JP2008000664A - Method for treating phosphorus-containing waste water - Google Patents
Method for treating phosphorus-containing waste water Download PDFInfo
- Publication number
- JP2008000664A JP2008000664A JP2006171352A JP2006171352A JP2008000664A JP 2008000664 A JP2008000664 A JP 2008000664A JP 2006171352 A JP2006171352 A JP 2006171352A JP 2006171352 A JP2006171352 A JP 2006171352A JP 2008000664 A JP2008000664 A JP 2008000664A
- Authority
- JP
- Japan
- Prior art keywords
- waste water
- phosphorus
- wastewater
- aeration
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Physical Water Treatments (AREA)
- Water Treatment By Sorption (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
本発明は、リンを含有する排水からリンを回収する方法に関する。さらに詳しくは、リンを含有する排水からイオン酸イオンを吸着除去する方法に関する。 The present invention relates to a method for recovering phosphorus from wastewater containing phosphorus. More specifically, the present invention relates to a method for adsorbing and removing ionic acid ions from wastewater containing phosphorus.
近年河川、各種産業排水もしくは生活排水中に多量に含まれる有機物質、窒素、リン等の成分が、藻類の発生を促す湖沼の水質汚染や近海における赤潮発生につながる富栄養化現象の要因として挙げられている。富栄養化を生じる窒素及びリンの限界濃度として窒素が0.15ppm、リンが0.02ppmであるといわれており、窒素及びリンを高濃度から低濃度域において除去可能な高度水処理技術の確立が強く望まれている。 In recent years, organic substances, nitrogen, phosphorus, etc. contained in large quantities in rivers, various industrial wastewater or domestic wastewater, are cited as factors of eutrophication that leads to water pollution of lakes and marshes that promote the generation of algae and red tide in the nearby sea. It has been. Establishing advanced water treatment technology capable of removing nitrogen and phosphorus from high to low concentrations, which are said to be 0.15ppm and 0.02ppm of phosphorus as the limiting concentrations of nitrogen and phosphorus that cause eutrophication. Is strongly desired.
排水中のリンを除去する方法としては、生物学的処理法と物理化学的処理法の二つに大別される。物理化学的処理法の中では、経済性、処理効率等の観点から凝集剤を用いて難溶性のリン酸塩としてリン成分を除去する凝集沈殿法が一般的である。しかしながら、凝集剤添加に伴う凝集剤に由来する塩類の排水への流出、汚泥処理及びリン回収・再利用の問題、低濃度域でのリン除去が不十分といった観点から、近年凝集沈殿法以外の方法として、リン吸着剤を用いるリン成分の吸着処理方法が試みられている。 Methods for removing phosphorus in waste water are roughly classified into two methods, biological treatment methods and physicochemical treatment methods. Among the physicochemical treatment methods, a coagulation precipitation method is generally used in which a phosphorus component is removed as a poorly soluble phosphate using a flocculant from the viewpoint of economy, treatment efficiency, and the like. However, in recent years, other than the coagulation precipitation method, from the viewpoint of the outflow of salts derived from the coagulant accompanying the addition of the coagulant, the problem of sludge treatment and phosphorus recovery / reuse, and insufficient phosphorus removal in the low concentration range. As a method, an adsorption treatment method of a phosphorus component using a phosphorus adsorbent has been tried.
吸着法では、水酸化アルミニウムゲル、酸化マグネシウム、酸化チタン−活性炭複合剤、酸化ジルコニウム−活性炭複合剤といったものや、火山灰土壌等やそれら土壌を改質したものをリン吸着剤として用いている。その中でも吸着容量の大きさ、また吸着したリンを脱着してリンが回収でき、また同時にリン吸着剤の再生が容易にできることから、リン酸イオン吸着の選択吸着性の高いリン吸着剤(例えば、特許文献1参照)が開発されている。これらリン酸イオン吸着の原理を用いたリン吸着剤は、リン酸イオンの吸着選択性から、通常は高い吸着容量を示すが、その吸着原理から夾雑イオンが存在し、特に炭酸イオンはイオン特性からリン酸イオンに近いので、炭酸イオンが共存する排水においてはその影響が大きく生じることがある。
本発明は、排水中に含まれている炭酸イオンの影響を除去し、リン吸着法により目的物質である排水中のリン除去性能を十分に発揮する排水処理方法を提供することを目的とする。 An object of this invention is to provide the waste water treatment method which removes the influence of the carbonate ion contained in waste water, and fully exhibits the phosphorus removal performance in the waste water which is a target substance by the phosphorus adsorption method.
