JP5935643B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP5935643B2
JP5935643B2 JP2012224681A JP2012224681A JP5935643B2 JP 5935643 B2 JP5935643 B2 JP 5935643B2 JP 2012224681 A JP2012224681 A JP 2012224681A JP 2012224681 A JP2012224681 A JP 2012224681A JP 5935643 B2 JP5935643 B2 JP 5935643B2
Authority
JP
Japan
Prior art keywords
light emitting
region
emitting device
semiconductor light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012224681A
Other languages
Japanese (ja)
Other versions
JP2014078575A (en
Inventor
暢尚 杉森
暢尚 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2012224681A priority Critical patent/JP5935643B2/en
Priority to KR20130114286A priority patent/KR101493377B1/en
Priority to CN201310464248.9A priority patent/CN103730478B/en
Priority to TW102136497A priority patent/TWI542043B/en
Publication of JP2014078575A publication Critical patent/JP2014078575A/en
Application granted granted Critical
Publication of JP5935643B2 publication Critical patent/JP5935643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Description

本発明は、半導体発光素子と半導体発光素子の駆動装置が同一半導体基板上に配置された半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device in which a semiconductor light emitting element and a driving device for the semiconductor light emitting element are disposed on the same semiconductor substrate.

発光ダイオード(LED)や半導体レーザなどの半導体発光素子を有する半導体発光装置において、半導体発光素子とこの発光素子を駆動する駆動装置を同一半導体基板上に集積することによる半導体発光装置の小型化が図られている。例えば、シリコン基板上に介在層を介して半導体発光素子を形成すると共に、シリコン基板にモノリシックに半導体発光素子の駆動装置を形成する方法が提案されている(例えば特許文献1参照。)。   In a semiconductor light emitting device having a semiconductor light emitting element such as a light emitting diode (LED) or a semiconductor laser, the semiconductor light emitting device can be miniaturized by integrating the semiconductor light emitting element and a driving device for driving the light emitting element on the same semiconductor substrate. It has been. For example, a method has been proposed in which a semiconductor light emitting element is formed on a silicon substrate via an intervening layer, and a driving device for the semiconductor light emitting element is formed monolithically on the silicon substrate (see, for example, Patent Document 1).

特開平2−150081号公報Japanese Patent Laid-Open No. 2-150081

しかしながら、半導体発光素子の駆動装置としてシリコン基板上に搭載される電界効果トランジスタ(FET)において、PNP寄生トランジスタが発生し、ゲート電圧で制御できない電流が流れる可能性がある。また、基板に電流を流す際に、NPN寄生トランジスタが形成され、FETが正常動作をしなくなる場合がある。このように、半導体発光素子と駆動装置を同一半導体基板上に集積した場合に、駆動装置の誤動作によって半導体発光装置が正常に動作しないおそれがある。   However, in a field effect transistor (FET) mounted on a silicon substrate as a driving device for a semiconductor light emitting element, a PNP parasitic transistor may be generated, and a current that cannot be controlled by the gate voltage may flow. Further, when a current is passed through the substrate, an NPN parasitic transistor is formed, and the FET may not operate normally. As described above, when the semiconductor light emitting element and the driving device are integrated on the same semiconductor substrate, the semiconductor light emitting device may not operate normally due to a malfunction of the driving device.

上記問題点に鑑み、本発明は、半導体発光素子とその駆動装置が同一半導体基板上に配置され、且つ、駆動装置における誤動作の発生が抑制された半導体発光装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a semiconductor light emitting device in which the semiconductor light emitting element and the driving device thereof are arranged on the same semiconductor substrate and the occurrence of malfunction in the driving device is suppressed.

本発明の一態様によれば、(イ)主面上に発光領域と駆動装置領域が定義された半導体基板と、(ロ)半導体基板の主面上に発光領域から駆動装置領域に渡って連続的に配置された、エピタキシャル成長された窒化物半導体からなるn型半導体層、活性層及びp型半導体層がこの順で積層された構造を有する積層体と、(ハ)積層体上に配置された層間絶縁膜と、(ニ)積層体の少なくとも一部及び層間絶縁膜を介して駆動装置領域の上方に配置され、積層体での発光を制御する制御トランジスタと、(ホ)層間絶縁膜内で制御トランジスタと積層体との間に配置された遮光膜とを備える半導体発光装置が提供される。   According to one aspect of the present invention, (a) a semiconductor substrate in which a light emitting region and a driving device region are defined on the main surface, and (b) continuous from the light emitting region to the driving device region on the main surface of the semiconductor substrate. A stacked body having a structure in which an n-type semiconductor layer, an active layer, and a p-type semiconductor layer made of an epitaxially grown nitride semiconductor are stacked in this order, and (c) disposed on the stacked body An interlayer insulating film, (d) a control transistor disposed above the driving device region via at least a part of the stacked body and the interlayer insulating film, and (e) in the interlayer insulating film There is provided a semiconductor light emitting device including a light shielding film disposed between a control transistor and a stacked body.

本発明によれば、半導体発光素子とその駆動装置が同一半導体基板上に配置され、且つ、駆動装置における誤動作の発生が抑制された半導体発光装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor light-emitting device and its drive device are arrange | positioned on the same semiconductor substrate, and the semiconductor light-emitting device with which generation | occurrence | production of the malfunction in the drive device was suppressed can be provided.

本発明の実施形態に係る半導体発光装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the semiconductor light-emitting device concerning embodiment of this invention. 本発明の実施形態に係る半導体発光装置の構成を示す模式的な平面図である。1 is a schematic plan view showing a configuration of a semiconductor light emitting device according to an embodiment of the present invention. 本発明の実施形態に係る半導体発光装置の等価回路図である。1 is an equivalent circuit diagram of a semiconductor light emitting device according to an embodiment of the present invention. 本発明の実施形態に係る半導体発光装置の製造方法を説明するための工程断面図である(その1)。It is process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device which concerns on embodiment of this invention (the 1). 本発明の実施形態に係る半導体発光装置の製造方法を説明するための工程断面図である(その2)。It is process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device which concerns on embodiment of this invention (the 2). 本発明の実施形態に係る半導体発光装置の製造方法を説明するための工程断面図である(その3)。It is process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device which concerns on embodiment of this invention (the 3). 本発明の実施形態に係る半導体発光装置の製造方法を説明するための工程断面図である(その4)。It is process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device which concerns on embodiment of this invention (the 4). 本発明の実施形態に係る半導体発光装置の製造方法を説明するための工程断面図である(その5)。It is process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device which concerns on embodiment of this invention (the 5). 本発明の実施形態に係る半導体発光装置の製造方法を説明するための工程断面図である(その6)。It is process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device which concerns on embodiment of this invention (the 6). 本発明の実施形態に係る半導体発光装置の製造方法を説明するための工程断面図である(その7)。It is process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device which concerns on embodiment of this invention (the 7). 本発明の実施形態に係る半導体発光装置の製造方法を説明するための工程断面図である(その8)。It is process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device which concerns on embodiment of this invention (the 8). 本発明の実施形態の変形例に係る半導体発光装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the semiconductor light-emitting device which concerns on the modification of embodiment of this invention.

