JP5928070B2 - Method for removing ammonia from wastewater containing ammonia - Google Patents

Method for removing ammonia from wastewater containing ammonia Download PDF

Info

Publication number
JP5928070B2
JP5928070B2 JP2012073056A JP2012073056A JP5928070B2 JP 5928070 B2 JP5928070 B2 JP 5928070B2 JP 2012073056 A JP2012073056 A JP 2012073056A JP 2012073056 A JP2012073056 A JP 2012073056A JP 5928070 B2 JP5928070 B2 JP 5928070B2
Authority
JP
Japan
Prior art keywords
ammonia
degassing membrane
acid solution
membrane device
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012073056A
Other languages
Japanese (ja)
Other versions
JP2013202475A (en
Inventor
圭司 瀬尾
圭司 瀬尾
川口 洋一
洋一 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012073056A priority Critical patent/JP5928070B2/en
Publication of JP2013202475A publication Critical patent/JP2013202475A/en
Application granted granted Critical
Publication of JP5928070B2 publication Critical patent/JP5928070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アンモニア含有排水からのアンモニア除去方法に関する。   The present invention relates to a method for removing ammonia from ammonia-containing wastewater.

アンモニアは化学工業の分野において基礎的な窒素源であり、極めて重要な物質として多分野で利用されている。そのアンモニアを含んだ工場排水等は、一般排水として工場外へ放流されると環境汚染につながる恐れがあるため、水質汚濁防止法といった法令や条例で規制されている。そのため、アンモニアを含んだ排水中のアンモニア性窒素の除去に対する新しい処理技術の開発が求められている。   Ammonia is a basic nitrogen source in the chemical industry and is used in many fields as an extremely important substance. The factory wastewater containing ammonia is regulated by laws and regulations such as the Water Pollution Control Law because it may lead to environmental pollution if it is discharged outside the factory as general wastewater. For this reason, development of a new treatment technique for removing ammonia nitrogen from wastewater containing ammonia is demanded.

従来、このようなアンモニアを含有する排水からアンモニアを除去する方法としては、アンモニアを物理的に除去するアンモニアストリッピング法(例えば、特許文献1参照)や培養生物を用いた生物処理法(例えば、特許文献2参照)等が利用されてきた。   Conventionally, as a method for removing ammonia from wastewater containing ammonia, an ammonia stripping method for physically removing ammonia (for example, see Patent Document 1) and a biological treatment method using cultured organisms (for example, for example, Patent Document 2) has been used.

しかしながら、アンモニアストリッピング法では、排水が脱アンモニア塔内の充填材を落下する間にアンモニアを除去する方法であるので、ストリッピングの効率を上げるためには脱アンモニア塔の塔高を高いものにする必要があり、装置は極めて大きなものになる。また、気体となったアンモニアガスを吸収したり分解したりする手段が別途必要となるという問題がある。   However, in the ammonia stripping method, ammonia is removed while the wastewater falls down the packing material in the deammonification tower. Therefore, in order to increase the stripping efficiency, the tower height of the deammonification tower is increased. The device becomes extremely large. Further, there is a problem that a separate means for absorbing and decomposing ammonia gas that has become a gas is required.

また、生物処理法では、排水の濃度変化に対応させることが困難であり、また生物の培養環境として広大な池等の設備を必要とし、操業も複雑となる。   In addition, it is difficult for the biological treatment method to cope with changes in the concentration of wastewater, and it requires facilities such as a vast pond as a living culture environment, which complicates operations.

特開平08−197039号公報Japanese Patent Laid-Open No. 08-197039 特開平09−290297号公報JP 09-290297 A

そこで、本発明は、このような実情に鑑みて提案されたものであり、従来のように装置設備や処理環境が複雑になることなく、効率的に且つ効果的に、工場排水等のアンモニアを含有する排水からアンモニアを除去することができるアンモニア除去方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of such circumstances, and ammonia such as factory effluent can be efficiently and effectively added without complicating the equipment and processing environment as in the prior art. It aims at providing the ammonia removal method which can remove ammonia from the waste_water | drain containing.

すなわち、本発明に係るアンモニア除去方法は、アンモニアを含有する排水から該アンモニアを除去する方法であって、上記アンモニア含有排水のpHを10以上で温度を50℃以上に調整した上で疎水性中空糸が組み込まれた脱気膜装置に送液し、流体としての減圧ガスと500秒以上1000秒以内の時間で向流接触させることを特徴とする。 That is, the ammonia removal method according to the present invention is a method of removing ammonia from wastewater containing ammonia, and the pH of the ammonia-containing wastewater is adjusted to 10 or more and the temperature is adjusted to 50 ° C or more, and then the hydrophobic hollow The liquid is fed to a degassing membrane apparatus in which a yarn is incorporated, and is brought into contact with a reduced-pressure gas as a fluid in a countercurrent contact manner for a time of 500 seconds to 1000 seconds.

本発明に係るアンモニア除去方法によれば、従来のように装置設備や処理環境が複雑になることなく、効率的に且つ効果的に、工場排水等のアンモニアを含有する排水からアンモニアを除去することができる。   According to the ammonia removal method of the present invention, ammonia can be efficiently and effectively removed from wastewater containing ammonia such as factory wastewater without complicating the equipment and processing environment as in the prior art. Can do.

第1の実施形態に係るアンモニアの除去方法の流れの一例を示すシステムフロー図である。It is a system flow figure showing an example of the flow of the removal method of ammonia concerning a 1st embodiment. pHを8〜13の間で変化させたアンモニア含有排水についての接触時間と排水中のアンモニア性窒素濃度の関係を示すグラフである。It is a graph which shows the relationship between the contact time about the ammonia containing waste_water | drain which changed pH between 8-13, and the ammonia nitrogen density | concentration in waste_water | drain. 液温を10℃〜50℃の間で変化させたアンモニア含有排水についての接触時間と排水中のアンモニア性窒素濃度の関係を示すグラフである。It is a graph which shows the relationship between the contact time about the ammonia containing waste_water | drain which changed liquid temperature between 10 degreeC-50 degreeC, and the ammoniacal nitrogen density | concentration in waste_water | drain. 第2の実施形態に係るアンモニアの除去方法の流れの一例を示すシステムフロー図である。It is a system flow figure showing an example of the flow of the removal method of ammonia concerning a 2nd embodiment. 流体としての硫酸溶液を用いて向流接触させた場合におけるアンモニア含有排水の接触時間に対する排水中のアンモニア性窒素濃度の関係を示すグラフである。It is a graph which shows the relationship of the ammonia nitrogen density | concentration in waste_water | drain with respect to the contact time of ammonia containing waste_water | drain at the time of carrying out countercurrent contact using the sulfuric acid solution as a fluid.

以下、本発明に係るアンモニアの除去方法の具体的な実施の形態(以下、本実施の形態という。)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明に要旨を変更しない範囲で変更が可能である。   Hereinafter, a specific embodiment (hereinafter referred to as this embodiment) of an ammonia removal method according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, A change is possible in the range which does not change a summary to this invention.

<第1の実施形態>
本実施の形態に係るアンモニアの除去方法は、工場排水等のアンモニアを含有する排水(以下、「アンモニア含有排水」、又は単に「排水」ともいう。)からそのアンモニアを除去する方法であって、アンモニアを効率的に且つ効果的に除去することを可能にする。
<First Embodiment>
The method for removing ammonia according to the present embodiment is a method for removing ammonia from wastewater containing ammonia such as factory wastewater (hereinafter also referred to as “ammonia-containing wastewater” or simply “drainage”), Ammonia can be removed efficiently and effectively.

具体的に、このアンモニアの除去方法は、アンモニア含有排水のpHを10以上に調整した上で、そのpH調整したアンモニア含有排水を疎水性中空糸が組み込まれた脱気膜装置に送液し、流体としての減圧ガス(空気)と向流接触させることを特徴としている。   Specifically, in this ammonia removal method, after adjusting the pH of the ammonia-containing wastewater to 10 or higher, the pH-adjusted ammonia-containing wastewater is sent to a degassing membrane device incorporating a hydrophobic hollow fiber, It is characterized by making countercurrent contact with a decompressed gas (air) as a fluid.

