JPH03502464A - Treatment method for wastewater generated during coal pyrolysis - Google Patents

Treatment method for wastewater generated during coal pyrolysis

Info

Publication number
JPH03502464A
JPH03502464A JP1501719A JP50171989A JPH03502464A JP H03502464 A JPH03502464 A JP H03502464A JP 1501719 A JP1501719 A JP 1501719A JP 50171989 A JP50171989 A JP 50171989A JP H03502464 A JPH03502464 A JP H03502464A
Authority
JP
Japan
Prior art keywords
coke
water
gasification
gas
salt solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1501719A
Other languages
Japanese (ja)
Inventor
シユタルヘルム,デイーター
テイツプマー,クルト
ローマン,デイーター
Original Assignee
シユテイル オツトー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シユテイル オツトー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング filed Critical シユテイル オツトー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
Publication of JPH03502464A publication Critical patent/JPH03502464A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/169Integration of gasification processes with another plant or parts within the plant with water treatments
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 石炭熱分解の際に生じる廃水の処理方法本発明は、石炭熱分解の際に生じる廃水 を処理するため、廃水を濾過、蒸留の後1.逆浸透法によりコークス製造プロセ スに戻しうる低塩含量の透過液と製塩溶液とに分け、製塩溶液を全部または部分 的に高温の還元性雰囲気中で分解し、塩を分離する方法に関する。[Detailed description of the invention] A method for treating wastewater generated during coal pyrolysis The present invention is a method for treating wastewater generated during coal pyrolysis. After filtering and distilling the wastewater, 1. Coke production process by reverse osmosis Separate the permeate with low salt content, which can be returned to the bath, and the salt-making solution, and remove all or part of the salt-making solution. The present invention relates to a method for decomposing salts in a reducing atmosphere at high temperatures and separating salts.

通例、石炭熱分解の際に生じる過剰の廃水は、有害な無機および有機物質による 高い負荷に基づぎ処理しなければならない。Typically, the excess wastewater produced during coal pyrolysis is contaminated with harmful inorganic and organic substances. Must be processed based on high loads.

コークス炉ガス処理製造の工程組立により、石炭水(KohIewassar) 後九理系は種々に設計されていてもよい。しかし、すべての系にとり、有機物質 を廃水中の生態学的に許容しうる限界値にまで除去することが原則的に必要であ る。Coal water (KohIewassar) is produced by coke oven gas processing manufacturing process assembly. The post-Kuri system may be designed in various ways. However, for all systems, organic matter It is in principle necessary to remove wastewater to ecologically acceptable limits in wastewater. Ru.

西ドイツ国特許出願公開第3532390号明細書から上記部類の方法は公知で あり、この場合廃水の浄化は濾過、水蒸気ストリッピングでの放散、逆浸透法、 フラッシュ蒸発による濃縮および生物学的浄化のようなプロセス技術の利用下に 実施され、得られる透過液は用水として工程に戻すことができる。このプロセス 技術において生じる濃縮物は、塩素、硫酸塩、硝酸塩、チオシアン酸塩およびチ オ硫酸塩のような毒性有害物質が陽イオン、たとえばNa+に結合している塩溶 液であり、放散系の場合には固着しているNH3を同様にストリッピングしなけ ればならない。From West German Patent Application No. 35 32 390 a method of the above class is known. Yes, in this case wastewater purification can be done by filtration, vapor stripping, reverse osmosis, Under the use of process technologies such as concentration by flash evaporation and biological purification The permeate obtained can be returned to the process as service water. this process Concentrates produced in the technology contain chlorine, sulfate, nitrate, thiocyanate and thiocyanate. Salt solutions in which toxic hazardous substances such as osulfates are bound to cations, e.g. Na+ It is a liquid, and in the case of a dissipative system, fixed NH3 must be stripped in the same way. Must be.

製塩溶液を利用または無害化するために、西ドイツ国特許出願公開第35323 90号明細書によれば、該製塩溶液をコークス化プロセスに戻すかまたはアルカ リ回収を有する別個の塩分解装意中で後も理することが規定されている。コーク ス化プロセス中への製塩溶液の添加は殊に高水量を同時に添加する場合、コーク ス化の際に問題が生じるかないしはコークス炉壁に損傷が生じうる。本来の塩分 解装意中での分解はエネルギーおよび装置にかなりの付加的費用を必要とする本 発明の課題は、最初に述べた方法を殊にこの問題の点で改良し、それと共にコー クス化系から工程廃水を排出する必要のないエネルギー節約的で環境汚染のない 方法を提案することである。For the use or detoxification of salt solutions, West German Patent Application No. 35323 According to No. 90, the salt-making solution is returned to the coking process or It is specified that the salts should be further processed in a separate salt decomposition unit with recovery. Coke The addition of salt-making solutions during the sulfurization process, especially when high water quantities are added at the same time, Problems may occur during sulfurization or damage to the coke oven walls may occur. natural salt content Disassembly during disassembly requires considerable additional costs in energy and equipment. The problem of the invention is to improve the method mentioned at the outset, especially with regard to this problem, and to improve it with code. Energy-saving and environmentally friendly as there is no need to discharge process wastewater from the processing system The purpose is to propose a method.

この課題の解決法は特許請求の範囲の請求”Jlの特徴部に記載されている。請 求項2〜14は、この本発明による方法の有用な実施態様を含む。A solution to this problem is described in the characterizing part of the patent claims "Jl." Claims 2 to 14 contain useful embodiments of this method according to the invention.

