JP2006286746A - Field effect transistor - Google Patents

Field effect transistor Download PDF

Info

Publication number
JP2006286746A
JP2006286746A JP2005101881A JP2005101881A JP2006286746A JP 2006286746 A JP2006286746 A JP 2006286746A JP 2005101881 A JP2005101881 A JP 2005101881A JP 2005101881 A JP2005101881 A JP 2005101881A JP 2006286746 A JP2006286746 A JP 2006286746A
Authority
JP
Japan
Prior art keywords
layer
gan
field effect
effect transistor
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005101881A
Other languages
Japanese (ja)
Inventor
Mitsuru Masuda
満 増田
Masayuki Sasaki
正行 佐々木
Sonomi Ishii
園美 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005101881A priority Critical patent/JP2006286746A/en
Publication of JP2006286746A publication Critical patent/JP2006286746A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a field effect transistor composed of a GaN-based compound semiconductor in which output power is improved by preventing occurrence of a hysteresis phenomenon in current-voltage characteristics between a source and a drain. <P>SOLUTION: The field effect transistor is composed by successively laminating a buffer layer 2 formed of the GaN-based compound semiconductor, an electron transit layer 3, and an electron supply layer 4 on a substrate 1. An electroluminescent layer 11 is provided on the rear face side of the substrate 1. The buffer layer 2, the electron transit layer 3, and the electron supply layer 4 are irradiated with light from the electroluminescent layer 11 through the substrate 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、GaN系化合物半導体からなる電界効果トランジスタに関するものである。   The present invention relates to a field effect transistor made of a GaN-based compound semiconductor.

GaN、InGaN、AlGaN、AlInGaNなどのGaN系化合物半導体は、GaAs系等の3−5族化合物半導体に比べてバンドギャップエネルギーが大きいので、GaN系化合物半導体を用いた電子デバイスは耐熱温度が高く高温動作特性に優れている。そして近年は、特にGaNを用いた電界効果トランジスタなどの電子デバイスを電源デバイスとして応用することが期待されている。   Since GaN-based compound semiconductors such as GaN, InGaN, AlGaN, and AlInGaN have a larger band gap energy than GaAs-based Group 3-5 compound semiconductors, electronic devices using GaN-based compound semiconductors have high heat resistance and high temperatures. Excellent operating characteristics. In recent years, electronic devices such as field effect transistors using GaN in particular are expected to be applied as power supply devices.

図4は、従来技術に係るGaN系化合物半導体を用いた電界効果トランジスタの一例である高電子移動度トランジスタを示す。この高電子移動度トランジスタは、例えばサファイア基板のような基板1の上に、GaNからなるバッファ層2、アンドープGaNからなる電子走行層3、および前記電子走行層3に比べて薄いアンドープAl Ga1−X N(0<X<1)からなる電子供給層4を順次積層してなる層構造(ヘテロ接合構造)を成長、形成したものである。そして、電子供給層4の上には、ソース電極S、ゲート電極G、ドレイン電極Dが平面配置されている。なお、前記各電極と電子供給層4の間には、コンタクト抵抗を低くするために、n型不純物が高濃度にドーピングされたn−GaNコンタクト層5が設けられている。
ここで、電子走行層3と電子供給層4のヘテロ接合界面においては、結晶歪みに基づくピエゾ圧電効果によりピエゾ電界が発生し、両者の接合界面の直下に2次元電子ガス6が形成される。
この状態で、ソース電極Sとドレイン電極Dを作動すると、電子走行層3に供給された電子が2次元電子ガス6中を高速走行してドレイン電極Dへと移動する。このとき、ゲート電極Gに加える電圧を変化させると、当該ゲート電極Gの直下に形成される空乏層の厚さが変化し、ソース電極Sとドレイン電極D間の電子走行層3を走行する電子の制御を行なうことができる。
特開2003−179082号公報
FIG. 4 shows a high electron mobility transistor which is an example of a field effect transistor using a GaN-based compound semiconductor according to the prior art. The high electron mobility transistor includes a buffer layer 2 made of GaN, an electron transit layer 3 made of undoped GaN, and an undoped Al X Ga that is thinner than the electron transit layer 3 on a substrate 1 such as a sapphire substrate. A layer structure (heterojunction structure) formed by sequentially laminating electron supply layers 4 made of 1- XN (0 <X <1) is grown and formed. On the electron supply layer 4, a source electrode S, a gate electrode G, and a drain electrode D are arranged in a plane. An n-GaN contact layer 5 doped with an n-type impurity at a high concentration is provided between the electrodes and the electron supply layer 4 in order to reduce contact resistance.
Here, at the heterojunction interface between the electron transit layer 3 and the electron supply layer 4, a piezo electric field is generated by the piezoelectric effect based on crystal distortion, and a two-dimensional electron gas 6 is formed immediately below the junction interface between the two.
When the source electrode S and the drain electrode D are operated in this state, the electrons supplied to the electron transit layer 3 travel at high speed in the two-dimensional electron gas 6 and move to the drain electrode D. At this time, when the voltage applied to the gate electrode G is changed, the thickness of the depletion layer formed immediately below the gate electrode G is changed, and electrons traveling in the electron transit layer 3 between the source electrode S and the drain electrode D are changed. Can be controlled.
JP 2003-179082 A