本発明者らは、排水中に含まれる炭酸イオンの影響を除去し、リン吸着法において、そのリン吸着性能を十分に発揮する方法を鋭意検討したところ、炭酸イオンを遊離炭酸化してから除去した後、リン酸イオンを吸着除去する方法を見出し本発明を完成した。 The present inventors removed the influence of carbonate ions contained in the waste water, and intensively studied a method for sufficiently exhibiting the phosphorus adsorption performance in the phosphorus adsorption method. The carbonate ions were removed after free carbonation. Later, a method for adsorbing and removing phosphate ions was found and the present invention was completed.
即ち本発明の目的は
リン酸イオンと炭酸イオンとが共存する排水からリン酸イオンを除去する方法であって、排水中の炭酸イオンを遊離炭酸化した後除去し、次いでリン酸イオンを吸着除去することを特徴とするリン含有排水の処理方法によって達成することができる。
That is, the object of the present invention is a method for removing phosphate ions from wastewater in which phosphate ions and carbonate ions coexist, and after removing carbonates in the wastewater after free carbonation, the phosphate ions are then removed by adsorption. This can be achieved by a method for treating phosphorus-containing wastewater.
本発明によれば、排水中に含まれるリン酸イオンを吸着除去する方法において、排水中に共存する炭酸イオンをリン吸着前に効果的に除去できるので、炭酸イオンの影響を排除することができ、目的物質であるリンの吸着性能を十分に発揮することができる。 According to the present invention, in the method of adsorbing and removing phosphate ions contained in waste water, carbonate ions coexisting in waste water can be effectively removed before phosphorus adsorption, so the influence of carbonate ions can be eliminated. Therefore, the adsorption performance of phosphorus as the target substance can be sufficiently exhibited.
以下、本発明を詳細に説明する。
本発明方法は、排水中からリン酸イオンを吸着除去する、いわゆるリン吸着回収に関する排水処理方法である。
本発明におけるリン酸イオンとは、解離してイオン化したリン酸水素イオン、リン酸イオンを示し、炭酸イオンについても解離した炭酸イオン、炭酸水素イオンを示す。
Hereinafter, the present invention will be described in detail.
The method of the present invention is a wastewater treatment method related to so-called phosphorus adsorption recovery, in which phosphate ions are adsorbed and removed from wastewater.
The phosphate ion in the present invention refers to dissociated and ionized hydrogen phosphate ions and phosphate ions, and carbonate ions and dissociated carbonate ions and hydrogen carbonate ions.
また排水とは、し尿、生活雑排水、畜産廃棄物、農耕地、山林原野などから排出されるものや、その他各種産業から排出される排水、また工場工程内や景観用水などで循環再利用される循環排水、またこれら排水が1次、2次、3次処理された処理水や生物処理で発生する余剰汚泥を脱水した際に生じる排水も含まれる。 Wastewater is recycled and reused from human waste, domestic wastewater, livestock waste, agricultural land, forestry fields, wastewater from various other industries, factory processes and landscape water. In addition, the wastewater generated when the wastewater is dehydrated from the treated water in which the wastewater is subjected to primary, secondary, and tertiary treatment, and surplus sludge generated in biological treatment is also included.