図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率などは現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。この発明の実施形態は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, arrangement, etc. of components. Is not specified as follows. The embodiment of the present invention can be variously modified within the scope of the claims.

本発明の実施形態に係る半導体発光装置1は、図1に示すように、主面上に発光領域101と駆動装置領域102が定義された半導体基板10と、半導体基板10の主面上に配置された、n型半導体層21、活性層22及びp型半導体層23がこの順で積層された構造を有する積層体20と、積層体20上に配置された層間絶縁膜40と、積層体20の少なくとも一部及び層間絶縁膜40を介して駆動装置領域102の上方に配置された制御トランジスタ60と、層間絶縁膜40内で制御トランジスタ60と積層体20との間に配置された遮光膜50とを備える。積層体20は、半導体基板10の主面上に発光領域101から駆動装置領域102に渡って連続的に配置されている。n型半導体層21、活性層22及びp型半導体層23は、エピタキシャル成長によって形成された窒化物半導体からなる。   As shown in FIG. 1, a semiconductor light emitting device 1 according to an embodiment of the present invention is arranged on a main surface of a semiconductor substrate 10 having a light emitting region 101 and a driving device region 102 defined on the main surface, and the semiconductor substrate 10. The stacked body 20 having a structure in which the n-type semiconductor layer 21, the active layer 22, and the p-type semiconductor layer 23 are stacked in this order, the interlayer insulating film 40 disposed on the stacked body 20, and the stacked body 20 And a light-shielding film 50 disposed between the control transistor 60 and the stacked body 20 in the interlayer insulating film 40. With. The stacked body 20 is continuously disposed on the main surface of the semiconductor substrate 10 from the light emitting region 101 to the driving device region 102. The n-type semiconductor layer 21, the active layer 22, and the p-type semiconductor layer 23 are made of a nitride semiconductor formed by epitaxial growth.

層間絶縁膜40は、発光領域101上方から駆動装置領域102上方に渡り連続的に配置され、制御トランジスタ60の周囲は層間絶縁膜40により覆われている。遮光膜50は、層間絶縁膜40内に埋め込まれている。図1に示した例では、遮光膜50は第1の遮光層51と第2の遮光層52を含む。後述するように、第1の遮光層51と第2の遮光層52は異なる工程で形成される。   The interlayer insulating film 40 is continuously arranged from above the light emitting region 101 to above the driving device region 102, and the periphery of the control transistor 60 is covered with the interlayer insulating film 40. The light shielding film 50 is embedded in the interlayer insulating film 40. In the example shown in FIG. 1, the light shielding film 50 includes a first light shielding layer 51 and a second light shielding layer 52. As will be described later, the first light shielding layer 51 and the second light shielding layer 52 are formed in different steps.

半導体発光装置1は、発光領域101の上方で積層体20と層間絶縁膜40間に配置され、p型半導体層23と接する透明電極30を更に備える。層間絶縁膜40上に配置されたアノード電極111は、層間絶縁膜40に形成した開口部において透明電極30と電気的に接続する。アノード電極111から、透明電極30に正孔が供給される。また、半導体基板10の積層体20が配置された主面と対向する裏面上に、カソード電極112が配置されている。   The semiconductor light emitting device 1 further includes a transparent electrode 30 disposed between the stacked body 20 and the interlayer insulating film 40 above the light emitting region 101 and in contact with the p-type semiconductor layer 23. The anode electrode 111 disposed on the interlayer insulating film 40 is electrically connected to the transparent electrode 30 in the opening formed in the interlayer insulating film 40. Holes are supplied from the anode electrode 111 to the transparent electrode 30. Further, the cathode electrode 112 is disposed on the back surface facing the main surface on which the stacked body 20 of the semiconductor substrate 10 is disposed.

カソード電極112から半導体基板10及びn型半導体層21を介して供給された電子と、アノード電極111から透明電極30及びp型半導体層23を介して供給された正孔とが、活性層22で再結合して光を発生する。つまり、発光領域101上に、出力光Lを発生する半導体発光素子100が形成されている。積層体20で発生した出力光Lは、透明電極30及び層間絶縁膜40を透過して、半導体発光装置1の外部に出力される。   Electrons supplied from the cathode electrode 112 via the semiconductor substrate 10 and the n-type semiconductor layer 21 and holes supplied from the anode electrode 111 via the transparent electrode 30 and the p-type semiconductor layer 23 are the active layer 22. Recombines to generate light. That is, the semiconductor light emitting element 100 that generates the output light L is formed on the light emitting region 101. The output light L generated in the stacked body 20 passes through the transparent electrode 30 and the interlayer insulating film 40 and is output to the outside of the semiconductor light emitting device 1.

制御トランジスタ60は、積層体20を膜厚方向に流れる電流を制御して、半導体発光素子100での発光を制御する駆動装置として機能する。具体的には、制御トランジスタ60は、n型半導体層21を介した活性層22への電子の注入とp型半導体層23を介した活性層22への正孔の注入とを制御することによって、積層体20での発光を制御する。つまり、アノード電極111とカソード電極112間に所定の電圧を印加することにより、半導体発光素子100を駆動する。   The control transistor 60 functions as a drive device that controls light flowing in the semiconductor light emitting element 100 by controlling a current flowing through the stacked body 20 in the film thickness direction. Specifically, the control transistor 60 controls the injection of electrons into the active layer 22 through the n-type semiconductor layer 21 and the injection of holes into the active layer 22 through the p-type semiconductor layer 23. The light emission in the stacked body 20 is controlled. That is, the semiconductor light emitting device 100 is driven by applying a predetermined voltage between the anode electrode 111 and the cathode electrode 112.

