JP2008237986A - Method for treating boron-containing water - Google Patents

Method for treating boron-containing water Download PDF

Info

Publication number
JP2008237986A
JP2008237986A JP2007079335A JP2007079335A JP2008237986A JP 2008237986 A JP2008237986 A JP 2008237986A JP 2007079335 A JP2007079335 A JP 2007079335A JP 2007079335 A JP2007079335 A JP 2007079335A JP 2008237986 A JP2008237986 A JP 2008237986A
Authority
JP
Japan
Prior art keywords
boron
containing water
carbonic acid
concentration
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007079335A
Other languages
Japanese (ja)
Inventor
Yuji Aoki
悠二 青木
Satoshi Asano
聡 浅野
Yoshihisa Takahashi
佳久 高橋
Hiroichi Miyashita
博一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007079335A priority Critical patent/JP2008237986A/en
Publication of JP2008237986A publication Critical patent/JP2008237986A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating boron-containing water by which carbonic acid is beforehand economically and efficiently removed, thus boron is efficiently concentrated and separated so as to obtain a concentrated liquid having a high boron concentration and a penetrated liquid having a low boron concentration in a treatment method by which boron-containing water comprising carbonic acid is separated into the boron-concentrated liquid and the penetrated liquid using a reverse osmosis membrane process. <P>SOLUTION: In the treatment method by which boron-containing water comprising carbonic acid is separated into the boron-concentrated liquid and the penetrated liquid using the reverse osmosis membrane process, the method includes: a stage (A) where the pH of the boron-containing water is regulated to 4.5 to 5.5, thereafter, air is blown therein, and the carbonic acid in the boron-containing water is removed as carbon dioxide; and a stage (B) where the pH of the boron-containing water is regulated to 10.5 to 11.5, and thereafter, it is subjected to the reverse osmosis membrane process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ホウ素含有水の処理方法に関し、さらに詳しくは、炭酸を含有するホウ素含有水から、逆浸透膜法を用い、ホウ素濃縮液と透過液とに分離する処理方法において、該ホウ素含有水から予め炭酸を経済的かつ効率的に除去し、これにより効率的にホウ素を濃縮分離し、ホウ素濃度の高い濃縮液とホウ素濃度の低い透過液を得ることができるホウ素含有水の処理方法に関する。   The present invention relates to a method for treating boron-containing water, and more specifically, in a treatment method for separating boron-containing water containing carbonic acid into a boron concentrate and a permeate using a reverse osmosis membrane method. The present invention relates to a method for treating boron-containing water, in which carbonic acid is previously removed economically and efficiently, thereby efficiently concentrating and separating boron to obtain a concentrated solution having a high boron concentration and a permeated solution having a low boron concentration.

近年、ホウ素含有水の処理技術は、海水及びかん水の淡水化処理、浄水処理、工場、鉱山などから排出される坑廃水処理において、注目されている。
ホウ素含有水は、さまざまな工業排水として産出されている。例えば、ホウ酸やホウ酸ナトリウムに代表されるホウ素化合物は、ガラス工業をはじめとして、医薬用、化粧品原料、石鹸工業、電気めっき、染料、アルミニウム表面処理等のさまざまな工業用途で原材料として使用されている。そのため、これらの製造工程で発生する排水には、ホウ素化合物が含有されている場合が多い。また、発電所から発生する排水やゴミ焼却場における洗煙排水にもホウ素が含まれることが多い。
In recent years, boron-containing water treatment technology has attracted attention in the treatment of mine wastewater discharged from seawater and brine desalination, water purification, factories, mines, and the like.
Boron-containing water is produced as various industrial wastewater. For example, boron compounds represented by boric acid and sodium borate are used as raw materials in various industrial applications such as glass industry, pharmaceuticals, cosmetic raw materials, soap industry, electroplating, dyes, aluminum surface treatment. ing. Therefore, the wastewater generated in these production processes often contains a boron compound. In addition, boron is often contained in wastewater generated from power plants and smoke washing wastewater in garbage incineration plants.

ところで、ホウ素は動植物にとって必須微量元素ではあるが、過剰に摂取した場合、動物に対する中枢神経障害或いは植物に対する成長阻害を引き起こすとされ、平成13年より、ホウ素とその化合物の排水基準として海域では230mg/L、及び海域外では10mg/Lと定められ、その分離及び除去が注目されている。   By the way, boron is an essential trace element for animals and plants, but if it is consumed in excess, it is considered to cause central nervous system damage to animals or growth inhibition to plants. / L, and 10 mg / L outside the sea area, and its separation and removal are attracting attention.

ホウ素含有水の処理方法としては、イオン交換樹脂又はキレート樹脂を用いて、ホウ素含有水中のホウ素を吸着させた後、鉱酸にて溶離処理をおこなって高濃度にホウ素を含んだ溶離水を回収する方法(例えば、特許文献1、2、3参照。)、或いはアルミニウム化合物及び硫酸化合物、又はアルミニウム化合物、鉄化合物等の共沈剤を用いて、ホウ素含有水中のホウ素をスラッジとして固定化、及び不溶化する方法(例えば、特許文献4、5参照。)が開示されている。しかしながら、このような処理方法は、極めて限られた分野でのみ適用が可能であり、例えば、吸着法では、ホウ素の吸着容量が低いため、多量の吸着剤の添加が不可欠であり、効率性と経済性において実用的でない。また、固定化法では、多量の共沈剤等を添加するので、操業資材が増加するとともにホウ素含有澱物である汚泥の発生量も増加するといった問題点があった。   As a treatment method for boron-containing water, ion-exchange resin or chelate resin is used to adsorb boron in boron-containing water, and then elution treatment is performed with mineral acid to collect high-concentration boron-containing water. Using a coprecipitation agent such as an aluminum compound and a sulfuric acid compound, or an aluminum compound or an iron compound, and fixing boron in water containing boron as sludge; and A method for insolubilization (see, for example, Patent Documents 4 and 5) is disclosed. However, such a treatment method can be applied only in a very limited field. For example, in the adsorption method, since the adsorption capacity of boron is low, addition of a large amount of adsorbent is indispensable. Not practical in economics. In addition, in the immobilization method, since a large amount of coprecipitation agent or the like is added, there is a problem that the amount of operation materials increases and the amount of sludge, which is a boron-containing starch, increases.