本発明方法では、製塩溶液の後処理のための付加的分解装置は省略することがで きる。塩溶液を高価な付加的エネルギーを用いて高い反応温度に加熱することも 必要でない。その代りに、灼熱コークスの感熱をコークス化室から出た後に利用 し、同時に高価値の水素および一酸化炭素含有分解ガスを発生させる。高温コー クスの熱エネルギーも、水蒸気転換によって有用な化学エネルギーに変換される 。In the method of the invention, an additional decomposition device for after-treatment of the salt-making solution can be omitted. Wear. Salt solutions can also be heated to high reaction temperatures using expensive additional energy. Not necessary. Instead, the heat sensitivity of the scorching coke is utilized after it leaves the coking chamber. At the same time, high-value hydrogen and carbon monoxide-containing cracked gases are generated. high temperature cord The thermal energy of the gas is also converted into useful chemical energy through steam conversion. .

さらに、石炭水の有害成分を高温のコークスを用い1000〜1100℃で分解 する本発明による提案は一コークス/廃水の質量比のt;め既に逆浸透法の排除 物(Retentat)を、さらに濃縮せずに利用することができ; 〜反応速度論では第1工程で小さいコークス粒子またはコークス縁を水蒸気と反 応させるので、粉塵脱離のための乾式コークス後処理は不要であり;−逆浸透法 による濃縮のためおよび塩分解装置の還元性雰囲気の製造のために、蒸気および ガスの形の付加的エネルギーは必要でなく; 一コークス乾式冷却装置の貧ガス利用は不要であるという利点を有する。Furthermore, harmful components of coal water are decomposed using high-temperature coke at 1000-1100℃. The present invention proposes a coke/wastewater mass ratio of t; which already eliminates the reverse osmosis process. can be used without further concentration; ~ In reaction kinetics, the first step is to react small coke particles or coke edges with water vapor. - Reverse osmosis method eliminates the need for dry coke post-treatment for dust removal steam and No additional energy in the form of gas is required; It has the advantage that poor gas utilization in a coke dry chiller is not necessary.

本発明方法の原理は第1図および第2図に例示的に図示されており、数値例につ き詳述する。The principle of the method of the invention is illustrated illustratively in FIGS. 1 and 2, and numerical examples are given below. I will explain in detail.

第1図は塩溶液を高温コークスに直接装入するまでのタール/水分離からの廃水 の後処理を示す。Figure 1 shows the wastewater from tar/water separation before charging the salt solution directly to the hot coke. This shows the post-processing.

第2図は第1@と比べて変更された、ガス化コークス冷却装置の具体的原理図を 示す。Figure 2 shows the specific principle diagram of the gasified coke cooling system, which has been changed compared to Figure 1. show.

下記の数値例に記載された数値は、すべて毎時の旭理量に関する。All numerical values listed in the numerical examples below relate to hourly Asahi scientific quantities.

灰分10.4tおよび遊離水16.7tを有するコークス月次235tをコーク ス化する場合、>1150℃の温度で1100℃までの温度を有するコークス1 63.7tおよび850℃までの温度を有する粗ガス71、.3tが生産される 。粗ガスは、循環水により811に冷却され、引き続き前冷却器中で18℃に冷 却される。この前浄化の際に、タール/水分離器2中での分離およびデカンテー シaンによって、濃縮および吸収可能成分約6.3t、粗タール3 7.7tお よび水相25.2 (が生成する。Coke 235 tons of coke per month with 10.4 tons of ash and 16.7 tons of free water. Coke 1 with a temperature of >1150 °C and up to 1100 °C when carbonizing 63.7 t and a temperature of up to 850° C. crude gas 71, . 3t is produced . The crude gas is cooled to 811°C by circulating water and subsequently cooled to 18°C in a precooler. Rejected. During this pre-purification, separation in tar/water separator 2 and decanting Approximately 6.3 tons of concentrated and absorbable components and 37.7 tons of crude tar were produced by cyanide. and aqueous phase 25.2 ( are generated.

熱分解の水相は、量が内循環廃水流により約42m35に増加し、アンモニアの 固定塩500J+gおよび揮発性塩146kgならびにフェノール75kg、ピ リジン塩基12kgおよび芳香族炭化水素およびカルボン酸3kgで負荷されて いた。The aqueous phase of the pyrolysis increases in volume to approximately 42 m35 due to the internal circulation wastewater stream and contains ammonia. 500 J+g of fixed salt and 146 kg of volatile salt and 75 kg of phenol, Loaded with 12 kg of lysine base and 3 kg of aromatic hydrocarbons and carboxylic acids there was.

石炭水および循環流は砂礫フィルター系6中で分散しているタールおよび固形物 粒子が除去され、引き続き十字流濾過の原理によるフィルター系10中でコロイ ド指数〈lに調節される。The coal water and circulating flow contain tar and solids dispersed in the gravel filter system 6. The particles are removed and the colloid is subsequently removed in a filter system 10 according to the principle of cross-flow filtration. The index is adjusted to <l.

