25から第2の距離LBjを読み込む。そしてそれらの差分絶対値Dijを算出する(ステップS7)。
そして分散演算部26は、参照用区間Iiを含む全てのトリップ情報Trpjについて差分絶対値Dijを演算したか否かを判断する(ステップS8)。参照用区間Iiを含む全てのトリップ情報Trpjについて、その参照用区間Iiの差分絶対値Dijを演算していないと判断すると(ステップS8においてNO)、ステップS4に戻り、分散演算部26は、次に演算対象とするトリップ情報Trpjを選定し、ステップS4〜ステップS7を繰り返す。また分散演算部26は、参照用区間Iiを含む全てのトリップ情報Trpjについてその参照用区間Iiの差分絶対値Dijを演算したと判断すると(ステップS8においてYES)、ステップS9に進む。
参照用区間Iiを含む全てのトリップ情報Trpjについて差分絶対値Dijを演算したとき、分散演算部26は、参照用区間Iiを含むトリップ情報Trp毎に算出された差分絶対値Dijを用いて、その参照用区間Iiについて、差分絶対値Dijの分散Uiを求め(ステップS)、ステップS3に戻る。そして分散Uiの演算対象として次の参照用区間Iiを選択し、その参照用区間Iiに対してステップS3〜ステップS9を繰り返す。これにより、参照用区間I1の分散U1,参照用区間I2の分散U2‥といったように分散Uiが演算されていく。
第1距離演算部24及び第2距離演算部25が全ての参照用区間Iiについて分散Uiを演算したと判断すると(ステップS3においてYES)、分散Uiの小さい順に参照用区間Iiを順位付けし(ステップS10)、オフライン処理を終了する。このオフライン処理は、支援情報を生成する対象となる区間について、支援を行う際に事前に行われる。
次に図12を参照して、オフライン処理で得られた順位付けを用いた車両位置の同定について、位置同定装置11の動作とともに説明する。なお、本実施形態では、この車両位置の同定も、オフラインで行われる。
まず位置同定部27は、車両位置の同定を行う領域を決め、その領域に含まれる参照用区間Iiの順位を取得する(ステップS1)。
参照用区間Iiが決まると、位置同定部27は、それらの参照用区間Ii内において相対移動距離Δdの正規化に用いる比率Kを取得する(ステップS1)。比率Kは予め算出されていてもよいし、車両位置の同定を行う対象となる参照用区間Iiが決まってから算出してもよい。上述したように、この際、位置同定部27は、参照用区間Ii内の任意の区間において、道路地図情報29に基づき算出した道路形状に沿った理論上の距離Lmpと、トリップ情報Trpjに含まれる車速情報Prb3の積分値に基づく相対移動距離Lvを求める。そして車両位置同定部27は、理論上の距離Lmpと、相対移動距離Lvとの比率kj(=Lmp/Lv)をトリップ情報Trpj毎に求め、それらの比率kjをを用いて、標準とする比率Kを算出する。
さらに位置同定部27は、順位が高い、即ち分散Uiが小さく、絶対位置座標の測位精度がよい参照用区間Iiに対し、その参照用区間Ii内の車両位置を、絶対位置座標及び相対移動距離Δd'を用いて同定する(ステップS1)。このとき位置同定部27は、上述したように、参照用区間Ii内で1台の車両から送信されたプローブ情報Prbに含まれる絶対位置座標のうち、参照用区間Iiの両端に近い絶対位置座標を取得する。そしてそれらの絶対位置座標の間の位置を、車速積分値に基づく相対移動距離Δdに比率Kを乗算して正規化した相対移動距離Δd'を用いて、車両位置を同定する。このとき、プローブ情報Prbに含まれる方位情報Prb4を用いてもよいし、相対移動距離Δd'及び方位の変化量から求められる走行軌跡と、道路地図情報29に基づく道路形状とを比較して、マップマッチングを行ってもよい。
また位置同定部27は、車両位置の同定の対象となる区間に含まれる参照用区間Iiのうち、順位が低い、即ち分散Uiが大きく、GPSの測位精度が低い参照用区間Iiに対し、その参照用区間Ii内の車両位置を相対移動距離Δdを用いて同定する(ステップS1)。
このように参照用区間Ii内で同定された車両位置は、車両100が検出する絶対位置座標の測位精度が低い区間がある場合に、その区間では絶対位置座標情報を排除して車両位置を算出することによって車両位置の同定精度を高めることができる。また車両100が検出する絶対位置座標の精度が比較的高い区間では、正規化された相対移動距離Δd’を用いているため、自立航法の累積誤差の影響も低減することができる。車両位置が同定されたプローブ情報Prbは、位置同定済み情報31として位置同定情報記憶部30に格納される。