図1は、本実施の形態に係るアンモニアの除去方法の流れの一例を示すシステムフロー図である。この図1並びに後述の図4のシステムフロー図においては、「脱気膜装置13,14」として、排水中のアンモニアを除去する脱気膜装置を2つ備える構成を示している。処理に際しては、基本的には、その双方の脱気膜装置を運転させてアンモニア除去処理を行い、脱気膜装置を構成する脱気膜が目詰まりした場合には、その目詰まりした一方を停止させて、例えば洗浄等の処理を行うことによってその脱気膜の目詰まりを除去することができる。   FIG. 1 is a system flow diagram showing an example of a flow of an ammonia removal method according to the present embodiment. In FIG. 1 and the system flow diagram of FIG. 4 to be described later, as “deaeration membrane devices 13 and 14”, a configuration including two deaeration membrane devices for removing ammonia in waste water is shown. In the treatment, basically, both of the degassing membrane devices are operated to perform ammonia removal treatment. When the degassing membrane constituting the degassing membrane device is clogged, one of the clogged ones is removed. The clogging of the deaeration film can be removed by stopping and performing a process such as cleaning.

なお、当該システムとしては、図1のように脱気膜装置を2つ備える態様に限定されるものではなく、3つ以上備えるようにしてもよく、処理すべきアンモニア含有排水の量等に応じて脱気膜装置の数を変更することができる。   The system is not limited to an embodiment having two degassing membrane devices as shown in FIG. 1, and may be provided with three or more, depending on the amount of ammonia-containing wastewater to be treated, etc. Thus, the number of deaeration devices can be changed.

図1に示すように、先ず、例えば工場排水等のアンモニア含有排水の原液は、排水供給槽11に一旦収容され、送液ポンプ12の駆動によって脱気膜装置13,14の液導入口13a,14aから導入される。一方、大気から回収した空気(ガス)は、真空ポンプ15により真空引きされ、減圧ガスとして脱気膜装置13,14の流体導入口13b,14bに導入される。   As shown in FIG. 1, first, a stock solution of ammonia-containing wastewater such as factory wastewater is temporarily stored in a wastewater supply tank 11, and the liquid introduction ports 13 a and 13 a of the degassing membrane devices 13 and 14 are driven by the liquid feed pump 12. 14a. On the other hand, air (gas) recovered from the atmosphere is evacuated by the vacuum pump 15 and introduced into the fluid inlets 13b and 14b of the degassing membrane devices 13 and 14 as a decompressed gas.

脱気膜装置13,14には、疎水性中空糸からなる脱気膜が組み込まれている。脱気膜装置13,14では、アンモニア含有排水が液導入口13a,14aから導入されると、流体導入口13b,14bから導入された減圧ガスと向流接触するようになる。すると、ヘンリーの法則に基づいて、アンモニア含有排水中のアンモニア濃度が低下する。すなわち、非解離性の溶存アンモニアが脱気されて(空気中に移行して)除去される。   Deaeration membranes 13 and 14 incorporate a deaeration membrane made of a hydrophobic hollow fiber. In the degassing membrane devices 13 and 14, when ammonia-containing wastewater is introduced from the liquid introduction ports 13a and 14a, the degassing membrane devices 13 and 14 come into countercurrent contact with the decompressed gas introduced from the fluid introduction ports 13b and 14b. Then, based on Henry's law, the ammonia concentration in the ammonia-containing wastewater decreases. That is, non-dissociable dissolved ammonia is degassed (moved into the air) and removed.

脱気膜装置13,14に組み込まれた疎水性中空糸からなる脱気膜としては、特に限定されないが、例えばその中空糸の径が300μm程度で、空孔サイズが0.03μm程度、(平均)空孔率が40〜50%程度である。このように、脱気膜装置13,14では、構成部材である脱気膜の空孔サイズが小さいことから、例えば有機物等の分子径の大きな成分はその空孔から抜け出ずにアンモニア含有排水中に残存し、除去対象となるアンモニアのみが確実に除去される。   The deaeration membrane comprising hydrophobic hollow fibers incorporated in the deaeration membrane devices 13 and 14 is not particularly limited. For example, the hollow fiber has a diameter of about 300 μm and a pore size of about 0.03 μm (average) ) Porosity is about 40-50%. Thus, in the deaeration membrane devices 13 and 14, since the pore size of the deaeration membrane as a constituent member is small, for example, components having a large molecular diameter such as organic substances do not escape from the pores in the ammonia-containing wastewater. In this case, only the ammonia that remains and is to be removed is reliably removed.

本実施の形態に係るアンモニアの除去方法においては、このとき、アンモニア含有排水のpHを調整した上で、脱気膜装置13,14に導入することが重要となる。具体的には、アンモニア含有排水をpH10以上、好ましくは11以上、より好ましくはpH13以上に調整して導入する。このように、アンモニア含有排水のpHを予めpH10以上、好ましくは11以上、より好ましくはpH13以上に調整した上で脱気膜装置13,14に導入させることによって、アンモニアの除去効率を効果的に高めることができる。   In the ammonia removal method according to the present embodiment, it is important to adjust the pH of the ammonia-containing wastewater and introduce it into the degassing membrane devices 13 and 14 at this time. Specifically, the ammonia-containing wastewater is introduced after adjusting to pH 10 or more, preferably 11 or more, more preferably pH 13 or more. As described above, by adjusting the pH of the ammonia-containing wastewater in advance to pH 10 or higher, preferably 11 or higher, more preferably pH 13 or higher and introducing it into the degassing membrane devices 13 and 14, the ammonia removal efficiency is effectively improved. Can be increased.

ここで図2に、pHを8〜13の間で変化させたアンモニア含有排水(アンモニア性窒素濃度:7〜8g/L、液温25℃)の各サンプルについて、脱気膜装置を用いて減圧ガスと向流接触させた時間に対するアンモニア含有排水中に残留したアンモニア性窒素濃度の関係を示す。なお、この試験では、中空糸径約300μm、空孔サイズ約0.03μm、(平均)空孔率約40〜50%の脱気膜を組み込んだ脱気膜装置を用い、排水流量5L/分、減圧ガス圧力−0.05MPaGとして処理した。   Here, in FIG. 2, each sample of ammonia-containing wastewater (ammonia nitrogen concentration: 7 to 8 g / L, liquid temperature 25 ° C.) whose pH was changed between 8 and 13 was reduced using a degassing membrane device. The relationship of the ammonia nitrogen density | concentration which remained in the ammonia containing waste_water | drain with respect to the time made to contact countercurrent with gas is shown. In this test, a degassing membrane apparatus incorporating a degassing membrane having a hollow fiber diameter of about 300 μm, a pore size of about 0.03 μm, and an (average) porosity of about 40 to 50% was used, and the drainage flow rate was 5 L / min. , And processed under reduced pressure gas pressure -0.05 MPaG.

図2に示されるように、アンモニア含有排水のpHが8〜9の中性付近では、接触時間を長くしても殆どアンモニアが除去されないが、pHを10以上に調整した場合には、接触時間を長くするに従って、効果的に排水中のアンモニア性窒素濃度が減少し、アンモニアが除去されることが分かる。このことは、予めpHを10以上に調整することによって、排水中の非解離性のアンモニアが増大するためと考えられる。また特に、pHを13以上に調整した場合には、接触時間500秒程度の短時間で約70%以上のアンモニアが除去され、より効率的に除去できることが分かる。   As shown in FIG. 2, when the pH of the ammonia-containing wastewater is around 8 to 9, the ammonia is hardly removed even if the contact time is increased, but when the pH is adjusted to 10 or more, the contact time It can be seen that the ammonia nitrogen concentration in the waste water is effectively reduced and the ammonia is removed as the length is increased. This is presumably because non-dissociable ammonia in the waste water increases by adjusting the pH to 10 or more in advance. In particular, when the pH is adjusted to 13 or more, it can be seen that about 70% or more of ammonia is removed in a short time of about 500 seconds and can be removed more efficiently.

アンモニア含有排水のpH調整は、例えば図1に示す排水供給槽11にて行うことができる。また、そのpH調整においては、例えば水酸化ナトリウムや水酸化カリウム等のアルカリを添加して行うことができる。   The pH adjustment of the ammonia-containing waste water can be performed, for example, in the waste water supply tank 11 shown in FIG. The pH can be adjusted by adding an alkali such as sodium hydroxide or potassium hydroxide.

