JPS5927203B2 - Membrane separation method - Google Patents

Membrane separation method

Info

Publication number
JPS5927203B2
JPS5927203B2 JP13501276A JP13501276A JPS5927203B2 JP S5927203 B2 JPS5927203 B2 JP S5927203B2 JP 13501276 A JP13501276 A JP 13501276A JP 13501276 A JP13501276 A JP 13501276A JP S5927203 B2 JPS5927203 B2 JP S5927203B2
Authority
JP
Japan
Prior art keywords
liquid
separation method
ammonia
volatile substance
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13501276A
Other languages
Japanese (ja)
Other versions
JPS5358977A (en
Inventor
敏 今井
達郎 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP13501276A priority Critical patent/JPS5927203B2/en
Publication of JPS5358977A publication Critical patent/JPS5358977A/en
Publication of JPS5927203B2 publication Critical patent/JPS5927203B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は数種の揮発性物質を含む溶液より該物質を別々
に分離除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separately separating and removing several volatile substances from a solution containing them.

従来揮発性物質を除去する代表的な方法であるストリッ
ピング法は、温度・pH等を調整し、一つの成分の蒸気
圧を高めて後、大量の空気等を吹き込んで溶液より一つ
の成分を取り除く方法が取られて来た。
The stripping method, which is a typical method for conventionally removing volatile substances, adjusts temperature, pH, etc. to increase the vapor pressure of one component, and then blows in a large amount of air to remove one component from the solution. A method has been devised to remove it.

典型的な例がアンモニアのエアレーションによるストリ
ッピング方式である。
A typical example is a stripping method using ammonia aeration.

此の方法によれば原理的には大量の空気等の気体を溶液
に送入すれば一つの成分を溶液よシ取シ除くことが可能
であるが、同時に溶媒の蒸発に伴女う溶液の温度低下を
結果し分離効率を悪くするために溶媒の蒸発に伴女う蒸
発エネルギーを外部より注入してやる必要がある。
According to this method, in principle, it is possible to remove one component from the solution by introducing a large amount of gas such as air into the solution, but at the same time, it is possible to remove one component from the solution as the solvent evaporates. In order to lower the temperature and deteriorate the separation efficiency, it is necessary to externally inject evaporation energy accompanying the evaporation of the solvent.

本発明は従来のストリッピング方式のものの上述の欠点
を改良するものである。
The present invention ameliorates the above-mentioned drawbacks of conventional stripping systems.

すなわち本発明は、液(以下「被処理液」と称する)中
の二成分以上の揮発性物質のうちの特定揮発性物質の選
択的な除去を、多孔質膜を介して隣りあう該特定揮発性
物質吸収液体に、多孔質膜の細孔内気層を通してのガス
拡散によって吸収させて行う場合において、該特定揮発
性物質の比揮発度のみが選択的に高くなるように溶液の
pHを調整する分離方法である。
That is, the present invention selectively removes a specific volatile substance among two or more volatile substances in a liquid (hereinafter referred to as "liquid to be treated") by removing adjacent specific volatile substances through a porous membrane. When a volatile substance is absorbed into a liquid by gas diffusion through the air layer within the pores of a porous membrane, the pH of the solution is adjusted so that only the specific volatility of the specific volatile substance is selectively increased. This is a separation method.

本発明の第一の利点は、揮発性物質吸収液の溶媒として
被処理液の溶媒を用いることにより溶媒の移動は原理的
にほぼ防ぐことが出来、従来のストリッピング法に於け
る溶媒の蒸発による温度降下を防ぎ得てランニングコス
トの大巾女低減となることである。
The first advantage of the present invention is that by using the solvent of the liquid to be treated as the solvent for the volatile substance absorption liquid, the movement of the solvent can be almost prevented in principle, and the evaporation of the solvent in the conventional stripping method can be prevented. It is possible to prevent the temperature drop caused by the heat exchanger, resulting in a major reduction in running costs.

更に本発明の第二の利点は、ストリッピングと吸収とが
一つのクローズド化されたシステム中で行なえる結果と
して蒸発成分が有毒ガスである場合には特に有効である
Furthermore, a second advantage of the present invention is that stripping and absorption can be performed in one closed system, which is particularly advantageous when the evaporated component is a toxic gas.