上述の高電子移動度トランジスタでは、サファイア基板1上に成長形成されたバッファ層2、電子走行層3、電子供給層4はGaN系化合物半導体層から構成されている。ここで、サファイア基板1とGaNからなるバッファ層2とでは格子定数の差が大きく、そのため、サファイア基板1とバッファ層2の成長界面に多くの欠陥が生じる。また、サファイア基板1とバッファ層2の格子不整の影響は、バッファ層2上の電子走行層3、電子供給層4にも及ぶ。そのため、バッファ層2と電子走行層3の成長界面、および電子走行層3と電子供給層4の成長界面にも欠陥が生じる。
これらの欠陥は、電子をトラップする作用があり、ソース−ドレイン間の電流−電圧特性に影響を及ぼす。すなわち、その電流−電圧特性にヒステリシス現象が現れ、ドレイン電流が減少する(いわゆる電流コラプス)という問題が生じる。
In the above-described high electron mobility transistor, the buffer layer 2, the electron transit layer 3, and the electron supply layer 4 grown on the sapphire substrate 1 are composed of GaN-based compound semiconductor layers. Here, there is a large difference in lattice constant between the sapphire substrate 1 and the buffer layer 2 made of GaN, so that many defects are generated at the growth interface between the sapphire substrate 1 and the buffer layer 2. Further, the influence of the lattice irregularity between the sapphire substrate 1 and the buffer layer 2 extends to the electron transit layer 3 and the electron supply layer 4 on the buffer layer 2. Therefore, defects also occur at the growth interface between the buffer layer 2 and the electron transit layer 3 and at the growth interface between the electron transit layer 3 and the electron supply layer 4.
These defects have an action of trapping electrons and affect the current-voltage characteristics between the source and the drain. In other words, a hysteresis phenomenon appears in the current-voltage characteristics, and a problem arises in that the drain current decreases (so-called current collapse).

そこで、本発明は、ソース−ドレイン間の電流−電圧特性におけるヒステリシス現象を防ぎ、出力電力を向上させた、GaN系化合物半導体からなる電界効果トランジスタを提供することを目的とする。   Therefore, an object of the present invention is to provide a field effect transistor made of a GaN-based compound semiconductor that prevents a hysteresis phenomenon in a current-voltage characteristic between a source and a drain and improves output power.

本発明は、請求項1に記載のように、基板上に複数のGaN系化合物半導体層が順次積層されてなる電界効果トランジスタにおいて、前記基板裏面側あるいは積層されたGaN系化合物半導体層の表面上に電界発光層を設け、前記電界発光層からの光は前記GaN系化合物半導体層の積層界面を照射するようにしたことを特徴とする電界効果トランジスタである。
ここで、基板の裏面とは、基板のGaN系化合物半導体層が積層された面とは反対側の面を意味する。
According to a first aspect of the present invention, in a field effect transistor in which a plurality of GaN-based compound semiconductor layers are sequentially stacked on a substrate, the back surface of the substrate or the surface of the stacked GaN-based compound semiconductor layers is provided. An electroluminescent layer is provided, and light from the electroluminescent layer irradiates a laminated interface of the GaN-based compound semiconductor layer.
Here, the back surface of the substrate means a surface opposite to the surface on which the GaN-based compound semiconductor layer is stacked.

