JP2006213535A - Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace - Google Patents

Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace Download PDF

Info

Publication number
JP2006213535A
JP2006213535A JP2005025190A JP2005025190A JP2006213535A JP 2006213535 A JP2006213535 A JP 2006213535A JP 2005025190 A JP2005025190 A JP 2005025190A JP 2005025190 A JP2005025190 A JP 2005025190A JP 2006213535 A JP2006213535 A JP 2006213535A
Authority
JP
Japan
Prior art keywords
salt
waste
crystallization
melted
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005025190A
Other languages
Japanese (ja)
Inventor
Masaru Shibata
勝 柴田
Fumihiro Miyoshi
史洋 三好
Isato Seshimo
勇人 瀬下
Tadashi Teratani
匡史 寺谷
Yoichi Shige
洋一 重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
JFE Engineering Corp
Original Assignee
Kimura Chemical Plants Co Ltd
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd, JFE Engineering Corp filed Critical Kimura Chemical Plants Co Ltd
Priority to JP2005025190A priority Critical patent/JP2006213535A/en
Publication of JP2006213535A publication Critical patent/JP2006213535A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a high-quality mixed salt from the waste water of a gasification-melting furnace. <P>SOLUTION: This method comprises producing salt from the salt water which is generated in an exhaust gas treatment system when waste materials are subjected to melting/gasifying treatment or incineration or when the incineration ash of the waste materials is melt-treated, and contains respective ions of Na, NH<SB>4</SB>, Ca and Cl. The method is characterized by including at least the processes of salt water concentration, NH<SB>4</SB>removal and salt crystallization, and dehydrating salt slurry obtained from the salt crystallization process through a dehydrating process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、Clの各イオンを含有する塩水から塩を製造する塩製造方法及びその装置に関する。 The present invention is a salt water containing each ion of Na, NH 4 , Ca, and Cl generated in an exhaust gas treatment system when waste gasification treatment or incineration treatment or waste incineration ash is fusion treatment. The present invention relates to a salt production method and apparatus for producing a salt from the same.

従来より、産業廃棄物あるいは一般廃棄物の焼却処理は、様々な型式で実施されてきたが、近年、焼却場における排出ガス中のダイオキシン類などの微量有害物質の排出基準が強化され、また、焼却主灰を埋め立てる主に安定型埋立処分場、さらには焼却飛灰を法律で定められた4つの方式のうちの1つで中間処理を施した後埋め立てる管理型埋立処分場の残余量が逼迫する等、従来の焼却処理型式を踏襲し更新することが困難なケースが増加しつつある。また、資源循環型社会の創出という観点からも、廃棄物をただ単に焼却するのではなく、廃棄物をガス化し、高温で改質することにより、燃料ガスあるいは化学原料ガスとして回収するシステム(非特許文献1参照)が望まれている。   Conventionally, incineration treatment of industrial waste or general waste has been carried out in various types, but in recent years, emission standards for trace hazardous substances such as dioxins in exhaust gas at incineration plants have been strengthened, The remaining amount of landfills mainly for stable landfills that incinerate incinerated main ash, and the amount of landfilled landfills for landfills after intermediate treatment of incinerated fly ash by one of the four methods stipulated by law is tight. The number of cases where it is difficult to renew and follow the conventional incineration treatment type is increasing. Also, from the viewpoint of creating a resource recycling society, rather than simply incinerating waste, a system that recovers fuel gas or chemical raw material gas by gasifying the waste and reforming it at a high temperature (non- Patent Document 1) is desired.

このようなガス化改質方式の焼却施設として例えば図1に示されるようなプロセスフローになる川鉄サーモセレクト方式による廃棄物ガス化溶融プロセスが開発された(非特許文献2参照)。
このプロセスは次の4つのステップから工程から構成されている。
As such a gasification reforming-type incineration facility, a waste gasification and melting process based on the Kawatetsu thermoselect method having a process flow as shown in FIG. 1 has been developed (see Non-Patent Document 2).
This process consists of the following four steps.

(1)プレス・ 脱ガスチャンネル
(a)ごみ(廃棄物)の圧縮、(b)乾燥・ 熱分解
(2)高温反応炉・ 均質化炉
(c)ガス化溶融、(d)スラグ均質化、(e)ガス改質
(3)ガス精製
(f)ガス急冷(急冷・酸洗浄・アルカリ洗浄)、(g)ガス精製(除塵・脱硫・除湿)
(4)水処理
(h)水処理・ 塩製造装置
(1) Press and degassing channels (a) Waste (waste) compression, (b) Drying and pyrolysis (2) High temperature reactor and homogenization furnace (c) Gasification and melting, (d) Slag homogenization, (E) Gas reforming (3) Gas purification (f) Gas quenching (quenching, acid cleaning, alkali cleaning), (g) Gas purification (dust removal, desulfurization, dehumidification)
(4) Water treatment (h) Water treatment / salt production equipment