即ちストリッピングと吸収が多孔質膜一枚を介して行な
われる結果として有毒ガスの送風中での散乱が起らない
からである。
That is, since stripping and absorption are performed through a single porous membrane, no scattering of toxic gas occurs during the blowing.

本発明の第三の利点を記せば、本発明の原理からストリ
ッピング装置と吸収装置が一本化されている結果として
全体の装置が非常に小型化出来ることである。
A third advantage of the present invention is that the stripping device and the absorbing device are integrated in accordance with the principle of the present invention, and as a result, the overall device can be made extremely compact.

この事は従来の電気透析法の膜面積と装置の大きさと同
じことであり当業者には自明のものである。
This is the same as the membrane area and device size of conventional electrodialysis, and is obvious to those skilled in the art.

本発明第四の利点は、被処理液のpHのみを調整するこ
とにより、蒸発成分のそれぞれを別々にストリッピング
することが可能であり、ストリッピングされる成分が高
価である場合は此れを回収することも容易である点にあ
る。
The fourth advantage of the present invention is that by adjusting only the pH of the liquid to be treated, it is possible to strip each of the evaporated components separately. Another advantage is that it is easy to collect.

本発明で処理可能な溶液は多数あシ、一例として、シア
ン、フェノール、アンモニア等を含むコークス廃液を取
って本発明を説明する。
There are many solutions that can be treated in the present invention, and the present invention will be explained by taking a coke waste liquid containing cyanide, phenol, ammonia, etc. as an example.

先ずコークス廃液を酸性好ましくはpH5以下にすれば
シアン、フェノール等の酸性物質の蒸気圧は高くなるが
、アンモニアの蒸気圧は殆んど零とすることが出来る。
First, if the coke waste liquid is made acidic, preferably at pH 5 or less, the vapor pressure of acidic substances such as cyanide and phenol becomes high, but the vapor pressure of ammonia can be reduced to almost zero.

この酸性液に大量の空気を送入スればシアン、フェノー
ル等が取り除けるが、これらは有害物質であるので再度
の吸収を必要とする。
By introducing a large amount of air into this acidic liquid, cyanide, phenol, etc. can be removed, but since these are harmful substances, they need to be absorbed again.

本発明の方法では吸収液として苛性ソーダ又は苛性カリ
を用いることにより容易に溶液より、シアン、フェノー
ルが除けるのと同時にシアン等を回収することが可能で
ある。
In the method of the present invention, by using caustic soda or caustic potash as the absorption liquid, cyanide and phenol can be easily removed from the solution, and at the same time, cyanide and the like can be recovered.

又、消石灰を用いる事も可能である。It is also possible to use slaked lime.

更にシアン、フェノールを取り除いた溶液をアルカリ性
好ましくはpH9以上とすればアンモニアの蒸気圧を高
め得てアンモニアの除去が可能である。
Furthermore, if the solution from which cyanide and phenol have been removed is made alkaline, preferably at pH 9 or higher, the vapor pressure of ammonia can be increased and ammonia can be removed.

此の場合には吸収液として硫酸又はリン酸の如く蒸気圧
をもたない酸を使用することが好ましい。
In this case, it is preferable to use an acid having no vapor pressure, such as sulfuric acid or phosphoric acid, as the absorption liquid.

蒸気圧を持つ酸を使用すると多孔質中でアンモニアと反
応して目詰りを起すからである。
This is because if an acid with vapor pressure is used, it will react with ammonia in the porous material and cause clogging.

又被処理液水の蒸発を防ぐ目的には酸濃度は小さい方が
良いが通常であれば1〜5%程度の硫酸を使用するのが
良い。
In addition, for the purpose of preventing evaporation of the liquid water to be treated, the lower the acid concentration, the better, but normally it is better to use about 1 to 5% sulfuric acid.

硫酸濃度が小さいと吸収速度が全工程の律速となり処理
速度が低下するからである。
This is because if the sulfuric acid concentration is low, the absorption rate becomes rate-limiting for the entire process and the processing rate decreases.