本発明では、電界効果トランジスタを作動させる際に、電界発光層を発光させてGaN系化合物半導体層の積層界面を照射することにより、積層界面の欠陥によるトラップからチャネル電子を開放することができるので、ソース−ドレイン間の電流−電圧特性におけるヒステリシス現象を防ぎ、出力電力を向上させることができる。   In the present invention, when the field effect transistor is operated, by emitting light from the electroluminescent layer and irradiating the stacked interface of the GaN-based compound semiconductor layer, channel electrons can be released from traps due to defects at the stacked interface. The hysteresis phenomenon in the current-voltage characteristics between the source and drain can be prevented, and the output power can be improved.

なお、本発明の電界効果トランジスタにおいて、基板上に積層された複数のGaN系化合物半導体層は、基板側からバッファ層およびチャネル層から構成されものでもよく(請求項2)、また、基板側からバッファ層、電子供給層および電子走行層から構成された高電子移動度トランジスタであってもよい(請求項3)。   In the field effect transistor of the present invention, the plurality of GaN-based compound semiconductor layers stacked on the substrate may be configured from the substrate side by a buffer layer and a channel layer (Claim 2), and from the substrate side. It may be a high electron mobility transistor composed of a buffer layer, an electron supply layer, and an electron transit layer.

以上説明したように本発明によれば、複数のGaN系化合物半導体層の成長界面に発生した欠陥にトラップされた電子は照射された光によりトラップから開放されるため、ソース−ドレイン間の電流−電圧特性におけるヒステリシス現象を防ぎ、出力電力を向上させることができるという優れた効果が得られる。   As described above, according to the present invention, the electrons trapped in the defects generated at the growth interfaces of the plurality of GaN-based compound semiconductor layers are released from the trap by the irradiated light. An excellent effect of preventing the hysteresis phenomenon in the voltage characteristics and improving the output power can be obtained.

以下、図面に基づいて本発明の実施の形態を詳細に説明する。
図1は、本発明にかかる電界効果トランジスタの一実施形態である高電子移動度トランジスタの断面説明図である。
図1において、符号1はサファイア基板、符号2はサファイア基板1上に積層されたGaNからなるバッファ層、符号3は前記バッファ層2上に積層されたアンドープGaNからなる電子走行層3、符号4は前記電子走行層3上に積層された前記電子走行層3に比べて薄いアンドープAl Ga1−X N(0<X<1)からなる電子供給層である。また、符号5はソース電極Sと電子供給層4の間、およびドレイン電極Dと電子供給層4の間に設けられた、n型不純物が高濃度にドーピングされたn−GaNからなるコンタクト層である。
さらに、符号11はZnSからなり、サファイア基板1の裏面(積層面と反対側の面)に積層された電界発光(エレクトロルミネッセンス)層である。また、符号12および13は、前記電界発光層11に電界を印加する電極層であり、サファイア基板1と電界発光層11の間の電極層12はITO(酸化インジウム錫)からなる透明電極層であり、背面の電極層13はAlなどからなる金属電極である。さらに、符号14は電界発光層11に電界を印加するための交流電源である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional explanatory view of a high electron mobility transistor which is an embodiment of a field effect transistor according to the present invention.
In FIG. 1, reference numeral 1 is a sapphire substrate, reference numeral 2 is a buffer layer made of GaN laminated on the sapphire substrate 1, reference numeral 3 is an electron transit layer 3 made of undoped GaN laminated on the buffer layer 2, and reference numeral 4 Is an electron supply layer made of undoped Al X Ga 1-X N (0 <X <1) which is thinner than the electron transit layer 3 stacked on the electron transit layer 3. Reference numeral 5 denotes a contact layer made of n-GaN, which is provided between the source electrode S and the electron supply layer 4 and between the drain electrode D and the electron supply layer 4 and is doped with n-type impurities at a high concentration. is there.
Further, reference numeral 11 denotes an electroluminescence layer made of ZnS and stacked on the back surface (surface opposite to the stacked surface) of the sapphire substrate 1. Reference numerals 12 and 13 are electrode layers for applying an electric field to the electroluminescent layer 11, and the electrode layer 12 between the sapphire substrate 1 and the electroluminescent layer 11 is a transparent electrode layer made of ITO (indium tin oxide). The back electrode layer 13 is a metal electrode made of Al or the like. Reference numeral 14 denotes an AC power supply for applying an electric field to the electroluminescent layer 11.