また、本実施の形態に係るアンモニアの除去方法においては、上述のようにアンモニア含有排水のpHを調整するとともに、その温度(液温)を調整することが好ましい。具体的には、アンモニア含有排水の温度を予め50℃以上に高めた上で脱気膜装置13,14に導入させることが好ましい。このように、アンモニア含有排水のpHを調整するとともに、その温度を50℃以上に調整した上で脱気膜装置13,14に導入させることによって、アンモニアの除去効率をより一層に高めることができ、アンモニア含有排水中のアンモニアをほぼ確実に除去することができる。   Moreover, in the ammonia removal method according to the present embodiment, it is preferable to adjust the temperature (liquid temperature) of the ammonia-containing wastewater as described above as well as the pH of the ammonia-containing wastewater. Specifically, it is preferable to introduce the ammonia-containing wastewater into the degassing membrane devices 13 and 14 after the temperature of the ammonia-containing wastewater is raised to 50 ° C. or higher in advance. Thus, by adjusting the pH of the ammonia-containing wastewater and adjusting the temperature to 50 ° C. or higher and introducing it into the degassing membrane devices 13 and 14, the ammonia removal efficiency can be further enhanced. The ammonia in the ammonia-containing waste water can be removed almost certainly.

ここで図3に、液温を10℃〜50℃の間で変化させたアンモニア含有排水(アンモニア性窒素濃度:7〜8g/L、pH10)の各サンプルについて、脱気膜装置を用いて減圧ガスと向流接触させた時間に対するアンモニア含有排水中に残留したアンモニア性窒素濃度の関係を示す。なお、脱気膜装置を含めた脱気処理条件は上述のpH検討に際しての条件と同様である。   Here, in FIG. 3, each sample of ammonia-containing wastewater (ammonia nitrogen concentration: 7-8 g / L, pH 10) whose liquid temperature was changed between 10 ° C. and 50 ° C. was depressurized using a degassing membrane device. The relationship of the ammonia nitrogen density | concentration which remained in the ammonia containing waste_water | drain with respect to the time made to contact countercurrent with gas is shown. In addition, the deaeration process conditions including a deaeration membrane apparatus are the same as the conditions in the above-mentioned pH examination.

図3に示されるように、アンモニア含有排水の温度を高くするにつれて、接触時間の経過の伴い効果的に排水中のアンモニア性窒素濃度が減少しており、アンモニアが除去されることが分かる。その中でも特に、排水の温度を50℃以上に調整した場合には、接触時間500秒程度の短時間で殆どのアンモニアが除去され、1000秒程度の短時間で完全に除去されたことが分かる。このことは、予め液温を50℃以上に調整することによって、ヘンリー定数が大きくなるためであると考えられる。   As shown in FIG. 3, it can be seen that as the temperature of the ammonia-containing wastewater is increased, the ammoniacal nitrogen concentration in the wastewater is effectively reduced as the contact time elapses, and ammonia is removed. In particular, it can be seen that when the temperature of the waste water was adjusted to 50 ° C. or higher, most of the ammonia was removed in a short time of about 500 seconds and completely removed in a short time of about 1000 seconds. This is thought to be because the Henry's constant increases by adjusting the liquid temperature to 50 ° C. or higher in advance.

このように、アンモニア含有排水中のアンモニアを脱気膜装置13,14により除去するにあたっては、上述のように予め排水のpHを10以上に調整するとともに、その温度を50℃以上に調整することによって、より効率的に且つ効果的に、アンモニアを除去することができる。   Thus, when removing ammonia in the ammonia-containing wastewater by the degassing membrane devices 13 and 14, the pH of the wastewater is adjusted to 10 or higher in advance as described above, and the temperature is adjusted to 50 ° C or higher. Thus, ammonia can be removed more efficiently and effectively.

アンモニア含有排水の温度調整は、例えば図1に示す排水供給槽11を恒温槽として50℃以上の温度に制御することによって行うことができる。また、排水供給槽11の周囲にヒータ等を設けて、収容したアンモニア含有排水を加熱して50℃以上に調整するようにしてもよい。   The temperature adjustment of the ammonia-containing wastewater can be performed, for example, by controlling the temperature of the wastewater supply tank 11 shown in FIG. In addition, a heater or the like may be provided around the waste water supply tank 11 to heat the contained ammonia-containing waste water and adjust the temperature to 50 ° C. or higher.

以上のようにして脱気膜装置13,14に導入され、アンモニアが除去された排水10は、図1に示すように払出槽16に送液され、送液ポンプ17を介して排水処理に移行する。なお、この排水10を再び排水供給槽11に戻し入れるように循環させて、繰り返し脱気膜装置13,14に導入することもできる。   The waste water 10 introduced into the degassing membrane devices 13 and 14 and from which ammonia has been removed as described above is sent to the discharge tank 16 as shown in FIG. 1 and transferred to waste water treatment via the liquid feed pump 17. To do. The waste water 10 may be circulated so as to be returned to the waste water supply tank 11 and repeatedly introduced into the deaeration membrane devices 13 and 14.

一方で、真空ポンプ15で真空引きされた空気は、脱気膜装置13,14を通過後にアンモニア含有排水中に含まれていたアンモニアガスと共に回収硫安スクラバー18に回収される。なお、回収硫安スクラバー18には、供給された硫酸溶液が収容されており、アンモニアガスを回収して硫酸アンモニウムを生成させる。生成した硫酸アンモニウムは、送液ポンプ19を介して再利用される。   On the other hand, the air evacuated by the vacuum pump 15 is recovered by the recovered ammonium scrubber 18 together with the ammonia gas contained in the ammonia-containing wastewater after passing through the degassing membrane devices 13 and 14. The recovered ammonium sulfate scrubber 18 contains the supplied sulfuric acid solution, and recovers ammonia gas to produce ammonium sulfate. The produced ammonium sulfate is reused via the liquid feed pump 19.

ところで、上述のように、脱気膜装置13,14を構成する脱気膜の空孔サイズは小さく、そのため、有機物等の分子径の大きな液体成分は脱気膜を通過せずにアンモニア含有排水中に残存する。しかしながら、連続的に長期間に亘って排水処理に用いると、それら有機物や排水中の塩が原因となって膜の目詰まりが生じることがある。このような目詰まりが生じると、アンモニア除去効率は著しく低下する。   By the way, as described above, the pore size of the degassing membranes constituting the degassing membrane devices 13 and 14 is small, so that liquid components having a large molecular diameter such as organic substances do not pass through the degassing membrane and contain ammonia-containing wastewater. Remains in. However, when used continuously for a long period of time in wastewater treatment, clogging of the membrane may occur due to the organic matter and salts in the wastewater. When such clogging occurs, the ammonia removal efficiency is significantly reduced.

そこで、このアンモニアの除去方法においては、アンモニア含有排水を送液させた後の脱気膜装置13,14を構成する脱気膜を、硫酸等の酸溶液で洗浄することが好ましい。具体的には、図1に示すように、例えば硫酸溶液を膜再生用液貯留槽21に供給して収容し、送液ポンプ22により、液導入口13a,14aを介して脱気膜装置13,14に硫酸溶液を導入することによって、目詰まりが生じた脱気膜を洗浄する。なお、例えば、目詰まりが生じた脱気膜が脱気膜装置13に構成されている場合、その脱気膜装置13を停止させ、もう一方の脱気膜装置14の処理能力を増強させてアンモニア除去処理を補足するようにする。   Therefore, in this ammonia removal method, it is preferable to wash the deaeration membranes constituting the deaeration membrane devices 13 and 14 after feeding the ammonia-containing waste water with an acid solution such as sulfuric acid. Specifically, as shown in FIG. 1, for example, a sulfuric acid solution is supplied to and stored in the membrane regeneration liquid storage tank 21, and the deaeration membrane device 13 is supplied by the liquid feed pump 22 through the liquid inlets 13 a and 14 a. , 14 is washed with a degassing membrane in which clogging has occurred. For example, when the degassing membrane in which clogging has occurred is configured in the degassing membrane device 13, the degassing membrane device 13 is stopped and the processing capability of the other degassing membrane device 14 is increased. Supplement the ammonia removal process.