各ステップの概要は次のとおりである。
(1)プレス・ 脱ガスチャンネル
(a)まずピット1から移送された廃棄物をプレス2で最初の容積の1/5 程度に圧縮する。これにより廃棄物中の水分の分布は均一化され、空気は排除されて脱ガス効率が向上する。
(b)次に圧縮された廃棄物は間接的加熱炉である脱ガスチャンネル3で脱ガス(水分の蒸発、熱分解による揮発分の発生)され、続いて高温反応炉4からの放射熱などによりさらに熱分解される。廃棄物中に含まれる炭化水素、セルロースの熱分解反応として次のような反応例((1),(2)式)があり、これらの反応により熱分解カーボンが得られる。
CnHm → xCH+yH+zC (1)
3C10 → 8HO+CO+2CO+2CO
+CH+H+7C (2)
The outline of each step is as follows.
(1) Press / degas channel (a) First, the waste transferred from pit 1 is compressed to about 1/5 of the initial volume by press 2. Thereby, the distribution of moisture in the waste is made uniform, air is excluded, and the degassing efficiency is improved.
(B) Next, the compressed waste is degassed in the degassing channel 3 which is an indirect heating furnace (evaporation of moisture, generation of volatile components by thermal decomposition), and then radiant heat from the high temperature reactor 4 etc. Is further thermally decomposed. There are the following reaction examples (formulas (1) and (2)) as thermal decomposition reactions of hydrocarbons and cellulose contained in waste, and pyrolytic carbon is obtained by these reactions.
CnHm → xCH 4 + yH 2 + zC (1)
3C 6 H 10 O 5 → 8H 2 O + C 6 H 8 O + 2CO 2 + 2CO
+ CH 4 + H 2 + 7C (2)

(2)高温反応炉・ 均質化炉
(c)脱ガスチャンネル3で発生したガスは高温反応炉4に流入し、熱分解物は新たな圧縮廃棄物の装入により押し出されて高温反応炉4下部に堆積する。高温反応炉4下部にPSA(Pressure Swing Adsorption;圧力スイング吸着)6で製造した酸素を吹き込み、該酸素と熱分解物中の炭素との反応((3),(4)式)により下部の温度は中心部で最高約2000℃になり、廃棄物中の金属や無機質の成分は溶融する。
C+O ⇔ CO+ΔQ (3)
C+1/2O ⇔CO+ΔQ (4)
(2) High-temperature reactor / homogenization furnace (c) The gas generated in the degassing channel 3 flows into the high-temperature reactor 4, and the pyrolysate is pushed out by charging new compressed waste, and the high-temperature reactor 4 Deposit at the bottom. Oxygen produced by PSA (Pressure Swing Adsorption) 6 is blown into the lower part of the high temperature reactor 4 and the temperature of the lower part is determined by the reaction of the oxygen and carbon in the pyrolyzate (equations (3) and (4)). Reaches a maximum of about 2000 ° C. in the center, and the metal and inorganic components in the waste melt.
C + O 2 CO CO 2 + ΔQ (3)
C + 1 / 2O 2 ⇔CO + ΔQ (4)

高温反応炉4下部に残存する炭素成分とOが発熱反応しCOになる。発生したCOはCを含有する熱分解物中を通過するとCOに還元される((5)式)。
C+CO ⇔ 2CO−ΔQ (5)
過剰の高温水蒸気分子が存在する場合は水性ガス化反応が生ずる。この場合、炭素と水蒸気がCOとHに転換する((6)式)。
C+HO ⇔ CO+H−ΔQ (6)
有機化合物はCOとHなどに熱分解される((7)式)。
The carbon component remaining in the lower part of the high temperature reactor 4 and O 2 react exothermically to become CO 2 . The generated CO 2 is reduced to CO when it passes through the pyrolyzate containing C (formula (5)).
C + CO 2 ⇔ 2CO-ΔQ (5)
In the presence of excess hot water vapor molecules, a water gasification reaction occurs. In this case, carbon and water vapor are converted into CO and H 2 (formula (6)).
C + H 2 O CO CO + H 2 −ΔQ (6)
The organic compound is thermally decomposed into CO and H 2 (formula (7)).

CnHm+nHO→nCO+(n+1/2m)H −ΔQ (7)
(d)溶融物は高温反応炉4から約1600℃に保持された均熱化炉5へ流れ、微量の炭素等はガス化される。均質化炉5において金属溶融物 (メタル)は密度が大きいため、無機質溶融物(スラグ)の下部に溜まる。これらは連続的に溢流堰を通り水砕システム7へ流れ落ちて冷却固化される。冷却固化した回収混合物は磁選によりスラグ、メタルに分離される。
CnHm + nH 2 O → nCO + (n + ½ m) H 2 −ΔQ (7)
(D) The melt flows from the high temperature reactor 4 to the soaking furnace 5 maintained at about 1600 ° C., and a small amount of carbon is gasified. In the homogenization furnace 5, the metal melt (metal) has a high density and therefore accumulates in the lower part of the inorganic melt (slag). These continuously flow through the overflow weir and flow down to the granulation system 7 to be cooled and solidified. The recovered mixture cooled and solidified is separated into slag and metal by magnetic separation.

(e)高温反応炉4下部で発生したガスと脱ガスチャンネルで発生した熱分解ガスは合流し、高温反応炉4上部の改質部において約1200℃で2s 以上滞留する。この条件で、ガス中のタール分やダイオキシン類およびその前駆体は完全に分解され、H,CO,CO,HOを主成分とする粗合成ガスに改質される。約1200℃の温度では(8)式の平衡が右辺に移動し、メタンガスの量は極微量となる。
CH+HO ⇔ CO+3H (8)
(E) The gas generated in the lower part of the high temperature reactor 4 and the pyrolysis gas generated in the degassing channel merge and stay in the reforming part in the upper part of the high temperature reactor 4 at about 1200 ° C. for 2 seconds or longer. Under these conditions, the tar content, dioxins and their precursors in the gas are completely decomposed and reformed into a crude synthesis gas mainly composed of H 2 , CO, CO 2 and H 2 O. At a temperature of about 1200 ° C., the equilibrium of equation (8) shifts to the right side, and the amount of methane gas becomes extremely small.
CH 4 + H 2 O⇔CO + 3H 2 (8)