例えば、鉱山坑廃水、温泉水等のように、比較的低濃度、例えば数十ppm程度のホウ素の含有水を大量に処理する場合、上記処理方法を適用する際には、処理に要する時間が膨大になり、スラッジ量が膨大になり、かつ処理コストが非常に高額になるといった問題が生じ、実用上適用が困難であった。   For example, when processing a large amount of boron-containing water having a relatively low concentration, for example, about several tens of ppm, such as mine mine drainage, hot spring water, etc., when applying the above processing method, the time required for the processing The problem is that the amount of sludge becomes enormous, the amount of sludge becomes enormous, and the processing cost becomes very high, which makes it difficult to apply practically.

さらに、ホウ素含有水を逆浸透膜に通水してホウ素を除去する方法が知られている。
ここで、一般に、逆浸透膜を用いる方法では、ホウ素含有水のpHを10程度に調整することで、ホウ素含有水からホウ素濃度が高い濃縮液とホウ素濃度が低い透過液を効率よく回収することができるとされている。ところが、ホウ素含有水中には、通常、ホウ素以外に炭酸等のイオンを含むので、水酸化ナトリウム等によりpHを上昇させた場合、炭酸塩等の塩類が生成するため、逆浸透膜によるホウ素の分離効率が著しく低下する。例えば、ホウ素以外にカルシウム、炭酸等を含む場合には、pHを上昇させた場合、カルシウムスケールが生成し、膜閉塞等により、逆浸透膜によるホウ素の分離効率が低下する。このため、逆浸透膜に通水するホウ素含有水から、カルシウム、炭酸等を除去するため、事前に弱酸性イオン交換樹脂及び脱気膜装置を設けること、又は逆浸透膜に通水するホウ素含有水に、キレート化剤等のスケール防止剤を添加する方法(例えば、特許文献6参照。)が開示されている。
Furthermore, a method for removing boron by passing boron-containing water through a reverse osmosis membrane is known.
Here, in general, in the method using a reverse osmosis membrane, by adjusting the pH of the boron-containing water to about 10, the concentrated solution having a high boron concentration and the permeate having a low boron concentration can be efficiently recovered from the boron-containing water. It is supposed to be possible. However, since boron-containing water usually contains ions such as carbonic acid in addition to boron, when pH is increased by sodium hydroxide or the like, salts such as carbonate are generated, so that boron is separated by a reverse osmosis membrane. Efficiency is significantly reduced. For example, when calcium, carbonic acid, or the like is contained in addition to boron, when the pH is raised, calcium scale is generated, and the separation efficiency of boron by the reverse osmosis membrane is lowered due to membrane blockage or the like. For this reason, in order to remove calcium, carbonic acid, and the like from boron-containing water that passes through the reverse osmosis membrane, a weakly acidic ion exchange resin and a degassing membrane device are provided in advance, or boron that passes through the reverse osmosis membrane A method of adding a scale inhibitor such as a chelating agent to water (for example, see Patent Document 6) is disclosed.

しかしながら、このような方法では、鉱山坑廃水、温泉水等のように、一般的に、炭酸を含み、かつ比較的低濃度のホウ素の含有水を大量に処理する場合、設備コストが増加し、又はスケール防止剤による2次的な問題の発生等の問題とともに、実用上満足できるレベルにホウ素を濃縮した濃縮液とホウ素濃度の低い透過液を得ることができなかった。
以上の状況から、逆浸透膜法において、炭酸を含むホウ素含有水から、効率よくホウ素を濃縮した濃縮液を得ることができる処理方法が求められていた。
However, in such a method, as in mine mine drainage, hot spring water, etc., in general, when processing a large amount of water containing carbon dioxide and relatively low concentration of boron, the equipment cost increases, Or, along with problems such as the occurrence of secondary problems due to the scale inhibitor, it was not possible to obtain a concentrated liquid in which boron was concentrated to a level that was practically satisfactory and a permeated liquid having a low boron concentration.
From the above situation, in the reverse osmosis membrane method, there has been a demand for a treatment method that can efficiently obtain a concentrated liquid in which boron is concentrated from boron-containing water containing carbonic acid.

特開2005−87825号公報(第1頁、第2頁)Japanese Patent Laying-Open No. 2005-87825 (first page, second page) 特開2002−173665号公報(第1頁、第2頁)JP 2002-173665 A (first page, second page) 特開2001−212455号公報(第1頁、第2頁)JP 2001-212455 A (first page, second page) 特開2001−162287号公報(第1頁、第2頁)JP 2001-162287 A (first page, second page) 特開平3−38295号公報(第1頁)Japanese Patent Laid-Open No. 3-38295 (first page) 特開平11−138165号公報(第1頁、第2頁)JP-A-11-138165 (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、炭酸を含有するホウ素含有水から、逆浸透膜法を用い、ホウ素濃縮液と透過液とに分離する処理方法において、該ホウ素含有水から予め炭酸を経済的かつ効率的に除去し、これにより効率的にホウ素を濃縮分離し、ホウ素濃度の高い濃縮液とホウ素濃度の低い透過液を得ることができるホウ素含有水の処理方法を提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a boron-containing water that is separated from a boron-containing water containing carbonic acid into a boron concentrate and a permeate using a reverse osmosis membrane method. Provides a method for treating boron-containing water, which can remove carbonic acid from wastewater economically and efficiently, thereby efficiently concentrating and separating boron to obtain a concentrated solution having a high boron concentration and a permeated solution having a low boron concentration. There is to do.