本実施形態において、電界発光層11は、交流電源12により交流電界を印加すると、可視光を発光し、該可視光は電極層12およびサファイア基板1を透過して、バッファ層2、電子走行層3、電子供給層4を照射する。   In this embodiment, the electroluminescent layer 11 emits visible light when an AC electric field is applied by an AC power source 12, and the visible light passes through the electrode layer 12 and the sapphire substrate 1, and the buffer layer 2, the electron transit layer. 3. Irradiate the electron supply layer 4.

本実施形態が従来例と異なる特徴的なことは、サファイア基板1の裏面に可視光を発光し、バッファ層2、電子走行層3および電子供給層4を照射する電界発光層11を積層したことである。
本実施形態では、動作時に電界発光層11を発光させると、電子走行層3と電子供給層4の界面の欠陥にトラップされたチャネル電子が遅滞なく開放されるので、ソース−ドレイン間の電流−電圧特性におけるヒステリシス現象を防ぎ、出力電力を向上させることができる。
This embodiment is different from the conventional example in that the back surface of the sapphire substrate 1 emits visible light, and the electroluminescent layer 11 that irradiates the buffer layer 2, the electron transit layer 3, and the electron supply layer 4 is laminated. It is.
In the present embodiment, when the electroluminescent layer 11 emits light during operation, channel electrons trapped in the defect at the interface between the electron transit layer 3 and the electron supply layer 4 are released without delay. It is possible to prevent the hysteresis phenomenon in the voltage characteristics and improve the output power.

図2は、上記実施形態のソース−ドレイン間の電流−電圧特性を示す。図2からわかるように、電界発光層11を発光させて、バッファ層2、電子走行層3および電子供給層4を照射すると、ドレイン電流は、照射しない場合に比して約30%程度増加した。   FIG. 2 shows current-voltage characteristics between the source and drain of the above embodiment. As can be seen from FIG. 2, when the electroluminescent layer 11 is caused to emit light and the buffer layer 2, the electron transit layer 3 and the electron supply layer 4 are irradiated, the drain current is increased by about 30% as compared with the case where no irradiation is performed. .

なお、本発明は上記実施形態に限定されることはない。
例えば、図3に示すように、電子供給層4上、ソース電極S,ゲート電極G、ドレイン電極Dの各電極間にSiO2 からなる透明な絶縁層15を積層し、絶縁層15上に透明な電極層12、電界発光層11および金属からなる電極層13を順次積層してもよい。この場合、電界発光層11からの光は、ソース電極S、ゲート電極G、ドレイン電極Dの各電極間の絶縁層15を透過して、電子供給層4、電子走行層3およびバッファ層2を照射する。この場合には、基板1として不透明なSi、GaNを用いてもよい。
また、電界発光層11としては、ZnSの他にZnSe、CdSなどの可視光を発光させる蛍光体で構成してもよい。なお、電界発光層11の発光は可視光としたが、発光波長は必ずしも可視光域に限定されず、電子走行層3と電子供給層4の界面の欠陥にトラップされたチャネル電子を開放するに要する波長よりも短い波長であればよい。
さらに、基板上には、バッファ層およびチャネル層が順次積層された電界効果トランジスタであってもよい。
In addition, this invention is not limited to the said embodiment.
For example, as shown in FIG. 3, a transparent insulating layer 15 made of SiO 2 is laminated on the electron supply layer 4 and between the source electrode S, the gate electrode G, and the drain electrode D, and the transparent layer 15 is transparent on the insulating layer 15. The electrode layer 12, the electroluminescent layer 11, and the electrode layer 13 made of metal may be sequentially laminated. In this case, light from the electroluminescent layer 11 passes through the insulating layer 15 between the source electrode S, the gate electrode G, and the drain electrode D, and passes through the electron supply layer 4, the electron transit layer 3, and the buffer layer 2. Irradiate. In this case, opaque Si or GaN may be used as the substrate 1.
Further, the electroluminescent layer 11 may be made of a phosphor that emits visible light such as ZnSe or CdS in addition to ZnS. Note that although the electroluminescence layer 11 emits visible light, the emission wavelength is not necessarily limited to the visible light region, and channel electrons trapped by defects at the interface between the electron transit layer 3 and the electron supply layer 4 are released. Any wavelength that is shorter than the required wavelength may be used.
Furthermore, a field effect transistor in which a buffer layer and a channel layer are sequentially stacked on the substrate may be used.