濾過10の透過液11は35+m3であり、硫黄処理プロセスからの凝縮物12 1m3の添加により、NH3分離器13用のフィード流として36m3に増加さ れるストリッパー13は水蒸気ストリッピングの原理に従い6tの直接蒸気添加 15により作業する。ストリッパー13の塔頂からは、NH3、H2S、HCN のようなガスおよび揮発性アンモニア化合物L42kg、−yエノール約11k g、ピリジン塩基約11bi+および芳香族物質約2kgで負荷された水蒸気1 tが脱酸塔へ流出する。水蒸気さらに1t〜2tが塔中央部から取出され、脱酸 塔のストリッピング蒸気として利用される。The permeate 11 of the filtration 10 is 35+m3 and the condensate 12 from the sulfur treatment process Addition of 1 m3 increases to 36 m3 as feed stream for NH3 separator 13. The stripper 13 is equipped with 6 tons of direct steam addition according to the principle of steam stripping. 15. From the top of the stripper 13, NH3, H2S, HCN Gases and volatile ammonia compounds such as L42kg, -y enol approx. 11k g, steam 1 loaded with about 11 bi+ of pyridine base and about 2 kg of aromatics. t flows out to the deoxidizing tower. Another 1 t to 2 t of water vapor is taken out from the center of the tower and deoxidized. Used as stripping steam for towers.

ストリッパー13の廃水15aは約40II3であって、なお塩約500 kg 、フェノール64に9およびピリジン塩基および芳香族物質約2kgで負荷され かつ7〜8のpH値を有する。30℃に冷却しt;後、廃水は分別原理に従って 作業する逆浸透系(RO−システム)20〜22で種々の両分に分けられる。The wastewater 15a of the stripper 13 has a volume of about 40II3 and about 500 kg of salt. , phenol 64 was loaded with 9 and pyridine base and about 2 kg of aromatics. and has a pH value of 7-8. After cooling to 30°C, the wastewater is separated according to the principle of separation. The working reverse osmosis system (RO-system) 20-22 is divided into various parts.

無機成分および有機成分に対する逆浸透膜の排除力(Rueckhaltver moegen)および選択性は、若干の規則に依存するニ ー多価イオンは1価イオンよりも良好に排除される。Removal power of reverse osmosis membrane for inorganic and organic components (Rueckhaltver moegen) and selectivity depend on some rules. - Multivalent ions are rejected better than singly charged ions.

−弱無機および有機酸に対する排除力はpH値および膜に強く依存する。-The rejection power for weak inorganic and organic acids is strongly dependent on the pH value and the membrane.

一負の排除力(透過液に溶解している物質の濃度増加)が可能である、たとえば フェノール類およびペンゾールの水溶液。A negative displacement force (increase in the concentration of the substance dissolved in the permeate) is possible, e.g. Aqueous solutions of phenols and pensol.

これらの規則を使用して、第1図に示した本発明による分別逆浸透系を発展させ た。Using these rules, we developed a fractionated reverse osmosis system according to the invention as shown in Figure 1. Ta.

冷却後、ストリッピングした廃水のpH値を、少量の酸を加えてpH<5に調節 し、安全上の理由からフィルター18に通した。After cooling, the pH value of the stripped wastewater is adjusted to pH<5 by adding a small amount of acid. and passed through filter 18 for safety reasons.

膜系の第1段20は、塩に対する排除率が〉93%であり、フェノールに対する 排除率が〈7%であるアセチルセルロースを主体とする膜を有するROモジュー ルである。フィード側で50バールの圧力の場合、フェノール60129および 塩22kgで負荷されていた透過液23 29+a3がつくられた。ll+m3 の量の排除物、つまり塩溶液32は、塩約480に9およびフェノール4kgで 負荷されており、これは30℃で約30バールの浸透圧を示す。The first stage 20 of the membrane system has a rejection rate of >93% for salts and a rejection rate for phenols. RO module with a membrane mainly composed of acetyl cellulose with a rejection rate of <7% It is le. For a pressure of 50 bar on the feed side, phenol 60129 and A permeate 23 29+a3 was produced which was loaded with 22 kg of salt. ll+m3 amount of reject, i.e. salt solution 32, is approximately 480 to 9 of salt and 4 kg of phenol. loaded, which exhibits an osmotic pressure of approximately 30 bar at 30°C.

RO系の第2段21は、塩基24の添加により調節される8〜9のpH価で作業 する。この段の膜材料はポリアミドを主体とし、フェノールに対する排除率〉9 5%である。30バールのフィード側作業圧において、フェノール57kg(< 2重量%)で負荷されている排除物303寓3が得られる。この排除物30から 、直接にフェノールを製品31として得るかまたは排除物を、本例において意図 されているように、付加的に冷却および洗浄水4に加え、粗ガス急冷の際に利用 する。凝縮系中で7工ノール誘導体は、法則によりタール相と水相とに分配され る。The second stage 21 of the RO system operates at a pH value of 8-9, which is adjusted by the addition of a base 24. do. The membrane material in this stage is mainly made of polyamide, and the rejection rate for phenol is 9. It is 5%. At a feed-side working pressure of 30 bar, 57 kg of phenol (< 2% by weight) is obtained. From this exclusion 30 , directly obtain the phenol as product 31 or exclude the intended product in this example. In addition to the cooling and washing water4, as shown in do. In a condensed system, heptanols derivatives are distributed into a tar phase and an aqueous phase according to the law. Ru.

透過液流25は26+i3であり、なおフェノール3kyおよび塩7kgで負荷 されていて、RO系の第3段22に対するフィード流としてpH値>11に増加 される。Permeate stream 25 is 26+i3 and still loaded with 3ky phenol and 7kg salt and the pH value increases to >11 as the feed stream to the third stage 22 of the RO system. be done.