本発明者らは、上記目的を達成するために、炭酸を含有するホウ素含有水から、逆浸透膜法を用い、ホウ素濃縮液と透過液とに分離処理する方法において、該ホウ素含有水のpHを特定の値に調整した後、空気吹き込みに付し、続いて、ホウ素含有水のpHを特定の値に調整した後、逆浸透膜法に付したところ、該ホウ素含有水から炭酸を経済的かつ効率的に除去することができること、及び効率的にホウ素を濃縮分離することができることを見出し、本発明を完成した。   In order to achieve the above object, the inventors of the present invention have used a reverse osmosis membrane method from boron-containing water containing carbonic acid to separate the boron-concentrated liquid and the permeated liquid, and the pH of the boron-containing water. Was adjusted to a specific value, and then subjected to air blowing. Subsequently, after adjusting the pH of the boron-containing water to a specific value and subjected to the reverse osmosis membrane method, carbonic acid was economically produced from the boron-containing water. The present invention was completed by finding that it can be efficiently removed and that boron can be efficiently concentrated and separated.

すなわち、本発明の第1の発明によれば、炭酸を含有するホウ素含有水から、逆浸透膜法を用い、ホウ素濃縮液と透過液とに分離する処理方法であって、
前記ホウ素含有水のpHを4.5〜5.5に調整した後、空気吹き込みに付し、該ホウ素含有水中の炭酸を炭酸ガスとして除去する工程(A)、続いて、ホウ素含有水のpHを10.5〜11.5に調整した後、逆浸透膜法に付す工程(B)からなることを特徴とするホウ素含有水の処理方法が提供される。
That is, according to the first invention of the present invention, a process for separating boron-containing water containing carbonic acid into a boron concentrate and a permeate using a reverse osmosis membrane method,
Step (A) of adjusting the pH of the boron-containing water to 4.5 to 5.5 and then subjecting it to air blowing to remove carbonic acid in the boron-containing water as carbon dioxide, followed by the pH of the boron-containing water A process for treating boron-containing water is provided, which comprises the step (B) of adjusting the pH to 10.5 to 11.5 and then subjecting to a reverse osmosis membrane method.

また、本発明の第2の発明によれば、第1の発明において、前記空気吹き込みは、ホウ素含有水のpHが7.0以上に上昇するまでの時間を継続することを特徴とするホウ素含有水の処理方法が提供される。   According to the second invention of the present invention, in the first invention, the air blowing continues the time until the pH of the boron-containing water rises to 7.0 or more. A method for treating water is provided.

また、本発明の第3の発明によれば、第1の発明において、前記空気吹き込みの吹込量は、ホウ素含有水1Lあたり0.1〜0.5L/分であることを特徴とするホウ素含有水の処理方法が提供される。   According to a third aspect of the present invention, in the first aspect, the amount of air blown is 0.1 to 0.5 L / min per liter of boron-containing water. A method for treating water is provided.

また、本発明の第4の発明によれば、第1の発明において、前記空気吹き込み後の炭酸濃度は、30mg/L以下であることを特徴とするホウ素含有水の処理方法が提供される。   According to a fourth aspect of the present invention, there is provided the method for treating boron-containing water according to the first aspect, wherein the carbonic acid concentration after air blowing is 30 mg / L or less.

また、本発明の第5の発明によれば、第1の発明において、前記pH調整に用いるアルカリは、水酸化ナトリウムであることを特徴とするホウ素含有水の処理方法が提供される。   According to a fifth aspect of the present invention, there is provided the method for treating boron-containing water according to the first aspect, wherein the alkali used for the pH adjustment is sodium hydroxide.

また、本発明の第6の発明によれば、第1〜5いずれかの発明において、前記ホウ素含有水は、ホウ素を10mg/L以上の濃度で含有する鉱山廃水であることを特徴とするホウ素含有水の処理方法が提供される。   According to a sixth invention of the present invention, in any one of the first to fifth inventions, the boron-containing water is mine wastewater containing boron at a concentration of 10 mg / L or more. A method for treating water is provided.

本発明のホウ素含有水の処理方法は、炭酸を含有するホウ素含有水から、逆浸透膜法を用い、ホウ素濃縮液と透過液とに分離処理する方法において、該ホウ素含有水のpHを特定の値に調整して、空気吹き込み及び逆浸透膜法に付すことにより、該ホウ素含有水から炭酸を経済的かつ効率的に除去することができ、かつ効率的にホウ素を濃縮分離し、実用上満足できるレベルにホウ素を濃縮した濃縮液とホウ素濃度の低い透過液を得ることができるので、その工業的価値は極めて大きい。   The method for treating boron-containing water according to the present invention is a method of separating the boron-containing water from a boron-containing water containing carbonic acid into a boron concentrate and a permeate using a reverse osmosis membrane method. By adjusting to the value and subjecting to air blowing and reverse osmosis membrane method, carbonic acid can be removed economically and efficiently from the boron-containing water, and boron is concentrated and separated efficiently, which is practically satisfactory. Since it is possible to obtain a concentrated liquid in which boron is concentrated to a possible level and a permeated liquid having a low boron concentration, its industrial value is extremely high.

以下、本発明のホウ素含有水の処理方法を詳細に説明する。
本発明のホウ素含有水の処理方法は、炭酸を含有するホウ素含有水から、逆浸透膜法を用い、ホウ素濃縮液と透過液とに分離する処理方法であって、前記ホウ素含有水のpHを4.5〜5.5に調整した後、空気吹き込みに付し、該ホウ素含有水中の炭酸を炭酸ガスとして除去する工程(A)、続いて、ホウ素含有水のpHを10.5〜11.5に調整した後、逆浸透膜法に付す工程(B)からなることを特徴とする。
Hereinafter, the method for treating boron-containing water of the present invention will be described in detail.
The method for treating boron-containing water according to the present invention is a treatment method in which boron-containing water containing carbonic acid is separated into a boron concentrate and a permeate using a reverse osmosis membrane method, and the pH of the boron-containing water is adjusted. After adjusting to 4.5-5.5, it attach | subjects to air blowing, The process (A) which removes the carbonic acid in this boron containing water as a carbon dioxide gas, Then, pH of boron containing water is 10.5-11. After adjusting to 5, it is characterized by comprising the step (B) of applying to the reverse osmosis membrane method.