そして支援情報生成部32は、位置同定済み情報31を用いて、必要に応じてさらに運転履歴又は走行履歴等の解析を行って支援情報を生成し、支援対象領域を走行する車両100に対して、通信部20を介して支援情報を送信する。このとき支援情報の元のデータとなる位置同定済み情報31の車両位置の精度が高められているため、支援対象領域を走行する車両100に対して、例えば事象発生位置が正しい的確な情報を送信することが可能となる。また支援対象領域を走行する車両であって、プローブ情報Prbを送信する車両100に対しても、上述した車両位置の同定を行えば、案内等が必要な地点に車両100が到達したタイミングを判定できるので、その情報を、的確なタイミングで行うことができる。
以上説明したように、本実施の形態にかかる車両位置同定システム及び車両位置同定方法によれば、以下の効果が得られるようになる。
(1)電波航法により演算された絶対位置座標及び道路地図情報29に基づく第1の距離LAjと、車速積分値に基づく第2の距離LBjとの差分絶対値Dijは、GPSに基づく絶対位置座標の測位精度に応じて変動する。例えば高層ビルの間や山間部等、電波受信状況が良好でない環境においては、その差分絶対値Dijは大きくなる傾向になる。そこで参照用区間Iiに対して演算された差分絶対値Dijに基づく分散Uiに応じて、その参照用区間Ii内における車両位置の同定の方法が選択される。即ち、分散Uiが小さい参照用区間Iiについては、参照用区間Ii内の2地点の絶対位置座標及び相対移動距離Δdを用いる方法が選択され、分散Uiが大きい参照用区間Iiについては、相対移動距離Δdを用いる方法が選択される。従って、少なくともGPSの電波受信状況が悪い区間については、車両位置の誤差要因となる情報を排除して車両位置の同定を行うことができるため、同定される車両位置の精度が高められる。
(2)分散Uiが小さい参照用区間Ii、即ちGPSの測位精度が良い参照用区間Iiでは、絶対位置座標の間の車両位置は、車速積分値に基づく相対移動距離Δdによって補間される。そして、車速積分値を用いた相対移動距離Δdの演算では、車速積分値に、道路地図情報29に基づく距離と、蓄積されたプローブ情報Prbに基づく車速積分値との比率Kを乗算することで、車速積分値に基づく相対移動距離Δdが正規化される。従って、例えば車線変更が頻繁に行われる領域に対応する参照用区間Ii、交差点近傍に対応する参照用区間Iiのように、走行軌跡が車両によって異なる場合であっても、相対位置座標に含まれる累積誤差の影響を低減することができる。
(3)分散Uiが小さい参照用区間Iiについては、参照用区間Ii内の各地点で検出された絶対位置座標Pijのうち、参照用区間Iiの両側の端部に最も近い絶対位置座標Pijを選択し、それらの間の車両位置を、正規化された相対移動距離Δd‘に基づき補間した。即ち、参照用区間Ii内の大部分の領域が正規化された相対移動距離Δd’で補間されるので、参照用区間Iiの長さの設定次第で、比較的誤差が大きい絶対位置座標の影響を低減することができる。
(4)複数のプローブ情報Prbから構成されるトリップ情報Trpによって、それらのトリップ情報Trp毎に、第1の距離LAj及び第2の距離LBjの差分絶対値Dijが算出され、全ての差分絶対値Dijを用いて分散Uiが演算される。また、分散Uiが小さい参照用区間Iiに対しては、電波航法に基づく絶対位置座標を用いた車両位置の同定が行われる。このため、車両要因による誤差や、一時的な電波受信状況の不調等による誤差の影響を低減することができる。
(5)参照用区間Iiの最大長さLmaxは、電波航法の測定誤差範囲の直径2εを、車速に基づく相対移動距離の単位長さあたりの誤差αで除算した値とした。即ち、参照用区間Ii内の車両位置を相対移動距離のみで同定しても、そのときの累積誤差が、GPSの測位誤差範囲を超えない。即ち一つの参照用区間Ii内では、車速積分値に基づく相対移動距離のみを用いて同定された車両の位置の誤差を、電波航法のみによって同定された車両の位置の誤差よりも小さくすることができる。従って、電波航法の測位誤差が悪い場合には、車速積分値のみを用いて車両の位置を同定することで、車両位置の誤差を低減することができる。
(6)分散Uiが大きい参照用区間Iiでは、車速積分値に基づく相対移動距離Δdのみによって車両位置が演算される。従って、絶対位置座標の測位精度が低い場合に、車両位置の誤差要因となる情報を排除して車両位置の同定を行うことができるため、少なくとも絶対位置座標を用いて車両位置を同定する場合に比べ、同定される車両位置の精度が高められる。
(7)第1距離演算部24によって、第1の距離LAjは、道路地図情報29に含まれる道路形状の情報に基づき、道路形状に沿って算出されるため、第1の距離LAjを、実際の距離に近付けることが可能となる。
(8)トリップ抽出部22、参照用区間生成部23、第1距離演算部24、第2距離演算部25、及び位置同定部27は、プローブ・カー・システムを構成しプローブ情報Prbを収集する位置同定装置11に設けられる。即ち、情報収集装置によって、道路を走行する車両の位置を上記した方法で同定することができるので、大規模な装置群を用いて的確な交通案内情報等を生成することができる。