本発明にかかる電界効果トランジスタの一実施形態の断面図である。It is sectional drawing of one Embodiment of the field effect transistor concerning this invention. 上記実施形態のソース−ドレイン間の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic between the source-drain of the said embodiment. 本発明の他の実施形態の断面図である。It is sectional drawing of other embodiment of this invention. 従来の電界効果トランジスタの断面図である。It is sectional drawing of the conventional field effect transistor.

符号の説明Explanation of symbols

1 基板
2 バッファ層
3 電子走行層
4 電子供給層
5 コンタクト層
11 電界発光層
12、13 電極層
14 交流電源
15 絶縁層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Buffer layer 3 Electron travel layer 4 Electron supply layer 5 Contact layer 11 Electroluminescent layer 12, 13 Electrode layer 14 AC power supply 15 Insulating layer

Claims (3)

基板上に複数のGaN系化合物半導体層が順次積層されてなる電界効果トランジスタにおいて、
前記基板裏面側あるいは積層されたGaN系化合物半導体層の表面上に電界発光層を設け、前記電界発光層からの光は前記GaN系化合物半導体層の積層界面を照射するようにしたことを特徴とする電界効果トランジスタ。
In a field effect transistor in which a plurality of GaN-based compound semiconductor layers are sequentially stacked on a substrate,
An electroluminescent layer is provided on the back side of the substrate or on the surface of the stacked GaN-based compound semiconductor layer, and light from the electroluminescent layer irradiates a stacked interface of the GaN-based compound semiconductor layer. Field effect transistor.
前記複数のGaN系化合物半導体層は、基板側からバッファ層およびチャネル層を構成することを特徴とする請求項1記載の電界効果トランジスタ。   The field effect transistor according to claim 1, wherein the plurality of GaN-based compound semiconductor layers constitute a buffer layer and a channel layer from the substrate side. 前記電界効果トランジスタは、高電子移動度トランジスタであって、前記複数のGaN系化合物半導体層は、基板側からバッファ層、電子走行層および電子供給層を構成することを特徴とする請求項1記載の電界効果トランジスタ。   2. The field effect transistor according to claim 1, wherein the field effect transistor is a high electron mobility transistor, and the plurality of GaN-based compound semiconductor layers constitute a buffer layer, an electron transit layer, and an electron supply layer from the substrate side. Field effect transistor.
JP2005101881A 2005-03-31 2005-03-31 Field effect transistor Pending JP2006286746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101881A JP2006286746A (en) 2005-03-31 2005-03-31 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101881A JP2006286746A (en) 2005-03-31 2005-03-31 Field effect transistor

Publications (1)

Publication Number Publication Date
JP2006286746A true JP2006286746A (en) 2006-10-19