また炭酸を遊離するために排水を酸性に調整する方法としては、酸を排水に直接添加する方法が一般的に用いられる。その添加する酸としては、硫酸、塩酸、硝酸、酢酸などの無機塩や、クエン酸、安息香酸、クエン酸などの有機酸や、またポリリン酸、カルボン酸なども用いることができる。また、炭酸ガス以外の塩化水素など酸性ガスを排水に溶解させて酸性にする方法により排水を酸性にしてもよい。更には、アンモニア性窒素が硝化細菌の硝化作用により亜硝酸や硝酸に酸化される際、排水中に水素イオンが生じ酸性になるように、生物学的反応により排水が酸性になる方法も含まれる。また排水pHはその値が酸性側に傾くと、炭酸の電離平衡が重炭酸イオンや炭酸イオンから遊離炭酸(排水中に溶解する二酸化炭素)の方へと平衡が移動してくる。pH6.0ではその遊離炭酸の割合は69%と大半が遊離炭素となることから、炭酸除去を行う前の排水のpHは6.0以下にすることが好ましく、さらには5.0以下にすることが好ましい。 Further, as a method for adjusting the wastewater to be acidic in order to liberate carbonic acid, a method in which an acid is directly added to the wastewater is generally used. As the acid to be added, inorganic salts such as sulfuric acid, hydrochloric acid, nitric acid and acetic acid, organic acids such as citric acid, benzoic acid and citric acid, polyphosphoric acid and carboxylic acid can also be used. Further, the waste water may be acidified by a method in which acidic gas such as hydrogen chloride other than carbon dioxide gas is dissolved in the waste water to make it acidic. Furthermore, when ammonia nitrogen is oxidized to nitrous acid or nitric acid by nitrifying action of nitrifying bacteria, a method is also included in which the wastewater is acidified by biological reaction so that hydrogen ions are generated in the wastewater and become acidic. . Further, when the drainage pH is inclined toward the acidic side, the ionization equilibrium of carbonic acid shifts from bicarbonate ion or carbonate ion to free carbonic acid (carbon dioxide dissolved in the wastewater). At pH 6.0, the proportion of free carbonic acid is 69%, most of which is free carbon, so the pH of the waste water before carbonation removal is preferably 6.0 or lower, and more preferably 5.0 or lower. It is preferable.
また、炭酸除去の過程では遊離炭酸が除去され、更に電離している炭酸水素イオンが遊離炭酸に移行する時、排水のpHは炭酸除去前のpHより高くなるが、炭酸除去前の排水のpHが6.0以下に調整できていれば炭酸イオンの除去性能を十分発揮することができる。 In addition, when free carbonic acid is removed in the process of removing carbonic acid, and when ionized hydrogen carbonate ions are transferred to free carbonic acid, the pH of the wastewater becomes higher than the pH before carbonic acid removal, but the pH of the wastewater before carbonic acid removal If it can be adjusted to 6.0 or less, carbonate ion removal performance can be sufficiently exhibited.
本排水処理過程においては、まず前処理として排水を酸性にする為に酸性化工程の出側でpHを計測し、そのpHを目標値に合わせる、または目標のpH以下にするべく酸を添加したりその他の酸性化方法で酸性にする。 In this wastewater treatment process, first, in order to make the wastewater acidic as a pretreatment, the pH is measured on the exit side of the acidification step, and acid is added to adjust the pH to the target value or below the target pH. Or acidify by other acidification methods.
また排水のpHが6.0以下になった後、遊離炭酸を除去する方法としては、排水を静置するだけでも、排水表面からの拡散だけでも炭酸は除去されるが、気体を排水中に吹き込んで曝気することにより炭酸を効果的に除去できる。曝気に用いる気体としては、炭酸ガスを含まない純粋な窒素やヘリウム、水蒸気を吹き込むことで効果的に遊離炭酸を除去できる。また排水中に溶解できる炭酸の量はヘンリーの法則に従うため、微量の炭酸を含む気体、例えば標準状態の空気に含まれる炭酸はごく微量であるため、空気を吹き込んでも炭酸除去効果は十分発揮することができリン吸着性能の向上を図ることができる。 In addition, after the pH of the drainage reaches 6.0 or less, as a method of removing free carbonic acid, carbonation can be removed only by standing the drainage or by diffusion from the surface of the drainage. Carbon dioxide can be effectively removed by blowing and aeration. As the gas used for aeration, free carbon dioxide can be effectively removed by blowing pure nitrogen, helium, or water vapor that does not contain carbon dioxide. The amount of carbonic acid that can be dissolved in the waste water follows Henry's law, so a very small amount of carbonic acid, for example, the amount of carbonic acid contained in standard air, is very small. The phosphorus adsorption performance can be improved.