(第2の実施形態)
次に、車両位置同定システム及び車両位置同定方法の第2の実施形態を、第1の実施形態との相違点を中心に説明する。なお、本実施の形態にかかる車両位置同定システムも、その基本的な構成は第1の実施の形態と同等であり、図面においても第1の実施の形態と実質的に同一の要素にはそれぞれ同一の符号を付して示し、重複する説明は割愛する。
本実施形態では、車両位置同定システムを、車両に搭載されたシステムとして説明する。この車両位置同定システムは、自車両が走行した走行履歴情報を収集し、蓄積した過去の走行履歴情報に基づき、自車両の現在位置を同定する。
図13に示すように、車両位置同定システムは、第1の実施形態と同様に、GPS受信部12、車速センサ13、及びジャイロ14を備える。また、車両位置同定システムは、車載制御部40、及び道路地図情報記憶部28を備える。車載制御部40は、トリップ抽出部22、参照用区間生成部23、第1距離演算部24、第2距離演算部25、分散演算部26、及び位置同定部27を有する。さらに車両位置同定システムは、図1のプローブ情報記憶部21に相当する走行履歴情報記憶部41を備える。走行履歴情報記憶部41には、自車両が走行した経路に関する走行履歴情報42が格納される。
車載制御部40は、統計の上で最低限必要な数の走行履歴情報が蓄積されると、車両位置の同定の前処理を第1の実施形態と同様に行う。このとき、自車両が異なるタイミングで生成した走行履歴情報42を、第1の実施形態のプローブ情報Prbと同様にして扱う。
そしてここでも、参照用区間Iiの順位付けが行われた後、その順位付けされた参照用区間Iiを走行するとき、順位が高い参照用区間Ii内では、電波航法により演算した絶対位置座標、及び自立航法により演算した相対位置座標に基づき自車両の位置を同定する。また順位が低い参照用区間Ii内では、自立航法により演算した相対位置座標に基づき自車両の位置を同定する。
以上説明したように、本実施の形態にかかる車両位置同定システム及び車両位置同定方法によれば、前記(1)〜(7)の効果の他に、以下の効果を得ることができる。
(9)トリップ抽出部22、参照用区間生成部23、第1距離演算部24、第2距離演算部25、分散演算部26、及び位置同定部27は、車両100に設けられるため、自車両が走行したことのある区間については、自車位置の同定の精度を高めることができる。
(他の実施の形態)
なお、上記各実施の形態は、以下のような形態をもって実施することもできる。
・図14に示すように、プローブ情報Prbは、GPS衛星の衛星位置Prb6を含んでいてもよい。この場合、共通の条件の下で生成されたプローブ情報Prbを取得する際に、その条件に、GPS衛星の位置が共通であることも加えると、プローブ情報Prbの間のGPSに基づく絶対位置座標の測位精度のばらつきが抑制される。
・上記各実施形態では、位置同定装置11が、プローブ情報Prbに含まれる車速情報Prb3に基づき相対移動距離Δdを算出するようにしたが、車載制御部15が算出した移動距離、又は車速と方位とに基づき算出した相対位置座標を、プローブ情報Prbに含めるようにしてもよい。
・相対移動距離Δdを用いて車両の位置の同定を行う際は、車速の他に、プローブ情報Prbに含まれる方位情報Prb4を用いて、直前の同定位置に対する相対移動位置を同定するようにしてもよい。
・位置同定システムは、位置同定部27を、車両100に設ける構成であってもよい。即ち、参照用区間Iiの順位付けをサーバで行い、車両100は、その順位と、順位に関連付けられた道路区間に関する情報をサーバから受信して、自車両の位置を同定してもよい。
・位置同定部27は、オフライン処理で生成されたトリップ情報Trpを用いた順位付けに基づき、同じトリップ情報Trpを用いて、そのトリップ情報Trpを送信した車両の位置の同定を行うようにしたが、これ以外のプローブ情報Prb又はトリップ情報Trpを用いてもよい。例えば、車両位置の同定は、オフライン処理で用いられたトリップ情報Trpとは別のプローブ情報Prb又はトリップ情報Trpに対して車両位置の同定を行うようにしてもよい。例えば、順位付けには、プローブ情報記憶部21に蓄積された所定数以上のプローブ情報Prbを用い、車両位置の同定の対象を、新たに受信したプローブ情報Prbの送信元である車両100としてもよい。
・上記各実施形態では、トリップ情報Trpj毎に差分絶対値Dijを求め、これらの差分絶対値Dijの分散Uiを算出して分散Uiの順位付けを行ったが、差分絶対値Dijの平均値等に基づき順位付けを行ってもよい。
・上記各実施形態では、分散Uiが小さい参照用区間内Iiについては、参照用区間Iiの両端に最も近い絶対位置座標を求め、その絶対位置座標の間を相対移動距離Δdで補間したが、設定される絶対位置座標は、少なくとも参照用区間Ii内の2地点であればよい。