第3段は、同様に膜材料としてポリアミドを用いて作業し、これらの条件におけ るその排除力は良好で、0−151119/12よりも少量の7エノールおよび 塩<2冨9/Qを有する透過液流28 25tが生産される。■lI3の排除物 流29に第2段からの排除物30が混合される。In the third stage, we similarly worked with polyamide as the membrane material and under these conditions Its rejection power is good, containing less 7 enol and less than 0-151119/12. A permeate stream of 28.25 t with a salt content <29/Q is produced. ■lI3 exclusions Stream 29 is mixed with rejects 30 from the second stage.

透過液流28は、浄化されt;工業用水として直接にガス処理系に、たとえばN H3洗浄の際の洗浄水としてまたは完全脱塩装置フィードとして利用することが できる。The permeate stream 28 is purified; directly as industrial water to the gas treatment system, e.g. It can be used as wash water during H3 washing or as a complete desalination equipment feed. can.

透過液流28は浄化された工業用水として直接にガス処理系中で、たとえばNH 3洗浄の際の洗浄水としてまたは完全脱塩装置用フィードとして利用することが できる。The permeate stream 28 is directly treated as purified industrial water in the gas treatment system, e.g. 3. Can be used as wash water during washing or as feed for complete desalination equipment. can.

第1RO段20からの塩溶液11m3は、塩約480に9およびフェノール類約 4kgで負荷されている。塩の主成9ハN H4CI、 (N H4)2S 0 4 、(N H4)2S203およびNH4CN5であり、高度に有害物として ランク付けされる。塩素および硫黄は石炭により熱分解系に入り、生態学的に許 容しうる形で回収しなければならない。硫黄に対しては、H2S吸収装置の酸ガ スから硫酸または液体硫黄生産の可能性がある。塩素およびSイオン、たとえば so4.52o3およびCNSに対しては、廃棄が明瞭に困難であるので、一般 にアルカリ陽イオンに結合しl;塩化物、硫酸塩および錯体の形で廃水により排 出することができる。The 11 ml of salt solution from the first RO stage 20 contains about 480 to 90% salt and about 9% phenolics. It is loaded with 4 kg. Main constituents of salt 9H4CI, (NH4)2S 0 4, (NH4)2S203 and NH4CN5, which are highly hazardous substances. be ranked. Chlorine and sulfur enter the pyrolysis system through coal and are ecologically acceptable. Must be recovered in a manageable form. For sulfur, use the acid gas in the H2S absorber. There is a possibility of sulfuric acid or liquid sulfur production from the gas. Chlorine and S ions, e.g. For so4.52o3 and CNS, it is clearly difficult to dispose of them, so general binds to alkaline cations; is excreted by wastewater in the form of chlorides, sulfates and complexes. can be released.

本発明は、存在する熱分解のエネルギー源を利用する場合、残存硫黄を同様に硫 酸または液体硫黄として回収し、塩素はたとえばCa化合物に変える方法を提供 する。The present invention similarly removes residual sulfur when utilizing existing pyrolysis energy sources. Provides a method for recovery as acid or liquid sulfur and converting chlorine into e.g. Ca compounds do.

石炭235tの石炭熱分解の際、約1050℃のコークス33約165tが生じ る。この高温コークスの熱含量は約41.69calであり、差は300℃まで 冷却する場合には約31gcalであり、100℃まで冷却する場合には約33 9calである。このエネルギーは過去には水の直接供給によって無効にしたが 、最近ではコークス乾式冷却の際に間接的に蒸気として回収される。During coal pyrolysis of 235 tons of coal, approximately 165 tons of coke 33 at approximately 1050℃ are generated. Ru. The heat content of this high-temperature coke is about 41.69 cal, and the difference is up to 300℃. When cooling, it is about 31 gcal, and when cooling to 100°C, it is about 33 gcal. It is 9 cal. Although this energy has been negated in the past by direct water supply, , recently recovered indirectly as steam during coke dry cooling.

本発明ハ、炭素転化(C+ H2O:CO+ H2)i:よるコークスの熱エネ ルギーからの化学エネルギーの回収と、廃水後処理の濃厚液の利用下に、式%式 % による塩分解との組合せを提供する。The present invention c. Carbon conversion (C+ H2O: CO+ H2) i: Heat energy of coke Under the recovery of chemical energy from energy and the utilization of concentrated liquid for wastewater post-treatment, the formula % formula % Provides a combination with salt decomposition by.

この系の原理は次のとおりである:高温コークス33は、ガス化冷却シャフ)4 1を上方から下方へ通過し、バッチの作業の補償のため、本来のガス化ゾーンの 前に前炉42を有する。反応体の案内は、向流で行なわれ、一部は並流で行なわ れる。向流は、ガス循環路50.38ないしは48によって達成され、並流は、 塩溶液32を直接にコークスの上方の高温層(1000〜1100℃)上へ噴射 することによって達成される(第1図)。The principle of this system is as follows: high temperature coke 33 is heated by gasification cooling shaft) 4 1 from the top to the bottom, and to compensate for the batch work, the original gasification zone is It has a forehearth 42 in front. The guiding of the reactants takes place in countercurrent and partly in cocurrent. It will be done. Countercurrent flow is achieved by gas circuits 50.38 or 48, cocurrent flow is achieved by Inject the salt solution 32 directly onto the high temperature layer (1000-1100°C) above the coke. This is achieved by (Figure 1).