曝気ガスの吹き込み量としては、曝気量をG、排水の処理水量をQとした場合、その比G/Qを1から100となるように調整することが好ましく、更に好ましくは5から100とすることが好ましい。また曝気時間については2分間から120分間行うことが好ましく、更に好ましくは6分から120分行うことが好ましい。また、曝気する散気ノズルを設置する吹き込み位置については、水面より0.05mから10mの深さとすることが好ましく、更に好ましくは0.2mから5mにすることが好ましい。 The amount of aeration gas blown is preferably adjusted so that the ratio G / Q is 1 to 100, more preferably 5 to 100, where G is the aeration amount and Q is the amount of treated wastewater. It is preferable. The aeration time is preferably 2 minutes to 120 minutes, more preferably 6 minutes to 120 minutes. The blowing position where the aeration nozzle for aeration is installed is preferably 0.05 m to 10 m deep from the water surface, more preferably 0.2 m to 5 m.
曝気方法としては、タンクや曝気槽の槽底にガス噴出し用のノズルを設置して、ガスを直接吹き込む方式、インラインミキサーなどで排水とガスの乱流混合する方式や、塔槽類、機器類の中でガスと排水の接触効率を向上させるためのバッフルプレートやラシヒリングの設置を行うこともできる。またノズルから噴出す気泡については、ガス交換を行う気泡の界面を向上させ、且つ排水中の滞留時間を長くする目的のために、気泡径を小さくするほうが好ましいが、小さすぎると吹き込んだガスが排水に溶存して無くなる為に、気泡径としては50mm〜0.0001mm、更に好ましくは10mm〜0.001mmである。 As aeration methods, a nozzle for gas ejection is installed at the bottom of the tank or aeration tank, and a method of directly blowing gas, a method of turbulent mixing of waste water and gas with an inline mixer, etc., tower tanks, equipment Among them, baffle plates and Raschig rings can be installed to improve the contact efficiency between gas and drainage. For the bubbles ejected from the nozzle, it is preferable to reduce the bubble diameter for the purpose of improving the interface of the bubbles for gas exchange and extending the residence time in the drainage. In order to be dissolved in the waste water and disappear, the bubble diameter is 50 mm to 0.0001 mm, more preferably 10 mm to 0.001 mm.
炭酸を除去する方法としては、ガスを吹き込む以外に排水を含む系を減圧下で連続吸引することで炭酸を効果的に除去することができる。減圧条件としては、10kPa以下が好ましく、さらには5kPa以下にすることが好ましい。 As a method for removing carbonic acid, carbon dioxide can be effectively removed by continuously sucking a system containing wastewater under reduced pressure in addition to blowing gas. The decompression condition is preferably 10 kPa or less, more preferably 5 kPa or less.
これら排水を酸性にしてから炭酸を除去する一連の工程は、おのおのを間欠的行うこともでき、また連続して行うこともできる。
炭酸除去を行った後は、その後のリン酸イオン吸着材の特性に合わせて排水のpHを再度調整することもできる。
The series of steps for removing the carbonic acid after acidifying the waste water can be performed intermittently or continuously.
After the carbonic acid removal, the pH of the waste water can be adjusted again according to the characteristics of the subsequent phosphate ion adsorbent.
遊離炭酸を排水から除去した後、リン酸を吸着除去する吸着材としては、イオン交換樹脂、ハイドロタルサイト系化合物、水和酸化金属、パイロライト系化合物、カルシウム塩などが挙げられるが、リン酸イオンを吸着除去するものであれば特に限定するものではない。 Adsorbents that adsorb and remove phosphoric acid after removing free carbonic acid from wastewater include ion exchange resins, hydrotalcite compounds, hydrated metal oxides, pyrolite compounds, calcium salts, etc. It is not particularly limited as long as it can adsorb and remove ions.
以下、本発明を実施例によって更に具体的に説明するが、本発明はこれにより何等限定を受けるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[実施例1]
リン濃度2.6mg−P/L、炭酸イオン濃度49mg−CO3 2−/L、pH7.3の排水2Lに、0.1mol/Lの塩酸を添加して排水のpHを4.7に調整した。
pH調整後、濾過精度0.5μm、外径25mm、長さ100mmの焼結体金属でできた散気ノズルから毎分6Lの流量で、空気を排水の中に吹き込み曝気処理を行った。散気ノズルの設置位置は水面から200mmの位置であり、形成される気泡は直径が1〜10mmの気泡であった。この状態で15分間曝気を行った。
[Example 1]
Adjusting the pH of the wastewater to 4.7 by adding 0.1 mol / L hydrochloric acid to 2 L of wastewater having a phosphorus concentration of 2.6 mg-P / L, carbonate ion concentration of 49 mg-CO 3 2− / L, pH 7.3 did.