・上記各実施形態では、分散Uiが小さい参照用区間Iiについては、絶対位置座標及び正規化した相対移動距離Δd’を用いて車両位置を同定したが、データ数が少なく正規化ができない場合等には、正規化を必ずしも行う必要はなく、正規化されていない相対移動距離Δdを用いてもよい。
・上記各実施形態では、位置同定済み情報31を支援情報の生成に用いたが、同定した車両位置を、車両の挙動の把握等、その他の目的で用いてもよい。
・上記各実施形態では、分散Uiが小さい場合に、絶対位置座標及び相対移動距離を用いた車両位置の同定を行い、分散Uiが大きい場合に、相対移動距離のみを用いた車両位置の同定を行ったが、これ以外の手法で車両位置を同定してもよい。例えば、分散Uiが小さい場合に、参照用区間Ii内の絶対位置座標のみを用いて車両位置の同定を行ってもよい。このとき例えば、各絶対位置座標を、道路地図情報29に基づき道路上にマッピングするとともに、絶対位置座標の間は一定速度で走行しているものとして、プローブ情報Prbの時刻情報Prb5に基づき車両位置を同定してもよい。又は各絶対位置座標を通る関数等を生成して車両位置を同定してもよい。また、分散Uiが大きい場合であって、隣接する直前の参照用区間Iiの分散Uiも大きい場合、連続して相対移動距離に基づき車両位置を同定することになるため、補間的に、例えば1つのみ絶対位置座標を1つだけ用いてもよい。このとき、相対移動距離及び方位の変化量に基づく走行軌跡と道路地図情報29とを比較することで、その絶対位置座標を道路上にマッチングすることが好ましい。
・第1の実施形態では、車両100に、GPS受信部12、車速センサ13、ジャイロ14、車載制御部15及び車載通信部16を搭載し、車両からプローブ情報Prbを送信するようにしたが、車両内で利用されるスマートフォン等の携帯情報端末からプローブ情報Prbを送信する態様としてもよい。このとき、携帯情報端末は、GPS受信部、速度センサ又は加速度センサ、方位センサ、通信部、及び車載制御部15と同等に機能する制御部を備える。
11…位置同定装置、12…GPS受信部、13…車速センサ、14…ジャイロ、15,40…車載制御部、16…車載通信部、20…通信部、21…プローブ情報記憶部、22…トリップ抽出部、23…参照用区間生成部、24…第1距離演算部、25…第2距離演算部、26…分散演算部、27…位置同定部、28…道路地図情報、29・・・道路地図情報、30…位置同定情報記憶部、31…位置同定済みプローブ情報、32…支援情報生成部、42・・・走行履歴情報、100…車両、101…道路、Prb・・・プローブ情報。

Claims (9)

  1. 電波航法に基づく絶対位置座標、及び少なくとも車速に基づく相対位置座標を用いて車両の位置を同定する車両位置同定システムにおいて、
    車両から前記絶対位置座標及び車速を含む走行履歴情報を取得する履歴情報取得部と、
    取得した複数の走行履歴情報の間で走行領域が共通する参照用区間を設定する参照用区間生成部と、
    同一の車両についての前記参照用区間内の異なる地点で送信された2つの絶対位置座標を読み込み、それらの2つの前記絶対位置座標の間の距離を、道路地図情報に基づき第1の距離として算出する第1の距離演算部と、
    同じく前記2つの絶対位置座標を読み込み、それら2つの絶対位置座標の間の距離を、前記走行履歴情報に含まれる車速に基づき第2の距離として算出する第2の距離演算部と、
    前記第1の距離及び前記第2の距離の差分の絶対値に応じて、電波航法に基づく絶対位置座標を用いた車両位置の同定、及び車速積分値を用いた車両位置の同定、及びそれら電波航法に基づく絶対位置座標と車速積分値との両方を用いた車両位置の同定のうちの一つを選択的に行う位置同定部と、を備えることを特徴とする車両位置同定システム。
  2. 前記位置同定部は、前記電波航法に基づく絶対位置座標と車速積分値との両方を用いた車両位置の同定に際し、前記第1の距離と前記第2の距離との差分の絶対値が小さい参照用区間については、前記参照用区間内の少なくとも一部の道路区間について前記取得された走行履歴情報に基づき算出された車速積分値と当該道路区間について前記道路地図情報から求めた距離との比率を求め、該求めた比率を、位置同定対象の前記走行履歴情報に基づく車速積分値に乗算して、前記2つの絶対位置座標の間の車両位置を同定する請求項1に記載の車両位置同定システム。
  3. 前記位置同定部は、前記第1の距離と前記第2の距離との差分の絶対値が小さい参照用区間内の各地点で検出される絶対位置座標のうち、当該参照用区間の両側の端部に最も近い絶対位置座標を選択し、それらの間については、前記比率を前記車速積分値に乗算した相対移動距離で補間することによって車両位置を同定する請求項2に記載の車両位置同定システム。