1050℃−400℃の高温コークスの289calの大きさのエネルギーは、 水蒸気9560729を用いてコークスのC5300J29がCo  7900   N+*3とH21190ONi+3に変換され、その際アンモニア塩が分解 されるように利用される。The energy of 289 cal of high temperature coke at 1050℃-400℃ is Using water vapor 9560729, coke C5300J29 becomes Co7900 Converted to N+*3 and H21190ONi+3, at which time ammonia salt is decomposed be used in a manner that

ガス化コークス冷却器の頂部からは、800〜900°Cおよび軽度の過圧で、 水蒸気4tで負荷された乾燥ガス50 4360ONm3が取出され、廃熱ボイ ラ35中でボイラ給水35で間接的に冷却され、はぼ半量が循環ガス38として 循環される。CO+H21980ONl13を有する生産ガス37は、水蒸気的 2tおよびHCI  11.89ないしは)(251,99/Nm”(W【)で 負荷されている。該ガスは典型的なガス後も理系中でさらに水素に変換される。From the top of the gasified coke cooler, at 800-900°C and a slight overpressure, 50 4360 ONm3 of dry gas loaded with 4 tons of water vapor is taken out and the waste heat boiler It is indirectly cooled by the boiler feed water 35 in the boiler 35, and about half of the amount is used as circulating gas 38. It is circulated. The product gas 37 with CO+H21980ONl13 is water vapor 2t and HCI 11.89 or) (251,99/Nm” (W[) Loaded. The gas is further converted to hydrogen in the science system after the typical gas.

HClは有利には石灰乳で洗浄し、CaCl2として得られ、H2Sは場合によ りコークス炉ガスのH2S 吸収系と組合せて処理される。HCl is advantageously washed with milk of lime and obtained as CaCl2, H2S optionally It is processed in combination with a coke oven gas H2S absorption system.

第2図の工程図によれば、800℃の高温の循環ガス50は廃熱ボイラ51の前 で分割され、約1/245は濃縮器44中で向流で予熱された塩溶液litで散 水され、その際ガスは約200℃に冷却され、その除水9.Otが蒸発する。こ の蒸気量によって、湿った循環量48は約3600ONm3に増加し、冷却シャ フト41の下部に送入される。濃縮された塩溶液462.0+I!3は、冷却シ ャフトの上部で1000〜1100℃の高温コークス上へ噴射され、その除塩は 分解する。収支の理由から、系にはなお水約O,Stがガス化蒸気49として添 加される。これまでの経験によれば、500℃から反応がはじまり、法則どおり にガス化速度は温度の上昇につれて増加すると言うことができる。300〜50 0のコークスの温度範囲は、循環ガスの加熱のためおよび場合により添加水の蒸 発のために利用される。According to the process diagram in FIG. 2, the circulating gas 50 at a high temperature of 800° C. approximately 1/245 is dispersed with salt solution lit countercurrently in the concentrator 44. 9. The gas is cooled to approximately 200°C and the water removed.9. Ot evaporates. child With the amount of steam, the amount of wet circulation 48 increases to about 3600 ONm3, It is fed into the lower part of the foot 41. Concentrated salt solution 462.0+I! 3 is the cooling system It is injected onto high-temperature coke at a temperature of 1000 to 1100℃ at the top of the shaft, and the salt is removed. Disassemble. For balance reasons, approximately O, St of water is still added to the system as gasified vapor 49. added. According to past experience, the reaction starts at 500℃, as per the law. It can be said that the gasification rate increases with increasing temperature. 300-50 0 coke temperature range for heating of the circulating gas and possibly for evaporation of added water. used for the purpose of release.

約300℃からく100℃までのコークスの残余冷却および水5%までの給温は 、本来の反応部の外部で下方の湿式冷却ゾーン43中で水16〜24*3の添加 によって行なわれ、その際8〜16m3が蒸発するこの蒸気量は全部または部分 的に循環ガスに反応蒸気49として添加することができる。蒸気過剰量はコーク ス冷却の外部で閉じた系57〜61中で凝縮され、凝縮水として全プロセス中で 使用される。Residual cooling of coke from approximately 300℃ to 100℃ and heating up to 5% water are , addition of 16-24*3 water in the lower wet cooling zone 43 outside the actual reaction section This steam volume, in which 8 to 16 m3 is evaporated, may be completely or partially It can be added as reaction vapor 49 to the circulating gas. Excess amount of steam is coke It is condensed in a closed system 57-61 outside the cooling system and is used throughout the process as condensate water. used.

本発明の全プロセス技術は、系から工程廃水を排出する必要がないように構想さ れている。The entire process technology of the present invention is designed such that there is no need to drain process wastewater from the system. It is.