制御トランジスタ60には、主面と平行な方向である横方向にp型領域とn型領域が隣接し、且つ、積層体20と対向する下面に絶縁膜が配置される構造のトランジスタが使用される。制御トランジスタ60では、横方向に主電流が流れる。   As the control transistor 60, a transistor having a structure in which a p-type region and an n-type region are adjacent to each other in a lateral direction that is parallel to the main surface and an insulating film is disposed on the lower surface facing the stacked body 20 is used. The In the control transistor 60, the main current flows in the lateral direction.

例えば薄膜トランジスタ(thin film transistor:TFT)構造などの接合型電界効果トランジスタを、制御トランジスタ60に採用可能である。図1に示した制御トランジスタ60は、第1のn型領域611、p型領域612及び第2のn型領域613がこの順で横方向に配置されたnpn構造61を有する。そして、少なくともp型領域612の全体を覆うようにnpn構造61上にゲート絶縁膜62が配置され、ゲート絶縁膜62を介してp型領域612と対向するようにゲート領域63が配置されている。なお、図1に示した制御トランジスタ60では、第1のn型領域611がドレイン領域、第2のn型領域613がソース領域であるとする。npn構造61の下方には、層間絶縁膜40の膜厚方向の一部、及び積層体20の膜厚方向の一部が配置されている。   For example, a junction field effect transistor such as a thin film transistor (TFT) structure can be used as the control transistor 60. The control transistor 60 shown in FIG. 1 has an npn structure 61 in which a first n-type region 611, a p-type region 612, and a second n-type region 613 are arranged in this order in the horizontal direction. A gate insulating film 62 is disposed on the npn structure 61 so as to cover at least the entire p-type region 612, and a gate region 63 is disposed so as to face the p-type region 612 with the gate insulating film 62 interposed therebetween. . In the control transistor 60 shown in FIG. 1, it is assumed that the first n-type region 611 is a drain region and the second n-type region 613 is a source region. Below the npn structure 61, a part of the interlayer insulating film 40 in the film thickness direction and a part of the stacked body 20 in the film thickness direction are arranged.

層間絶縁膜40上に、ドレイン電極601、ソース電極602及びゲート電極603が配置されている。そして、第1のn型領域611がドレイン電極601と接続され、第2のn型領域613がソース電極602と接続され、ゲート領域63がゲート電極603と接続されている。制御トランジスタ60の各領域と各電極は、層間絶縁膜40に設けられた開口部及び第2の遮光層52に設けられた開口部においてそれぞれ接続されている。更に、図1に示したように、制御トランジスタ60のソース電極602と半導体発光素子100のアノード電極111とが、層間絶縁膜40上に配置された配線層71によって接続されている。   A drain electrode 601, a source electrode 602, and a gate electrode 603 are disposed on the interlayer insulating film 40. The first n-type region 611 is connected to the drain electrode 601, the second n-type region 613 is connected to the source electrode 602, and the gate region 63 is connected to the gate electrode 603. Each region and each electrode of the control transistor 60 are connected to each other at an opening provided in the interlayer insulating film 40 and an opening provided in the second light shielding layer 52. Further, as shown in FIG. 1, the source electrode 602 of the control transistor 60 and the anode electrode 111 of the semiconductor light emitting device 100 are connected by the wiring layer 71 disposed on the interlayer insulating film 40.

図1に示した半導体基板10は、シリコン基板11上にバッファ層12が配置され、積層体20がバッファ層12上に配置された構造である。ただし、バッファ層12を省略してもよい。   The semiconductor substrate 10 shown in FIG. 1 has a structure in which a buffer layer 12 is disposed on a silicon substrate 11 and a stacked body 20 is disposed on the buffer layer 12. However, the buffer layer 12 may be omitted.

バッファ層12には、例えば、AlxyGa1-x-yN(Mはインジウム(In)又はボロン(B)、0<x≦1、0≦y≦1、x+y=1)からなる第1のサブレイヤーと、AlaMbGa1-a-bN(MはIn又はB、0≦a<1、0≦b≦1、a+b=1、a<x)からなる第2のサブレイヤーとを交互に積層した多層構造を採用可能である。例えば、第1のサブレイヤーは膜厚0.5〜5nm程度の窒化アルミニウム(AlN)膜、第2のサブレイヤーは膜厚0.5〜200nm程度の窒化ガリウム(GaN)膜である。 The buffer layer 12, for example, Al x M y Ga 1- xy N (M is indium (In) or boron (B), 0 <x ≦ 1,0 ≦ y ≦ 1, x + y = 1) first consisting of And sub-layers of AlaMbGa1-a-bN (M is In or B, 0 ≦ a <1, 0 ≦ b ≦ 1, a + b = 1, a <x) are alternately stacked. A multilayer structure can be adopted. For example, the first sublayer is an aluminum nitride (AlN) film having a thickness of about 0.5 to 5 nm, and the second sublayer is a gallium nitride (GaN) film having a thickness of about 0.5 to 200 nm.

n型半導体層21は、例えばn型ドーパントとしてシリコン(Si)がドープされた膜厚5μm程度のGaN膜であり、活性層22に電子を供給する。p型半導体層23は、例えばp型ドーパントがドープされた膜厚0.2μm程度のGaN膜であり、活性層22に正孔(ホール)を供給する。p型ドーパントは、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、カルシウム(Ca)、ベリリウム(Be)、炭素(C)等である。   The n-type semiconductor layer 21 is, for example, a GaN film having a thickness of about 5 μm doped with silicon (Si) as an n-type dopant, and supplies electrons to the active layer 22. The p-type semiconductor layer 23 is, for example, a GaN film having a thickness of about 0.2 μm doped with a p-type dopant, and supplies holes to the active layer 22. The p-type dopant is magnesium (Mg), zinc (Zn), cadmium (Cd), calcium (Ca), beryllium (Be), carbon (C), or the like.

活性層22は、例えばInGaN膜とGaN膜を交互に積層した多重量子井戸(MQW)構造を有する。InGaN膜とGaN膜の膜厚は、それぞれ数μm〜数十μm程度である。   The active layer 22 has, for example, a multiple quantum well (MQW) structure in which InGaN films and GaN films are alternately stacked. The film thicknesses of the InGaN film and the GaN film are about several μm to several tens of μm, respectively.