  4. 前記取得した走行履歴情報毎に、前記第1の距離及び前記第2の距離の差分の絶対値を算出するとともに、前記取得した走行履歴情報からそれぞれ算出された前記差分の絶対値を用いてそれらの分散を求める分散演算部を備え、分散が小さい前記参照用区間については、少なくとも前記絶対位置座標を用いて車両の位置を同定する請求項1〜3のいずれか1項に記載の車両位置同定システム。
  5. 前記参照用区間生成部は、車速積分値に基づく相対移動距離のみで位置同定したときの累積誤差を含む距離が、電波航法を用いた測位システム側の測位誤差範囲内となる長さに、前記参照用区間の長さを設定する請求項1〜4のいずれか1項に記載の車両位置同定システム。
  6. 前記位置同定部は、前記第1の距離及び前記第2の距離の差分の絶対値が大きい参照用区間については、車速積分値に基づく相対移動距離のみを用いて車両位置を同定する請求項1〜5のいずれか1項に記載の車両位置同定システム。
  7. 前記第1の距離演算部は、前記参照用区間内の各地点で検出される絶対位置座標のうち、当該参照用区間の両側の端部に最も近い絶対位置座標を選択するとともに、それらの選択した絶対位置座標を前記道路地図情報に基づき道路上の位置としてマッチングし、このマッチングした位置の間の距離を、前記道路地図情報に含まれる道路形状に沿って前記第1の距離として算出する請求項1〜6のいずれか1項に記載の車両位置同定システム。
  8. 前記履歴情報取得部、前記参照用区間生成部、前記第1の距離演算部、前記第2の距離演算部、及び前記位置同定部は、プローブ・カー・システムを構成してプローブ情報を収集する情報収集装置に対して設けられてなる請求項1〜7のいずれか1項に記載の車両位置同定システム。
  9. 電波航法に基づく絶対位置座標、及び少なくとも車速に基づく相対位置座標を用いて車両の位置を同定する車両位置同定方法において、
    履歴情報取得部が、車両から前記絶対位置座標及び車速を含む走行履歴情報取得するステップと、
    参照用区間生成部が、取得した複数の走行履歴情報の間で走行領域が共通する参照用区間を設定するステップと、
    第1の距離演算部が、同一の車両についての前記参照用区間内の異なる地点で送信された2つの前記絶対位置座標を読み込み、それらの2つの前記絶対位置座標の間の距離を、道路地図情報に基づき第1の距離として算出するステップと、
    第2の距離演算部が、同じく前記2つの絶対位置座標を読み込み、それら2つの絶対位置座標の間の距離を、前記走行履歴情報に含まれる車速に基づき第2の距離として算出するステップと、
    位置同定部が、前記第1の距離及び前記第2の距離の差分の絶対値に応じて、電波航法に基づく絶対位置座標を用いた車両位置の同定、及び車速積分値を用いた車両位置の同定、及びそれら電波航法に基づく絶対位置座標と車速積分値との両方を用いた車両位置の同定のうちの一つを選択的に行うステップとを含むことを特徴とする車両位置同定方法。
JP2013229330A 2013-11-05 2013-11-05 車両位置同定システム及び車両位置同定方法 Active JP5939230B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013229330A JP5939230B2 (ja) 2013-11-05 2013-11-05 車両位置同定システム及び車両位置同定方法
US15/031,961 US9714836B2 (en) 2013-11-05 2014-11-05 Vehicle position identifying system and vehicle position identifying method
PCT/IB2014/002437 WO2015068030A1 (en) 2013-11-05 2014-11-05 Vehicle position identifying system and vehicle position identifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229330A JP5939230B2 (ja) 2013-11-05 2013-11-05 車両位置同定システム及び車両位置同定方法

Publications (2)

Publication Number Publication Date
JP2015090285A JP2015090285A (ja) 2015-05-11
JP5939230B2 true JP5939230B2 (ja) 2016-06-22

Family

ID=51945942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229330A Active JP5939230B2 (ja) 2013-11-05 2013-11-05 車両位置同定システム及び車両位置同定方法

Country Status (3)

Country Link