このようにして膜再生用酸貯留槽21から導入された硫酸溶液によって酸洗浄が行われると、その硫酸溶液が循環して膜再生用酸貯留槽21内に脱気膜の目詰まりの原因となっていた有機物等の化合物が移行されることになる。この硫酸溶液は、送液ポンプ22を介して払出槽16に送液され、アンモニアが除去された排水と共に排水処理に施される。   When acid cleaning is performed with the sulfuric acid solution introduced from the membrane regeneration acid storage tank 21 in this way, the sulfuric acid solution circulates and causes clogging of the degassing membrane in the membrane regeneration acid storage tank 21. The compounds such as organic substances that have been transferred will be transferred. This sulfuric acid solution is sent to the discharge tank 16 via the liquid feed pump 22 and is subjected to waste water treatment together with the waste water from which ammonia has been removed.

この脱気膜の酸洗浄は、一定期間毎に定期的に行うようにしてもよいが、処理される排水10の種類によって脱気膜に及ぼす目詰まりの影響は異なることから、目詰まりによってアンモニア除去効率が低下する前に処理することが好ましい。具体的にその方法としては、例えば、脱気膜装置13,14に送液させる前のアンモニア含有排水の圧力と脱気膜装置13,14に送液させてアンモニアを除去した後の排水の圧力をそれぞれ測定し、それらの圧力の圧力差に応じて脱気膜の目詰まりを検知して酸洗浄を行うようにする。   This acid cleaning of the degassing membrane may be performed periodically at regular intervals, but the effect of clogging on the degassing membrane differs depending on the type of wastewater 10 to be treated. It is preferable to perform the treatment before the removal efficiency is lowered. Specifically, as the method, for example, the pressure of the ammonia-containing wastewater before being sent to the degassing membrane devices 13 and 14 and the pressure of the wastewater after being sent to the degassing membrane devices 13 and 14 and removing ammonia. Each is measured, and clogging of the deaeration film is detected according to the pressure difference between the pressures to perform acid cleaning.

より具体的には、図1に示すように、例えば、排水供給槽11と脱気膜装置13,14との間の配管内に圧力計23を設けて、排水供給槽11から送液され脱気膜装置13,14に導入される前のアンモニア含有排水の圧力を測定する。また、脱気膜装置13,14と払出槽16との間の配管内に圧力計24を設けて、脱気膜装置13,14に送液させてアンモニアを除去した後の排水の圧力を測定する。そして、それらの測定した圧力の圧力差を測定してモニタリングし、その圧力差が所定以上となったときに目詰まりが生じたと判断してその脱気膜を含む脱気膜装置13(又は14)を停止させ、脱気膜に対して酸洗浄を行うようにする。   More specifically, as shown in FIG. 1, for example, a pressure gauge 23 is provided in a pipe between the drainage supply tank 11 and the degassing membrane devices 13, 14, and is sent from the drainage supply tank 11 to be removed. The pressure of the ammonia-containing waste water before being introduced into the gas membrane devices 13 and 14 is measured. Moreover, the pressure gauge 24 is provided in the piping between the deaeration membrane apparatuses 13 and 14 and the discharge tank 16, and the pressure of the waste water after sending ammonia to the deaeration membrane apparatuses 13 and 14 and removing ammonia is measured. To do. Then, the pressure difference between these measured pressures is measured and monitored, and when the pressure difference exceeds a predetermined value, it is determined that clogging has occurred, and the deaeration membrane device 13 (or 14) including the deaeration membrane is determined. ) And stop the degassing membrane by acid cleaning.

脱気膜に目詰まりが生じると、アンモニア含有排水と減圧ガスとの接触が減少し、アンモニア除去効率が低下してしまう。そのため、脱気膜装置13,14に対する送液前後の排水の圧力差に着目し、その圧力差が所定以上となったときは脱気膜に目詰まりが生じていると判断し、アンモニア除去効率を回復させるために脱気膜に対して酸洗浄処理を行って、脱気膜の目詰まりを取り除く。これにより、過度に脱気膜装置13,14のアンモニア除去効率を低下させることなく効率的な処理を行うことが可能となる。また、酸洗浄を効率的に行うことによって、その脱気膜も繰り返し使用することが可能となる。   When clogging occurs in the degassing membrane, the contact between the ammonia-containing waste water and the reduced pressure gas decreases, and the ammonia removal efficiency decreases. Therefore, paying attention to the pressure difference between the drainage before and after the liquid feeding to the degassing membrane devices 13 and 14, when the pressure difference exceeds a predetermined value, it is determined that the degassing membrane is clogged, and the ammonia removal efficiency In order to recover the problem, the deaeration membrane is subjected to an acid cleaning treatment to remove clogging of the deaeration membrane. Thereby, it becomes possible to perform an efficient process, without reducing the ammonia removal efficiency of the deaeration membrane apparatuses 13 and 14 excessively. Further, by efficiently performing the acid cleaning, the degassing membrane can be repeatedly used.

この酸洗浄処理は、例えば脱気膜装置13,14において、各圧力計23,24にて測定した圧力値を受信して圧力差を算出し、その圧力差が所定以上となったときに目詰まりが生じた脱気膜を含む脱気膜装置を自動的に停止させ、その脱気膜を酸洗浄するように制御する洗浄制御部を設けて、自動制御する構成としてもよい。   This acid cleaning treatment is performed when, for example, the degassing membrane devices 13 and 14 receive pressure values measured by the pressure gauges 23 and 24 to calculate a pressure difference, and when the pressure difference exceeds a predetermined value. A configuration may be adopted in which a degassing membrane apparatus including a degassing membrane in which clogging has occurred is automatically stopped, and a cleaning control unit is provided to control the degassing membrane so as to perform acid cleaning, thereby performing automatic control.

ここで、このアンモニアの除去方法において、流体としての減圧ガスを送流して通過させた側の脱気膜装置13,14を構成する脱気膜は、ガスを通過させたことから脱気膜の目詰まりは生じ難い。しかしながら、仮に減圧ガスを通過させた脱気膜においても目詰まりが生じた場合には、アンモニア除去効率が低下することになる。したがって、この場合にも、脱気膜装置13,14を構成する脱気膜の目詰まりを的確に検知できるようにすることが好ましい。   Here, in this ammonia removal method, the degassing membranes constituting the degassing membrane devices 13 and 14 on the side through which the decompressed gas as the fluid is passed are passed through the gas. Clogging is unlikely to occur. However, if clogging occurs even in a degassing membrane through which reduced pressure gas has been passed, the ammonia removal efficiency will be reduced. Accordingly, in this case as well, it is preferable that clogging of the deaeration membranes constituting the deaeration membrane devices 13 and 14 can be accurately detected.

このように減圧ガスを通過させた脱気膜についても目詰まりを的確に検知することにより、その脱気膜を含む脱気膜装置を速やかに停止させることができ、アンモニア除去効率の低下による不十分な処理が生じてしまうことを防ぐことが可能となり、操業効率を高めることができる。また、このように目詰まりを的確に検知できることにより、運転を停止させた脱気膜装置に対して、その目詰まりの原因に応じた洗浄等の適切な処理を迅速に行うことができる。   In this way, by accurately detecting clogging of the degassing membrane that has passed through the decompression gas, the degassing membrane device including the degassing membrane can be quickly stopped, and there is no problem due to a decrease in ammonia removal efficiency. It is possible to prevent the occurrence of sufficient processing, and the operation efficiency can be increased. In addition, since clogging can be accurately detected in this manner, appropriate processing such as cleaning according to the cause of the clogging can be quickly performed on the deaeration membrane apparatus whose operation has been stopped.