透明電極30及び層間絶縁膜40は、活性層22で発生する光が透過する材料からなる。透明電極30には、例えば酸化インジウム・スズ(ITO)膜などが採用可能である。ITO膜の膜厚は、50nm〜500nm程度である。層間絶縁膜40には、例えば膜厚150nm〜1500nm程度の酸化シリコン(SiO2)膜などが採用可能である。 The transparent electrode 30 and the interlayer insulating film 40 are made of a material that transmits light generated in the active layer 22. For the transparent electrode 30, for example, an indium tin oxide (ITO) film can be employed. The thickness of the ITO film is about 50 nm to 500 nm. As the interlayer insulating film 40, for example, a silicon oxide (SiO 2 ) film having a film thickness of about 150 nm to 1500 nm can be employed.

遮光膜50には、例えばチタン(Ti)やタングステン(W)などが好適に使用される。半導体発光素子100から制御トランジスタ60方向に出射された光は、遮光膜50によって遮光され、制御トランジスタ60に光が当たらないようにしている。図1に示すように、遮光膜50は、制御トランジスタ60の積層体20と対向する側面及び底面に配置されている。遮光膜50は層間絶縁膜40の内部に埋め込まれているため、遮光膜50が長時間大気や純水等にさらされることがほとんどない。このため、水蒸気などによる遮光膜50の劣化を抑制できる。   For the light shielding film 50, for example, titanium (Ti), tungsten (W), or the like is preferably used. The light emitted from the semiconductor light emitting element 100 in the direction of the control transistor 60 is shielded by the light shielding film 50 so that the light does not strike the control transistor 60. As shown in FIG. 1, the light shielding film 50 is disposed on the side surface and the bottom surface facing the stacked body 20 of the control transistor 60. Since the light shielding film 50 is embedded in the interlayer insulating film 40, the light shielding film 50 is hardly exposed to the atmosphere or pure water for a long time. For this reason, deterioration of the light shielding film 50 due to water vapor or the like can be suppressed.

アノード電極111及びカソード電極112には、例えば金(Au)などが採用可能である。   For the anode electrode 111 and the cathode electrode 112, for example, gold (Au) or the like can be employed.

図2に、アノード電極111の側からみた半導体発光装置1の平面図を示す。図1は、図2のI−I方向に沿った断面図である。図2において、アノード電極111、ドレイン電極601、ソース電極602及びゲート電極603の内側に破線で示した領域が、各電極を透過してみた層間絶縁膜40の開口部である。   FIG. 2 is a plan view of the semiconductor light emitting device 1 as viewed from the anode electrode 111 side. FIG. 1 is a cross-sectional view taken along the II direction of FIG. In FIG. 2, regions indicated by broken lines inside the anode electrode 111, the drain electrode 601, the source electrode 602, and the gate electrode 603 are openings of the interlayer insulating film 40 through which the respective electrodes are transmitted.

図2に示すように、発光領域101の上方の全体に透明電極30が配置されている。また、透明電極30の全域に電流が流れるように、アノード電極111が透明電極30の外周に沿って配置されている。これにより、活性層22を流れる電流が均一化され、活性層22の広い範囲で光を発生させることができる。   As shown in FIG. 2, the transparent electrode 30 is disposed over the entire light emitting region 101. Further, the anode electrode 111 is arranged along the outer periphery of the transparent electrode 30 so that a current flows through the entire area of the transparent electrode 30. Thereby, the current flowing through the active layer 22 is made uniform, and light can be generated in a wide range of the active layer 22.

図3に、半導体発光装置1の等価回路図を示す。既に述べたように、制御トランジスタ60のソース電極602と半導体発光素子100のアノード電極111とが配線層71よって接続されている。半導体発光素子100のカソード電極112は接地されている。そして、制御トランジスタ60のドレイン電極601に所定のドレイン電圧VDDを印加した状態で、ゲート電極603とソース電極602間にしきい値電圧以上のゲート電圧VGSを印加することにより、制御トランジスタ60がオンする。その結果、半導体発光素子100のアノード電極111とカソード電極112間に電流が流れ、半導体発光素子100が発光する。例えば、ドレイン電圧VDDは10V程度、ゲート電圧VGSは4V程度である。制御トランジスタ60をオフすることにより、半導体発光素子100の発光は停止する。 FIG. 3 shows an equivalent circuit diagram of the semiconductor light emitting device 1. As already described, the source electrode 602 of the control transistor 60 and the anode electrode 111 of the semiconductor light emitting device 100 are connected by the wiring layer 71. The cathode electrode 112 of the semiconductor light emitting device 100 is grounded. Then, by applying a gate voltage V GS equal to or higher than the threshold voltage between the gate electrode 603 and the source electrode 602 in a state where a predetermined drain voltage V DD is applied to the drain electrode 601 of the control transistor 60, the control transistor 60 becomes Turn on. As a result, a current flows between the anode electrode 111 and the cathode electrode 112 of the semiconductor light emitting device 100, and the semiconductor light emitting device 100 emits light. For example, the drain voltage V DD is about 10V, and the gate voltage V GS is about 4V. By turning off the control transistor 60, the light emission of the semiconductor light emitting device 100 is stopped.

以上に説明したように、実施形態に係る半導体発光装置1では、半導体発光素子100を構成するエピタキシャル成長膜である積層体20上に、半導体発光素子100の駆動装置である制御トランジスタ60が配置される。この制御トランジスタ60には、横方向に主電流(ドレイン電流)が流れ、積層体20と対向する下面に絶縁膜が配置される構造を有する、例えばTFTなどの接合型電界効果トランジスタなどが、制御トランジスタ60に好適に使用される。このため、半導体発光装置1では、寄生トランジスタが発生しない。したがって、ゲート電圧VGSで制御できない電流が流れたり、半導体基板10に電流を流す際にFET動作をしないなどの問題が発生しない。 As described above, in the semiconductor light emitting device 1 according to the embodiment, the control transistor 60 that is the driving device for the semiconductor light emitting element 100 is disposed on the stacked body 20 that is the epitaxially grown film constituting the semiconductor light emitting element 100. . For example, a junction field effect transistor such as a TFT having a structure in which a main current (drain current) flows in the lateral direction and an insulating film is disposed on the lower surface facing the stacked body 20 is controlled in the control transistor 60. It is preferably used for the transistor 60. For this reason, the semiconductor light emitting device 1 does not generate a parasitic transistor. Therefore, there is no problem that a current that cannot be controlled by the gate voltage V GS flows or that an FET operation is not performed when a current flows through the semiconductor substrate 10.