(3)ガス精製
(f)高温反応炉4で改質された粗合成ガスを、急冷装置8で約1200℃から約70℃まで急水冷し、de novo 合成によるダイオキシン類の再合成を阻止した後、洗浄塔11において、酸洗浄により重金属を、アルカリ洗浄により酸性ガスを、それぞれ除去する。
ここで、沸点の低いZn,Pbなどの重金属成分は主として高温反応炉4からガスの状態で移送される。また、廃棄物に含まれる塩素は、主としてHClとして合成ガス中に存在し、HClは冷却・洗浄液に溶け込む。このHClを含む酸性水(pH2〜3)によって粗合成ガスは洗浄され、重金属成分が取り除かれる(例えば(9),(10)式)。よって、このプロセスでは飛灰は発生しない。
Zn+2HCl→H+ZnCl (9)
Pb+2HCl→H+PbCl (10)
(3) Gas purification (f) The crude synthesis gas reformed in the high-temperature reactor 4 was rapidly water-cooled from about 1200 ° C. to about 70 ° C. with the quenching device 8 to prevent re-synthesis of dioxins by de novo synthesis. Thereafter, in the washing tower 11, heavy metals are removed by acid washing, and acid gases are removed by alkali washing.
Here, heavy metal components such as Zn and Pb having a low boiling point are mainly transferred from the high temperature reactor 4 in a gas state. Further, chlorine contained in the waste is mainly present in the synthesis gas as HCl, and HCl is dissolved in the cooling / cleaning liquid. The crude synthesis gas is washed with the acidic water (pH 2 to 3) containing HCl, and heavy metal components are removed (for example, formulas (9) and (10)). Therefore, fly ash is not generated in this process.
Zn + 2HCl → H 2 + ZnCl 2 (9)
Pb + 2HCl → H 2 + PbCl 2 (10)

このように、このプロセスでは廃棄物中の塩素分が有効に利用される。洗浄液は沈降槽12に送られて炭素微粒子を取り除かれ、熱交換器15Aで間接冷却された後、再びガスの急冷に循環使用される。ごみに由来する水は沈降槽12で余剰水となり、水処理装置13へ送られて処理される。   Thus, in this process, the chlorine content in the waste is effectively utilized. The cleaning liquid is sent to the settling tank 12 to remove the carbon fine particles, indirectly cooled by the heat exchanger 15A, and then circulated and used again for rapid cooling of the gas. The water derived from the garbage becomes surplus water in the settling tank 12 and is sent to the water treatment device 13 for processing.

酸洗浄された合成ガスは、アルカリ洗浄され、塩化水素ガスなどの酸性ガスが中和除去される((11)式)。生成したNaClは最終的には、塩製造装置14で混合塩として回収される。
HCl+NaOH→NaCl+HO (11)
The acid-cleaned synthesis gas is alkali-cleaned, and an acidic gas such as hydrogen chloride gas is neutralized and removed (formula (11)). The produced NaCl is finally recovered as a mixed salt by the salt production device 14.
HCl + NaOH → NaCl + H 2 O (11)

(g)さらに、ガスは洗浄塔11からマルチスクラバー9に送られて除塵され、脱硫洗浄され、除湿乾燥されて、有害物質を除去されたクリーンな精製合成ガスとなり、例えばガスエンジン発電機10の燃料ガスとして使用される。   (G) Further, the gas is sent from the washing tower 11 to the multi scrubber 9 to be dedusted, desulfurized and washed, dehumidified and dried to become a clean refined synthetic gas from which harmful substances have been removed. Used as fuel gas.

(4)水処理
(h)ガス改質工程までに生成したH Oがガス急冷・精製工程で凝縮し、従来の焼却方式では飛灰となって排ガス中に含まれていた重金属や塩類はすべて洗浄水中に移行する。そのため、飛灰は発生せず、Fe,Zn,Pb,Na,Kなどの金属を含む水が発生するが、水処理装置13により、金属は水酸化物や混合塩などの有用物として回収される。
また、(11)式の反応で生成したNaClは、水処理装置13から塩製造装置14に送られて精製され、混合塩として回収される。
(4) Water treatment (h) H 2 O produced until the gas reforming process is condensed in the gas quenching / refining process, and heavy metals and salts contained in the exhaust gas as fly ash in the conventional incineration system Move all into the wash water. Therefore, fly ash is not generated, and water containing metals such as Fe, Zn, Pb, Na, and K is generated, but the metal is recovered by the water treatment device 13 as useful substances such as hydroxides and mixed salts. The
Moreover, NaCl produced | generated by reaction of (11) Formula is sent to the salt manufacturing apparatus 14 from the water treatment apparatus 13, is refine | purified, and is collect | recovered as mixed salt.

