JP4456899B2 - Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste - Google Patents

Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste Download PDF

Info

Publication number
JP4456899B2
JP4456899B2 JP2004078221A JP2004078221A JP4456899B2 JP 4456899 B2 JP4456899 B2 JP 4456899B2 JP 2004078221 A JP2004078221 A JP 2004078221A JP 2004078221 A JP2004078221 A JP 2004078221A JP 4456899 B2 JP4456899 B2 JP 4456899B2
Authority
JP
Japan
Prior art keywords
salt
waste
evaporation
heavy metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004078221A
Other languages
Japanese (ja)
Other versions
JP2005263559A (en
Inventor
勝 柴田
勇人 瀬下
史洋 三好
匡史 寺谷
洋一 重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
JFE Engineering Corp
Original Assignee
Kimura Chemical Plants Co Ltd
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd, JFE Engineering Corp filed Critical Kimura Chemical Plants Co Ltd
Priority to JP2004078221A priority Critical patent/JP4456899B2/en
Publication of JP2005263559A publication Critical patent/JP2005263559A/en
Application granted granted Critical
Publication of JP4456899B2 publication Critical patent/JP4456899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、重金属及びClの各イオンを含有する塩水から塩を製造する塩製造方法及びその装置に関する。 This invention contains each ion of Na, NH 4 , Ca, heavy metal and Cl generated in an exhaust gas treatment system when waste gasification treatment or incineration treatment or waste incineration ash is fusion treatment The present invention relates to a salt production method and apparatus for producing a salt from salt water.

従来より、産業廃棄物あるいは一般廃棄物の焼却処理は、様々な型式で実施されてきたが、近年、焼却場における排出ガス中のダイオキシン類などの微量有害物質の排出基準が強化され、また、焼却主灰を埋め立てる主に安定型埋立処分場、さらには焼却飛灰を法律で定められた4つの方式のうちの1つで中間処理を施した後埋め立てる管理型埋立処分場の残余量が逼迫する等、従来の焼却処理型式を踏襲し更新することが困難なケースが増加しつつある。また、資源循環型社会の創出という観点からも、廃棄物をただ単に焼却するのではなく、廃棄物をガス化し、高温で改質することにより、燃料ガスあるいは化学原料ガスとして回収するシステム(非特許文献1参照)が望まれている。   Conventionally, incineration treatment of industrial waste or general waste has been carried out in various types, but in recent years, emission standards for trace hazardous substances such as dioxins in exhaust gas at incineration plants have been strengthened, The remaining amount of landfills mainly for stable landfills that incinerate incinerated main ash, and the amount of landfilled landfills for landfills after intermediate treatment of incinerated fly ash by one of four methods stipulated by law is tight. The number of cases in which it is difficult to renew and follow the conventional incineration treatment type is increasing. Also, from the viewpoint of creating a resource recycling society, rather than simply incinerating waste, a system that recovers fuel gas or chemical raw material gas by gasifying the waste and reforming it at a high temperature (non- Patent Document 1) is desired.

このようなガス化改質方式の焼却施設として例えば図1に示されるようなプロセスフローになる川鉄サーモセレクト方式による廃棄物ガス化溶融プロセスが開発された(非特許文献2参照)。
このプロセスは次の4つのステップから工程から構成されている。
As such a gasification reforming-type incineration facility, a waste gasification and melting process based on the Kawatetsu thermoselect method having a process flow as shown in FIG. 1 has been developed (see Non-Patent Document 2).
This process consists of the following four steps.

(1)プレス・ 脱ガスチャンネル
(a)ごみ(廃棄物)の圧縮、(b)乾燥・ 熱分解)
(2)高温反応炉・ 均質化炉
(c)ガス化溶融、(d)スラグ均質化、(e)ガス改質)
(3)ガス精製
(f)ガス急冷(急冷・酸洗浄・アルカリ洗浄)、(g)ガス精製(除塵・脱硫・除湿)(4)水処理((h)水処理・ 塩製造装置)
(1) Press and degassing channels (a) Waste (waste) compression, (b) Drying and thermal decomposition)
(2) High-temperature reactor and homogenization furnace (c) Gasification and melting, (d) Slag homogenization, (e) Gas reforming)
(3) Gas purification (f) Gas quenching (rapid cooling, acid cleaning, alkali cleaning), (g) Gas purification (dust removal, desulfurization, dehumidification) (4) Water treatment ((h) Water treatment, salt production equipment)