また、制御トランジスタ60を半導体発光素子100の一部である積層体20上に配置するため、シリコン基板11の他の領域に制御トランジスタ60を配置する場合に比べて、半導体発光装置1の面積を小さくできる。   In addition, since the control transistor 60 is disposed on the stacked body 20 which is a part of the semiconductor light emitting element 100, the area of the semiconductor light emitting device 1 is reduced as compared with the case where the control transistor 60 is disposed in another region of the silicon substrate 11. Can be small.

更に、遮光膜50が層間絶縁膜40の内部に形成され、半導体発光素子100から出射された光が当たらないように、遮光膜50によって制御トランジスタ60を覆っている。遮光膜50を層間絶縁膜40に埋め込むことにより、遮光と同時に制御トランジスタ60と半導体発光素子100間の絶縁も実現される。遮光膜50のための余分な領域が不要であるため、半導体発光装置1の面積の増大が抑制される。   Further, the light shielding film 50 is formed inside the interlayer insulating film 40, and the control transistor 60 is covered with the light shielding film 50 so that the light emitted from the semiconductor light emitting element 100 does not strike. By embedding the light shielding film 50 in the interlayer insulating film 40, insulation between the control transistor 60 and the semiconductor light emitting element 100 is realized simultaneously with light shielding. Since an extra region for the light shielding film 50 is unnecessary, an increase in the area of the semiconductor light emitting device 1 is suppressed.

図4〜図11を参照して、図1に示した半導体発光装置1の製造方法を説明する。なお、以下に述べる半導体発光装置1の製造方法は一例であり、この変形例を含めて、これ以外の種々の製造方法により実現可能であることは勿論である。   A method for manufacturing the semiconductor light emitting device 1 shown in FIG. 1 will be described with reference to FIGS. In addition, the manufacturing method of the semiconductor light-emitting device 1 described below is an example, and it is needless to say that it can be realized by various other manufacturing methods including this modification.

まず、シリコン基板11上にバッファ層12を形成して半導体基板10を構成する。バッファ層12上に、n型半導体層21、活性層22及びp型半導体層23を順次にエピタキシャル成長法により積層して、図4に示すように積層体20を形成する。次いで、図5に示すように、ドライエッチング法などを用いて積層体20及びバッファ層12をチップサイズにエッチングし、素子分離を行う。   First, the buffer layer 12 is formed on the silicon substrate 11 to configure the semiconductor substrate 10. On the buffer layer 12, an n-type semiconductor layer 21, an active layer 22, and a p-type semiconductor layer 23 are sequentially stacked by an epitaxial growth method to form a stacked body 20 as shown in FIG. 4. Next, as illustrated in FIG. 5, the stacked body 20 and the buffer layer 12 are etched to a chip size by using a dry etching method or the like, and element isolation is performed.

図6に示すように、制御トランジスタ60を形成する領域において積層体20の上部の一部をエッチング除去する。図6に示した例では、p型半導体層23と活性層22をすべて除去し、n型半導体層21の上部を除去している。なお、積層体20の除去した部分のエピタキシャル膜の側面には、層間絶縁膜40、配線層71、第1の遮光層51及び第2の遮光層52が形成される。このため、積層体20のエッチングにより露出された側面と上面との間には45度程度のテーパをつけることが好ましい。つまり、駆動装置領域102から発光領域101に向かって積層体20の膜厚が徐々に厚くなっている。   As shown in FIG. 6, a part of the upper portion of the stacked body 20 is removed by etching in a region where the control transistor 60 is formed. In the example shown in FIG. 6, the p-type semiconductor layer 23 and the active layer 22 are all removed, and the upper portion of the n-type semiconductor layer 21 is removed. Note that an interlayer insulating film 40, a wiring layer 71, a first light shielding layer 51, and a second light shielding layer 52 are formed on the side surfaces of the removed epitaxial film from the stacked body 20. For this reason, it is preferable to taper about 45 degrees between the side surface and the upper surface exposed by etching of the stacked body 20. That is, the thickness of the stacked body 20 gradually increases from the driving device region 102 toward the light emitting region 101.

図7に示すように、発光領域101のp型半導体層23上に透明電極30を形成した後、第1の絶縁層41を積層体20の全面に形成する。ついで、駆動装置領域102の第1の絶縁層41上に第1の遮光層51を形成する。なお、第1の遮光層51は、発光領域101以外の領域に配置され、発光領域101と駆動装置領域102間の境界である積層体20の側面上にも形成される。これにより、制御トランジスタ60に側面方向から入射される光が遮光される。   As shown in FIG. 7, after forming the transparent electrode 30 on the p-type semiconductor layer 23 in the light emitting region 101, the first insulating layer 41 is formed on the entire surface of the stacked body 20. Next, a first light shielding layer 51 is formed on the first insulating layer 41 in the driving device region 102. The first light shielding layer 51 is disposed in a region other than the light emitting region 101 and is also formed on the side surface of the stacked body 20 that is a boundary between the light emitting region 101 and the driving device region 102. Thereby, the light incident on the control transistor 60 from the side surface direction is blocked.

全面に第2の絶縁層42を形成した後、図8に示すように、駆動装置領域102の第2の絶縁層42上に制御トランジスタ60を形成する。例えば、npn構造61を形成するためには、350℃で熱処理するプラズマ化学気相成長(PE−CVD)法や650℃で熱処理する減圧化学気相成長(LP−CVD)法などを用いてポリシリコン層を形成する。LP−CVD法で行う650℃の加熱処理はp型不純物のマグネシウム(Mg)を活性化するにも有効なので、LP−CVD法でポリシリコン層を形成する方法について説明する。即ち、ポリシリコン層成長後、シリコン(Si)注入と、例えば600℃のレーザアニール処理を実施して、結晶粒の大きいアモルファスSiを形成する。ここに不純物のイオン注入を行って、第1のn型領域611、p型領域612及び第2のn型領域613を形成する。その後、ゲート絶縁膜62及びゲート領域63を形成する。ゲート領域63には、例えば不純物イオンが注入されたポリシリコン膜などを採用可能である。   After the second insulating layer 42 is formed on the entire surface, a control transistor 60 is formed on the second insulating layer 42 in the driving device region 102 as shown in FIG. For example, in order to form the npn structure 61, a plasma chemical vapor deposition (PE-CVD) method in which heat treatment is performed at 350 ° C. or a low pressure chemical vapor deposition (LP-CVD) method in which heat treatment is performed at 650 ° C. is used. A silicon layer is formed. Since the heat treatment at 650 ° C. performed by the LP-CVD method is also effective for activating the p-type impurity magnesium (Mg), a method for forming a polysilicon layer by the LP-CVD method will be described. That is, after the growth of the polysilicon layer, silicon (Si) implantation and laser annealing at, for example, 600 ° C. are performed to form amorphous Si having large crystal grains. Impurity ion implantation is performed here to form a first n-type region 611, a p-type region 612, and a second n-type region 613. Thereafter, a gate insulating film 62 and a gate region 63 are formed. For the gate region 63, for example, a polysilicon film into which impurity ions are implanted can be employed.