父上記シアン、フェノールの除去とアンモニアの除去の
順序をpH調整を逆にすることによって逆にすることも
できる。
The order of cyanide, phenol removal and ammonia removal can also be reversed by reversing the pH adjustment.

実施例 塩化アンモニア及びシアン化ソーダの水溶液を、アンモ
ニア濃度及びシアン化ソーダのシアン換算濃度がそれぞ
れ5000 ppm に々る様に溶液を調整した。
Example An aqueous solution of ammonium chloride and sodium cyanide was adjusted so that the ammonia concentration and the cyanide equivalent concentration of sodium cyanide were each 5000 ppm.

これに消石灰を加えてpH11,5にした液を被処理液
とし、孔径0.5μのテフロン製多孔質膜を介して、3
チの硫酸液と接つしさせた。
A solution made to pH 11.5 by adding slaked lime was used as the solution to be treated, and was passed through a Teflon porous membrane with a pore size of 0.5 μm for 30 minutes.
It was brought into contact with a sulfuric acid solution.

被処理液及び硫酸溶液が膜面な5.0cm/秒で流れる
ように両液を膜を装着したセルの中をポンプにより巡回
させ、アンモニアの濃度の低下を時間の関数として求め
た。
The liquid to be treated and the sulfuric acid solution were circulated through a cell equipped with a membrane using a pump so that they flowed at a rate of 5.0 cm/sec at the membrane surface, and the decrease in ammonia concentration was determined as a function of time.

アンモニアの濃度低下は理論的に予想される曲線に従っ
て起った。
The ammonia concentration reduction occurred according to the theoretically expected curve.

即ち、アンモニア濃度の対数と時間とは、アンモニア濃
度に関わらず、直線関係にあった。
That is, the logarithm of the ammonia concentration and time had a linear relationship regardless of the ammonia concentration.

驚くべきことにはアンモニア濃度が5 ppm以下の低
濃度になっても直線関係からのずれは、起らなかった。
Surprisingly, no deviation from the linear relationship occurred even at low ammonia concentrations below 5 ppm.

上記の方法でアンモニアを取り除いた液をpH1に調整
し、5%の苛性ソーダ水溶液と多孔質膜を介して接つし
させた。
The solution from which ammonia had been removed by the above method was adjusted to pH 1 and brought into contact with a 5% aqueous solution of caustic soda through a porous membrane.

シアン濃度の低下と時間との関係はアンモニアの場合と
同様であり、濃度に無関係にシアン濃度の対数と時間と
の関係は直線関係にあった。
The relationship between the decrease in cyan concentration and time was the same as in the case of ammonia, and the relationship between the logarithm of cyan concentration and time was a linear relationship regardless of the concentration.

以上実験の処理速度は室温にて1(lの上記液を濃度5
ppm 以下まで処理するのに1r/?の膜を使って
アンモニアで1時間、シアンで1.5時間であった。
The processing speed of the above experiment was 1 (l) of the above solution at a concentration of 5 at room temperature.
1r/? to process down to ppm or less? Using a membrane of 1 hour with ammonia and 1.5 hours with cyanide.

Claims (1)