After pH adjustment, air was blown into the waste water at a flow rate of 6 L / min from an aeration nozzle made of a sintered metal having a filtration accuracy of 0.5 μm, an outer diameter of 25 mm, and a length of 100 mm to perform aeration. The installation position of the diffuser nozzle was 200 mm from the water surface, and the bubbles formed were bubbles having a diameter of 1 to 10 mm. In this state, aeration was performed for 15 minutes.
次いで、排水のpHを0.1mol/Lの水酸化ナトリウム水溶液を用いてpHが6.8〜7.3になるように中和した。中和処理後、リン吸着剤であるハイドロタルサイト(富田製薬(株)TPEX(登録商標))の粉体を用いて、ポリメタフェニレンテレフタルアミド(帝人テクノプロダクツ(株)製コーネックス(登録商標))をバインダーとして成形した繊維状のリン吸着成形体(直径100μm、繊維長2mm)を用いてリン吸着を行った。リン吸着は排水2L中にリン吸着成形体0.5gを投入し、リン吸着材が沈降しない程度にゆっくりと攪拌を行い、攪拌中定期的に排水をサンプリングし、サンプル中のリン酸イオン濃度をモリブデンブルー法にて定量し、リンの吸着速度を評価した。その結果を図1に示す。 Next, the pH of the waste water was neutralized with a 0.1 mol / L sodium hydroxide aqueous solution so that the pH was 6.8 to 7.3. After neutralization treatment, powder of hydrotalcite (Tonda Pharmaceutical Co., Ltd. TPEX (registered trademark)), a phosphorus adsorbent, was used to make polymetaphenylene terephthalamide (Teijin Techno Products Co., Ltd., Conex (registered trademark). Phosphorus adsorption was performed using a fibrous phosphorus-adsorbed molded body (diameter: 100 μm, fiber length: 2 mm) molded using)) as a binder. Phosphorus adsorption is performed by adding 0.5 g of a phosphorus-adsorbed molded body into 2 L of waste water, stirring slowly so that the phosphorus adsorbent does not settle, sampling the waste water periodically during stirring, and determining the phosphate ion concentration in the sample. Quantification was performed by the molybdenum blue method to evaluate the adsorption rate of phosphorus. The result is shown in FIG.
[実施例2]
実施例1において、曝気処理を行うことなく、pHを4.7に調整後、密閉容器に排水を入れダイアフラムポンプを用いて容器内の圧力が5kPaになるよう連続して60分間吸引し、ついで、排水のpHを0.1mol/Lの水酸化ナトリウム水溶液を用いてpHが6.8〜7.3になるように中和したこと以外は同様の操作を行った。結果を図1に示す。
[Example 2]
In Example 1, after adjusting the pH to 4.7 without performing aeration treatment, drain water is put into a sealed container and sucked continuously for 60 minutes using a diaphragm pump so that the pressure in the container becomes 5 kPa. The same operation was performed except that the pH of the waste water was neutralized with a 0.1 mol / L sodium hydroxide aqueous solution so that the pH was 6.8 to 7.3. The results are shown in FIG.
[実施例3]
リン濃度は4.3mg−P/L、炭酸イオン濃度は52mg−CO3 2−/L、pHが7.4の排水1Lに、0.1mol/Lの塩酸を添加して排水のpHを5.1に調整した。
pH調整後、排水をフラスコに投入し、排水中に、別のフラスコで純水を107℃に加熱して発生した水蒸気を15分間吹き込んだ。次にその排水を通過して出てきた水蒸気を更に別の水酸化バリウム水溶液を入れたフラスコに潜らせて曝気し、排水を入れたフラスコから出てきたガスを完全に捕集した。捕集後の水酸化バリウム水溶液は炭酸バリウムの塩を形成し白濁した。次に白濁した溶液にフェノールフタレン溶液を滴下して滴定を行い、捕集した炭酸の量を算定した。その捕集量は41mg−CO3 2−であり、初期排水中の炭酸イオンの78.8%であった。
[Example 3]
Phosphorus concentration is 4.3 mg-P / L, carbonate ion concentration is 52 mg-CO 3 2− / L, pH is 7.4, 1 L of waste water is added with 0.1 mol / L hydrochloric acid to adjust pH of waste water to 5 Adjusted to .1.