US (1) US9714836B2 (ja)
JP (1) JP5939230B2 (ja)
WO (1) WO2015068030A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10516893B2 (en) * 2015-02-14 2019-12-24 Remote Geosystems, Inc. Geospatial media referencing system
US10408627B2 (en) * 2015-11-30 2019-09-10 Ricoh Company, Ltd. Inertial device to estimate position based on corrected movement velocity
CN105890586B (zh) * 2016-03-30 2018-10-19 上海河广信息科技有限公司 用户位置标示系统及方法
CN105928503B (zh) * 2016-04-14 2018-10-19 上海河广信息科技有限公司 用户移动路线确定系统及方法
US10247559B2 (en) * 2016-05-02 2019-04-02 Here Global B.V. Method and apparatus for disambiguating probe points within an ambiguous probe region
JP6828448B2 (ja) * 2017-01-16 2021-02-10 富士通株式会社 情報処理装置、情報処理システム、情報処理方法、および情報処理プログラム
CN108847033B (zh) * 2018-08-22 2021-07-06 河南弋之众合信息科技有限公司 车辆的违章路段匹配方法、装置及服务器
CN109887292B (zh) * 2019-04-04 2022-01-25 上海赢科信息技术有限公司 车辆类型的识别方法及系统
CN112113580A (zh) * 2019-06-21 2020-12-22 北汽福田汽车股份有限公司 车辆定位的方法、装置和汽车
CN111311916B (zh) * 2020-02-28 2021-10-08 腾讯科技(深圳)有限公司 车道速度确定方法、装置
US11847919B2 (en) * 2020-05-19 2023-12-19 Toyota Motor North America, Inc. Control of transport en route
US11854402B2 (en) * 2020-07-10 2023-12-26 Here Global B.V. Method, apparatus, and system for detecting lane departure events based on probe data and sensor data
CN118038666A (zh) * 2020-10-13 2024-05-14 腾讯科技(深圳)有限公司 车辆定位数据处理方法、装置、计算机设备和存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786735B2 (ja) * 1989-06-23 1995-09-20 パイオニア株式会社 車載ナビゲーション装置
US5394333A (en) * 1991-12-23 1995-02-28 Zexel Usa Corp. Correcting GPS position in a hybrid naviation system
US5323152A (en) * 1992-04-15 1994-06-21 Sumitomo Electric Industries, Ltd. Apparatus for detecting the position of a vehicle
JP2940315B2 (ja) * 1992-08-24 1999-08-25 三菱電機株式会社 車両ナビゲーションシステム、その基地局及びその車両
US5488559A (en) * 1993-08-02 1996-01-30 Motorola, Inc. Map-matching with competing sensory positions
JPH08334335A (ja) 1995-06-06 1996-12-17 Matsushita Electric Ind Co Ltd ナビゲーション装置
KR100224326B1 (ko) * 1995-12-26 1999-10-15 모리 하루오 차량용 네비게이션장치
JP3984112B2 (ja) * 2002-01-18 2007-10-03 アルパイン株式会社 車両位置修正装置および距離しきい値設定方法
JP4086298B2 (ja) * 2003-06-17 2008-05-14 アルパイン株式会社 物体検出方法及び装置