ところで、上記の混合塩を有価物として再利用するには、混合塩中に含まれるNH4、Al等の金属の量を低減しなければならない。
しかしながら、一般廃棄物には、可燃物中に窒素が0.5〜2%(5000〜20000mg/kg)程度含まれており、この窒素分は空気の少ない還元性雰囲気で行われる熱分解の際に一部がアンモニアに転化し、該アンモニアは粗合成ガスに含まれ、急冷〜酸洗浄の際に同ガス中の塩化水素と反応して塩化アンモニウムを生成し、これが洗浄液中に溶解し、洗浄廃液(洗浄に使用した後の洗浄液)から混合塩を回収する場合、該混合塩の品位(NaCl濃度)を低下させ、その用途を制限するという問題があった。
By the way, in order to reuse the above mixed salt as a valuable material, the amount of metals such as NH 4 and Al contained in the mixed salt must be reduced.
However, general waste contains about 0.5 to 2% (5000 to 20000 mg / kg) of nitrogen in combustibles, and this nitrogen content is in the case of thermal decomposition performed in a reducing atmosphere with less air. Is partly converted into ammonia, which is contained in the crude synthesis gas, reacts with hydrogen chloride in the gas during quenching to acid cleaning to produce ammonium chloride, which dissolves in the cleaning solution and is washed In the case of recovering the mixed salt from the waste liquid (cleaning liquid after being used for cleaning), there has been a problem that the grade (NaCl concentration) of the mixed salt is lowered and its use is restricted.

厚生省:厚生省令第14号、1999年3月3日「ガス化改質方式」Ministry of Health and Welfare: Ministry of Health and Welfare Ordinance No. 14, March 3, 1999 "Gasification reforming system" 川崎製鉄技報 32(2000)4,287−291Kawasaki Steel Technical Report 32 (2000) 4, 287-291

本発明は、ガス化溶融炉の排水から品質の高い混合塩を製造すると共に、水分をプラント内で再利用水として回収することを目的とする。   An object of the present invention is to produce a high-quality mixed salt from the waste water of a gasification melting furnace and to collect water as reused water in a plant.

本発明者らは、これらの問題を解決し、廃棄物をガス化改質し、洗浄、精製して精製合成ガスを得る廃棄物処理系において、洗浄廃液から資源として再利用可能なまでに品質の向上した混合塩を製造する処理方法を見いだすべく鋭意検討した結果、塩水濃縮工程、脱NH工程、塩晶析工程を組み合わせることにより上記課題を解決することができることを見いだして本発明をなすに至ったものである。
すなわち、本発明の構成は次に記載する通りのものである。
In the waste treatment system that solves these problems, gasifies and reforms waste, and cleans and purifies to obtain purified synthesis gas, the quality of the waste waste liquid is reusable as a resource. As a result of intensive investigations to find a treatment method for producing a mixed salt with improved quality, it was found that the above problem can be solved by combining a salt water concentration step, a de-NH 4 step, and a salt crystallization step. Has been reached.
That is, the configuration of the present invention is as described below.

(1)廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、Clの各イオンを含有する塩水から塩を製造する塩製造方法において、少なくとも、塩水濃縮工程、脱NH工程、塩晶析工程を含み、該塩晶析工程で得られた塩スラリーを脱水工程によって脱水することを特徴とする塩製造方法。
(2)前記脱水工程が遠心分離によって行われることを特徴とする上記(1)の塩製造方法。
(3)前記塩晶析工程が真空蒸発によって行われることを特徴とする上記(1)、(2)の塩製造方法。
(4)前記真空蒸発の際に蒸発蒸気に同伴される塩分をサイクロン又はデミスターによって除去することを特徴とする上記(3)の塩製造方法。
(1) From salt water containing each ion of Na, NH 4 , Ca, Cl generated in an exhaust gas treatment system when waste is melted and gasified or incinerated, or when waste incinerated ash is melted A salt production method for producing a salt, comprising at least a salt water concentration step, a de-NH 4 step, and a salt crystallization step, wherein the salt slurry obtained in the salt crystallization step is dehydrated by a dehydration step. Production method.
(2) The salt production method according to the above (1), wherein the dehydration step is performed by centrifugation.
(3) The salt production method according to the above (1) or (2), wherein the salt crystallization step is performed by vacuum evaporation.
(4) The salt production method according to the above (3), wherein a salt content accompanying the evaporated vapor during the vacuum evaporation is removed by a cyclone or a demister.

(5)前記脱NH工程が被処理液にNaOHを添加し真空蒸発処理によって行われることを特徴とする上記(1)〜(4)の塩製造方法。
(6)前記脱NH工程における真空蒸発処理が多重効用缶を用いた真空蒸発によって行われることを特徴とする上記(5)の塩製造方法。
(7)前記脱NH工程における真空蒸発処理が被処理液のpHを10〜13.5のアルカリ性として行われることを特徴とする上記(5)、(6)の塩製造方法。
(8)前記の、塩水濃縮工程、脱NH工程、塩晶析工程の各工程がこの順に進行することを特徴とする上記(1)〜(7)の塩製造方法。
(5) The method for producing a salt according to the above (1) to (4), wherein the de-NH 4 step is performed by adding NaOH to the liquid to be treated and performing a vacuum evaporation treatment.
(6) The salt production method according to the above (5), wherein the vacuum evaporation treatment in the de-NH 4 step is performed by vacuum evaporation using a multi-effect can.
(7) The method for producing a salt according to (5) or (6) above, wherein the vacuum evaporation treatment in the de-NH 4 step is performed with the pH of the liquid to be treated being alkaline of 10 to 13.5.
(8) The salt production method according to any one of (1) to (7) above, wherein each of the salt water concentration step, the de-NH 4 step, and the salt crystallization step proceeds in this order.