After adjusting the pH, the waste water was poured into the flask, and steam generated by heating pure water to 107 ° C. in another flask was blown into the waste water for 15 minutes. Next, the water vapor that passed through the waste water was aspirated in a flask containing another barium hydroxide aqueous solution, and the gas coming out of the flask containing the waste water was completely collected. The collected barium hydroxide aqueous solution formed a barium carbonate salt and became cloudy. Next, the phenolphthalene solution was added dropwise to the cloudy solution for titration, and the amount of collected carbonic acid was calculated. The amount collected was 41 mg-CO 3 2- , which was 78.8% of the carbonate ions in the initial waste water.
[実施例4]
実施例1において、排水として、実施例5でpH調整と水蒸気でストリッピング処理を行った排水0.8Lとし、リン吸着成形体0.2gを用いたこと以外は同様の操作を行った。結果を図2に示す。
[Example 4]
In Example 1, the same operation was performed except that 0.8 L of waste water subjected to pH adjustment and stripping treatment with water vapor in Example 5 was used as waste water, and 0.2 g of a phosphorus adsorption molded body was used. The results are shown in FIG.
[実施例5]
図4に示す連続排水処理方式において、平均リン濃度は6.1mg−P/L、平均炭酸イオン濃度は52mg−CO3 2−/Lの水質である単独浄化槽処理排水を原水とし、送水ポンプ1で毎分3.6mlで原水を取水し、0.1mol/Lの塩酸2を滴定ポンプ3で添加してpH調整槽4の出側pHが4.6から5.3になるように調整した。
次にpH調整後の原水を容量900mlの曝気槽5に導入し、水面から0.2m位置に設置した散気ノズル6を設置した。散気ノズル6からは毎分500mlの空気を排水に吹き込むように流量計7を調整した。散気ノズル6から出た気泡8は直径が1〜5mmであった。
[Example 5]
In the continuous waste water treatment system shown in FIG. 4, the average phosphorus concentration is 6.1 mg-P / L and the average carbonate ion concentration is 52 mg-CO 3 2− / L. The raw water was taken up at 3.6 ml per minute, and 0.1 mol / L hydrochloric acid 2 was added with the
Next, the raw water after pH adjustment was introduced into the aeration tank 5 having a capacity of 900 ml, and an
曝気槽5で曝気処理した原水は、送水ポンプ9でリン吸着成形体を充填したカラム10に全量を送液した。カラム10に充填したリン吸着成形体11は、リン吸着剤であるハイドロタルサイト(富田製薬(株)TPEX(登録商標))の粉体を用いて、ポリメタフェニレンテレフタルアミド(帝人テクノプロダクツ(株)製コーネックス(登録商標))をバインダーとして成形した塊状のリン吸着成形体11であり、そのリン吸着成形体11の平均粒径は900μm、ハイドロタルサイト90wt%を含有した成形体である。
カラム10には、該成形体を充填密度0.33g/cm3で充填した。カラム10通過後の排水を定期的にサンプリングし、排水のpHを0.1mol/Lの水酸化ナトリウム水溶液を用いてpHが6.8〜7.3になるように中和した後、サンプル中のリン酸イオン濃度をモリブデンブルー法にて定量した結果、吸着後のリン濃度が1mg−P/L以上に達する時間は、カラム10通水開始後174時間であった。その結果を図3に示す。
The whole amount of raw water aerated in the aeration tank 5 was fed to a
The
[比較例1]
実施例1において、pH調整操作を行わなかったこと以外は同様の操作をおこなった。曝気処理後は、再度pHが6.8〜7.3であることを確認してリン吸着速度の評価を実施した。その結果を図1に示す。
[Comparative Example 1]
In Example 1, the same operation was performed except that the pH adjustment operation was not performed. After the aeration treatment, it was confirmed again that the pH was 6.8 to 7.3, and the phosphorus adsorption rate was evaluated. The result is shown in FIG.