JP2008039698A (ja) * 2006-08-09 2008-02-21 Univ Nagoya 逐次型マップマッチングシステム、逐次型マップマッチング方法及び逐次型マップマッチングプログラム
JP2008051572A (ja) 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd ナビゲーション装置及び、その方法、並びにそのプログラム
TWI287621B (en) * 2006-09-15 2007-10-01 Sin Etke Technology Co Ltd Precision positioning system for vehicles
JP5567892B2 (ja) * 2010-04-28 2014-08-06 株式会社トヨタマップマスター 人工構造物特定装置及びその方法、並びに人工構造物を特定するためのコンピュータプログラム及びそのコンピュータプログラムを記録した記録媒体
JP2012207919A (ja) * 2011-03-29 2012-10-25 Toyota Central R&D Labs Inc 異常値判定装置、測位装置、及びプログラム

Also Published As

Publication number Publication date
US9714836B2 (en) 2017-07-25
JP2015090285A (ja) 2015-05-11
US20160265924A1 (en) 2016-09-15
WO2015068030A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP5939230B2 (ja) 車両位置同定システム及び車両位置同定方法
CN106352867B (zh) 用于确定车辆自身位置的方法和设备
JP5929936B2 (ja) 特異走行箇所検出装置及び特異走行箇所検出方法
US8326521B2 (en) Traffic situation determination systems, methods, and programs
US9897455B2 (en) Travel route information generation apparatus
CN110431561B (zh) 用于确定道路施工现场的方法、设备和系统
JP5424754B2 (ja) リンク旅行時間算出装置及びプログラム
JP2022113746A (ja) 判定装置
KR102371984B1 (ko) 도로 변경 지점 검출 방법
JP6708134B2 (ja) 走行データ収集システム、及び走行データ収集センタ
JP5269118B2 (ja) 列車走行実績データ作成システム
CN108351220B (zh) 用于数字地图服务的车道信息的聚合方法
JP6589570B2 (ja) センター処理装置、地図生成システム、及びプログラム
US20150334535A1 (en) Wireless position detection apparatus and storage medium
US20190360820A1 (en) Method and device for executing at least one measure for increasing the safety of a vehicle
JP2017003728A (ja) 地図生成システム、方法、及びプログラム
CN102735243A (zh) 确定导航装置的位置
CN112585425A (zh) 用于定位车辆的方法
JP2019174191A (ja) データ構造、情報送信装置、制御方法、プログラム及び記憶媒体
JP2021120683A (ja) 出力装置、制御方法、プログラム及び記憶媒体
JP2023174739A (ja) データ構造、情報処理装置、及び地図データ生成装置
JP2006031422A (ja) 交通情報生成装置及び交通情報生成方法、交通情報提供装置並びに交通情報配信システム
JP2019040378A (ja) コンピュータプログラム、走行道路判定方法、走行道路判定装置、車載装置およびデータ構造
WO2019188820A1 (ja) 情報送信装置、データ構造、制御方法、プログラム及び記憶媒体
WO2019188886A1 (ja) 端末装置、情報処理方法、プログラム、及び、記憶媒体

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R151 Written notification of patent or utility model registration

Ref document number: 5939230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151