次いで、図9に示すように、第3の絶縁層43を全面に形成した後、第2の遮光層52を駆動装置領域102の第3の絶縁層43上に形成する。更に、ドレイン領域である第1のn型領域611、ソース領域である第2のn型領域613、及びゲート領域63と、ドレイン電極601、ソース電極602、及びゲート電極603とをそれぞれ接続するための開口部を、第2の遮光層52に形成する。   Next, as shown in FIG. 9, after the third insulating layer 43 is formed on the entire surface, the second light shielding layer 52 is formed on the third insulating layer 43 in the driving device region 102. Further, in order to connect the first n-type region 611 that is the drain region, the second n-type region 613 that is the source region, and the gate region 63 to the drain electrode 601, the source electrode 602, and the gate electrode 603, respectively. Are formed in the second light shielding layer 52.

その後、図10に示すように、第4の絶縁層44を全面に形成する。第1の絶縁層41〜第4の絶縁層44によって、図1に示した層間絶縁膜40が構成される。そして、第1のn型領域611、第2のn型領域613、及びゲート領域63と、ドレイン電極601、ソース電極602、及びゲート電極603とをそれぞれ接続するための開口部を層間絶縁膜40に形成する。このとき、アノード電極111と透明電極30とを接続するための開口部も、層間絶縁膜40に形成する。   Thereafter, as shown in FIG. 10, a fourth insulating layer 44 is formed on the entire surface. The first insulating layer 41 to the fourth insulating layer 44 constitute the interlayer insulating film 40 shown in FIG. An opening for connecting the first n-type region 611, the second n-type region 613, and the gate region 63 to the drain electrode 601, the source electrode 602, and the gate electrode 603 is provided as an interlayer insulating film 40. To form. At this time, an opening for connecting the anode electrode 111 and the transparent electrode 30 is also formed in the interlayer insulating film 40.

次に、図11に示すように、層間絶縁膜40及び第2の遮光層52に形成した開口部を埋め込むようにして、ドレイン電極601、ソース電極602、ゲート電極603、及びアノード電極111を形成する。配線層71も同時に形成される。その後、半導体基板10の裏面上にカソード電極112を形成して、図1に示した半導体発光装置1が完成する。   Next, as shown in FIG. 11, the drain electrode 601, the source electrode 602, the gate electrode 603, and the anode electrode 111 are formed so as to fill the opening formed in the interlayer insulating film 40 and the second light shielding layer 52. To do. A wiring layer 71 is also formed at the same time. Thereafter, the cathode electrode 112 is formed on the back surface of the semiconductor substrate 10 to complete the semiconductor light emitting device 1 shown in FIG.

上記に説明した半導体発光装置1の製造方法では、エピタキシャル成長膜である積層体20をドライエッチングによってチップサイズにエッチングして、素子分離が行われる。制御トランジスタ60はエピタキシャル成長工程後に形成されるが、制御トランジスタ60の形成工程は650℃以下で行われ、半導体発光素子100の各層の成長温度よりも低温の工程である。このため、制御トランジスタ60の形成工程がエピタキシャル膜に悪影響を及ぼすことはほとんどない。   In the manufacturing method of the semiconductor light emitting device 1 described above, the stacked body 20 which is an epitaxially grown film is etched to a chip size by dry etching, and element isolation is performed. Although the control transistor 60 is formed after the epitaxial growth process, the formation process of the control transistor 60 is performed at 650 ° C. or lower and is a process at a temperature lower than the growth temperature of each layer of the semiconductor light emitting device 100. For this reason, the formation process of the control transistor 60 hardly affects the epitaxial film.

なお、ゲート電極用の膜をエピタキシャル成長工程前に形成する場合には、その後の熱処理やエッチング処理によるダメージ、応力などによって、ゲート電極用の膜が破損するおそれがある。また、しきい値電圧Vthが変動する可能性がある。   Note that in the case where the gate electrode film is formed before the epitaxial growth step, the gate electrode film may be damaged due to damage or stress caused by subsequent heat treatment or etching treatment. Further, the threshold voltage Vth may vary.

しかしながら、本発明の実施形態に係る半導体発光装置1の製造方法では、エピタキシャル成長工程後にゲート電極用の膜を形成する。このため、エピタキシャル成長時の応力によるゲート電極の膜の破損やしきい値電圧Vthの変動などを抑制できる。   However, in the method for manufacturing the semiconductor light emitting device 1 according to the embodiment of the present invention, the film for the gate electrode is formed after the epitaxial growth step. For this reason, it is possible to suppress damage to the gate electrode film and fluctuation of the threshold voltage Vth due to stress during epitaxial growth.

<変形例>
図1では、積層体20の発光領域101上における膜厚が、駆動装置領域102上における膜厚よりも厚い例を示した。図1に示した構造によれば、発光領域101と駆動装置領域102における半導体発光装置1の高さを同等にすることができる。
<Modification>
In FIG. 1, an example in which the film thickness on the light emitting region 101 of the stacked body 20 is thicker than the film thickness on the driving device region 102 is shown. According to the structure shown in FIG. 1, the height of the semiconductor light emitting device 1 in the light emitting region 101 and the driving device region 102 can be made equal.

しかし、例えば図12に示すように、制御トランジスタ60が配置される駆動装置領域102の積層体20の上部の一部を除去せずに、p型半導体層23上に制御トランジスタ60を配置してもよい。これにより、半導体発光装置1の製造工程を短縮することができる。   However, as shown in FIG. 12, for example, the control transistor 60 is arranged on the p-type semiconductor layer 23 without removing a part of the upper part of the stacked body 20 in the driving device region 102 where the control transistor 60 is arranged. Also good. Thereby, the manufacturing process of the semiconductor light-emitting device 1 can be shortened.