Family

ID=37408350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101881A Pending JP2006286746A (en) 2005-03-31 2005-03-31 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2006286746A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033772A (en) * 2010-07-30 2012-02-16 Panasonic Electric Works Co Ltd Semiconductor apparatus and semiconductor device used therefor
JP2013058621A (en) * 2011-09-08 2013-03-28 Advanced Power Device Research Association Semiconductor device
US8558614B2 (en) 2011-03-18 2013-10-15 Fujitsu Limited Amplification device
JP2014120731A (en) * 2012-12-19 2014-06-30 Mitsubishi Electric Corp Semiconductor device
WO2014184995A1 (en) * 2013-05-16 2014-11-20 パナソニックIpマネジメント株式会社 Nitride semiconductor device
JP2017028008A (en) * 2015-07-17 2017-02-02 株式会社豊田中央研究所 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624779A (en) * 1985-06-28 1987-01-10 Murata Mfg Co Ltd Phosphor powder
JPH0272592A (en) * 1988-09-06 1990-03-12 Tosoh Corp Film el element
JPH0973986A (en) * 1995-09-05 1997-03-18 Denso Corp El element and its manufacture
JP2003086784A (en) * 2001-09-13 2003-03-20 Furukawa Electric Co Ltd:The GaN-BASED SEMICONDUCTOR DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624779A (en) * 1985-06-28 1987-01-10 Murata Mfg Co Ltd Phosphor powder
JPH0272592A (en) * 1988-09-06 1990-03-12 Tosoh Corp Film el element
JPH0973986A (en) * 1995-09-05 1997-03-18 Denso Corp El element and its manufacture
JP2003086784A (en) * 2001-09-13 2003-03-20 Furukawa Electric Co Ltd:The GaN-BASED SEMICONDUCTOR DEVICE

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033772A (en) * 2010-07-30 2012-02-16 Panasonic Electric Works Co Ltd Semiconductor apparatus and semiconductor device used therefor
US8558614B2 (en) 2011-03-18 2013-10-15 Fujitsu Limited Amplification device
JP2013058621A (en) * 2011-09-08 2013-03-28 Advanced Power Device Research Association Semiconductor device
JP2014120731A (en) * 2012-12-19 2014-06-30 Mitsubishi Electric Corp Semiconductor device
US9070707B2 (en) 2012-12-19 2015-06-30 Mitsubishi Electric Corporation Semiconductor device
WO2014184995A1 (en) * 2013-05-16 2014-11-20 パナソニックIpマネジメント株式会社 Nitride semiconductor device
US20160064600A1 (en) * 2013-05-16 2016-03-03 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor device
JPWO2014184995A1 (en) * 2013-05-16 2017-02-23 パナソニックIpマネジメント株式会社 Nitride semiconductor device
US9680053B2 (en) 2013-05-16 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor device
JP2017028008A (en) * 2015-07-17 2017-02-02 株式会社豊田中央研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
JP5935643B2 (en) Semiconductor light emitting device
JP4884883B2 (en) Group III nitride semiconductor device
US8076685B2 (en) Nitride semiconductor device having current confining layer
US20170338810A1 (en) Transistors having on-chip integrared photon source or photonic-ohmic drain to faciliate de-trapping electrons trapped in deep traps of transistors
JP5183913B2 (en) Manufacturing method of semiconductor device
US20140084346A1 (en) Switching element
JP6349554B2 (en) Nitride semiconductor device
JP2008198731A (en) Semiconductor device
JP2009206123A (en) Hfet and its fabrication process
US20150263155A1 (en) Semiconductor device
JP2006286746A (en) Field effect transistor
JP2009032803A (en) Field effect transistor and its manufacturing method
KR101211657B1 (en) nitride semiconductor light emitting device
CN105810707A (en) Structure of high-electron-mobility light-emitting transistor
JP2010165987A (en) Semiconductor device and method for manufacturing the same
JP2011142358A (en) Nitride semiconductor device
TWI642183B (en) Nitride semiconductor device
JP5892607B2 (en) Photoelectric conversion device and characteristic inspection method thereof
JP2006210472A (en) Semiconductor device and its manufacturing method
JP6323782B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US9070707B2 (en) Semiconductor device
JP2017022288A (en) Semiconductor device
JP2011044457A (en) Semiconductor device, and method of manufacturing semiconductor device
JP5275773B2 (en) Field effect transistor
TWI559537B (en) Structure of high electron mobility light emitting transistor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817