【特許請求の範囲】 1 液(以下「被処理液」と称する)中の二成分□以上
の揮発性物質のうちの特定揮発性物質の選択的な除去を
、多孔質膜を介して隣りあう該特定揮発性物質吸収液体
に、多孔質膜の細孔内気層を通してのガス拡散によって
吸収させて行う場合において、該特定揮発性物質の比揮
発度のみが選択的に高くなるように溶液のpHを調整す
る分離方法。 2 被処理液がシアン、フェノール、アンモニアを含む
水溶液であり、特定揮発性物質がアンモニアでありpH
が9以上である特許請求の範囲1記載の分離方法。 3 特定揮発性物質吸収液体が硫酸又はリン酸の水溶液
である特許請求の範囲2記載の分離方法。 4 被処理液がシアン、フェノール、アンモニアを含む
水溶液であり、特定揮発性物質がシアン及びフェノール
であり、pHが5以下である特許請求の範囲1記載の分
離方法。 5 特定揮発性物質吸収液体がカセイソーダ、又はカセ
イカリの水溶液である特許請求の範囲4記載の分離方法
[Claims] 1. Selective removal of a specific volatile substance among two or more volatile substances in a liquid (hereinafter referred to as "liquid to be treated") by adjoining them through a porous membrane. When the specific volatile substance is absorbed by the liquid by gas diffusion through the air layer in the pores of the porous membrane, the pH of the solution is adjusted so that only the specific volatility of the specific volatile substance is selectively increased. Separation method to adjust. 2 The liquid to be treated is an aqueous solution containing cyanide, phenol, and ammonia, the specific volatile substance is ammonia, and the pH is
The separation method according to claim 1, wherein is 9 or more. 3. The separation method according to claim 2, wherein the specific volatile substance absorbing liquid is an aqueous solution of sulfuric acid or phosphoric acid. 4. The separation method according to claim 1, wherein the liquid to be treated is an aqueous solution containing cyanide, phenol, and ammonia, the specific volatile substances are cyanide and phenol, and the pH is 5 or less. 5. The separation method according to claim 4, wherein the specific volatile substance absorbing liquid is caustic soda or an aqueous solution of caustic potash.
JP13501276A 1976-11-09 1976-11-09 Membrane separation method Expired JPS5927203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13501276A JPS5927203B2 (en) 1976-11-09 1976-11-09 Membrane separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13501276A JPS5927203B2 (en) 1976-11-09 1976-11-09 Membrane separation method

Publications (2)

Publication Number Publication Date
JPS5358977A JPS5358977A (en) 1978-05-27
JPS5927203B2 true JPS5927203B2 (en) 1984-07-04

Family

ID=15141858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13501276A Expired JPS5927203B2 (en) 1976-11-09 1976-11-09 Membrane separation method

Country Status (1)

Country Link
JP (1) JPS5927203B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA858921B (en) * 1984-11-21 1986-07-30 Syrinx Res Pty Ltd Osmotic concentration by membrane
JP5928070B2 (en) * 2012-03-28 2016-06-01 住友金属鉱山株式会社 Method for removing ammonia from wastewater containing ammonia

Also Published As

Publication number Publication date
JPS5358977A (en) 1978-05-27

Similar Documents

Publication Publication Date Title
CN104211246B (en) A kind of Low Concentration Ammonia Containing Wastewater or feed liquid processing method
CN103230734B (en) Combine the method removing sulfur dioxide in flue gas and nitrogen oxide
RU2176927C2 (en) Method of absorbing gaseous oxidizable or reducing components through membrane
US7267710B2 (en) Method of and apparatus for regenerating adsorbent
US10213728B2 (en) Method for separating carbon dioxide from a gas flow, in particular from a flue gas flow, and separating device for separating carbon dioxide from a gas flow, in particular from a flue gas flow
KR0136645B1 (en) Method and apparatus for treating waste gas
CN104812705B (en) The processing unit of ammonia-containing water and the processing method of ammonia-containing water
JPS5927203B2 (en) Membrane separation method
JP4618937B2 (en) How to remove phosphorus from wastewater.
JP2871369B2 (en) Wastewater treatment method
JP2004244277A (en) Method of manufacturing high purity sodium chloride
JP3124929B2 (en) Humidity control device
CN115028304A (en) Mercury-containing wastewater treatment system for acetylene method vinyl chloride device
JPH0724475A (en) Method for recovering silica in aqueous solution
JP2941551B2 (en) Electrodialysis equipment for desulfurization wastewater treatment
CN108726541B (en) Method for preparing sodium bisulfate by resource utilization of coal chemical industry waste gas and waste water
JPS63147519A (en) Method for removing total of mercury contained in exhaust gas and mercury contained in waste water of smoke cleaning
JP2877265B2 (en) Wastewater treatment facility
JPH07163845A (en) Treatment apparatus for ammonium nitrate-containing waste solution
JPH05301092A (en) Treatment of ammonium fluoride-containing water
KR20060081730A (en) Method for treating waste etching solution using an ion-exchange membrane module
SU787364A1 (en) Method of purifying steam-air mixture from ammonia
JPH0483586A (en) Treatment of waste water of wet exhaust gas desulfurization apparatus
JP3026136B2 (en) Desulfurization wastewater treatment method
JP2834265B2 (en) Concentration method of organic valuables by reverse osmosis membrane