具体的にその目詰まりの検知方法としては、図1に示すように、例えば、脱気膜装置13,14に導入される前の減圧ガスの圧力を圧力計25で測定するとともに、脱気膜装置13,14通過後の減圧ガス、すなわち除去したアンモニアを含む減圧ガスの圧力を圧力計26で測定することによって、それらの測定した圧力の圧力差に応じて検知するようにする。   Specifically, as a method for detecting the clogging, as shown in FIG. 1, for example, the pressure of the decompressed gas before being introduced into the degassing membrane devices 13 and 14 is measured with a pressure gauge 25, and the degassing membrane is measured. The pressure of the decompressed gas after passing through the devices 13 and 14, that is, the decompressed gas containing the removed ammonia, is measured by the pressure gauge 26, and is detected according to the pressure difference between the measured pressures.

より具体的には、脱気膜の目詰まりが発生してアンモニア除去効率が低下している場合、脱気膜装置13,14に導入される前の減圧ガスの圧力と脱気膜装置13,14通過後の減圧ガスの圧力との差は大きくなる。したがって、上述した圧力計25,26で測定したそれぞれの圧力の圧力差が所定以上となったときに脱気膜装置13,14を構成する脱気膜に目詰まりが生じていると判断することができる。   More specifically, when clogging of the degassing membrane occurs and ammonia removal efficiency is reduced, the pressure of the decompressed gas before being introduced into the degassing membrane devices 13 and 14 and the degassing membrane device 13, The difference from the pressure of the decompressed gas after 14 passes increases. Therefore, when the pressure difference between the pressures measured by the above-described pressure gauges 25 and 26 exceeds a predetermined value, it is determined that the degassing membranes constituting the degassing membrane devices 13 and 14 are clogged. Can do.

脱気膜に目詰まりが生じると、アンモニア含有排水と減圧ガスとの接触が減少し、アンモニア除去効率が低下してしまう。そのため、脱気膜装置13,14に対する送液前後の排水の圧力差に着目し、その圧力差が所定以上となったときは脱気膜に目詰まりが生じていると判断し、そして、目詰まりが検知された場合には、その脱気膜装置の運転を停止させるようにする。これにより、例えば脱気膜装置13の脱気膜に目詰まりが生じた場合には、迅速にもう一方の脱気膜装置14の処理能力を高めて補足することで、過度にアンモニア除去効率を過度に低下させることなく効率的な処理を行うことが可能となる。   When clogging occurs in the degassing membrane, the contact between the ammonia-containing waste water and the reduced pressure gas decreases, and the ammonia removal efficiency decreases. Therefore, paying attention to the pressure difference of the drainage before and after feeding to the degassing membrane devices 13 and 14, when the pressure difference exceeds a predetermined value, it is determined that the degassing membrane is clogged. When clogging is detected, the operation of the deaeration membrane device is stopped. Thereby, for example, when clogging occurs in the degassing membrane of the degassing membrane device 13, the ammonia removal efficiency is excessively increased by quickly supplementing the processing capability of the other degassing membrane device 14. Efficient processing can be performed without excessive reduction.

なお、この減圧ガス側の脱気膜の目詰まりの検知についても、例えば脱気膜装置13,14において、各圧力計25,26にて測定した圧力値を受信して圧力差を算出し、その圧力差が所定以上となったときに自動的に警告等を発して脱気膜装置の運転を停止させるように制御する制御部を設けて、自動制御する構成としてもよい。   For detecting the clogging of the degassing membrane on the decompression gas side, for example, in the degassing membrane devices 13 and 14, the pressure values measured by the pressure gauges 25 and 26 are received and the pressure difference is calculated, It may be configured to automatically control by providing a control unit that automatically issues a warning or the like to stop the operation of the deaeration membrane device when the pressure difference exceeds a predetermined value.

以上のように、本実施の形態に係るアンモニアの除去方法によれば、予めそのpHを10以上に調整し、さらに好ましくはその温度を50℃以上に調整したアンモニア含有排水を脱気膜装置に送液させることによって、高い除去率で排水からアンモニアを除去することができる。   As described above, according to the ammonia removal method according to the present embodiment, ammonia-containing wastewater whose pH is adjusted to 10 or higher in advance, and more preferably adjusted to 50 ° C. or higher, is used as a degassing membrane device. By sending the solution, ammonia can be removed from the waste water with a high removal rate.

しかも、上述のように、少なくとも脱気膜装置、送液ポンプ、真空ポンプを用いた設備点数の少ないシンプルな設備によって行うことができ、従来のように設備構成や処理環境が複雑になることなく、効率的に且つ効果的に、アンモニアを除去することができる。   Moreover, as described above, it can be performed by a simple facility with a small number of facilities using at least a degassing membrane device, a liquid feed pump, and a vacuum pump, and the facility configuration and processing environment are not complicated as in the past. Ammonia can be removed efficiently and effectively.

<第2の実施形態>
上述の第1の実施形態では、脱気膜装置13,14内において、アンモニア含有排水を流体としての減圧ガスと向流接触させる例について説明したが、これに限られるものではなく、減圧ガスに代えて硫酸溶液を流体として用いて向流接触させるようにしてもよい。なお、下記の説明において、上述した第1の実施形態と同様の構成については、同一の符号を付して説明を省略する。
<Second Embodiment>
In the first embodiment described above, the example in which the ammonia-containing wastewater is brought into countercurrent contact with the decompressed gas as a fluid in the degassing membrane devices 13 and 14 has been described. Alternatively, the sulfuric acid solution may be used as a fluid to make countercurrent contact. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

図4は、第2の実施形態に係るアンモニアの除去方法の流れの一例を示すシステムフロー図である。図4に示すように、先ず、例えば工場排水等のアンモニア含有排水の原液は、排水供給槽11に一旦収容され、送液ポンプ12の駆動によって脱気膜装置13,14の液導入口13a,14aから導入される。一方、流体として用いる硫酸溶液が、硫酸/硫安槽31に供給されて収容され、送液ポンプ32の駆動によって脱気膜装置13,14の流体導入口13b,14bに導入される。   FIG. 4 is a system flow diagram illustrating an example of a flow of an ammonia removal method according to the second embodiment. As shown in FIG. 4, first, a stock solution of ammonia-containing wastewater such as factory wastewater is temporarily stored in the wastewater supply tank 11, and the liquid introduction ports 13 a of the degassing membrane devices 13 and 14 are driven by the liquid feed pump 12. 14a. On the other hand, a sulfuric acid solution used as a fluid is supplied to and stored in the sulfuric acid / ammonium sulfate tank 31, and is introduced into the fluid inlets 13 b and 14 b of the degassing membrane devices 13 and 14 by driving the liquid feed pump 32.

このとき、上述の第1の実施形態と同様に、脱気膜装置13,14にてアンモニアを除去するに先立ち、例えば排水供給槽11内において、アンモニア含有排水のpHを10以上に調整する。また、好ましくは、pHを10以上に調整するとともに、その液温を50℃以上となるように調整する。   At this time, similarly to the first embodiment described above, the pH of the ammonia-containing wastewater is adjusted to 10 or more, for example, in the wastewater supply tank 11 before the ammonia is removed by the degassing membrane devices 13 and 14. Preferably, the pH is adjusted to 10 or higher, and the liquid temperature is adjusted to 50 ° C. or higher.

そして、脱気膜装置13,14では、導入されたアンモニア含有排水と流体としての硫酸溶液とが向流接触することによって、アンモニア含有排水中に含まれる非解離性の溶存アンモニアが脱気されることによって、アンモニア含有排水中のアンモニアが除去される。   In the degassing membrane devices 13 and 14, the ammonia-containing wastewater introduced and the sulfuric acid solution as a fluid are brought into countercurrent contact with each other, whereby the non-dissociable dissolved ammonia contained in the ammonia-containing wastewater is deaerated. As a result, ammonia in the ammonia-containing waste water is removed.

ここで図5に、上述のようにアンモニア含有排水(pH10、液温50℃)を、流体としての硫酸溶液と向流接触させた場合における、その接触時間に対するアンモニア含有排水中に残留したアンモニア性窒素濃度の関係を示す。この図5のグラフでは、流体として減圧ガスを用いて向流接触させた場合(第1の実施形態)におけるアンモニア性窒素濃度の推移も併せて示す。   Here, in FIG. 5, when ammonia-containing wastewater (pH 10, liquid temperature 50 ° C.) is brought into countercurrent contact with a sulfuric acid solution as a fluid as described above, the ammoniacality remaining in the ammonia-containing wastewater with respect to the contact time. The relationship of nitrogen concentration is shown. The graph of FIG. 5 also shows the transition of the ammoniacal nitrogen concentration when the countercurrent contact is performed using the decompressed gas as the fluid (first embodiment).