各ステップの概要は次のとおりである。
(1)プレス・ 脱ガスチャンネル
(a)まずピット1から移送された廃棄物をプレス2で最初の容積の1/5 程度に圧縮する。これにより廃棄物中の水分の分布は均一化され、空気は排除されて脱ガス効率が向上する。
(b)次に圧縮された廃棄物は間接的加熱炉である脱ガスチャンネル3で脱ガス(水分の蒸発、熱分解による揮発分の発生)され、続いて高温反応炉4からの放射熱などによりさらに熱分解される。廃棄物中に含まれる炭化水素、セルロースの熱分解反応として次のような反応例((1),(2)式)があり、これらの反応により熱分解カーボンが得られる。
Cn Hm →xCH +yH +zC (1)
3C10 →8H O+CO+2CO+2CO
+CH+H+7C (2)
The outline of each step is as follows.
(1) Press / degas channel (a) First, the waste transferred from pit 1 is compressed to about 1/5 of the initial volume by press 2. Thereby, the distribution of moisture in the waste is made uniform, air is excluded, and the degassing efficiency is improved.
(B) Next, the compressed waste is degassed in the degassing channel 3 which is an indirect heating furnace (evaporation of moisture, generation of volatile components by thermal decomposition), and then radiant heat from the high temperature reactor 4 etc. Is further thermally decomposed. There are the following reaction examples (formulas (1) and (2)) as thermal decomposition reactions of hydrocarbons and cellulose contained in waste, and pyrolytic carbon is obtained by these reactions.
Cn Hm → xCH 4 + yH 2 + zC (1)
3C 6 H 10 O 5 → 8H 2 O + C 6 H 8 O + 2CO 2 + 2CO
+ CH 4 + H 2 + 7C (2)

(2)高温反応炉・ 均質化炉
(c)脱ガスチャンネル3で発生したガスは高温反応炉4に流入し、熱分解物は新たな圧縮廃棄物の装入により押し出されて高温反応炉4下部に堆積する。高温反応炉4下部にPSA(Pressure Swing Adsorption ;圧力スイング吸着)6で製造した酸素を吹き込み、該酸素と熱分解物中の炭素との反応((3),(4)式)により下部の温度は中心部で最高約2000℃になり、廃棄物中の金属や無機質の成分は溶融する。
C+O ⇔ CO+ΔQ (3)
C+1/2O ⇔CO+ΔQ (4)
(2) High-temperature reactor / homogenization furnace (c) The gas generated in the degassing channel 3 flows into the high-temperature reactor 4, and the pyrolysate is pushed out by charging new compressed waste, and the high-temperature reactor 4 Deposit at the bottom. Oxygen produced by PSA (Pressure Swing Adsorption) 6 is blown into the lower part of the high temperature reactor 4, and the reaction between the oxygen and carbon in the pyrolyzate (equations (3) and (4)) causes the lower temperature Reaches a maximum of about 2000 ° C. in the center, and the metal and inorganic components in the waste melt.
C + O 2 CO CO 2 + ΔQ (3)
C + 1 / 2O 2 ⇔CO + ΔQ (4)

高温反応炉4下部に残存する炭素成分とOが発熱反応しCOになる。発生したCOはCを含有する熱分解物中を通過するとCOに還元される((5)式)。
C+CO ⇔ 2CO−ΔQ (5)
過剰の高温水蒸気分子が存在する場合は水性ガス化反応が生ずる。この場合、炭素と水蒸気がCOとHに転換する((6)式)。
C+HO ⇔ CO+H−ΔQ (6)
有機化合物はCOとHなどに熱分解される((7)式)。
The carbon component remaining in the lower part of the high temperature reactor 4 and O 2 react exothermically to become CO 2 . The generated CO 2 is reduced to CO when it passes through the pyrolyzate containing C (formula (5)).
C + CO 2 ⇔ 2CO-ΔQ (5)
In the presence of excess hot water vapor molecules, a water gasification reaction occurs. In this case, carbon and water vapor are converted into CO and H 2 (formula (6)).
C + H 2 O CO CO + H 2 −ΔQ (6)
The organic compound is thermally decomposed into CO and H 2 (formula (7)).

CnHm+nHO→nCO+(n+1/2m)H −ΔQ (7)
(d)溶融物は高温反応炉4から約1600℃に保持された均熱化炉5へ流れ、微量の炭素等はガス化される。均質化炉5において金属溶融物 (メタル)は密度が大きいため、無機質溶融物(スラグ)の下部に溜まる。これらは連続的に溢流堰を通り水砕システム7へ流れ落ちて冷却固化される。冷却固化した回収混合物は磁選によりスラグ、メタルに分離される。
CnHm + nH 2 O → nCO + (n + ½ m) H 2 −ΔQ (7)
(D) The melt flows from the high temperature reactor 4 to the soaking furnace 5 maintained at about 1600 ° C., and a small amount of carbon is gasified. In the homogenization furnace 5, the metal melt (metal) has a high density and therefore accumulates in the lower part of the inorganic melt (slag). These continuously flow through the overflow weir and flow down to the granulation system 7 to be cooled and solidified. The recovered mixture cooled and solidified is separated into slag and metal by magnetic separation.