[比較例2]
実施例1において、曝気をせずに直ちにpHを6.8〜7.3になるように中和したこと以外は同様の操作を行った。中和後は実施例1と同様のリン吸着速度の評価を実施した。その結果を図1に示す。
[Comparative Example 2]
In Example 1, the same operation was performed except that neutralization was performed so that the pH was immediately adjusted to 6.8 to 7.3 without aeration. After neutralization, the same phosphorus adsorption rate as in Example 1 was evaluated. The result is shown in FIG.
[比較例3]
実施例1において、曝気時間を2分間とした以外は同様の操作を行った。曝気処理後は実施例1と同様のリン吸着速度の評価を実施した。その結果を図1に示す。
[Comparative Example 3]
In Example 1, the same operation was performed except that the aeration time was 2 minutes. After the aeration treatment, the same phosphorus adsorption rate as in Example 1 was evaluated. The result is shown in FIG.
[比較例4]
実施例3において、pHを調整しなかったこと以外は同様に水蒸気吹き込みを行ったところ、水酸化バリウム水溶液に捕集された炭酸量は5mg−CO3 2−であり、初期排水中の炭酸イオンの9.6%であった。
[Comparative Example 4]
In Example 3, when steam was blown in the same manner except that the pH was not adjusted, the amount of carbonate collected in the barium hydroxide aqueous solution was 5 mg-CO 3 2- , and carbonate ions in the initial waste water Of 9.6%.
[比較例5]
実施例4において、比較例4で得られた排水0.8Lを用いたこと以外は同様の操作を行った。リン吸着速度の評価を行った。その結果を図2に示す。
[Comparative Example 5]
In Example 4, the same operation was performed except that 0.8 L of the waste water obtained in Comparative Example 4 was used. The phosphorus adsorption rate was evaluated. The result is shown in FIG.
[比較例6]
実施例5において、pH調整、曝気処理をしなかったこと以外は同様のカラム送液を行い、カラム通過後のリン酸イオン濃度をモリブデンブルー法にて定量した。
結果、吸着後のリン濃度が1mg−P/L以上に達する時間は、カラム通水開始後93時間であった。その結果を図3に示す。
[Comparative Example 6]
In Example 5, the same column liquid feeding was performed except that pH adjustment and aeration treatment were not performed, and the phosphate ion concentration after passing through the column was quantified by the molybdenum blue method.
As a result, the time for the phosphorus concentration after adsorption to reach 1 mg-P / L or more was 93 hours after the start of column flow. The result is shown in FIG.
本発明は各種排水に含まれる富栄養化物質のリンの回収方法、詳しくは吸着法により脱リンを行い、高度にリン回収を要求される排水処理分野に応用が期待される。例えば、閉鎖水域に流入し水域の富栄養化が問題となっている排水を本発明の方式で処理することにより、効率的経済的な排水処理を行うことができる。 The present invention is expected to be applied to the wastewater treatment field in which phosphorus is recovered by a method for recovering phosphorus of eutrophication substances contained in various wastewaters, in particular, dephosphorization by an adsorption method. For example, an efficient and economical wastewater treatment can be performed by treating the wastewater that flows into a closed water area and has a problem of eutrophication of the water area by the method of the present invention.