本発明において、逆浸透膜法を用い、ホウ素濃縮液と透過液とに分離する際に、まず、炭酸を含有するホウ素含有水のpHを4.5〜5.5に調整して空気吹き込みに付し、予め炭酸を除去する工程(A)と、その後、pHを10.5〜11.5に調整して、逆浸透膜に通液する工程(B)を行うことが重要である。
すなわち、工程(A)において、特定pHに調整した空気吹き込みによりホウ素含有水中の炭酸を経済的かつ効率的に除去することができ、次いで、工程(B)でのpH調整に際して、炭酸塩の生成がなされないので、逆浸透膜に通液してホウ素を濃縮分離する際に、特定pHに調整する作用と相俟って、ホウ素の分離効率が上昇し、ホウ素濃度の高い濃縮液とホウ素濃度の低い透過液を得ることができる。これらの工程での特定pHに調整することによる作用効果については、各工程の説明において、詳述する。
In the present invention, when the reverse osmosis membrane method is used to separate the boron concentrate and the permeate, first, the pH of the boron-containing water containing carbonic acid is adjusted to 4.5 to 5.5 for air blowing. It is important to perform the step (A) for removing carbonic acid in advance and the step (B) for adjusting the pH to 10.5 to 11.5 and passing the solution through the reverse osmosis membrane.
That is, in step (A), carbonic acid in boron-containing water can be removed economically and efficiently by blowing air adjusted to a specific pH, and then, during the pH adjustment in step (B), the formation of carbonate Therefore, when the boron is concentrated and separated through the reverse osmosis membrane, the separation efficiency of boron is increased in combination with the action of adjusting to a specific pH, and the concentrated solution and the boron concentration with high boron concentration are increased. Low permeate. The effect of adjusting to a specific pH in these steps will be described in detail in the description of each step.

本発明において用いるホウ素含有水としては、特に限定されるものではなく、ホウ素を10mg/L以上の濃度で含有し、同時に炭酸を含んだものが用いられ、例えば、メッキ、アルミニウム表面処理、ガラス、染料、医療等の各産業における工程水、排煙脱硫施設、ゴミ処理施設等の排水、鉱山廃水、温泉水等が挙げられる。   The boron-containing water used in the present invention is not particularly limited, and boron containing water at a concentration of 10 mg / L or more and simultaneously containing carbonic acid is used. For example, plating, aluminum surface treatment, glass, Examples include process water in various industries such as dyes, medical treatment, waste water from flue gas desulfurization facilities, waste disposal facilities, mine waste water, hot spring water, and the like.

上記工程(A)において、ホウ素含有水のpHとしては、まず4.5〜5.5に調整する。これによって、空気吹き込みに伴い、ホウ素含有水中の炭酸を炭酸ガスとして除去することができる。
すなわち、ホウ素含有水に含まれる炭酸は、通常、pH8以上において、全炭酸の96%が、炭酸イオン(CO 2−)、又は重炭酸イオン(HCO 2−)の形態をとり溶解している。したがって、この条件下で空気の吹き込みのみでの炭酸除去が困難である。ここで、pHを4.5〜5.5の範囲に調整することにより、ホウ素含有水中の全炭酸の97%は炭酸イオン(CO 2−)の形態をとり、空気吹き込みによる除去が容易となる。なお、pHが4.5未満では、酸添加量が多くなるため、経済的に不利になる。一方、pHが5.5を超えると、重炭酸イオン(HCO 2−)の残留割合が多くなるので除去がなされにくい。
In the step (A), the pH of the boron-containing water is first adjusted to 4.5 to 5.5. Thus, carbon dioxide in the boron-containing water can be removed as carbon dioxide gas with the blowing of air.
In other words, the carbonic acid contained in the boron-containing water is usually dissolved at a pH of 8 or more in which 96% of the total carbonic acid is dissolved in the form of carbonate ions (CO 3 2− ) or bicarbonate ions (HCO 3 2− ). Yes. Therefore, it is difficult to remove carbonic acid only by blowing air under these conditions. Here, by adjusting the pH to the range of 4.5 to 5.5, 97% of the total carbonic acid in the boron-containing water takes the form of carbonate ions (CO 3 2− ), which can be easily removed by air blowing. Become. If the pH is less than 4.5, the amount of acid added increases, which is economically disadvantageous. On the other hand, if the pH exceeds 5.5, the residual ratio of bicarbonate ions (HCO 3 2− ) increases, so that removal is difficult.

上記工程(A)において、pHの調整法としては、処理原水であるホウ素含有水のpHにより、酸又はアルカリを用いて行われる。上記酸又はアルカリの種類、及び濃度としては、特に限定されるものではなく、酸としては硫酸が好ましい。   In the said process (A), as a pH adjustment method, it is performed using an acid or an alkali with the pH of the boron containing water which is process raw water. The type and concentration of the acid or alkali are not particularly limited, and sulfuric acid is preferable as the acid.

上記工程(A)において、空気吹込量としては、特に限定されるものではなく、ホウ素含有水1L当たり0.1〜0.5L/分が好ましい。すなわち、空気吹込量が1L当たり0.1L/分未満では、空気吹き込みに要する時間が非常に長くなり、操業時に律速となる。一方、空気吹込量が1Lあたり0.5L/分を超えると、ホウ素含有水との混合が効率的でなく、経済的に不利となる。   In the step (A), the air blowing amount is not particularly limited, and is preferably 0.1 to 0.5 L / min per 1 L of boron-containing water. That is, when the air blowing rate is less than 0.1 L / min per liter, the time required for air blowing becomes very long, and the rate is controlled during operation. On the other hand, if the air blowing rate exceeds 0.5 L / min per liter, mixing with boron-containing water is not efficient and economically disadvantageous.

また、吹込時間としては、特に限定されるものではなく、ホウ素含有水から炭酸が除去されるにつれ、ホウ素含有水のpHは4.5〜5.5から徐々に上昇するので、ホウ素含有水のpHを測定することにより、pHが7・0以上となった時点で、炭酸の除去が完了したものと判定することができる。なお、吹込時間としては、通常の条件で、30〜60分で行なわれる。   The blowing time is not particularly limited, and the pH of the boron-containing water gradually increases from 4.5 to 5.5 as the carbonic acid is removed from the boron-containing water. By measuring the pH, it can be determined that the removal of carbonic acid has been completed when the pH reaches 7.0 or higher. The blowing time is 30 to 60 minutes under normal conditions.

上記空気吹き込みに伴うホウ素含有水からの炭酸除去について、図1を用いて、詳細に説明する。
ここで、ホウ素含有水としては、ホウ素濃度25mg/L、炭酸濃度550mg/L、及びpH7.4の鉱山廃水11Lを用いた。前記鉱山廃水に硫酸を添加して、ホウ素含有水の初期pHを5.0とした。pH調整したホウ素含有水に、2.5L/分で空気を吹き込んだ。その後、脱気開始後10分、30分、60、90分、及び120分における炭酸濃度を測定した。図1に、脱気時間と炭酸濃度及びpHの関係を示す。
図1より、脱気開始直後から炭酸濃度が急激に減少し、脱気開始30分後のホウ素含有水中の炭酸濃度は30mg/L以下となり、その後の炭酸濃度は、ほぼ一定となった。これより、処理水中の炭酸を効率的に分離除去することができることが分かる。また、ホウ素含有水のpHは、炭酸濃度の減少と共に減少し、炭酸濃度が30mg/L以下となった後のホウ素含有水のpHは約7.0であり、それ以降のpHはほぼ一定であることから、ホウ素含有水のpHはホウ素含有水の炭酸濃度の推移を反映しており、pH7.0を炭酸除去の完了条件とすることができる。
The carbonic acid removal from the boron-containing water accompanying the air blowing will be described in detail with reference to FIG.
Here, 11 L of mine wastewater having a boron concentration of 25 mg / L, a carbonic acid concentration of 550 mg / L, and a pH of 7.4 was used as the boron-containing water. Sulfuric acid was added to the mine wastewater to adjust the initial pH of the boron-containing water to 5.0. Air was blown into the boron-containing water whose pH was adjusted at 2.5 L / min. Thereafter, the carbonic acid concentration at 10 minutes, 30 minutes, 60, 90 minutes and 120 minutes after the start of degassing was measured. FIG. 1 shows the relationship between the deaeration time, the carbonic acid concentration and the pH.
As shown in FIG. 1, the carbonic acid concentration rapidly decreased immediately after the start of degassing, and the carbonic acid concentration in boron-containing water 30 minutes after the start of degassing became 30 mg / L or less, and the carbonic acid concentration thereafter became substantially constant. This shows that the carbonic acid in the treated water can be efficiently separated and removed. Further, the pH of the boron-containing water decreases with a decrease in the carbonic acid concentration, and the pH of the boron-containing water after the carbonic acid concentration becomes 30 mg / L or less is about 7.0, and the pH after that is almost constant. Therefore, the pH of the boron-containing water reflects the transition of the carbonic acid concentration of the boron-containing water, and pH 7.0 can be set as the completion condition for carbonation removal.

上記空気吹き込みの手段としては、特に限定されるものではなく、空気を微細化することで効率的に炭酸ガスを除去することができるシンターガラス、素焼き板等の分散装置を使用することが好ましい。さらに、溶液を撹拌しながら空気をより細かくして反応効率を高めれば短時間で炭酸を除去することができる。   The means for blowing air is not particularly limited, and it is preferable to use a dispersion device such as sinter glass or unglazed plate that can efficiently remove carbon dioxide gas by making air finer. Furthermore, carbon dioxide can be removed in a short time if the reaction efficiency is increased by making the air finer while stirring the solution.

上記工程(B)において、ホウ素含有水のpHとしては、10.5〜11.5に調整する。これによって、逆浸透膜に通液することにより、ホウ素濃度の高い濃縮液とホウ素濃度の低い透過液を得ることができる。
すなわち、ホウ素含有水のホウ素は、B(OH)又はB(OH) として存在しており、pHが10.5未満では、ホウ酸としてB(OH) の他に、B(OH)が残留するので、従来用いられていたpHが10程度の液の通水では、逆浸透膜によるホウ素の分離効果が不十分である。なお、B(OH)の形態では、逆浸透膜によるホウ素の分離は困難である。これは、従来の、一方、pHが11.5を超えると、ホウ酸としてB(OH) へ完全に変化しているので、これ以上のpH上昇は不必要である。
In the said process (B), as pH of boron containing water, it adjusts to 10.5-11.5. Thereby, by passing through the reverse osmosis membrane, a concentrated liquid having a high boron concentration and a permeated liquid having a low boron concentration can be obtained.
That is, boron of boron-containing water is present as B (OH) 3 or B (OH) 4 , and when the pH is less than 10.5, boric acid in addition to B (OH) 4 Since OH) 3 remains, the conventional separation of boron with a reverse osmosis membrane is insufficient when water having a pH of about 10 is used. In the form of B (OH) 3 , it is difficult to separate boron by a reverse osmosis membrane. On the other hand, when the pH exceeds 11.5, the pH is completely changed to B (OH) 4 as boric acid, so that further increase in pH is unnecessary.

上記工程(B)において、pHの調整法としては、アルカリ水溶液を用いて行われる。ここで、アルカリの種類及び濃度としては、特に限定されるものではなく、水酸化ナトリウム、水酸化カリウム等が挙げられ、特に水酸化ナトリウムが好ましい。
なお、工程(A)において、緩衝効果が大きい炭酸イオン又は重炭酸イオンを除去したことにより、pH調整において添加するアルカリ水溶液の添加量が少なくなり、ホウ素含有水中の全塩濃度を低下させることができので、逆浸透膜によるホウ素分離効果を向上させることができる。
In the step (B), the pH adjustment method is performed using an alkaline aqueous solution. Here, the kind and concentration of the alkali are not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide, and sodium hydroxide is particularly preferable.
In addition, in the step (A), by removing carbonate ions or bicarbonate ions having a large buffering effect, the amount of alkaline aqueous solution added in pH adjustment is reduced, and the total salt concentration in boron-containing water is reduced. Therefore, the boron separation effect by the reverse osmosis membrane can be improved.

上記工程(B)で用いる逆浸透膜としては、特に限定されるものではないが、pHが10.5〜11.5のホウ素含有水を通水させることから、長期間使用しても劣化しないように、耐アルカリ性のものが好ましい。
また、目的とする濃縮液及び透過液のホウ素濃度により、1段ないし多段の逆浸透膜を設置することができる。例えば、濃縮液のホウ素濃度を高くする場合には、前段の濃縮液を後段の逆浸透膜に通液し、後段の濃縮液を回収することができる方式とする。また、透過液のホウ素濃度を低くする場合には、前段の透過液を後段の逆浸透膜に通液し、後段の透過液を回収することができる方式とする。
Although it does not specifically limit as a reverse osmosis membrane used by the said process (B), Since a boron containing water with a pH of 10.5-11.5 is passed, it does not deteriorate even if it uses for a long period of time. Thus, an alkali-resistant thing is preferable.
Further, a single-stage or multi-stage reverse osmosis membrane can be installed depending on the target concentrated liquid and the boron concentration of the permeated liquid. For example, when the concentration of boron in the concentrated liquid is increased, a system in which the concentrated liquid in the previous stage is passed through the reverse osmosis membrane in the subsequent stage and the concentrated liquid in the subsequent stage can be recovered. Further, when the boron concentration of the permeate is lowered, a method is adopted in which the permeate in the former stage is passed through the reverse osmosis membrane in the latter stage and the permeate in the latter stage can be collected.

上記工程(B)において、実用上満足できるレベルにホウ素を濃縮した、ホウ素濃度が100mg/L以上の濃縮液とホウ素濃度が10mg/L以下の透過液が得られる。得られた透過液は、排水基準を満足するものである。また、得られた濃縮液は、さらに濃縮操作に付された後、ホウ酸等の製造原料として用いられる。   In the step (B), a concentrated liquid having a boron concentration of 100 mg / L or more and a permeate having a boron concentration of 10 mg / L or less, which are obtained by concentrating boron to a practically satisfactory level, are obtained. The obtained permeate satisfies the drainage standard. Further, the obtained concentrated liquid is further subjected to a concentration operation and then used as a raw material for producing boric acid or the like.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いたホウ素の分析方法は、ICP発光分析法で、炭酸の分析方法は、燃焼酸化赤外線式TOC分析法で行った。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of boron used in the Examples and Comparative Examples was ICP emission analysis, and the analysis method of carbonic acid was the combustion oxidation infrared TOC analysis method.

(実施例1)
まず、ホウ素含有水として、ホウ素濃度25.5mg/L、炭酸濃度550mg/L、及びpH7.5の鉱山廃水100Lを用いて、該鉱山廃水に硫酸を添加して、ホウ素含有水の初期pHを5.0に調整した。次いで、pH調整したホウ素含有水に、25L/分で空気を吹き込み、ホウ素含有水のpHが7.0となったところで、空気吹き込みを止めた。ここで、ホウ素含有水の炭酸濃度は、30mg/Lとなった。続いて、空気吹込み後のホウ素含有水に、水酸化ナトリウムを添加してpHを11.0に調整し、ホウ素含有水1を得た。
その後、ホウ素含有水1を、図2に概略機器配置図を表す逆浸透膜装置に通水し、逆浸透膜装置から抜き取られた透過液量が所定量になったところで、濃縮液及び透過液を採取して、それらのホウ素濃度を分析した。結果を図3に示す。図3は、透過液抜取量と濃縮液及び透過液のホウ素濃度の関係を表す。
なお、逆浸透膜装置の操作方法の概要を次に示す。
逆浸透膜5としては、Koch社製のTFC−SR24を使用した。タンク1に上記ホウ素含有水を入れ、ポンプ2を稼動させる。透過液流量計7と濃縮液流量計9により透過液8の流量が3.5L/分、濃縮液10の流量が35L/分となるように、制御器4及びバルブ6にて調整し、上記ホウ素含有水を3μmフィルタ3を経て、逆浸透膜装置に通水した。
Example 1
First, as boron-containing water, 100 L of mine wastewater having a boron concentration of 25.5 mg / L, a carbonic acid concentration of 550 mg / L, and a pH of 7.5, sulfuric acid was added to the mine wastewater, and the initial pH of the boron-containing water was adjusted. Adjusted to 5.0. Next, air was blown into the pH-adjusted boron-containing water at 25 L / min. When the pH of the boron-containing water reached 7.0, the air blowing was stopped. Here, the carbonic acid concentration of boron-containing water was 30 mg / L. Subsequently, sodium hydroxide was added to the boron-containing water after air blowing to adjust the pH to 11.0, and boron-containing water 1 was obtained.
Thereafter, the boron-containing water 1 is passed through a reverse osmosis membrane device whose schematic device layout is shown in FIG. 2, and when the amount of permeate extracted from the reverse osmosis membrane device reaches a predetermined amount, the concentrated solution and the permeate Were collected and analyzed for their boron concentration. The results are shown in FIG. FIG. 3 shows the relationship between the permeate withdrawal amount and the boron concentration of the concentrate and permeate.
The outline of the operation method of the reverse osmosis membrane device is shown below.
As the reverse osmosis membrane 5, TFC-SR24 manufactured by Koch was used. The boron-containing water is put into the tank 1 and the pump 2 is operated. The permeate flow meter 7 and the concentrate flow meter 9 are adjusted by the controller 4 and the valve 6 so that the flow rate of the permeate 8 is 3.5 L / min and the flow rate of the concentrate 10 is 35 L / min. The boron-containing water was passed through the reverse osmosis membrane device through the 3 μm filter 3.

(比較例1)
まず、ホウ素含有水として、ホウ素濃度25.1mg/L、炭酸濃度550mg/L、及びpH7.4の鉱山廃水を用いて、該鉱山廃水に水酸化ナトリウム溶液を添加して、pHを10に調整し、ホウ素含有水2を得た。
その後、ホウ素含有水2を、図2に概略機器配置図を表す逆浸透膜装置に通水し、逆浸透膜試験機から抜き取られた透過液量が所定量になったところで、濃縮液及び透過液を採取して、それらのホウ素濃度を分析した。結果を図3に示す。
(Comparative Example 1)
First, as the boron-containing water, using a mine wastewater having a boron concentration of 25.1 mg / L, a carbonic acid concentration of 550 mg / L, and a pH of 7.4, a sodium hydroxide solution is added to the mine wastewater to adjust the pH to 10. As a result, boron-containing water 2 was obtained.
Thereafter, the boron-containing water 2 is passed through a reverse osmosis membrane device whose schematic device layout is shown in FIG. 2, and when the amount of permeate extracted from the reverse osmosis membrane tester reaches a predetermined amount, Liquids were collected and analyzed for their boron concentration. The results are shown in FIG.

図3より、実施例1では、炭酸を含有するホウ素含有水のpHを所定値に調整した後、空気吹き込みに付し、続いて、ホウ素含有水のpHを所定値に調整した後、逆浸透膜法に付すことにより本発明の方法に従って行われたので、処理水中の炭酸を効率的に分離除去するとともに、逆浸透膜に通水した際に、pH調整での炭酸塩の生成の防止と適切なpH設定の効果が相俟って、ホウ素濃度が高い濃縮液とホウ素濃度が低い透過液が得られることが分かる。
これに対して、比較例1では、炭酸の除去と逆浸透膜へ通水されたホウ素含有水のpHの調整がこれらの条件に合わないので、濃縮液と透過液のホウ素濃度において満足すべき結果が得られないことが分かる。
From FIG. 3, in Example 1, after adjusting the pH of boron-containing water containing carbonic acid to a predetermined value, it was subjected to air blowing, and subsequently, the pH of boron-containing water was adjusted to a predetermined value, followed by reverse osmosis. Since it was carried out according to the method of the present invention by subjecting it to a membrane method, carbon dioxide in the treated water was efficiently separated and removed, and when water was passed through the reverse osmosis membrane, the formation of carbonate by pH adjustment was prevented and It can be seen that a combined solution having a high boron concentration and a permeate having a low boron concentration can be obtained in combination with the effect of appropriate pH setting.
On the other hand, in Comparative Example 1, since the removal of carbonic acid and the adjustment of the pH of the boron-containing water passed through the reverse osmosis membrane do not meet these conditions, the concentration of boron in the concentrate and the permeate should be satisfied. It turns out that a result is not obtained.

より詳しくは、ホウ素含有水1での濃縮液のホウ素濃度は、常にホウ含有水(b)の濃縮液のホウ素濃度を上回っていた。ホウ素含有水1での透過液抜取量が95Lのときの濃縮液とホウ素含有水2での透過液抜取量が91Lのときの濃縮液について、それぞれのホウ素濃度は、131mg/Lと71mg/Lであった。また、ホウ素含有水1での透過液のホウ素濃度は、常にホウ素含有水2での透過液のホウ素濃度を下回っていた。ホウ素含有水1での透過液抜取量が95Lのときの透過液とホウ素含有水2での透過液抜取量が91Lのときの透過液について、それぞれのホウ素濃度は、8mg/Lと15mg/Lであった。   More specifically, the boron concentration of the concentrate in the boron-containing water 1 was always higher than the boron concentration of the concentrate of the boron-containing water (b). Regarding the concentrated solution when the permeate withdrawal amount in the boron-containing water 1 is 95 L and the concentrate when the permeate withdrawal amount in the boron-containing water 2 is 91 L, the respective boron concentrations are 131 mg / L and 71 mg / L. Met. Further, the boron concentration of the permeate in the boron-containing water 1 was always lower than the boron concentration of the permeate in the boron-containing water 2. Regarding the permeate when the permeate withdrawal amount in the boron-containing water 1 is 95 L and the permeate when the permeate withdrawal amount in the boron-containing water 2 is 91 L, the respective boron concentrations are 8 mg / L and 15 mg / L. Met.

以上より明らかなように、本発明のホウ素含有水の処理方法は、ホウ酸等を用いる工業分野をはじめ、発電所、ゴミ焼却場、鉱山等の分野で利用されるホウ素含有排水において、炭酸を含有するホウ素含有水からホウ素を分離除去する方法として好適である。   As is clear from the above, the method for treating boron-containing water according to the present invention includes carbon dioxide in boron-containing wastewater used in fields such as industrial plants using boric acid, power plants, garbage incineration plants, mines and the like. It is suitable as a method for separating and removing boron from the contained boron-containing water.

空気吹き込みにおける脱気時間と炭酸濃度及びpHの関係を示す図である。It is a figure which shows the relationship between the deaeration time in carbon blowing, a carbonic acid concentration, and pH. 逆浸透膜装置の概略装置配置を表す図である。It is a figure showing schematic apparatus arrangement | positioning of a reverse osmosis membrane apparatus. 逆浸透膜装置の透過液抜取量と濃縮液及び透過液のホウ素濃度の関係を表す図である。(ホウ素含有水1は、実施例1の場合を、ホウ素含有水2は、比較例1の場合を示す。)It is a figure showing the relationship between the permeate extraction amount of a reverse osmosis membrane apparatus, and the boron concentration of a concentrate and a permeate. (Boron-containing water 1 shows the case of Example 1, and boron-containing water 2 shows the case of Comparative Example 1.)

符号の説明Explanation of symbols

1 タンク
2 ポンプ
3 3μmフィルタ
4 制御器
5 逆浸透膜
6 バルブ
7 透過液流量計
8 透過液
9 濃縮液流量計
10 濃縮液
DESCRIPTION OF SYMBOLS 1 Tank 2 Pump 3 3 micrometer filter 4 Controller 5 Reverse osmosis membrane 6 Valve 7 Permeate flowmeter 8 Permeate 9 Concentrate flowmeter 10 Concentrate

Claims (6)

炭酸を含有するホウ素含有水から、逆浸透膜法を用い、ホウ素濃縮液と透過液とに分離する処理方法であって、
前記ホウ素含有水のpHを4.5〜5.5に調整した後、空気吹き込みに付し、該ホウ素含有水中の炭酸を炭酸ガスとして除去する工程(A)、続いて、ホウ素含有水のpHを10.5〜11.5に調整した後、逆浸透膜法に付す工程(B)からなることを特徴とするホウ素含有水の処理方法。
From the boron-containing water containing carbonic acid, using a reverse osmosis membrane method, a treatment method for separating into a boron concentrate and a permeate,
Step (A) of adjusting the pH of the boron-containing water to 4.5 to 5.5 and then subjecting it to air blowing to remove carbonic acid in the boron-containing water as carbon dioxide, followed by the pH of the boron-containing water A process for treating boron-containing water, which comprises a step (B) of adjusting the pH to 10.5 to 11.5 and then subjecting to a reverse osmosis membrane method.
前記空気吹き込みは、ホウ素含有水のpHが7.0以上に上昇するまでの時間を継続することを特徴とする請求項1に記載のホウ素含有水の処理方法。   2. The method for treating boron-containing water according to claim 1, wherein the air blowing continues a time until the pH of the boron-containing water rises to 7.0 or more. 前記空気吹き込みの吹込量は、ホウ素含有水1Lあたり0.1〜0.5L/分であることを特徴とする請求項1に記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to claim 1, wherein the amount of air blown is 0.1 to 0.5 L / min per liter of boron-containing water. 前記空気吹き込み後の炭酸濃度は、30mg/L以下であることを特徴とする請求項1に記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to claim 1, wherein the carbonic acid concentration after the air blowing is 30 mg / L or less. 前記pH調整に用いるアルカリは、水酸化ナトリウムであることを特徴とする請求項1に記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to claim 1, wherein the alkali used for pH adjustment is sodium hydroxide. 前記ホウ素含有水は、ホウ素を10mg/L以上の濃度で含有する鉱山廃水であることを特徴とする請求項1〜5のいずれかに記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to any one of claims 1 to 5, wherein the boron-containing water is mine wastewater containing boron at a concentration of 10 mg / L or more.
JP2007079335A 2007-03-26 2007-03-26 Method for treating boron-containing water Withdrawn JP2008237986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079335A JP2008237986A (en) 2007-03-26 2007-03-26 Method for treating boron-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079335A JP2008237986A (en) 2007-03-26 2007-03-26 Method for treating boron-containing water

Publications (1)

Publication Number Publication Date
JP2008237986A true JP2008237986A (en) 2008-10-09

Family

ID=39909962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079335A Withdrawn JP2008237986A (en) 2007-03-26 2007-03-26 Method for treating boron-containing water

Country Status (1)

Country Link
JP (1) JP2008237986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613162B (en) * 2009-07-30 2011-09-07 上海京瓷电子有限公司 Treatment method for recycling electroplating wastewater
JP2013202585A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Treatment method for formaldehyde-containing waste water
WO2013151226A1 (en) * 2012-04-05 2013-10-10 주식회사 포스코 Boron recovery apparatus, boron recovery method, and boron recovery system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613162B (en) * 2009-07-30 2011-09-07 上海京瓷电子有限公司 Treatment method for recycling electroplating wastewater
JP2013202585A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Treatment method for formaldehyde-containing waste water
WO2013151226A1 (en) * 2012-04-05 2013-10-10 주식회사 포스코 Boron recovery apparatus, boron recovery method, and boron recovery system
KR101380406B1 (en) * 2012-04-05 2014-04-10 주식회사 포스코 Boron recovering device, method for recovering boron and boron recovering system
CN104364202A (en) * 2012-04-05 2015-02-18 Posco公司 Boron recovery apparatus, boron recovery method, and boron recovery system
US9790096B2 (en) 2012-04-05 2017-10-17 Posco Boron recovery apparatus, boron recovery method, and boron recovery system

Similar Documents

Publication Publication Date Title
US10723643B2 (en) Method of recovering oil or gas and treating the resulting produced water
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
Gabelich et al. High-recovery reverse osmosis desalination using intermediate chemical demineralization
Mohammadesmaeili et al. Byproduct recovery from reclaimed water reverse osmosis concentrate using lime and soda‐ash treatment
MX2011001303A (en) Reverse osmosis enhanced recovery hybrid process.
WO2014089796A1 (en) Method for treating high concentration wastewater such as ro brine
KR101672224B1 (en) Desalinatation system of sea water for producing carbonate and removing carbon dioxide
US20140131280A1 (en) Process for working up mine waters
WO2010135561A2 (en) Method for treatment and purification of seawater to recover high purity sodium chloride for industrial usage
TWI540103B (en) Method for removing boron from a boron-containing wastewater
WO2013091129A1 (en) Membrane filtration process for industrial process water treatment and recovery
JP2008237986A (en) Method for treating boron-containing water
US20160052812A1 (en) Reject recovery reverse osmosis (r2ro)
JP4396965B2 (en) Heavy metal removal method and apparatus
JP2008000664A (en) Method for treating phosphorus-containing waste water
JP4661503B2 (en) Water treatment method and apparatus
Hirsimaki et al. Process simulation of high pH reverse osmosis systems to facilitate reuse of coal seam gas associated water
CN211004968U (en) Electroplating wastewater zero discharge device
CA3031762C (en) Process for removing silica from produced water and other wastewater streams
CN105366840A (en) Method for removing salt in copper smelting waste water
Nir et al. Removal, Reuse and Recovery of Carbon-Dioxide by Integrating Membrane Contactors in a High-Ph Single-Pass Seawater Reverse Osmosis Process
Chan et al. The use of immobilised iron/copper bimetallic nanoparticles for rubber wastewater treatment
AU2012242838B8 (en) Method of recovering oil or gas and treating the resulting produced water
JP2019107592A (en) Method for producing permeation water, water treatment device and method for operating the water treatment device
KR101959103B1 (en) Ultrapure water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110617