(e)高温反応炉4下部で発生したガスと脱ガスチャンネルで発生した熱分解ガスは合流し、高温反応炉4上部の改質部において約1200℃で2s 以上滞留する。この条件で、ガス中のタール分やダイオキシン類およびその前駆体は完全に分解され、H,CO,CO,HOを主成分とする粗合成ガスに改質される。約1200℃の温度では(8)式の平衡が右辺に移動し、メタンガスの量は極微量となる。
CH+HO ⇔ CO+3H (8)
(E) The gas generated in the lower part of the high temperature reactor 4 and the pyrolysis gas generated in the degassing channel merge and stay in the reforming part in the upper part of the high temperature reactor 4 at about 1200 ° C. for 2 seconds or longer. Under these conditions, the tar content, dioxins and their precursors in the gas are completely decomposed and reformed into a crude synthesis gas mainly composed of H 2 , CO, CO 2 and H 2 O. At a temperature of about 1200 ° C., the equilibrium of equation (8) shifts to the right side, and the amount of methane gas becomes extremely small.
CH 4 + H 2 O⇔CO + 3H 2 (8)

(3)ガス精製
(f)高温反応炉4で改質された粗合成ガスを、急冷装置8で約1200℃から約70℃まで急水冷し、de novo 合成によるダイオキシン類の再合成を阻止した後、洗浄塔11において、酸洗浄により重金属を、アルカリ洗浄により酸性ガスを、それぞれ除去する。
ここで、沸点の低いZn,Pbなどの重金属成分は主として高温反応炉4からガスの状態で移送される。また、廃棄物に含まれる塩素は、主としてHClとして合成ガス中に存在し、HClは冷却・洗浄液に溶け込む。このHClを含む酸性水(pH2〜3)によって粗合成ガスは洗浄され、重金属成分が取り除かれる(例えば(9),(10)式)。よって、このプロセスでは飛灰は発生しない。
Zn+2HCl→H+ZnCl (9)
Pb+2HCl→H+PbCl (10)
(3) Gas purification (f) The crude synthesis gas reformed in the high-temperature reactor 4 was rapidly water-cooled from about 1200 ° C. to about 70 ° C. with the quenching device 8 to prevent re-synthesis of dioxins by de novo synthesis. Thereafter, in the washing tower 11, heavy metals are removed by acid washing, and acid gases are removed by alkali washing.
Here, heavy metal components such as Zn and Pb having a low boiling point are mainly transferred from the high temperature reactor 4 in a gas state. Further, chlorine contained in the waste is mainly present in the synthesis gas as HCl, and HCl is dissolved in the cooling / cleaning liquid. The crude synthesis gas is washed with the acidic water (pH 2 to 3) containing HCl, and heavy metal components are removed (for example, formulas (9) and (10)). Therefore, fly ash is not generated in this process.
Zn + 2HCl → H 2 + ZnCl 2 (9)
Pb + 2HCl → H 2 + PbCl 2 (10)

このように、このプロセスでは廃棄物中の塩素分が有効に利用される。洗浄液は沈降槽12に送られて炭素微粒子を取り除かれ、熱交換器15Aで間接冷却された後、再びガスの急冷に循環使用される。ごみに由来する水は沈降槽12で余剰水となり、水処理装置13へ送られて処理される。   Thus, in this process, the chlorine content in the waste is effectively utilized. The cleaning liquid is sent to the settling tank 12 to remove the carbon fine particles, indirectly cooled by the heat exchanger 15A, and then circulated and used again for rapid cooling of the gas. The water derived from the garbage becomes surplus water in the settling tank 12 and is sent to the water treatment device 13 for processing.

酸洗浄された合成ガスは、アルカリ洗浄され、塩化水素ガスなどの酸性ガスが中和除去される((11)式)。生成したNaClは最終的には、塩製造装置14で混合塩として回収される。
HCl+NaOH→NaCl+HO (11)
The acid-cleaned synthesis gas is alkali-cleaned, and an acidic gas such as hydrogen chloride gas is neutralized and removed (formula (11)). The produced NaCl is finally recovered as a mixed salt by the salt production device 14.
HCl + NaOH → NaCl + H 2 O (11)

(g)さらに、ガスは洗浄塔11からマルチスクラバー9に送られて除塵され、脱硫洗浄され、除湿乾燥されて、有害物質を除去されたクリーンな精製合成ガスとなり、例えばガスエンジン発電機10の燃料ガスとして使用される。   (G) Further, the gas is sent from the washing tower 11 to the multi scrubber 9 to be dedusted, desulfurized and washed, dehumidified and dried to become a clean refined synthetic gas from which harmful substances have been removed. Used as fuel gas.

(4)水処理
(h)ガス改質工程までに生成したH Oがガス急冷・精製工程で凝縮し、従来の焼却方式では飛灰となって排ガス中に含まれていた重金属や塩類はすべて洗浄水中に移行する。そのため、飛灰は発生せず、Fe,Zn,Pb,Na,Kなどの金属を含む水が発生するが、水処理装置13により、金属は水酸化物や混合塩などの有用物として回収される。
また、(11)式の反応で生成したNaClは、水処理装置13から塩製造装置14に送られて精製され、混合塩として回収される。
(4) Water treatment (h) H 2 O produced until the gas reforming process is condensed in the gas quenching / refining process, and heavy metals and salts contained in the exhaust gas as fly ash in the conventional incineration system Move all into the wash water. Therefore, fly ash is not generated, and water containing metals such as Fe, Zn, Pb, Na, and K is generated, but the metal is recovered by the water treatment device 13 as useful substances such as hydroxides and mixed salts. The
Moreover, NaCl produced | generated by reaction of (11) Formula is sent to the salt manufacturing apparatus 14 from the water treatment apparatus 13, and is refine | purified, and is collect | recovered as mixed salt.

ところで、上記の混合塩を有価物として再利用するには、混合塩中に含まれるNH4、Al等の金属の量を低減しなければならない。
しかしながら、一般廃棄物には、可燃物中に窒素が0.5〜2%(5000〜20000mg/kg)程度含まれており、この窒素分は空気の少ない還元性雰囲気で行われる熱分解の際に一部がアンモニアに転化し、該アンモニアは粗合成ガスに含まれ、急冷〜酸洗浄の際に同ガス中の塩化水素と反応して塩化アンモニウムを生成し、これが洗浄液中に溶解し、洗浄廃液(洗浄に使用した後の洗浄液)から混合塩を回収する場合、該混合塩の品位(NaCl濃度)を低下させ、その用途を制限するという問題があった。また、Al等の金属も同様に混合塩中残存し、混合塩の品位(NaCl濃度)を低下させていた。
By the way, in order to reuse the above mixed salt as a valuable material, the amount of metals such as NH 4 and Al contained in the mixed salt must be reduced.
However, general waste contains about 0.5 to 2% (5000 to 20000 mg / kg) of nitrogen in combustibles, and this nitrogen content is in the case of thermal decomposition performed in a reducing atmosphere with less air. Is partly converted into ammonia, which is contained in the crude synthesis gas, reacts with hydrogen chloride in the gas during quenching to acid cleaning to produce ammonium chloride, which dissolves in the cleaning solution and is washed In the case of recovering the mixed salt from the waste liquid (cleaning liquid after being used for cleaning), there has been a problem that the grade (NaCl concentration) of the mixed salt is lowered and its use is restricted. Similarly, metals such as Al remained in the mixed salt, and the quality of the mixed salt (NaCl concentration) was lowered.

厚生省:厚生省令第14号、1999年3月3日「ガス化改質方式」Ministry of Health and Welfare: Ministry of Health and Welfare Ordinance No. 14, March 3, 1999 "Gasification reforming system" 川崎製鉄技報 32(2000)4,287−291Kawasaki Steel Technical Report 32 (2000) 4, 287-291

本発明は、ガス化溶融炉の排水から品質の高い混合塩を製造すると共に、水分をプラント内で再利用水として回収することを目的とする。   The object of the present invention is to produce a high-quality mixed salt from the waste water of a gasification melting furnace and to collect water as reused water in the plant.

本発明者らは、これらの問題を解決し、廃棄物をガス化改質し、洗浄、精製して精製合成ガスを得る廃棄物処理系において、洗浄廃液から資源として再利用可能なまでに品質の向上した混合塩を製造する処理方法を見いだすべく鋭意検討した結果、塩水濃縮工程、脱NH工程、重金属除去工程、塩晶析工程を組み合わせることにより上記課題を解決することができることを見いだして本発明をなすに至ったものである。
すなわち、本発明の構成は次に記載する通りのものである。
In the waste treatment system that solves these problems, gasifies and reforms waste, and cleans and purifies to obtain purified synthesis gas, the quality of the waste waste liquid is reusable as a resource. As a result of intensive studies to find a treatment method for producing a mixed salt improved, it has been found that the above problem can be solved by combining a salt water concentration step, a de-NH 4 step, a heavy metal removal step, and a salt crystallization step. The present invention has been achieved.
That is, the configuration of the present invention is as described below.

(1)廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、重金属及びClの各イオンを含有する塩水から塩を製造する塩製造方法において、Ca除去工程、塩水濃縮脱NH とを行う工程、重金属除去工程、塩晶析工程の各工程をこの順に行い、該塩晶析工程で得られた塩スラリーを脱水工程によって脱水することを特徴とする塩製造方法。
)前記塩晶析工程が加熱蒸発又は真空加熱蒸発によって行われる上記(1)の塩製造方法。
)前記加熱蒸発又は真空加熱蒸発の際に蒸発蒸気に同伴される塩分をサイクロン又はデミスターによって除去する上記()の塩製造方法。
(1) Contain each ion of Na, NH 4 , Ca, heavy metal and Cl generated in the exhaust gas treatment system when the waste is melted and gasified or incinerated or when the incinerated ash of the waste is melted in the salt method for manufacturing the salt from brine, Ca removing step, the step of performing a salt water concentration and de-NH 4, performs heavy metal removing step, the steps of ShioAkira析steps in this order, obtained as the salt crystallization step The salt manufacturing method characterized by dehydrating the salt slurry by a dehydration process.
( 2 ) The method for producing a salt according to (1), wherein the salt crystallization step is performed by heat evaporation or vacuum heat evaporation.
( 3 ) The method for producing a salt according to ( 2 ), wherein a salt content accompanying the evaporated vapor is removed by a cyclone or a demister during the heating evaporation or the vacuum heating evaporation.

)前記重金属除去工程がpH6.5〜8の中性領域で行われる上記(1)〜()の塩製造方法。
)前記塩水濃縮脱NH とを行う工程が真空蒸発処理によって行われる上記(1)〜()の塩製造方法。
)前記塩水濃縮脱NH とを行う工程における真空蒸発処理が被処理液のpHを10〜13.5のアルカリ性として行われる上記(5)の塩製造方法。
( 4 ) The method for producing a salt according to (1) to ( 3 ), wherein the heavy metal removing step is performed in a neutral region of pH 6.5 to 8.
( 5 ) The method for producing a salt according to any one of (1) to ( 4 ), wherein the step of concentrating the salt water and removing NH 4 is performed by vacuum evaporation.
(6) The method of salt preparation above (5) to be carried out the vacuum evaporation in the step of performing said brine concentration and de-NH 4 is as alkaline 10 to 13.5 the pH of the liquid undergoing treatment.

)廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、重金属及びClの各イオンを含有する塩水から塩を製造する塩製造装置において、該装置が、Ca除去手段、塩水濃縮脱NH とを行う蒸発手段、重金属除去手段、塩晶析手段の各手段をこの順に含み、かつ、塩晶析手段によって得られた塩スラリーを脱水する脱水手段を具備したことを特徴とする塩製造装置。 ( 7 ) Contain each ion of Na, NH 4 , Ca, heavy metal and Cl generated in the exhaust gas treatment system when waste gasification treatment or incineration treatment or incineration ash of waste is melt treatment in the salt producing apparatus for producing salt from salt water, comprising said apparatus, Ca removing means, evaporation means for carrying out the salt concentration and de-NH 4, heavy metals removal means, the means of the ShioAkira析means in this order, and salts A salt production apparatus comprising a dehydrating unit for dehydrating a salt slurry obtained by a crystallization unit.

本発明によれば、廃棄物を溶融ガス化処理又は焼却処理する際に、ガス処理系で発生する塩を含有する塩水から、苛性ソーダ工業用原料等に再利用できる品質の高い混合塩を製造することができる。   According to the present invention, a high-quality mixed salt that can be reused as a raw material for caustic soda industry or the like is produced from salt water containing a salt generated in a gas treatment system when waste gasification treatment or incineration treatment is performed. be able to.

廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、重金属及びClの各イオンを含有する塩水から塩を有価物として再利用するには、混合塩中に含まれるNH4、Al等の金属の量を低減しなければならない。
例えば、苛性ソーダ工業用原料として塩を再利用するには、下記の表1に示したような程度にまで不純物濃度を低減させることが好ましい。
Salt from salt water containing each ion of Na, NH 4 , Ca, heavy metal and Cl generated in the exhaust gas treatment system when waste is melted and gasified or incinerated or when waste incinerated ash is melted In order to reuse as a valuable resource, the amount of NH 4, Al and other metals contained in the mixed salt must be reduced.
For example, in order to reuse salt as a caustic soda industry raw material, it is preferable to reduce the impurity concentration to the extent shown in Table 1 below.

Figure 0004456899
Figure 0004456899

上記不純物を除去するため、本発明の塩製造方法は、少なくとも、塩水濃縮工程、脱NH工程、重金属除去工程、塩晶析工程を含んでおり、更にはCa除去工程を含んでいる。
本発明の方法を実施するための工程図の一例を図2に示し、この図に基づいて本発明を説明する。
In order to remove the impurities, the salt production method of the present invention includes at least a salt water concentration step, a de-NH 4 step, a heavy metal removal step, a salt crystallization step, and further includes a Ca removal step.
An example of a process chart for carrying out the method of the present invention is shown in FIG. 2, and the present invention will be described based on this figure.

塩原水(a)は凝集沈殿装置Bに送られる。凝集沈澱装置Bには凝集剤(FeCl、NaOH、NaCO等)が供給され、ここでCaを凝集分離し汚泥(b2)として排出する。これは、Caが次工程のアンモニア蒸発工程でスケールを生成する可能性が高いので、ここで予めCaを除去しておくためである。 The salt raw water (a) is sent to the coagulation sedimentation apparatus B. Coagulating agents (FeCl 3 , NaOH, Na 2 CO 3, etc.) are supplied to the coagulating sedimentation apparatus B, where Ca is coagulated and separated and discharged as sludge (b2). This is because Ca is likely to generate a scale in the next ammonia evaporation step, and therefore Ca is previously removed here.

凝集沈殿装置Bにおいて沈殿物から分離された分離液(b1)は予熱された後、真空蒸発装置Cに送られ、ここで、アンモニア(c2)を蒸発除去する。蒸発装置としては、低温度で蒸発操作が可能であり、必要熱量が少なくて済み、材質面でも有利な真空蒸発装置を用いることが好ましく、多重効用缶を用いた真空蒸発装置がより好ましい。   The separated liquid (b1) separated from the precipitate in the coagulating sedimentation apparatus B is preheated and then sent to the vacuum evaporation apparatus C, where ammonia (c2) is removed by evaporation. As the evaporation apparatus, it is preferable to use a vacuum evaporation apparatus that can perform an evaporation operation at a low temperature, requires a small amount of heat, and is advantageous in terms of material, and more preferably a vacuum evaporation apparatus using a multi-effect can.

蒸発に際しては処理液をpH10〜13.5のアルカリ性とすることが好ましい。アンモニアを除去するにはpH12.5程度は必要であり、pH10未満であるとアンモニアの除去効率が悪い。また、pH13.5を超えると蒸発缶の材質に悪影響を及ぼすので好ましくない。蒸発したアンモニアは水蒸気と共にコンデンサーで凝縮され、アンモニアガスを溶解した凝縮水(安水:c2)となり、貯蔵されたのち、適宜、図示しないアンモニアストリッパーにより安水からアンモニアガスを放散させて、このアンモニアの一部はアンモニア分解工程で窒素ガスと水蒸気とに分解した後、系外に放出され、残部は、必要に応じてアンモニア無触媒脱硝酸反応器に供給される。   When evaporating, the treatment liquid is preferably made alkaline with a pH of 10 to 13.5. In order to remove ammonia, about pH 12.5 is necessary, and if it is less than pH 10, the removal efficiency of ammonia is poor. Moreover, since it will have a bad influence on the material of an evaporator when pH13.5 is exceeded, it is unpreferable. The evaporated ammonia is condensed in a condenser together with water vapor to form condensed water (an aqueous solution: c2) in which the ammonia gas is dissolved. After being stored, the ammonia gas is appropriately diffused from the aqueous solution by an ammonia stripper (not shown). Part of this is decomposed into nitrogen gas and water vapor in the ammonia decomposition step, and then released to the outside of the system, and the remaining part is supplied to an ammonia-free catalytic denitration reactor as required.

蒸発缶で濃縮された塩水(c1)は、凝集沈殿装置Dに送られる。ここで塩水に、凝集剤(FeCl等)と酸とを添加してpH6.5〜8の中性領域とすることにより重金属類を凝集沈澱して汚泥(d2)として除去する。pH6.5〜8とするのは、重金属が上記の中性領域で溶解度が最も低くなるためである。
アンモニアを除去した後に重金属を分離する工程を行うのは、アンモニアは重金属と錯塩を形成し易いため、アンモニアが共存すると重金属を凝集分離することが困難になるためである。
The salt water (c1) concentrated in the evaporator is sent to the coagulation sedimentation apparatus D. Here, a flocculant (FeCl 3 or the like) and an acid are added to the salt water to make the pH 6.5 to 8 neutral, so that heavy metals are coagulated and precipitated and removed as sludge (d2). The reason why the pH is 6.5 to 8 is that the heavy metal has the lowest solubility in the neutral region.
The reason for separating the heavy metal after removing the ammonia is that ammonia tends to form a complex salt with the heavy metal, so that coexistence and separation of the heavy metal becomes difficult when ammonia coexists.

凝集物を分離された塩水(d1)は晶析装置Eに送られる。晶析装置としては、加熱蒸発装置、真空加熱蒸発装置等を用いることができる。   The salt water (d1) from which the aggregate has been separated is sent to the crystallizer E. As the crystallization apparatus, a heating evaporation apparatus, a vacuum heating evaporation apparatus, or the like can be used.

晶析装置Eから排出される塩スラリー(e1)は脱水装置Fに送って脱水し混合塩を得る。得られた混合塩は製品として系外に搬出される。脱水装置Fとしては、遠心分離機、フィルタープレス等を用いることができる。   The salt slurry (e1) discharged from the crystallizer E is sent to the dehydrator F and dehydrated to obtain a mixed salt. The obtained mixed salt is carried out of the system as a product. As the dehydrator F, a centrifuge, a filter press, or the like can be used.

晶析装置Eから排出される蒸発蒸気は凝縮後、再利用水として系内で使用される。晶析装置Eから排出される蒸発蒸気は上記のように、再利用水として利用されるので、蒸発蒸気(e1)に同伴される塩分はサイクロン又はデミスターによって除去し塩分濃度を低めておくことが好ましい。   The evaporated vapor discharged from the crystallizer E is condensed and then used as reused water in the system. Since the evaporated vapor discharged from the crystallizer E is used as reused water as described above, the salinity accompanying the evaporated vapor (e1) may be removed by a cyclone or demister to reduce the salinity concentration. preferable.

ガス化溶融炉のガス処理系で発生した塩水(塩原水中の塩濃度1〜5%、流量350m/日)を図2に示したフローで処理した。脱アンモニア工程ではpHを約12.5に制御した。
塩原水中の不純物濃度及び得られた混合塩中の不純物濃度は表2に示すとおりであった。表2に示すように、本発明の方法によって得られた混合塩は苛性ソーダ工業用原料として再利用することができる程度に不純物濃度が低減されている。
Salt water generated in the gas treatment system of the gasification melting furnace (salt concentration of 1 to 5% in the salt raw water, flow rate of 350 m 3 / day) was treated by the flow shown in FIG. In the deammonification step, the pH was controlled at about 12.5.
The impurity concentration in the salt raw water and the impurity concentration in the obtained mixed salt were as shown in Table 2. As shown in Table 2, the mixed salt obtained by the method of the present invention has an impurity concentration reduced to such an extent that it can be reused as a raw material for the caustic soda industry.

Figure 0004456899
Figure 0004456899

本発明の方法によれば、廃棄物処理装置から排出されるNa等の塩を含む原水から不純物濃度が低く品質の高い塩を製造することができるので、得られた塩を苛性ソーダ工業用原料等に再利用することができる。   According to the method of the present invention, a salt with a low impurity concentration and high quality can be produced from raw water containing a salt such as Na discharged from a waste treatment apparatus, so that the obtained salt can be used as a raw material for caustic soda industry, etc. Can be reused.

廃棄物をガス化改質方式で処理する場合のプロセスフロー図の一例を示す図である。It is a figure which shows an example of the process flowchart in the case of processing a waste material by a gasification reforming system. 本発明の塩製造方法を実施するための各工程を示す図である。It is a figure which shows each process for enforcing the salt manufacturing method of this invention.

Claims (7)

廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、重金属及びClの各イオンを含有する塩水から塩を製造する塩製造方法において、Ca除去工程、塩水濃縮脱NH とを行う工程、重金属除去工程、塩晶析工程の各工程をこの順に行い、該塩晶析工程で得られた塩スラリーを脱水工程によって脱水することを特徴とする塩製造方法。 Salt from salt water containing each ion of Na, NH 4 , Ca, heavy metal and Cl generated in the exhaust gas treatment system when waste is melted and gasified or incinerated or when waste incinerated ash is melted in the salt method for manufacturing a, Ca removing step, the step of performing a salt water concentration and de-NH 4, heavy metal removal step, performed in this order the steps of ShioAkira析step, salt slurry obtained in about salt crystallization step The salt production method characterized by dehydrating by a dehydration process. 前記塩晶析工程が加熱蒸発又は真空加熱蒸発によって行われることを特徴とする請求項記載の塩製造方法。 The salt production method according to claim 1 , wherein the salt crystallization step is performed by heat evaporation or vacuum heat evaporation. 前記加熱蒸発又は真空加熱蒸発の際に蒸発蒸気に同伴される塩分をサイクロン又はデミスターによって除去することを特徴とする請求項記載の塩製造方法。 The salt production method according to claim 2, wherein a salt content accompanying the evaporated vapor during the heat evaporation or the vacuum heat evaporation is removed by a cyclone or a demister. 前記重金属除去工程がpH6.5〜8の中性領域で行われることを特徴とする請求項1〜のいずれかに記載の塩製造方法。 The method for producing a salt according to any one of claims 1 to 3 , wherein the heavy metal removing step is performed in a neutral region of pH 6.5 to 8. 前記塩水濃縮と脱NH とを行う工程が真空蒸発処理によって行われることを特徴とする請求項1〜のいずれかに記載の塩製造方法。 The method of salt preparation according to any one of claims 1 to 4, characterized in that the step of performing said brine concentration and de-NH 4 is carried out by vacuum evaporation. 前記塩水濃縮と脱NH とを行う工程における真空蒸発処理が被処理液のpHを10〜13.5のアルカリ性として行われることを特徴とする請求項記載の塩製造方法。 The method of salt preparation according to claim 5, wherein the vacuum evaporation in the step of performing said brine concentration and de-NH 4 is carried out as alkaline 10 to 13.5 the pH of the liquid undergoing treatment. 廃棄物を溶融ガス化処理或いは焼却処理した際又は廃棄物の焼却灰を溶融処理した際に排ガス処理系で発生する、Na、NH、Ca、重金属及びClの各イオンを含有する塩水から塩を製造する塩製造装置において、該装置が、Ca除去手段、塩水濃縮脱NH とを行う蒸発手段、重金属除去手段、塩晶析手段の各手段をこの順に含み、、かつ、塩晶析手段によって得られた塩スラリーを脱水する脱水手段を具備したことを特徴とする塩製造装置。 Salt from salt water containing each ion of Na, NH 4 , Ca, heavy metal and Cl generated in the exhaust gas treatment system when waste is melted and gasified or incinerated or when waste incinerated ash is melted in the salt producing apparatus for producing, said apparatus, Ca removing means, evaporation means for carrying out the salt concentration and de-NH 4, heavy metals removal means, ,, and including the means of the ShioAkira析means in this order, ShioAkira析A salt production apparatus comprising dehydrating means for dewatering the salt slurry obtained by the means.
JP2004078221A 2004-03-18 2004-03-18 Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste Expired - Lifetime JP4456899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078221A JP4456899B2 (en) 2004-03-18 2004-03-18 Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078221A JP4456899B2 (en) 2004-03-18 2004-03-18 Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste

Publications (2)

Publication Number Publication Date
JP2005263559A JP2005263559A (en) 2005-09-29
JP4456899B2 true JP4456899B2 (en) 2010-04-28

Family

ID=35088486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078221A Expired - Lifetime JP4456899B2 (en) 2004-03-18 2004-03-18 Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste

Country Status (1)

Country Link
JP (1) JP4456899B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321226B (en) * 2021-06-30 2022-07-26 攀钢集团研究院有限公司 Method for removing fluorine in ionic membrane caustic soda by using brine prepared from chlorination waste residues

Also Published As

Publication number Publication date
JP2005263559A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP2006213535A (en) Method of and apparatus for producing salt from salt water generated when waste materials are treated in gasification-melting furnace
JP4594821B2 (en) Purification method of gasification gas
CA2788294A1 (en) Gasification grey water treatment systems
JP3985052B2 (en) Waste treatment method in gasification reforming system
JP5817993B2 (en) Fluorine-containing waste processing method and fluorine-containing waste processing apparatus
US5470361A (en) Process for working up municipal plastic waste materials by gasification
JP2008174393A (en) Method for producing salt
JP2000328070A (en) Waste gasification treatment method
CN210523361U (en) Waste salt resourceful treatment processing system
JP3843940B2 (en) Method for producing mixed salt from waste in gasification reforming system
KR20020051011A (en) Apparatus and method for purifying Coke oven gas
JP4456899B2 (en) Method and apparatus for producing salt from salt water generated when processing waste or incineration ash of waste
JPH03502464A (en) Treatment method for wastewater generated during coal pyrolysis
JP2007230803A (en) Production system for sodium chloride
KR101981457B1 (en) Gas processing apparatus and method thereof
JP4429066B2 (en) How to remove iodine from salt water
JP3989192B2 (en) Treatment method of chlorine content in waste in gasification reforming system
JP4118240B2 (en) How to recover lead from waste
JP2005068535A (en) Method of treating gas or flying ash containing lead and zinc
JP2019072678A (en) Method of processing aluminum-containing waste
CN114349026A (en) Treatment process of high-risk waste salt
JP2011241339A (en) Desalter and desalting method for chlorine-containing waste material
JP2006104339A (en) Method for gasification-reforming wastes
JP2007277479A (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from inflammable waste
CN210522218U (en) Tail gas treatment system for waste salt resourceful treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250