(9)前記塩水に含まれるCaを除去するCa除去工程を更に含むことを特徴とする上記(1)〜(8)の塩製造方法。
(10)前記Ca除去工程が、脱NH工程の前に行われることを特徴とする上記(9)の塩製造方法。
(11)前記の、Ca除去工程、塩水濃縮工程、脱NH工程、塩晶析工程の各工程がこの順に進行することを特徴とする上記(9)、(10)の塩製造方法。
(12)廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、Clの各イオンを含有する塩水から塩を製造する塩製造装置において、該装置が、少なくとも、塩水濃縮手段、脱NH手段、塩晶析手段を含み、かつ、塩晶析手段によって得られた塩スラリーを脱水する脱水手段を具備したことを特徴とする塩製造装置。
(9) The method for producing a salt according to (1) to (8) above, further comprising a Ca removing step of removing Ca contained in the salt water.
(10) the Ca removal step, the method of salt preparation above (9), characterized in that it is performed prior to de-NH 4 steps.
(11) The method for producing a salt according to (9) or (10) above, wherein the steps of the Ca removal step, the salt water concentration step, the de-NH 4 step, and the salt crystallization step proceed in this order.
(12) From salt water containing each ion of Na, NH 4 , Ca, Cl generated in an exhaust gas treatment system when waste gasification or incineration treatment or waste incineration ash is melt treatment in the salt producing apparatus for producing salt, said apparatus, comprising at least, brine concentration means, de-NH 4 means includes ShioAkira析means, and a dewatering means for dewatering the salt slurry obtained by ShioAkira析means The salt manufacturing apparatus characterized by having performed.

(13)廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、Clの各イオンを含有する塩水から塩を製造する塩製造装置において、該装置が、少なくとも、Ca除去手段、塩水濃縮手段、脱NH手段、塩晶析手段を含み、かつ、塩晶析手段によって得られた塩スラリーを脱水する脱水手段を具備したことを特徴とする塩製造装置。
(14)上記(1)〜(11)の塩製造方法によって製造され、その不純物濃度が、NH≦10mg/kg(dry)であることを特徴とする塩。
(13) From salt water containing each ion of Na, NH 4 , Ca, Cl generated in an exhaust gas treatment system when waste is melted and gasified or incinerated or when incinerated ash of waste is melted in the salt producing apparatus for producing salt, the apparatus is, at least, Ca removal means, brine concentration means, de-NH 4 means includes ShioAkira析means, and, dewatering the salt slurry obtained by ShioAkira析means A salt production apparatus comprising a dehydrating means.
(14) A salt produced by the salt production method of (1) to (11) above, wherein the impurity concentration is NH 4 ≦ 10 mg / kg (dry).

本発明によれば、廃棄物を溶融ガス化処理又は焼却処理する際に、ガス処理系で発生する塩を含有する塩水から、苛性ソーダ工業用原料等に再利用できる品質の高い混合塩を製造することができる。   According to the present invention, when waste is gasified or incinerated, a high-quality mixed salt that can be reused as raw materials for caustic soda industry is produced from salt water containing a salt generated in a gas treatment system. be able to.

廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、Clの各イオンを含有する塩水から塩を有価物として再利用するには、混合塩中に含まれるNHの量を低減しなければならない。
例えば、苛性ソーダ工業用原料として塩を再利用するには、下記の表1に示したような程度にまで不純物濃度を低減させることが好ましい。
Salt is valuable from salt water containing each ion of Na, NH 4 , Ca, Cl generated in the exhaust gas treatment system when waste is melted and gasified or incinerated, or when waste incineration ash is melted. In order to reuse it as a product, the amount of NH 4 contained in the mixed salt must be reduced.
For example, in order to reuse salt as a caustic soda industry raw material, it is preferable to reduce the impurity concentration to the extent shown in Table 1 below.

Figure 2006213535
Figure 2006213535

上記不純物を除去するため、本発明の塩製造方法は、少なくとも、塩水濃縮工程、脱NH工程、塩晶析工程を含んでおり、更にはCa除去工程を含んでいる。
本発明の方法を実施するための工程図の一例を図2に示し、この図に基づいて本発明を説明する。
In order to remove the impurities, the salt production method of the present invention includes at least a salt water concentration step, a de-NH 4 step, a salt crystallization step, and further includes a Ca removal step.
An example of a process chart for carrying out the method of the present invention is shown in FIG. 2, and the present invention will be described based on this figure.

塩原水は凝集沈殿装置Aに送られる。凝集沈澱装置Aには凝集剤(FeCl、NaOH、NaCO等)が供給され、ここでCaを凝集分離し汚泥(a1)として排出する。これは、Caが次工程のアンモニア蒸発工程でスケールを生成する可能性が高いので、ここで予めCaを除去しておくためである。 The salt raw water is sent to the coagulation sedimentation apparatus A. Coagulating agents (FeCl 3 , NaOH, Na 2 CO 3, etc.) are supplied to the coagulating sedimentation apparatus A, where Ca is coagulated and separated and discharged as sludge (a1). This is because Ca is likely to generate a scale in the next ammonia evaporation step, and therefore Ca is previously removed here.

凝集沈殿装置Aにおいて沈殿物から分離された分離液(a2)は予熱された後、真空蒸発装置Bに送られ、ここで、アンモニア(b2)を蒸発除去する。蒸発装置としては、低温度で蒸発操作が可能であり、必要熱量が少なくて済み、材質面でも有利な真空蒸発装置を用いることが好ましく、多重効用缶を用いた真空蒸発装置がより好ましい。   The separated liquid (a2) separated from the precipitate in the coagulating sedimentation apparatus A is preheated and then sent to the vacuum evaporation apparatus B, where ammonia (b2) is removed by evaporation. As the evaporation apparatus, it is preferable to use a vacuum evaporation apparatus that can perform an evaporation operation at a low temperature, requires a small amount of heat, and is advantageous in terms of material, and more preferably a vacuum evaporation apparatus using a multi-effect can.