上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。本発明はここでは記載していない様々な実施形態などを含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. Needless to say, the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…半導体発光装置
10…半導体基板
11…シリコン基板
12…バッファ層
20…積層体
21…n型半導体層
22…活性層
23…p型半導体層
30…透明電極
40…層間絶縁膜
50…遮光膜
60…制御トランジスタ
61…npn構造
62…ゲート絶縁膜
63…ゲート領域
71…配線層
100…半導体発光素子
101…発光領域
102…駆動装置領域
111…アノード電極
112…カソード電極
601…ドレイン電極
602…ソース電極
603…ゲート電極
DESCRIPTION OF SYMBOLS 1 ... Semiconductor light-emitting device 10 ... Semiconductor substrate 11 ... Silicon substrate 12 ... Buffer layer 20 ... Laminate 21 ... N-type semiconductor layer 22 ... Active layer 23 ... P-type semiconductor layer 30 ... Transparent electrode 40 ... Interlayer insulating film 50 ... Light shielding film DESCRIPTION OF SYMBOLS 60 ... Control transistor 61 ... npn structure 62 ... Gate insulating film 63 ... Gate region 71 ... Wiring layer 100 ... Semiconductor light emitting element 101 ... Light emission region 102 ... Drive device region 111 ... Anode electrode 112 ... Cathode electrode 601 ... Drain electrode 602 ... Source Electrode 603 ... Gate electrode

Claims (8)

主面上に発光領域と駆動装置領域が定義された半導体基板と、
前記半導体基板の前記主面上に前記発光領域から前記駆動装置領域に渡って連続的に配置された、エピタキシャル成長された窒化物半導体からなるn型半導体層、活性層及びp型半導体層がこの順で積層された構造を有する積層体と、
前記積層体上に配置された層間絶縁膜と、
前記積層体の少なくとも一部及び前記層間絶縁膜を介して前記駆動装置領域の上方に配置され、前記積層体での発光を制御する制御トランジスタと、
前記層間絶縁膜内で前記制御トランジスタと前記積層体との間に配置された遮光膜と
を備えることを特徴とする半導体発光装置。
A semiconductor substrate having a light emitting region and a driving device region defined on the main surface;
An n-type semiconductor layer made of an epitaxially grown nitride semiconductor, an active layer, and a p-type semiconductor layer are sequentially arranged on the main surface of the semiconductor substrate from the light emitting region to the driving device region. A laminate having a structure laminated with;
An interlayer insulating film disposed on the laminate;
A control transistor disposed above the driving device region via at least a part of the stacked body and the interlayer insulating film, and controlling light emission in the stacked body;
A semiconductor light emitting device comprising: a light shielding film disposed between the control transistor and the stacked body in the interlayer insulating film.
前記制御トランジスタの前記積層体と対向する側面及び底面に前記遮光膜が配置されていることを特徴とする請求項1に記載の半導体発光装置。   2. The semiconductor light emitting device according to claim 1, wherein the light shielding film is disposed on a side surface and a bottom surface of the control transistor facing the stacked body. 前記積層体の前記発光領域上における膜厚が、前記駆動装置領域上における膜厚よりも厚いことを特徴とする請求項1又は2に記載の半導体発光装置。   3. The semiconductor light emitting device according to claim 1, wherein a film thickness of the stacked body on the light emitting region is larger than a film thickness on the driving device region. 前記駆動装置領域から前記発光領域に向かって前記積層体の膜厚が徐々に厚くなっていることを特徴とする請求項3に記載の半導体発光装置。   4. The semiconductor light emitting device according to claim 3, wherein a film thickness of the stacked body is gradually increased from the driving device region toward the light emitting region. 5. 前記制御トランジスタが、前記主面と平行な方向にp型領域とn型領域が隣接する構造を有することを特徴とする請求項1乃至4のいずれか1項に記載の半導体発光装置。   5. The semiconductor light-emitting device according to claim 1, wherein the control transistor has a structure in which a p-type region and an n-type region are adjacent to each other in a direction parallel to the main surface. 前記制御トランジスタが接合型電界効果トランジスタであることを特徴とする請求項5に記載の半導体発光装置。   6. The semiconductor light emitting device according to claim 5, wherein the control transistor is a junction field effect transistor. 前記層間絶縁膜上に配置され、前記層間絶縁膜に設けられた開口部で前記制御トランジスタのソース電極と前記p型半導体層とに接続する配線層を更に備えることを特徴とする請求項6に記載の半導体発光装置。   7. The wiring layer according to claim 6, further comprising a wiring layer disposed on the interlayer insulating film and connected to a source electrode of the control transistor and the p-type semiconductor layer through an opening provided in the interlayer insulating film. The semiconductor light-emitting device as described. 前記発光領域上方で前記積層体と前記層間絶縁膜間に配置され、前記p型半導体層と接する透明電極を更に備えることを特徴とする請求項1乃至7のいずれか1項に記載の半導体発光装置。   8. The semiconductor light emitting device according to claim 1, further comprising a transparent electrode disposed between the stacked body and the interlayer insulating film above the light emitting region and in contact with the p-type semiconductor layer. 9. apparatus.
JP2012224681A 2012-10-10 2012-10-10 Semiconductor light emitting device Active JP5935643B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012224681A JP5935643B2 (en) 2012-10-10 2012-10-10 Semiconductor light emitting device
KR20130114286A KR101493377B1 (en) 2012-10-10 2013-09-26 Semiconductor light emitting device
CN201310464248.9A CN103730478B (en) 2012-10-10 2013-10-08 Semiconductor light-emitting apparatus
TW102136497A TWI542043B (en) 2012-10-10 2013-10-09 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224681A JP5935643B2 (en) 2012-10-10 2012-10-10 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2014078575A JP2014078575A (en) 2014-05-01
JP5935643B2 true JP5935643B2 (en) 2016-06-15

Family

ID=50454492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224681A Active JP5935643B2 (en) 2012-10-10 2012-10-10 Semiconductor light emitting device

Country Status (4)