1 送液ポンプ
2 塩酸
3 滴定ポンプ
4 pH調整槽
5 曝気槽
6 散気ノズル
7 流量計
8 気泡
9 送液ポンプ
10 カラム
11 リン吸着成形体
DESCRIPTION OF
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006171352A JP2008000664A (en) | 2006-06-21 | 2006-06-21 | Method for treating phosphorus-containing waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006171352A JP2008000664A (en) | 2006-06-21 | 2006-06-21 | Method for treating phosphorus-containing waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008000664A true JP2008000664A (en) | 2008-01-10 |
Family
ID=39005466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006171352A Pending JP2008000664A (en) | 2006-06-21 | 2006-06-21 | Method for treating phosphorus-containing waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008000664A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013027865A (en) * | 2011-06-24 | 2013-02-07 | Taiheiyo Cement Corp | Method for recovering phosphorus and making fertilizer from phosphorus |
JP2013188698A (en) * | 2012-03-14 | 2013-09-26 | Toshiba Corp | Phosphorus recovery apparatus |
JP2014151270A (en) * | 2013-02-08 | 2014-08-25 | Yukinobu Mori | Hydrogen water producing apparatus, and method for producing hydrogen water |
WO2015114703A1 (en) * | 2014-01-28 | 2015-08-06 | 日新製鋼株式会社 | Phosphorus and calcium collection method, and mixture produced by said collection method |
CN115722203A (en) * | 2022-11-08 | 2023-03-03 | 中国科学院上海高等研究院 | Yttrium-europium-zirconium-terephthalic acid based composite magnetic adsorption material for removing organic phosphine in water, preparation method and application thereof |
-
2006
- 2006-06-21 JP JP2006171352A patent/JP2008000664A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013027865A (en) * | 2011-06-24 | 2013-02-07 | Taiheiyo Cement Corp | Method for recovering phosphorus and making fertilizer from phosphorus |
JP2013188698A (en) * | 2012-03-14 | 2013-09-26 | Toshiba Corp | Phosphorus recovery apparatus |
JP2014151270A (en) * | 2013-02-08 | 2014-08-25 | Yukinobu Mori | Hydrogen water producing apparatus, and method for producing hydrogen water |
WO2015114703A1 (en) * | 2014-01-28 | 2015-08-06 | 日新製鋼株式会社 | Phosphorus and calcium collection method, and mixture produced by said collection method |
CN105980326A (en) * | 2014-01-28 | 2016-09-28 | 日新制钢株式会社 | Phosphorus and calcium collection method, and mixture produced by said collection method |
RU2618004C1 (en) * | 2014-01-28 | 2017-05-02 | Ниссин Стил Ко., Лтд. | Method for phosphorus and calcium recovery, and mixture obtained by this method |
US9783418B2 (en) | 2014-01-28 | 2017-10-10 | Nisshin Steel Co., Ltd. | Phosphorus and calcium collection method, and mixture produced by said collection method |
CN115722203A (en) * | 2022-11-08 | 2023-03-03 | 中国科学院上海高等研究院 | Yttrium-europium-zirconium-terephthalic acid based composite magnetic adsorption material for removing organic phosphine in water, preparation method and application thereof |
CN115722203B (en) * | 2022-11-08 | 2024-03-29 | 中国科学院上海高等研究院 | Yttrium-europium-zirconium-terephthalic acid-based composite magnetic adsorption material for removing organic phosphine in water, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8679349B2 (en) | Heavy metal removal from waste streams | |
US20190352195A1 (en) | System and Process for Treating Water | |
JP5157941B2 (en) | Method for treating boron-containing water | |
CN103288236A (en) | Treatment method for salt-containing wastewater | |
JP2017114705A (en) | Method for producing sodium hypochlorite, and sodium hypochlorite production device | |
JP2010082546A (en) | Water treatment apparatus and method | |
JP2008000664A (en) | Method for treating phosphorus-containing waste water | |
JP2010036180A (en) | Water treatment method | |
TW201641438A (en) | Method for removing boron from a boron-containing wastewater | |
CN105668746B (en) | A kind of method that chemical precipitation method removes organic phosphorus aminotrimethylenephosphonic acid in waste water | |
KR20160003936A (en) | Nitrogen removal, recovery apparatus and method thereof | |
JP2007175673A (en) | Treatment method of ammonia-containing drain | |
JP3572233B2 (en) | Flue gas desulfurization method and flue gas desulfurization system | |
JP2008049241A (en) | Phosphorus adsorbent desorption and recycle method in treatment for wastewater | |
JP5217883B2 (en) | Method and apparatus for treating phosphoric acid, nitric acid and water containing organic acid | |
TWM463735U (en) | Ammonia/nitrogen waste water treatment system | |
JP4666275B2 (en) | Treatment method for wastewater containing sulfite ions | |
JP2009220063A (en) | Method for regenerating phosphorus adsorbent for treating waste water | |
JP2008237986A (en) | Method for treating boron-containing water | |
JPH0739889A (en) | Treatment of high concentration ammonia waste liquid | |
JP4021688B2 (en) | Method and apparatus for treatment of wastewater containing fluorine and silicon | |
JPS6218230B2 (en) | ||
JP2005081170A (en) | Treatment method of cyanide compound-containing wastewater | |
JP6407052B2 (en) | Phosphorus recovery apparatus and phosphorus recovery method | |
JP2877265B2 (en) | Wastewater treatment facility |