なお、処理対象としたアンモニア含有排水は、アンモニア性窒素濃度が2.6〜2.9g/Lの低濃度のものを用いた。また、この試験では、中空糸径約300μm、空孔サイズ約0.03μm、(平均)空孔率約40〜50%の脱気膜を組み込んだ脱気膜装置を用い、排水流量5L/分、硫酸流量2.5L/分として処理した。また、参照例としての減圧ガスによる処理では、減圧ガス圧力−0.05MPaGとした。   In addition, the ammonia containing waste_water | drain used as the process target used the thing of the low concentration whose ammoniacal nitrogen density | concentration is 2.6-2.9 g / L. In this test, a degassing membrane apparatus incorporating a degassing membrane having a hollow fiber diameter of about 300 μm, a pore size of about 0.03 μm, and an (average) porosity of about 40 to 50% was used, and the drainage flow rate was 5 L / min. The sulfuric acid flow rate was 2.5 L / min. In the treatment with the reduced pressure gas as the reference example, the reduced pressure gas pressure was set to -0.05 MPaG.

図5に示されるように、流体として硫酸溶液を用いた場合では、低濃度のアンモニア含有排水においても、200秒未満の短時間の間でアンモニア性窒素濃度を1g/L以下にすることができ、効率的にアンモニアを除去できることが分かる。しかも、流体として減圧ガスを用いた場合よりも、その除去効率が向上していることが分かる。さらに、硫酸溶液を用いた場合では、減圧ガスを用いた場合よりもアンモニア性窒素濃度の低減率が高く、より効果的にアンモニアを除去できることが分かる。   As shown in FIG. 5, when a sulfuric acid solution is used as the fluid, even in a low concentration ammonia-containing wastewater, the ammonia nitrogen concentration can be reduced to 1 g / L or less in a short time of less than 200 seconds. It can be seen that ammonia can be efficiently removed. Moreover, it can be seen that the removal efficiency is improved as compared with the case of using the decompressed gas as the fluid. Furthermore, it can be seen that when the sulfuric acid solution is used, the ammonia nitrogen concentration reduction rate is higher than when the reduced pressure gas is used, and ammonia can be removed more effectively.

このように、流体として硫酸溶液を用いてアンモニア含有排水と向流接触させることによって、低濃度のアンモニア含有排水であっても、効率的に且つ効果的に、アンモニアを除去することができる。   In this way, by using a sulfuric acid solution as a fluid and making countercurrent contact with ammonia-containing wastewater, ammonia can be efficiently and effectively removed even with low-concentration ammonia-containing wastewater.

以上のようにして脱気膜装置13,14に導入され、アンモニアが除去された排水10は、図1に示すように払出槽16に送液され、送液ポンプ17を介して排水処理に移行する。一方で、硫酸溶液は、脱気膜装置13,14を通過後にアンモニア含有排水中に含まれていたアンモニアと共に、再び硫酸/硫安槽31に回収される。   The waste water 10 introduced into the degassing membrane devices 13 and 14 and from which ammonia has been removed as described above is sent to the discharge tank 16 as shown in FIG. 1 and transferred to waste water treatment via the liquid feed pump 17. To do. On the other hand, the sulfuric acid solution is recovered again in the sulfuric acid / ammonium sulfate tank 31 together with the ammonia contained in the ammonia-containing waste water after passing through the degassing membrane devices 13 and 14.

なお、第2の実施形態に係るアンモニアの除去方法においても、排水供給槽11から送液され脱気膜装置13,14に導入される前のアンモニア含有排水の圧力を圧力計23で測定するとともに、脱気膜装置13,14に送液させてアンモニアを除去した後の排水の圧力を圧力計24で測定し、それらの測定した圧力の圧力差が所定以上となったときに目詰まりが生じていると判断し、目詰まりが生じている脱気膜を含む脱気膜装置13(又は14)を停止させ、その目詰まりが生じた脱気膜に対して硫酸溶液等の酸を用いた酸洗浄を行うようにすることができる。なお、このとき、停止させた脱気膜装置13(又は14)に対してもう一方の脱気膜装置14(又は13)の処理能力を増強させてアンモニア除去処理を補足するようにする。   In the ammonia removal method according to the second embodiment, the pressure of the ammonia-containing wastewater before being introduced from the wastewater supply tank 11 and introduced into the degassing membrane devices 13 and 14 is measured with the pressure gauge 23. Then, the pressure of the waste water after being sent to the degassing membrane devices 13 and 14 to remove ammonia and measured with a pressure gauge 24, clogging occurs when the pressure difference between these measured pressures exceeds a predetermined value. The deaeration device 13 (or 14) including the deaeration membrane in which clogging has occurred is stopped, and an acid such as a sulfuric acid solution is used for the deaeration membrane in which clogging has occurred. Acid cleaning can be performed. At this time, the ammonia removal process is supplemented by increasing the processing capacity of the other degassing membrane device 14 (or 13) with respect to the stopped degassing membrane device 13 (or 14).

具体的には、図4に示すように、例えば硫酸溶液が供給された硫酸/硫安槽31から、送液ポンプ32を介して、脱気膜装置13,14の液導入口13a,14aから硫酸溶液を導入することによって、アンモニア含有排水が導入される側の脱気膜を洗浄する。   Specifically, as shown in FIG. 4, for example, sulfuric acid is supplied from the liquid introduction ports 13 a and 14 a of the degassing membrane devices 13 and 14 from the sulfuric acid / ammonium sulfate tank 31 supplied with the sulfuric acid solution via the liquid feed pump 32. By introducing the solution, the deaeration membrane on the side where the ammonia-containing waste water is introduced is washed.

このようにして硫酸/硫安槽31から導入された硫酸溶液によって酸洗浄が行われると、その硫酸溶液が循環して硫酸/硫安槽31内に脱気膜の目詰まりの原因となっていた有機物等の化合物が移行されることになる。この硫酸溶液は、送液ポンプ32を介して払出槽16に送液され、アンモニアが除去された排水と共に排水処理に施される。   When acid cleaning is performed with the sulfuric acid solution introduced from the sulfuric acid / ammonium sulfate tank 31 in this way, the sulfuric acid solution circulates and the organic matter that has caused clogging of the deaeration film in the sulfuric acid / ammonium sulfate tank 31. Etc. will be transferred. This sulfuric acid solution is sent to the discharge tank 16 via the liquid feed pump 32 and is subjected to waste water treatment together with the waste water from which ammonia has been removed.

また、第2の実施形態に係るアンモニアの除去方法においては、流体として硫酸溶液を用いている。そのため、流体としての硫酸溶液が導入される側の脱気膜においても、目詰まりが生じやすくなるため、適切に洗浄処理を施すことが好ましい。   In the ammonia removal method according to the second embodiment, a sulfuric acid solution is used as the fluid. For this reason, the degassing membrane on the side where the sulfuric acid solution as the fluid is introduced is likely to be clogged, and therefore it is preferable to perform an appropriate cleaning treatment.

この流体としての硫酸溶液が導入される側の脱気膜の洗浄処理については、図4に示すように、脱気膜装置13,14に導入される前の硫酸溶液の圧力を圧力計33で測定するとともに、脱気膜装置13,14通過後の除去したアンモニアを含む硫酸溶液の圧力を圧力計34で測定し、それらの測定した圧力の圧力差に応じて洗浄処理を行うようにする。   As for the cleaning process of the degassing membrane on the side where the sulfuric acid solution as the fluid is introduced, the pressure of the sulfuric acid solution before being introduced into the degassing membrane devices 13 and 14 is measured with a pressure gauge 33 as shown in FIG. In addition to the measurement, the pressure of the sulfuric acid solution containing the removed ammonia after passing through the degassing membrane devices 13 and 14 is measured by the pressure gauge 34, and the cleaning process is performed according to the pressure difference between the measured pressures.