蒸発に際しては処理液をpH10〜13.5のアルカリ性とすることが好ましい。アンモニアを除去するにはpH12.5程度は必要であり、pH10未満であるとアンモニアの除去効率が悪い。また、pH13.5を超えると蒸発缶の材質に悪影響を及ぼすので好ましくない。蒸発したアンモニアは水蒸気と共にコンデンサーで凝縮され、アンモニア(b2)を溶解した凝縮水(安水)となり、貯蔵されたのち、適宜、図示しないアンモニアストリッパーにより安水からアンモニアガスを放散させて、このアンモニアの一部はアンモニア分解工程で窒素ガスと水蒸気とに分解した後、系外に放出され、残部は、必要に応じてアンモニア無触媒脱硝酸反応器に供給される。   When evaporating, the treatment liquid is preferably made alkaline with a pH of 10 to 13.5. In order to remove ammonia, about pH 12.5 is necessary, and if it is less than pH 10, the removal efficiency of ammonia is poor. Moreover, since it will have a bad influence on the material of an evaporator when pH13.5 is exceeded, it is unpreferable. The evaporated ammonia is condensed in a condenser together with water vapor to become condensed water (another water) in which ammonia (b2) is dissolved. After being stored, the ammonia gas is appropriately diffused from the aqueous solution by an ammonia stripper (not shown). Part of this is decomposed into nitrogen gas and water vapor in the ammonia decomposition step, and then released to the outside of the system, and the remainder is supplied to an ammonia-free catalytic denitration reactor as required.

真空蒸発装置で濃縮された塩水(b1)は晶析装置Cに送られる。晶析装置としては、加熱蒸発装置、真空加熱蒸発装置等を用いることができる。   The salt water (b1) concentrated by the vacuum evaporator is sent to the crystallizer C. As the crystallization apparatus, a heating evaporation apparatus, a vacuum heating evaporation apparatus, or the like can be used.

晶析装置Cから排出される塩スラリー(c1)は脱水装置Dに送って脱水し混合塩(d1)を得る。得られた混合塩は製品として系外に搬出され、分離水(d2)は晶析装置Cに戻される。脱水装置Dとしては、遠心分離機、フィルタープレス等を用いることができる。   The salt slurry (c1) discharged from the crystallizer C is sent to the dehydrator D and dehydrated to obtain a mixed salt (d1). The obtained mixed salt is carried out of the system as a product, and the separated water (d2) is returned to the crystallizer C. As the dehydrator D, a centrifuge, a filter press, or the like can be used.

晶析装置Cから排出される蒸発蒸気(c2)は凝縮後、再利用水として系内で使用される。晶析装置Cから排出される蒸発蒸気(c2)は上記のように、再利用水として利用されるので、蒸発蒸気に同伴される塩分はサイクロン又はデミスターによって除去し塩分濃度を低めておくことが好ましい。   The evaporated vapor (c2) discharged from the crystallizer C is condensed and then used as reused water in the system. Since the evaporated vapor (c2) discharged from the crystallizer C is used as reused water as described above, the salt content accompanying the evaporated vapor may be removed by a cyclone or demister to reduce the salt concentration. preferable.

ガス化溶融炉のガス処理系で発生した塩水(塩原水中の塩濃度1〜5%、流量350m/日)を図2に示したフローで処理した。脱アンモニア工程ではpHを約12.5に制御した。
塩原水中の不純物濃度及び得られた混合塩中の不純物濃度は表2に示すとおりであった。表2に示すように、本発明の方法によって得られた混合塩は苛性ソーダ工業用原料として再利用することができる程度に不純物濃度が低減されている。
Salt water generated in the gas treatment system of the gasification melting furnace (salt concentration of 1 to 5% in the salt raw water, flow rate of 350 m 3 / day) was treated by the flow shown in FIG. In the deammonification step, the pH was controlled at about 12.5.
The impurity concentration in the salt raw water and the impurity concentration in the obtained mixed salt were as shown in Table 2. As shown in Table 2, the mixed salt obtained by the method of the present invention has an impurity concentration reduced to such an extent that it can be reused as a raw material for the caustic soda industry.

Figure 2006213535
Figure 2006213535

本発明の方法によれば、廃棄物処理装置から排出されるNa等の塩を含む原水から不純物濃度が低く品質の高い塩を製造することができるので、得られた塩を苛性ソーダ工業用原料等に再利用することができる。   According to the method of the present invention, a salt with a low impurity concentration and high quality can be produced from raw water containing a salt such as Na discharged from a waste treatment apparatus, so that the obtained salt can be used as a raw material for caustic soda industry, etc. Can be reused.

廃棄物をガス化改質方式で処理する場合のプロセスフロー図の一例を示す図である。It is a figure which shows an example of the process flowchart in the case of processing a waste material by a gasification reforming system. 本発明の塩製造方法を実施するための各工程を示す図である。It is a figure which shows each process for enforcing the salt manufacturing method of this invention.

符号の説明Explanation of symbols

1 ピット
2 プレス
3 脱ガスチャンネル
4 高温反応炉
5 均質化炉
6 PSA(Pressure Swing Adsorption;圧力スイング吸着)
7 水冷システム
8 急冷装置
9 マルチスクラバー
10 ガスエンジン発電機
11 洗浄塔
12 沈降槽
13 水処理装置
14 塩製造装置
15 熱交換器
1 Pit 2 Press 3 Degassing Channel 4 High Temperature Reactor 5 Homogenizing Furnace 6 PSA (Pressure Swing Adsorption)
7 Water cooling system 8 Quenching device 9 Multi scrubber
10 Gas engine generator
11 Washing tower
12 Settling tank
13 Water treatment equipment
14 Salt production equipment
15 Heat exchanger

Claims (14)

廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、Clの各イオンを含有する塩水から塩を製造する塩製造方法において、少なくとも、塩水濃縮工程、脱NH工程、塩晶析工程を含み、該塩晶析工程で得られた塩スラリーを脱水工程によって脱水することを特徴とする塩製造方法。 Manufactures salt from salt water containing Na, NH 4 , Ca, Cl ions generated in exhaust gas treatment system when waste is melted or gasified or incinerated, or waste incinerated ash is melted A salt production method comprising: at least a salt water concentration step, a de-NH 4 step, and a salt crystallization step, wherein the salt slurry obtained in the salt crystallization step is dehydrated by a dehydration step. 前記脱水工程が遠心分離によって行われることを特徴とする請求項1記載の塩製造方法。   The salt production method according to claim 1, wherein the dehydration step is performed by centrifugation. 前記塩晶析工程が真空蒸発によって行われることを特徴とする請求項1又は2記載の塩製造方法。   The salt production method according to claim 1 or 2, wherein the salt crystallization step is performed by vacuum evaporation. 前記真空蒸発の際に蒸発蒸気に同伴される塩分をサイクロン又はデミスターによって除去することを特徴とする請求項3記載の塩製造方法。   The salt production method according to claim 3, wherein a salt content accompanying the evaporated vapor during the vacuum evaporation is removed by a cyclone or a demister. 前記脱NH工程が被処理液にNaOHを添加し真空蒸発処理によって行われることを特徴とする請求項1〜4のいずれかに記載の塩製造方法。 The method of salt preparation according to claim 1, wherein the de-NH 4 step is performed by adding a vacuum evaporation process the NaOH liquid to be treated. 前記脱NH工程における真空蒸発処理が多重効用缶を用いた真空蒸発によって行われることを特徴とする請求項5記載の塩製造方法。 The de-NH 4 method of salt preparation according to claim 5, wherein the vacuum evaporation process in the step is characterized by being performed by vacuum evaporation using multiple-effect evaporator. 前記脱NH工程における真空蒸発処理が被処理液のpHを10〜13.5のアルカリ性として行われることを特徴とする請求項5又は6記載の塩製造方法。 The method for producing a salt according to claim 5 or 6, wherein the vacuum evaporation treatment in the de-NH 4 step is performed with the pH of the liquid to be treated being alkaline of 10 to 13.5. 前記の、塩水濃縮工程、脱NH工程、塩晶析工程の各工程がこの順に進行することを特徴とする請求項1〜7のいずれかに記載の塩製造方法。 The salt production method according to any one of claims 1 to 7, wherein each of the salt water concentration step, the de-NH 4 step, and the salt crystallization step proceeds in this order. 前記塩水に含まれるCaを除去するCa除去工程を更に含むことを特徴とする請求項1〜8のいずれかに記載の塩製造方法。   The salt production method according to claim 1, further comprising a Ca removal step of removing Ca contained in the salt water. 前記Ca除去工程が、脱NH工程の前に行われることを特徴とする請求項9に記載の塩製造方法。 The Ca removal step, the method of salt preparation according to claim 9, characterized in that it is performed prior to de-NH 4 steps. 前記の、Ca除去工程、塩水濃縮工程、脱NH工程、塩晶析工程の各工程がこの順に進行することを特徴とする請求項9又は10に記載の塩製造方法。 The method for producing a salt according to claim 9 or 10, wherein each of the Ca removal step, the salt water concentration step, the de-NH 4 step, and the salt crystallization step proceeds in this order. 廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、Clの各イオンを含有する塩水から塩を製造する塩製造装置において、該装置が、少なくとも、塩水濃縮手段、脱NH手段、塩晶析手段を含み、かつ、塩晶析手段によって得られた塩スラリーを脱水する脱水手段を具備したことを特徴とする塩製造装置。 Manufactures salt from salt water containing Na, NH 4 , Ca, Cl ions generated in exhaust gas treatment system when waste is melted or gasified or incinerated, or waste incinerated ash is melted In the salt producing apparatus, the apparatus includes at least a salt water concentrating means, a de-NH 4 means, a salt crystallization means, and a dehydrating means for dehydrating the salt slurry obtained by the salt crystallization means. A salt production apparatus. 廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、Clの各イオンを含有する塩水から塩を製造する塩製造装置において、該装置が、少なくとも、Ca除去手段、塩水濃縮手段、脱NH手段、塩晶析手段を含み、かつ、塩晶析手段によって得られた塩スラリーを脱水する脱水手段を具備したことを特徴とする塩製造装置。 Manufactures salt from salt water containing Na, NH 4 , Ca, Cl ions generated in exhaust gas treatment system when waste is melted or gasified or incinerated, or waste incinerated ash is melted In the salt manufacturing apparatus, the apparatus includes at least a Ca removing unit, a salt water concentrating unit, a deNH 4 unit, a salt crystallization unit, and a dehydrating unit that dehydrates the salt slurry obtained by the salt crystallization unit. A salt production apparatus characterized by comprising. 請求項1〜11のいずれかに記載の塩製造方法によって製造され、その不純物濃度が、NH≦10mg/kg(dry)であることを特徴とする塩。 A salt produced by the method for producing a salt according to claim 1, wherein the impurity concentration is NH 4 ≦ 10 mg / kg (dry).
JP2005025190A 2005-02-01 2005-02-01 Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace Pending JP2006213535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025190A JP2006213535A (en) 2005-02-01 2005-02-01 Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025190A JP2006213535A (en) 2005-02-01 2005-02-01 Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace

Publications (1)

Publication Number Publication Date
JP2006213535A true JP2006213535A (en) 2006-08-17

Family

ID=36977074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025190A Pending JP2006213535A (en) 2005-02-01 2005-02-01 Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace

Country Status (1)

Country Link
JP (1) JP2006213535A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269579A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd System for producing sodium chloride
JP2012055851A (en) * 2010-09-10 2012-03-22 Jfe Engineering Corp Refining method of by-product salt, by-product salt, and antifreezing agent
JP2013202475A (en) * 2012-03-28 2013-10-07 Sumitomo Metal Mining Engineering Co Ltd Method of removing ammonia from ammonia-containing wastewater
CN110711764A (en) * 2019-10-29 2020-01-21 江苏盛勤环境工程有限公司 Solid waste salt recycling process technology
US10815132B2 (en) 2017-04-21 2020-10-27 China Petroleum & Chemical Corporation Apparatus and method for treating waste water containing ammonium salts
US10829401B2 (en) 2017-08-28 2020-11-10 China Petroleum & Chemical Corporation Apparatus and method for treating waste water containing ammonium salts
WO2020256151A1 (en) * 2019-06-21 2020-12-24 積水化学工業株式会社 Method for producing purified gas and apparatus for producing purified gas
CN113003826A (en) * 2021-03-01 2021-06-22 新疆佳宇恒能源科技有限公司 Harmless treatment method of desulfurization waste alkali liquor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269579A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd System for producing sodium chloride
JP2012055851A (en) * 2010-09-10 2012-03-22 Jfe Engineering Corp Refining method of by-product salt, by-product salt, and antifreezing agent
JP2013202475A (en) * 2012-03-28 2013-10-07 Sumitomo Metal Mining Engineering Co Ltd Method of removing ammonia from ammonia-containing wastewater
US10815132B2 (en) 2017-04-21 2020-10-27 China Petroleum & Chemical Corporation Apparatus and method for treating waste water containing ammonium salts
US11572289B2 (en) 2017-04-21 2023-02-07 China Petroleum & Chemical Corporation Apparatus and method for treating waste water containing ammonium salts
US10829401B2 (en) 2017-08-28 2020-11-10 China Petroleum & Chemical Corporation Apparatus and method for treating waste water containing ammonium salts
WO2020256151A1 (en) * 2019-06-21 2020-12-24 積水化学工業株式会社 Method for producing purified gas and apparatus for producing purified gas
JPWO2020256151A1 (en) * 2019-06-21 2020-12-24
JP7463364B2 (en) 2019-06-21 2024-04-08 積水化学工業株式会社 Purified gas production method and purified gas production apparatus
CN110711764A (en) * 2019-10-29 2020-01-21 江苏盛勤环境工程有限公司 Solid waste salt recycling process technology
CN113003826A (en) * 2021-03-01 2021-06-22 新疆佳宇恒能源科技有限公司 Harmless treatment method of desulfurization waste alkali liquor

Similar Documents

Publication Publication Date Title
JP2006213535A (en) Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace
JP4594821B2 (en) Purification method of gasification gas
CN210523360U (en) Processing system for waste salt resourceful treatment
JP3985052B2 (en) Waste treatment method in gasification reforming system
JP5817993B2 (en) Fluorine-containing waste processing method and fluorine-containing waste processing apparatus
JP2008174393A (en) Method for producing salt
JP2000328070A (en) Waste gasification treatment method
KR101612171B1 (en) Method for gasifying solid raw material containing carbon
US20130330266A1 (en) Recovery of sulfur from sulfur-containing waste
JP3843940B2 (en) Method for producing mixed salt from waste in gasification reforming system
CN210523361U (en) Waste salt resourceful treatment processing system
JP4456899B2 (en) Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste
JPH03502464A (en) Treatment method for wastewater generated during coal pyrolysis
JP3989192B2 (en) Treatment method of chlorine content in waste in gasification reforming system
KR101981457B1 (en) Gas processing apparatus and method thereof
JP4429066B2 (en) How to remove iodine from salt water
JP2000328069A (en) Waste gasification method and equipment
JP2005068535A (en) Method of treating gas or flying ash containing lead and zinc
JP4118240B2 (en) How to recover lead from waste
JP3220669B2 (en) Waste treatment method and equipment
JP2019072678A (en) Method of processing aluminum-containing waste
JP2011241339A (en) Desalter and desalting method for chlorine-containing waste material
JP2006104339A (en) Method for gasification-reforming wastes
CN210522218U (en) Tail gas treatment system for waste salt resourceful treatment
IT201800007111A1 (en) PROCESS FOR THE RECOVERY OF WATER CONTAMINATED BY FLORINATED COMPOUNDS AND ELIMINATION OF POLLUTANTS

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070604