Country Link
JP (1) JP5935643B2 (en)
KR (1) KR101493377B1 (en)
CN (1) CN103730478B (en)
TW (1) TWI542043B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6612119B2 (en) * 2015-02-16 2019-11-27 株式会社東芝 Semiconductor light emitting device
KR102385327B1 (en) * 2015-04-06 2022-04-12 삼성디스플레이 주식회사 Flexible display device and method of manufacturing the same
KR102539668B1 (en) * 2016-06-30 2023-06-02 엘지이노텍 주식회사 Semiconductor device, display panel, display device and communication device having the same
US10600936B2 (en) 2016-03-30 2020-03-24 Lg Innotek Co., Ltd. Semiconductor device
KR102520536B1 (en) * 2016-03-30 2023-04-12 엘지이노텍 주식회사 Semiconductor device, display panel, display device and communication device having the same
US10237929B2 (en) 2016-04-27 2019-03-19 Sensor Electronic Technology, Inc. Solid-state lighting source with integrated electronic modulator
KR102573586B1 (en) * 2016-06-16 2023-09-01 엘지이노텍 주식회사 Display device and method of fabricating the same
KR102566787B1 (en) * 2016-06-27 2023-08-11 엘지디스플레이 주식회사 Light emitting diode chip and display device using the same and method for manufacturing thereof
KR102648970B1 (en) * 2016-06-30 2024-03-19 엘지디스플레이 주식회사 Display device using the same and method for manufacturing thereof
KR101878666B1 (en) * 2016-11-11 2018-08-16 순천대학교 산학협력단 Micro pixel array light emitting diode and lighting device having the same
KR20180078941A (en) * 2016-12-30 2018-07-10 (재)한국나노기술원 Light emitting diode device for active matrix displays and manufacturing method thereof
KR102022310B1 (en) * 2018-04-04 2019-09-18 한국광기술원 Micro LED Chips Integrated Active Element and Method for Manufacturing Thereof
KR102041270B1 (en) * 2018-04-04 2019-11-06 한국광기술원 Method for Manufacturing Micro LED Chips and Packages
KR102550415B1 (en) 2018-05-09 2023-07-05 삼성전자주식회사 Led device and led lamp using the same
WO2019231876A1 (en) * 2018-05-29 2019-12-05 Corning Incorporated Systems and methods for combination high temperature and low temperature device formation
CA3105173C (en) * 2018-07-17 2023-05-23 E Ink California, Llc Electro-optic displays and driving methods
CN111627949A (en) * 2019-02-27 2020-09-04 昆山工研院新型平板显示技术中心有限公司 Micro light-emitting diode pixel unit device structure, preparation method and display panel
KR102243109B1 (en) * 2019-07-02 2021-04-22 한국과학기술원 Method of manufacturing display for mass production using wafer level transfer and large area display
CN110649060B (en) * 2019-11-01 2022-04-26 京东方科技集团股份有限公司 Micro light emitting diode chip, manufacturing method thereof and display panel manufacturing method
WO2022059527A1 (en) * 2020-09-17 2022-03-24 日亜化学工業株式会社 Method for manufacturing image display device and image display device
CN116420240A (en) * 2020-11-25 2023-07-11 日亚化学工业株式会社 Method for manufacturing image display device and image display device
CN116235305A (en) * 2020-11-25 2023-06-06 日亚化学工业株式会社 Method for manufacturing image display device and image display device
CN116783641A (en) * 2021-03-29 2023-09-19 日亚化学工业株式会社 Method for manufacturing image display device and image display device
WO2022209823A1 (en) * 2021-03-30 2022-10-06 日亜化学工業株式会社 Method for manufacturing image display device, and image display device
WO2022210402A1 (en) * 2021-03-31 2022-10-06 株式会社ジャパンディスプレイ Display device
KR102578744B1 (en) * 2022-09-23 2023-09-14 엔스펙트라 주식회사 Customized Reflective Color Display Device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234350B1 (en) 1992-03-28 1999-12-15 윤종용 Fabricating method of compound semiconductor device
US6333522B1 (en) * 1997-01-31 2001-12-25 Matsushita Electric Industrial Co., Ltd. Light-emitting element, semiconductor light-emitting device, and manufacturing methods therefor
JPH10270753A (en) * 1997-03-21 1998-10-09 Sanyo Electric Co Ltd Semiconductor light-emitting device and display apparatus
JP2001127278A (en) * 1999-10-25 2001-05-11 Rohm Co Ltd Composite semiconductor device
CN100468766C (en) * 2003-09-24 2009-03-11 三垦电气株式会社 Nitride semiconductor device
JP4916859B2 (en) * 2005-12-20 2012-04-18 株式会社半導体エネルギー研究所 SEMICONDUCTOR DEVICE, DISPLAY DEVICE, ELECTRONIC DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP4871344B2 (en) 2008-11-25 2012-02-08 株式会社東芝 Light emitting device and manufacturing method thereof
JP5849388B2 (en) * 2010-11-04 2016-01-27 サンケン電気株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
TW201429004A (en) 2014-07-16
JP2014078575A (en) 2014-05-01
CN103730478A (en) 2014-04-16
KR20140046372A (en) 2014-04-18
KR101493377B1 (en) 2015-02-13
CN103730478B (en) 2016-05-04
TWI542043B (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5935643B2 (en) Semiconductor light emitting device
US10714658B2 (en) Micro LED display panel and method of manufacturing same
US9219197B1 (en) Micro-light-emitting diode
US9231153B2 (en) Micro-light-emitting diode
EP3096363B1 (en) Micro-light-emitting diode
US9590137B2 (en) Light-emitting diode
US20160293586A1 (en) Method of integrating inorganic light emitting diode with oxide thin film transistor for display applications
EP3089225B1 (en) Micro-light-emitting diode
US10497812B2 (en) Transistor array panel
US20140374742A1 (en) Light emitting display
KR102555828B1 (en) High resolution micro led display device and the manufacturing method of the same
TW202036887A (en) Led display and manufacturing method thereof
US11916169B2 (en) Active matrix LED array
KR20210036199A (en) Semiconductor device, method of fabricating the same, and display device including the same
JP4201804B2 (en) Semiconductor device
JP2006286746A (en) Field effect transistor
JP2013191705A (en) Semiconductor device and method of manufacturing the same
JP7398794B2 (en) Semiconductor light emitting device array
JP2010177446A (en) Light-emitting element
US20230132423A1 (en) Light emitting diode array with inactive implanted isolation regions and methods of forming the same
US20230154908A1 (en) Vacuum channel electronic element, optical transmission circuit, and laminated chip
US20220328743A1 (en) Display panel
TW202006977A (en) Light emittig chip and fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250