脱気膜の目詰まりが発生してアンモニア除去効率が低下している場合、脱気膜装置13,14に導入される前の硫酸溶液の圧力と脱気膜装置13,14通過後の硫酸溶液の圧力との差は大きくなるため、その圧力差によって目詰まりを的確に検知することができる。   When clogging of the degassing membrane occurs and the ammonia removal efficiency is reduced, the pressure of the sulfuric acid solution before being introduced into the degassing membrane devices 13 and 14 and the sulfuric acid solution after passing through the degassing membrane devices 13 and 14 Therefore, the clogging can be accurately detected by the pressure difference.

具体的には、それらの圧力の圧力差が所定以上となったときに脱気膜装置13(又は14)を構成する脱気膜に目詰まりが生じていると判断し、その脱気膜装置13(又は14)を停止させて、脱気膜に対する洗浄処理を施す。これにより、アンモニア除去効率を過度に低下させることなく効率的な処理を行うことを可能にする。   Specifically, it is determined that the deaeration membrane constituting the deaeration membrane device 13 (or 14) is clogged when the pressure difference between the pressures exceeds a predetermined value, and the deaeration membrane device 13 (or 14) is stopped and the deaeration film is subjected to a cleaning process. This makes it possible to perform an efficient process without excessively reducing the ammonia removal efficiency.

流体としての硫酸溶液を導入する側の脱気膜に対する洗浄は、水又は有機酸溶液を用いて行うことができる。具体的には、図4に示すように、例えば水又は有機酸溶液を膜再生用液貯留槽21に供給して収容し、送液ポンプ22を介して、脱気膜装置13,14の液導入口13b,14bから水又は有機酸溶液を導入して脱気膜を洗浄する。   The degassing membrane on the side of introducing the sulfuric acid solution as a fluid can be washed using water or an organic acid solution. Specifically, as shown in FIG. 4, for example, water or an organic acid solution is supplied to and stored in the membrane regeneration liquid storage tank 21, and the liquid of the deaeration membrane apparatuses 13 and 14 is supplied via the liquid feed pump 22. Water or an organic acid solution is introduced from the inlets 13b and 14b to clean the deaeration membrane.

このようにして膜再生用液貯留槽21から導入された水又は有機酸溶液によって酸洗浄が行われると、その水又は有機酸溶液が循環して、膜再生用液貯留槽21内に脱気膜の目詰まりの原因となっていた塩等を含む化合物が移行されることになる。この塩等を含む化合物が含有された溶液は、送液ポンプ22を介して払出槽16に送液され、アンモニアが除去された排水と共に排水処理に施される。   When the acid cleaning is performed with the water or the organic acid solution introduced from the membrane regeneration liquid storage tank 21 in this way, the water or the organic acid solution is circulated and degassed into the membrane regeneration liquid storage tank 21. A compound containing a salt or the like that causes clogging of the film is transferred. The solution containing the compound containing salt or the like is sent to the discharge tank 16 via the liquid feed pump 22 and subjected to waste water treatment together with the waste water from which ammonia has been removed.

この脱気膜の洗浄は、一定期間毎に定期的に行うようにしてもよいが、処理される排水10の種類によって脱気膜に及ぼす目詰まりの影響は異なることから、目詰まりによってアンモニア除去効率が低下する前に処理することが好ましい。したがって、上述のように、アンモニア含有排水を導入する側の脱気膜については、脱気膜装置13,14の通過前後におけるアンモニア含有排水の圧力差に応じて目詰まりを検知し、流体としての硫酸溶液を導入する側の脱気膜については、脱気膜装置13,14の通過前後における硫酸溶液の圧力差に応じて目詰まりを検知して、その脱気膜に対する洗浄を行う。このことによって、アンモニア除去効率を低下させることなく、効率的な処理を行うことが可能になる。   This degassing membrane cleaning may be performed periodically at regular intervals, but the effect of clogging on the degassing membrane differs depending on the type of wastewater 10 to be treated. It is preferable to process before efficiency falls. Therefore, as described above, the degassing membrane on the side of introducing the ammonia-containing wastewater detects clogging according to the pressure difference of the ammonia-containing wastewater before and after the passage of the degassing membrane devices 13 and 14, and serves as a fluid. For the degassing membrane on the side where the sulfuric acid solution is introduced, clogging is detected according to the pressure difference of the sulfuric acid solution before and after passing through the degassing membrane devices 13 and 14, and the degassing membrane is washed. This makes it possible to perform an efficient process without reducing the ammonia removal efficiency.

以上、第2の実施形態として示したように、pHを10以上となるように調整し、好ましくはその温度を50℃以上に調整したアンモニア含有排水に対して、減圧ガスに代えて硫酸溶液を向流接触させれば、アンモニア濃度が低い排水であっても、より高い除去率で効率的にアンモニアを除去することができる。   As described above, as shown in the second embodiment, the sulfuric acid solution is used instead of the decompression gas for the ammonia-containing wastewater whose pH is adjusted to 10 or more, and preferably the temperature is adjusted to 50 ° C. or more. If the countercurrent contact is made, ammonia can be efficiently removed at a higher removal rate even with wastewater having a low ammonia concentration.

11 排水供給槽、12 送液ポンプ、13,14 脱気膜装置、13a,14a 液導入口、13b,14b 流体導入口、15 真空ポンプ、16 払出槽、17 送液ポンプ、18 回収硫安スクラバー、19 送液ポンプ、21 膜再生用液貯留槽、22 送液ポンプ、23,24,25,26 圧力計、31 硫酸/硫安槽、32 送液ポンプ   DESCRIPTION OF SYMBOLS 11 Wastewater supply tank, 12 Liquid feed pump, 13, 14 Deaeration membrane apparatus, 13a, 14a Liquid inlet, 13b, 14b Fluid inlet, 15 Vacuum pump, 16 Discharge tank, 17 Liquid pump, 18 Recovery ammonium sulfate scrubber, 19 Liquid feed pump, 21 Membrane regeneration liquid reservoir, 22 Liquid feed pump, 23, 24, 25, 26 Pressure gauge, 31 Sulfuric acid / ammonium sulfate tank, 32 Liquid feed pump

Claims (10)