参照記号のリスト ド・・石炭廃水およびタール、2・・・タール・水分離器、3・・・粗タール、 4・・・冷却および洗浄水、5・・・石炭水、6・・・砂礫フィルター、7・・ ・洗浄水、8前浄化された石炭水、9・・・浄化された循環水、10・・・十字 流濾過、11・・・透過液、12・・・クラウス装置からの凝縮液、13・・・ ストリッパー、14・・・脱酸塔へのH2S/NH3蒸気、15・・・蒸気、1 5a・・・フェノールおよび塩含有廃水、16・・・塩基、17.26・・・口 H値調節、18・・・フィルター、19・・・濾過した水、20〜22・・・分 別逆浸透系、23.25・・・透過液、24.27・・・塩基、28・・・浄化 された用水、29.30・・・循環水、31・・・フェノール水生成物、32・ ・・塩溶液、33・・・高温の炉コークス、34・・・冷却されたコークス、3 5.52・・・ボイラ給水、36.53・・・蒸気、37・・・生産ガス、38 ・・・循環ガス、39・・・冷却水、40.47.54・・・送風機、41・・ ・ガス化冷却シャフト、42・・・前炉、43・・・湿式冷却ゾーン、44・・ ・濃縮器、45・・・高温の循環ガス、46・・・塩濃縮液、48・・・水蒸気 含有冷却ガス、49・・・ガス化蒸気、50・・・高温ガス、51・・・廃熱ボ イラ、55・・・生産ガス、56・・・添加水、57・・・冷却蒸気、58・・ ・凝縮器、59.60・・・冷却循環路、61・・・循環凝縮液 国際調査報告List of reference symbols D... Coal wastewater and tar, 2... Tar/water separator, 3... Crude tar, 4... Cooling and washing water, 5... Coal water, 6... Gravel filter, 7... ・Washing water, 8 pre-purified coal water, 9...purified circulating water, 10...cross flow filtration, 11... permeate, 12... condensate from the Claus apparatus, 13... Stripper, 14... H2S/NH3 vapor to deoxidizing tower, 15... Steam, 1 5a...phenol and salt-containing wastewater, 16...base, 17.26...mouth H value adjustment, 18...filter, 19...filtered water, 20-22...minutes Separate reverse osmosis system, 23.25...permeate, 24.27...base, 28...purification 29. 30... Circulating water, 31... Phenol water product, 32. ... Salt solution, 33 ... High temperature furnace coke, 34 ... Cooled coke, 3 5.52...Boiler feed water, 36.53...Steam, 37...Produced gas, 38 ...Circulating gas, 39...Cooling water, 40.47.54...Blower, 41... ・Gasification cooling shaft, 42... Forehearth, 43... Wet cooling zone, 44... ・Concentrator, 45...High temperature circulating gas, 46...Salt concentrate, 48...Steam Contained cooling gas, 49...Gasified steam, 50...High temperature gas, 51...Waste heat bottle 55... Production gas, 56... Added water, 57... Cooling steam, 58... ・Condenser, 59.60... Cooling circuit, 61... Circulating condensate international search report

Claims (14)

【特許請求の範囲】[Claims] 1.石炭熱分解の際に生じる廃水を処理するため、廃水を濾過、蒸留後、逆浸透 法によりコークス製造プロセスに戻しうる低塩含量の透過液と濃塩溶液とに分け 、濃塩溶液を全部または部分的に高温の還元性雰囲気中で分解し、塩を分離する 方法において、濃塩溶液を全部または部分的に、閉じたガス化コークス冷却の際 、この塩溶液の有害物質の分解のためおよび水素成分を水水素と−酸化炭素の生 成により利用するため、高温の炉コークスと化合させることを特徴とする石炭熱 分解の際に生じる廃水の処理方法。1. To treat wastewater generated during coal pyrolysis, the wastewater is filtered, distilled, and then subjected to reverse osmosis. The method separates the permeate into a low-salt content permeate and a concentrated salt solution that can be returned to the coke-making process. , a concentrated salt solution is completely or partially decomposed in a high temperature reducing atmosphere to separate the salts. In the process, a concentrated salt solution is completely or partially added during closed gasification coke cooling. , for the decomposition of harmful substances in this salt solution and for the production of hydrogen and carbon oxides. Coal heat is characterized by being combined with high-temperature furnace coke for utilization by A method for treating wastewater generated during decomposition. 2.ガス化コークス冷却の際、コークスをガス化冷却シャフトに連続的に上方か ら下方へ移動させ、塩溶液を直接に、上方の約1000〜1100℃との高温層 上へ噴射し、コークスに対して向流で水蒸気含有ガスを循環させる、請求項1記 載の方法。2. During gasification coke cooling, the coke is continuously passed upward into the gasification cooling shaft. The salt solution is directly passed through the upper high temperature layer of about 1000-1100℃. Claim 1, wherein the steam-containing gas is injected upward and circulated in countercurrent to the coke. How to put it on. 3.循環ガスに、ガス化冷却シャフトに入る前に水蒸気を添加する、請求項2記 載の方法。3. 3. Steam is added to the circulating gas before it enters the gasification cooling shaft. How to put it on. 4.ガス化冷却シャフトの下部へ直接に水を蒸発のため噴射する、請求項1から 3までのいずれか1項記載の方法。4. From claim 1, wherein water is injected directly into the lower part of the gasification cooling shaft for evaporation. 3. The method described in any one of 3. 5.コークスをガス化循環路中で約300〜600℃、とくに300〜400℃ に冷却し、引き続き水の添加により閉じた系中で100℃よりも低い温度および 3〜5%の定義された水含量にもたらす、請求項1から4までのいずれか1項記 載の方法。5. About 300-600℃, especially 300-400℃ in the coke gasification circuit at a temperature below 100 °C and subsequently in a closed system by adding water. 5. According to any one of claims 1 to 4, resulting in a defined water content of 3 to 5%. How to put it on. 6.塩溶液を、ガス化冷却シャフトの外部で濃縮器中で、返送のための約800 〜1000℃の高温ガスの一部によって濃縮し、ガスを水の蒸発と同時に約20 0℃まで冷却する、請求項1および3〜5のいずれか1項記載の方法。6. The salt solution is stored in a concentrator outside the gasification cooling shaft at approximately 800 mL for recirculation. It is concentrated by a part of the high temperature gas at ~1000℃, and the gas is evaporated at about 20℃ at the same time as water evaporation. 6. A method according to any one of claims 1 and 3 to 5, characterized in that it is cooled to 0<0>C. 7.濃縮器中で蒸発しなかった塩溶液の濃残分を、請求項2に記載した上うに、 ガス化冷却シャフト中へ噴射する、請求項6記載の方法。7. The concentrated residue of the salt solution that did not evaporate in the concentrator is processed as described in claim 2, 7. The method of claim 6, comprising injecting into a gasification cooling shaft. 8.請求項5によるコークスの冷却の際に生じる水蒸気を全部または部分的に循 環ガスに反応蒸気として添加する、請求項1から7までのいずれか1項記載の方 法。8. According to claim 5, all or part of the water vapor generated during cooling of coke is circulated. The method according to any one of claims 1 to 7, which is added to the ring gas as a reaction vapor. Law. 9.後冷却の際に生じる過剰の蒸気を、ガス化冷却シャフトの外部で閉じた系中 で凝縮させ、凝縮液として全プロセス中で利用する、請求項8記載の方法。9. Excess steam generated during post-cooling is removed in a closed system outside the gasification cooling shaft. 9. The method as claimed in claim 8, wherein the method is condensed with water and used as condensate during the entire process. 10.ガス化冷却シャフトからの高温の生産ガスの熱を、全部または部分的に蒸 気発生のために利用する、請求項1から9までのいずれか1項記載の方法。10. Heat from the hot product gas from the gasification cooling shaft can be fully or partially evaporated. 10. The method according to claim 1, wherein the method is used for generating air. 11.ガス化コークス冷却の際に生成する生産ガスのハロゲンをアルカリ土類ま たはアルカリ溶液で洗浄する、請求項1から10までのいずれか1項記載の方法 。11. The halogens in the product gas generated during cooling of gasified coke are 11. The method according to any one of claims 1 to 10, comprising washing with an alkaline solution or with an alkaline solution. . 12.前浄化された廃水を低塩含量の透過液と濃塩溶液とに分けるのを、廃水の pH値<5、塩の排除率>90%、フェノールの排除率<10%を有するアセチ ルセルースを主体とする膜を用いる第1段、pH値8〜9、フェノールの排除率 >95%を有するポリアミドを主体とする膜を用いる第2段およびpH値>10 で、フェノール<0.15mg/lおよび塩<2mg/lの浄化された廃水が生 じるような排除率を有する、ポリアミドを主体とする膜を用いる第3段からなる 、分別逆浸透系中で行なう、請求項1から11までのいずれか1項記載の方法。12. Separating the pre-purified wastewater into a permeate with a low salt content and a concentrated salt solution is Acetic acid with pH value <5, rejection rate of salts >90%, rejection rate of phenol <10% 1st stage using membrane mainly composed of lucerose, pH value 8-9, phenol rejection rate A second stage using a membrane based on polyamide with >95% and a pH value >10 , purified wastewater with <0.15 mg/l of phenol and <2 mg/l of salt is produced. The third stage consists of a polyamide-based membrane with a very high rejection rate. 12. The method according to claim 1, wherein the method is carried out in a fractionated reverse osmosis system. 13.分別逆浸透法の際に生じる、石炭水濃縮液の酸性成分をアンモニアー、ア ルカリーまたはアルカリ土類イオンに結合させる、請求項12記載の方法。13. The acidic components of the coal water concentrate produced during the fractional reverse osmosis process are 13. The method according to claim 12, wherein the alkaline or alkaline earth ion is bound. 14.分別逆浸透法の際に生じるフエノール・水画分を過蒸発工程によってフェ ノール抽出物に濃縮する、請求項12または13記載の方法。14. The phenol and water fractions generated during fractional reverse osmosis are fertilized through a perevaporation process. 14. The method according to claim 12 or 13, wherein the method is concentrated to a nol extract.
JP1501719A 1988-02-09 1989-02-02 Treatment method for wastewater generated during coal pyrolysis Pending JPH03502464A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3803905A DE3803905A1 (en) 1988-02-09 1988-02-09 METHOD FOR TREATING WASTE WASTE FROM CARBON PYROLYSIS
DE3803905.2 1988-02-09

Publications (1)

Publication Number Publication Date
JPH03502464A true JPH03502464A (en) 1991-06-06

Family

ID=6346983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1501719A Pending JPH03502464A (en) 1988-02-09 1989-02-02 Treatment method for wastewater generated during coal pyrolysis

Country Status (5)

Country Link
JP (1) JPH03502464A (en)
AU (1) AU3035089A (en)
DE (1) DE3803905A1 (en)
IN (1) IN171475B (en)
WO (1) WO1989007636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202871A (en) * 2009-02-27 2010-09-16 General Electric Co <Ge> Dehydration system and method for improving combined cycle efficiency of coal electricity generating apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002624C1 (en) * 1990-01-30 1991-11-28 Still Otto Gmbh, 4630 Bochum, De
US5997745A (en) * 1998-04-08 1999-12-07 Zenon Environmental Inc. Method for producing high purity water using triple pass reverse osmosis (TPRO)
FR2799751B1 (en) * 1999-10-19 2002-01-18 Kaltenbach Thuring Sa PROCESS FOR TREATING AN EFFLUENT CONTAINING ORGANIC WASTE
DE10114537A1 (en) * 2001-03-21 2002-10-24 Elipsa Gmbh Separation of highly heterogeneous mixtures, e.g. proteins, comprises using array of filter membranes with systematically varying separation properties
NL1023691C2 (en) * 2002-06-18 2004-02-18 Sasol Tech Pty Ltd Process for purifying Fischer-Tropsch-derived water.
CN1301921C (en) 2002-06-18 2007-02-28 Sasol技术股份有限公司 Method of purifying fischer-tropsch derived water
CN100363268C (en) 2004-11-15 2008-01-23 华东理工大学 Cool coking effluent treatment method and device
CN101781039B (en) * 2010-03-05 2012-07-18 中冶焦耐(大连)工程技术有限公司 Technology for deeply processing coking wastewater through combining catalytic oxidation method and membrane separation technique
DE102011014221A1 (en) * 2011-03-17 2012-09-20 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for recovering heavy metals from soot water
CN113582335B (en) * 2021-08-17 2023-08-08 哈尔滨工创环保科技有限公司 In-situ device and method for improving nitrate nitrogen removal rate of coal pyrolysis wastewater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE353290C (en) * 1921-03-20 1922-05-12 Schomburg & Soehne Akt Ges H Method for fastening bodies in the cavities of porcelain objects, in particular for producing two-part or multi-part insulators by shrinking them on
JPS6019099A (en) * 1983-07-12 1985-01-31 Sumikin Coke Co Ltd Treatment of excessive sludge by dry coke extinguishing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912578A (en) * 1973-01-22 1975-10-14 United States Steel Corp Apparatus for and a method of purifying waste fluid
DD133787A1 (en) * 1977-11-16 1979-01-24 Volker Becker PROCESS FOR THE PROPELLAL DESTRUCTION OF THE SEWAGE SLUDGE ARISING IN BIOLOGICAL WASTE CLEANING PLANTS
US4170550A (en) * 1978-03-30 1979-10-09 Koppers Company, Inc. Process for reducing aqueous effluents containing environmentally unacceptable compounds from a process for gasifying carbonaceous materials
DE3532390A1 (en) * 1984-09-12 1986-06-19 Carl Still Gmbh & Co Kg, 4350 Recklinghausen Process for treating waste water arising in coking or other coal upgrading processes
DE3515484A1 (en) * 1985-04-30 1986-10-30 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR TREATING CONDENSATE FROM THE PRODUCT GAS OF GASIFYING SOLID FUELS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE353290C (en) * 1921-03-20 1922-05-12 Schomburg & Soehne Akt Ges H Method for fastening bodies in the cavities of porcelain objects, in particular for producing two-part or multi-part insulators by shrinking them on
JPS6019099A (en) * 1983-07-12 1985-01-31 Sumikin Coke Co Ltd Treatment of excessive sludge by dry coke extinguishing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202871A (en) * 2009-02-27 2010-09-16 General Electric Co <Ge> Dehydration system and method for improving combined cycle efficiency of coal electricity generating apparatus
US8968430B2 (en) 2009-02-27 2015-03-03 General Electric Company Dewatering system and process for increasing the combined cycle efficiency of a coal powerplant

Also Published As

Publication number Publication date
AU3035089A (en) 1989-09-06
WO1989007636A1 (en) 1989-08-24
DE3803905C2 (en) 1993-07-22
IN171475B (en) 1992-10-24
DE3803905A1 (en) 1989-08-17

Similar Documents

Publication Publication Date Title
JPH04277074A (en) Method for treating aqueous solution containing hydrogen sulfide, hydrogen cyanide and ammonia
AU2013257463B2 (en) A method of recovering sulfur dioxide and heavy metals from metallurgical flue gas
JPH03502464A (en) Treatment method for wastewater generated during coal pyrolysis
CN111051541A (en) Apparatus and method for heat treatment of solids
JPH03151093A (en) Method for treatment of impurities in aqueous solution
JP3985052B2 (en) Waste treatment method in gasification reforming system
US4854942A (en) Control of pH in water quench of a partial oxidation process
JP2006213535A (en) Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace
US4022869A (en) Method for removing hydrogen chloride from exhaust gas containing same
JPS63191893A (en) Purification of waste liquid
CN103305286B (en) Coke oven gas purifying system for efficiently recycling coking plant heat source and desulfurated liquid waste treatment method
KR20140045354A (en) Method for gasifying solid raw material containing carbon
KR102083441B1 (en) Waste water treatment method containing organic solvent
CN210394061U (en) Treatment system for dry-method activated coke/carbon desulfurization and denitrification gas-rich pretreatment wastewater
CN111087113A (en) System and method for co-processing coal chemical industry wastewater and waste gas
RU2662154C1 (en) Method for cleaning hydrocarbon fractions from sulfur compounds
JP3220669B2 (en) Waste treatment method and equipment
JPH10314530A (en) Method for purifying gas loaded with dust
JP3846942B2 (en) Method and apparatus for recovering sulfuric acid from waste sulfuric acid
JP3843940B2 (en) Method for producing mixed salt from waste in gasification reforming system
CN201288106Y (en) Synthetic wastewater treatment system for industrial wastewater from carbonization industry
JP3989192B2 (en) Treatment method of chlorine content in waste in gasification reforming system
CN107321178B (en) Gas purification apparatus and gas purification method
CN109437350B (en) Chemical three-waste comprehensive treatment system and method
JP2527921B2 (en) Syngas production method