アンモニアを含有する排水から該アンモニアを除去する方法であって、
上記アンモニア含有排水のpHを10以上で温度を50℃以上に調整した上で疎水性中空糸が組み込まれた脱気膜装置に送液し、流体としての減圧ガスと500秒以上1000秒以内の時間で向流接触させることを特徴とするアンモニア除去方法。
A method for removing ammonia from wastewater containing ammonia,
The pH of the ammonia-containing waste water was fed to the degassing membrane device hydrophobic hollow fibers is incorporated after adjusting the temperature to more than 50 ° C. at 10 or higher, as a fluid vacuum gas and 1000 seconds or less than 500 seconds A method for removing ammonia, characterized by contacting in countercurrent over time.
上記アンモニア含有排水のpHを13以上に調整することを特徴とする請求項1記載のアンモニア除去方法。   The ammonia removal method according to claim 1, wherein the pH of the ammonia-containing waste water is adjusted to 13 or more. 上記アンモニア含有排水を送液させた後の脱気膜装置を酸溶液で洗浄することを特徴とする請求項1又は2記載のアンモニア除去方法。   The ammonia removal method according to claim 1 or 2, wherein the degassing membrane device after feeding the ammonia-containing wastewater is washed with an acid solution. 上記脱気膜装置に送液させる前のアンモニア含有排水の圧力と、該脱気膜装置に送液させてアンモニアを除去した後の排水の圧力との圧力差を測定し、その圧力差が所定以上となったときに該脱気膜装置を上記酸溶液で洗浄することを特徴とする請求項3記載のアンモニア除去方法。   The pressure difference between the pressure of the ammonia-containing wastewater before being sent to the degassing membrane device and the pressure of the wastewater after being sent to the degassing membrane device and removing the ammonia is measured. 4. The ammonia removing method according to claim 3, wherein the degassing membrane device is washed with the acid solution when the above is reached. 上記減圧ガスに代えて硫酸溶液を流体として用い、該硫酸溶液と上記アンモニア含有排水とを向流接触させることを特徴とする請求項1又は2記載のアンモニア除去方法。   The ammonia removal method according to claim 1 or 2, wherein a sulfuric acid solution is used as a fluid instead of the reduced-pressure gas, and the sulfuric acid solution and the ammonia-containing waste water are brought into countercurrent contact. 上記アンモニア含有排水を送液させた後の脱気膜装置を酸溶液で洗浄することを特徴とする請求項5記載のアンモニア除去方法。   6. The ammonia removing method according to claim 5, wherein the deaeration membrane device after feeding the ammonia-containing waste water is washed with an acid solution. 上記脱気膜装置に送液させる前のアンモニア含有排水の圧力と、該脱気膜装置に送液させてアンモニアを除去した後の排水の圧力との圧力差を測定し、その圧力差が所定以上となったときに該脱気膜装置を上記酸溶液で洗浄することを特徴とする請求項6記載のアンモニア除去方法。   The pressure difference between the pressure of the ammonia-containing wastewater before being sent to the degassing membrane device and the pressure of the wastewater after being sent to the degassing membrane device and removing the ammonia is measured. 7. The ammonia removing method according to claim 6, wherein the degassing membrane device is washed with the acid solution when the above is reached. 上記流体としての硫酸溶液を送液させた後の脱気膜装置を水又は有機酸溶液で洗浄することを特徴とする請求項5乃至7の何れか1項記載のアンモニア除去方法。   The ammonia removal method according to any one of claims 5 to 7, wherein the degassing membrane device after the sulfuric acid solution as the fluid is fed is washed with water or an organic acid solution. 上記脱気膜装置に導入される前の硫酸溶液の圧力と、該脱気膜装置を通過させ除去したアンモニアを含む硫酸溶液との圧力差を測定し、その圧力差が所定以上となったときに該脱気膜装置を上記水又は有機酸溶液で洗浄することを特徴とする請求項8記載のアンモニア除去方法。   When the pressure difference between the pressure of the sulfuric acid solution before being introduced into the degassing membrane device and the sulfuric acid solution containing ammonia that has been removed by passing through the degassing membrane device is measured, and the pressure difference exceeds a predetermined value 9. The method for removing ammonia according to claim 8, wherein the degassing membrane device is washed with the water or organic acid solution. 複数の上記脱気膜装置を使用することを特徴とする請求項1乃至9の何れか1項記載のアンモニア除去方法。   The ammonia removal method according to any one of claims 1 to 9, wherein a plurality of the degassing membrane devices are used.
JP2012073056A 2012-03-28 2012-03-28 Method for removing ammonia from wastewater containing ammonia Expired - Fee Related JP5928070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073056A JP5928070B2 (en) 2012-03-28 2012-03-28 Method for removing ammonia from wastewater containing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073056A JP5928070B2 (en) 2012-03-28 2012-03-28 Method for removing ammonia from wastewater containing ammonia

Publications (2)

Publication Number Publication Date
JP2013202475A JP2013202475A (en) 2013-10-07
JP5928070B2 true JP5928070B2 (en) 2016-06-01

Family

ID=49522183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073056A Expired - Fee Related JP5928070B2 (en) 2012-03-28 2012-03-28 Method for removing ammonia from wastewater containing ammonia

Country Status (1)

Country Link
JP (1) JP5928070B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078014A (en) * 2014-10-22 2016-05-16 オルガノ株式会社 Treatment method and treatment device for ammonia-containing waste water
JP6386338B2 (en) * 2014-10-24 2018-09-05 オルガノ株式会社 Ammonia-containing wastewater treatment apparatus and treatment method
CN104961183A (en) * 2015-05-15 2015-10-07 浙江沐源环境工程有限公司 Device for recovery of ammonia in wastewater by use of cross-flow contact-type degassing membrane
JP6592386B2 (en) * 2016-03-09 2019-10-16 オルガノ株式会社 Method and apparatus for treating ammonia-containing wastewater
JP6653626B2 (en) * 2016-06-07 2020-02-26 オルガノ株式会社 Water treatment method and apparatus, water treatment apparatus modification method, and water treatment apparatus modification kit
CN107043185A (en) * 2017-06-19 2017-08-15 深圳慧欣环境技术有限公司 A kind of circuitboard etching waste liquid ammonia nitrogen processing method for resource recovery and system
JP6995543B2 (en) * 2017-09-19 2022-01-14 株式会社東芝 Ammonia separation method, water treatment method, ammonia separation device, and water treatment device
KR102023063B1 (en) * 2017-12-15 2019-09-19 주식회사 포스코 Manufacturing method of positive active material precursor for secondary battery and manufacturing apparatus using the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927203B2 (en) * 1976-11-09 1984-07-04 鐘淵化学工業株式会社 Membrane separation method
JP2570592Y2 (en) * 1991-12-11 1998-05-06 大日本インキ化学工業株式会社 Hollow fiber module
JPH06182149A (en) * 1992-12-17 1994-07-05 Tohoku Electric Power Co Inc Removal of ammonia from wastewater
JP3235801B2 (en) * 1992-12-17 2001-12-04 東北電力株式会社 How to remove ammonium ions
JPH06335623A (en) * 1993-05-28 1994-12-06 Dainippon Ink & Chem Inc Deaerating film and deaerating method
JP3133880B2 (en) * 1993-12-16 2001-02-13 株式会社日立製作所 Equipment for treating wastewater containing ammonium nitrate
JP3619295B2 (en) * 1995-09-11 2005-02-09 三菱レイヨン株式会社 Degassing water purifier
US5876604A (en) * 1996-10-24 1999-03-02 Compact Membrane Systems, Inc Method of gasifying or degasifying a liquid
JPH10235103A (en) * 1997-02-21 1998-09-08 Toyo Eng Corp Gas liquid separation device in microgravitational environment and gas-liquid separation method
JP2001137837A (en) * 1999-11-15 2001-05-22 Japan Organo Co Ltd Treating device for water containing volatile organic material, and non-polluting treating device for groundwater
JP2003175385A (en) * 2001-12-12 2003-06-24 Nippon Shokubai Co Ltd Method for cleaning ammonia-containing wastewater
US6858145B2 (en) * 2002-09-12 2005-02-22 Chemitreat Pte Ltd Method of removing organic impurities from water
JP2006213535A (en) * 2005-02-01 2006-08-17 Jfe Engineering Kk Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace
JP4850467B2 (en) * 2005-09-29 2012-01-11 独立行政法人日本原子力研究開発機構 Cleaning method for membrane deaerator
GB0709109D0 (en) * 2007-05-11 2007-06-20 Enpar Technologies Inc Wastewater ammonium extraction and electrolytic conversion to nitrogen gas
JP5160847B2 (en) * 2007-09-14 2013-03-13 三井造船株式会社 Biogas system
DE102010032736B4 (en) * 2010-07-30 2012-07-26 Sartorius Stedim Biotech Gmbh Apparatus and method for degassing aqueous media

Also Published As

Publication number Publication date
JP2013202475A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5928070B2 (en) Method for removing ammonia from wastewater containing ammonia
JP5757089B2 (en) Method and apparatus for treating water containing organic matter
JP2012192374A (en) Water treatment apparatus
JP5768959B2 (en) Water treatment equipment
US10407331B2 (en) Scale detection device and method for concentrating device, and water reclamation processing treatment system
JP6719970B2 (en) Membrane filtration system and membrane filtration method
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP5961916B2 (en) Water treatment equipment
WO2012144384A1 (en) Method for purifying water containing radioactive halogen, process for producing filtrate water, and device for purifying water containing radioactive halogen
KR101901343B1 (en) Apparatus and method for cleaning reverse osmosis membrane
JP4916828B2 (en) Method and apparatus for treating radioactive material-containing wastewater
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JP2016150283A (en) Membrane treatment apparatus and method
US20140183132A1 (en) Separation membrane cleaning system and separation membrane cleaning method using the same
JP2007090249A (en) Method for cleaning membrane deaerator
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JP5110013B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP2009189943A (en) Water treatment method and apparatus
JP2008302333A (en) Method and apparatus for production of fresh water
JP2008237986A (en) Method for treating boron-containing water
CN203728671U (en) Emission reduction system after washing with ultrapure water in clean production
JP5700080B2 (en) Method and apparatus for treating waste water containing cationic surfactant
CN220703339U (en) Reclaimed water recycling equipment
JP2014184354A (en) Processing system of ink discharge water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees