WO2012144384A1 - Method for purifying water containing radioactive halogen, process for producing filtrate water, and device for purifying water containing radioactive halogen - Google Patents

Method for purifying water containing radioactive halogen, process for producing filtrate water, and device for purifying water containing radioactive halogen Download PDF

Info

Publication number
WO2012144384A1
WO2012144384A1 PCT/JP2012/059849 JP2012059849W WO2012144384A1 WO 2012144384 A1 WO2012144384 A1 WO 2012144384A1 JP 2012059849 W JP2012059849 W JP 2012059849W WO 2012144384 A1 WO2012144384 A1 WO 2012144384A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
semipermeable membrane
radioactive halogen
unit
membrane unit
Prior art date
Application number
PCT/JP2012/059849
Other languages
French (fr)
Japanese (ja)
Inventor
谷口雅英
前田智宏
佐々木崇夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012522851A priority Critical patent/JPWO2012144384A1/en
Publication of WO2012144384A1 publication Critical patent/WO2012144384A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/08Processing by evaporation; by distillation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Definitions

  • the present invention relates to a method for purifying seawater, river water, groundwater, wastewater treated water containing radioactive halogen, particularly radioactive iodine, and a device for purifying radioactive halogen-containing water.
  • Patent Document 1 As a method of separating and removing radioactive substances in water, a method of adsorbing on activated carbon, ion exchange resin, zeolite, etc. is the most popular, and is exemplified in Non-Patent Document 1 and Patent Documents 1 and 2, for example. Furthermore, recently, as shown in Non-Patent Document 2, various membrane separation applications have been attempted. Further, Patent Document 3 gives an example in which a reducing agent is added to wastewater and then removed with a reverse osmosis membrane capable of removing low molecules.
  • adsorbents are not preferred, especially when the salinity of the raw wastewater is high because the ability to adsorb halogens such as iodine is inhibited by the salinity.
  • adsorbents are not preferred, especially when the salinity of the raw wastewater is high because the ability to adsorb halogens such as iodine is inhibited by the salinity.
  • radioactive materials are concentrated in the adsorbent itself, and the risk of the treatment facility increases.
  • the method of removing with a reverse osmosis membrane after adding a reducing agent is easy to achieve a stable state in which iodine is easily removed, but the wastewater is mixed with natural water such as river water or rainwater, or the wastewater itself is natural.
  • the effect of the reducing agent such as the need to add a large amount of reducing agent in order to form a complex equilibrium state, such as halogen is taken into various impurities to form a complex May not be fully demonstrated.
  • An object of the present invention is to efficiently remove halogens, in particular iodine, from seawater, river water, groundwater, wastewater treated water, etc. containing radioactive halogens.
  • the present invention has the following configuration.
  • a solid-liquid separation unit that obtains pretreatment water by solid-liquid separation of radioactive halogen-containing water, a first oxidation-reduction potentiometer that measures the oxidation-reduction potential before treatment of the solid-liquid separation unit, and pretreatment water
  • a reducing agent addition unit for adding a reducing agent; a semipermeable membrane unit for separating pretreated water to which the reducing agent is added into concentrated wastewater and permeated water; and a second for measuring a redox potential before the semipermeable membrane unit treatment.
  • Purification equipment for radioactive halogen-containing water equipped with a redox potentiometer.
  • halogen particularly iodine
  • seawater river water, groundwater, wastewater treated water, etc. containing radioactive halogen
  • FIG. 1 An example of the purification apparatus for radioactive halogen-containing water of the present invention is shown in FIG.
  • the purification apparatus for radioactive halogen-containing water shown in FIG. 1 raw wastewater 1 is temporarily stored in a wastewater tank 2, then processed by a pretreatment unit 4 by a supply pump 3, and sent to a pretreatment water tank 5.
  • the pretreatment unit 4 is intended to remove suspended substances, and includes sedimentation separation, flotation separation, sand filtration, and membrane filtration.
  • the flocculant is used. Therefore, it is preferable not to add a flocculant and to apply membrane filtration that can reliably remove suspended components.
  • the oxidation-reduction potential is 800 mV or less, preferably 500 mV or less, and 200 mV or more.
  • wastewater that stays in an anaerobic state in the basement or in the tank may have a redox potential lower than 200 mV in advance. In such a case, there is a problem with supplying it to the pretreatment as it is. Absent. However, since suspended organic matter contained in wastewater is incorporated to some extent by complexing or adsorbing halogen, the oxidation-reduction potential of the wastewater is oxidized by the supply water to the semipermeable membrane unit.
  • the halogen incorporated in the suspension is ionized and solid-liquid separation cannot be performed, and then the redox potential rises and tends to be difficult to remove with a semipermeable membrane unit. It is preferable to lower the oxidation-reduction potential of the pretreatment water supplied to the first semipermeable membrane unit 8 as compared with the oxidation-reduction potential of the wastewater supplied to the unit 4. In addition, it is not deny that the oxidizing agent is added intermittently (for example, several minutes to several tens of minutes / day) for the purpose of cleaning the piping, but it is necessary to pay attention to fluctuations in treated water during that time. Moreover, it is also possible to add a flocculant and an adsorbent only during that time.
  • the reducing agent is added in the reducing agent injection unit 6 so that the pretreatment water has an oxidation-reduction potential below the halogen reduction potential, specifically 500 mV or less, preferably 200 mV or less, more preferably 100 mV or less. Then, it is sent to the first semipermeable membrane unit 8 by the first booster pump 7 and separated (first embodiment of the present invention). As described above, even when the oxidation-reduction potential of the waste water is less than 200 mV, the oxidation-reduction potential may rise before being supplied to the first semi-permeable membrane unit 8, so the first semi-permeable membrane unit.
  • the oxidation-reduction potential before being supplied to 8 is measured, and preferably the reducing agent is sufficiently added so that the oxidation-reduction potential of the pretreated water supplied to the first semipermeable membrane unit 8 is 200 mV or less, more preferably Is preferably maintained at 100 mV or less.
  • the measurement position of the oxidation / reduction potential of the wastewater is preferably in front of the pretreatment unit 4, particularly in the vicinity of the water intake, but even if it is behind the pretreatment unit 4, the object of the present invention is substantially achieved. It is possible to achieve. That is, when a high oxidation-reduction potential is shown at the outlet of the pretreatment unit 4, it is possible to take measures such as adding a reducing agent in front of the pretreatment unit 4. Of course, there is no problem in monitoring the oxidation-reduction potential both before and after the pretreatment unit 4.
  • the redox potential in front of the first semipermeable membrane unit 8 In order to suppress the redox potential in front of the first semipermeable membrane unit 8, it is common to monitor the redox potential in front of the semipermeable membrane unit. Monitoring the redox potential, or both. In particular, it is also preferable to prepare for both in consideration of a case where an increase in the redox potential in the semipermeable membrane unit occurs by monitoring both. Furthermore, monitoring the oxidation-reduction potential before and after the reducing agent injection unit 6 makes it easy to control the amount of reducing agent injection, and to easily detect more than injection, which is one of the preferred embodiments.
  • the redox potential can be measured online or offline using a commercially available ORP meter (redox potential meter). However, when measuring offline, the effects of dissolution of the outside air and temperature changes can be observed. In order to receive, it is preferable to measure online, but it is not particularly limited.
  • ORP meter suitable for this application include PH202 (or OR100) / OR8EFG and PH72 / OR72SN manufactured by Yokogawa Electric Corporation.
  • the separation treatment by the semipermeable membrane has a first purpose of removing iodine.
  • the first semipermeable membrane is obtained by reducing the supply water of the first semipermeable membrane unit 8.
  • the removal rate of iodine in the unit 8 can be improved, further, as a second object, other halogens and the like that become inhibitors when being adsorbed in the adsorption unit 12 at the subsequent stage can be removed.
  • the permeated water of the first semipermeable membrane unit 8 can be discharged or reused as purified water 13 as it is, but subsequently treated by the adsorption unit 12 to reduce the iodine concentration. It is preferable to reduce (the third embodiment of the present invention).
  • the applicable adsorption unit 12 is not particularly limited as long as it can adsorb iodine such as activated carbon or ion exchange resin, but it has high adsorption efficiency and can be desorbed / regenerated.
  • An anion exchange resin is optimal (fourth embodiment of the present invention).
  • FIG. 1 illustrates the case where the semipermeable membrane unit has one stage, but as shown in FIG. 2, the semipermeable membrane may have a plurality of stages.
  • the intermediate water tank 9 and the second booster pump 10 it is possible to provide the intermediate water tank 9 and the second booster pump 10, or directly connect the transmission side of the first semipermeable membrane unit 8 and the supply side of the second semipermeable membrane unit 11, It is possible to omit the intermediate water tank 9 or omit the second booster pump 10.
  • a reducing agent for the purpose of enhancing the removal performance of the second semipermeable membrane unit 11, it is possible to add a reducing agent again, but the reducing agent is added in front of the first semipermeable membrane unit 8.
  • the pH be 8 or more, preferably 9 or more, and then supplied to the second semipermeable membrane unit 11 (fifth embodiment of the present invention). That is, depending on the charge characteristics of the semipermeable membrane, when the reducing agent is acidic or neutral, the permeated water of the first semipermeable membrane unit 8 is often shifted to acidic. To increase the pH. In FIG. 2, the concentrated water of the second semipermeable membrane unit 11 is preferably returned to the upstream side of the first semipermeable membrane unit 8 because the iodine concentration is increased.
  • the suspended substance can be reliably treated without the addition of a flocculant in order to reduce the load on the subsequent semipermeable membrane unit.
  • fine particles of 0.45 ⁇ m or more can be removed by 95% or more, more preferably 99% or more, and furthermore, 0.01 ⁇ m or more of fine particles can be removed by 80% or more, and further 90% or more.
  • it can be done (second embodiment of the invention).
  • the removal performance of the fine particles of the membrane is 0.45 ⁇ m
  • polystyrene latex fine particles K045, manufactured by Iwai Chemicals Co., Ltd.
  • concentration of the filtrate after membrane filtration is measured. Can be obtained.
  • liquids containing 1000 ppm of dextran having different molecular weights for example, molecular weights of 70 kDa, 100 kDa, 200 kDa, and 500 kDa
  • an approximated curve can be created by the Gompertz function, 150 kDa is regarded as 0.01 ⁇ m, and the blocking performance at 150 kDa is estimated.
  • a stirring type ultra folder (UHP-43K, capacity 70 mL) having a membrane area of 11.64 cm 2 is used, and the dispersion is stirred while being stirred at a pressure of 10 kPa.
  • a mini-module having an effective length of about 20 cm ⁇ 2 pieces is produced, and the apparent membrane surface linear velocity is 1 to 1.5 m.
  • the filtered water obtained by the solid-liquid separation unit 17 can be returned to the waste water tank 2 as illustrated in FIG. 4 or can be returned to the front of the pretreatment unit 4.
  • some raw wastewater may contain volatile iodine, it can be volatile by degassing it by aeration with a gas that does not contain radioactive materials or contain low concentrations in advance. It is also possible to remove iodine (eighth embodiment of the present invention). Volatile iodine may be difficult to remove with a semipermeable membrane unit depending on the pH or temperature of the wastewater, and this is a preferred embodiment because the amount of added chemicals can be reduced in view of the case of pH adjustment at a later stage.
  • FIG. 3 illustrates a case where the concentrated wastewater of the first semipermeable membrane unit 8 is processed by the third semipermeable membrane unit 25.
  • the permeated water 26 of the third semipermeable membrane unit which has a lower quality than the permeated water of the first semipermeable membrane unit 8, may be generated. There is no problem if it can be properly used depending on the situation, and it is also possible to return to the upstream side of the first semipermeable membrane unit 8.
  • the reducing agent may react with the reducing agent to generate an oxidizing agent, and the reducing power of the concentrated water that has passed through the first semipermeable membrane unit 8. It is also a preferable aspect that a reducing agent is added again to the concentrated waste water of the first semipermeable membrane unit 8 since the oxidation-reduction potential may increase.
  • a reducing agent is added again to the concentrated waste water of the first semipermeable membrane unit 8 since the oxidation-reduction potential may increase.
  • the pH of the water supplied to the third semipermeable membrane unit 25 is preferably 7 or less.
  • the concentrated water line of the first semipermeable membrane unit 8 and the supply water line to the third semipermeable membrane unit 25 are directly connected to increase the pressure by the intermediate booster pump 28.
  • the concentrated water of one semipermeable membrane unit 8 is temporarily stored in an intermediate tank or the like and then supplied again to the third semipermeable membrane unit 25 by a booster pump.
  • the pressure energy of the concentrated water in the first semipermeable membrane unit 8 is recovered, energy loss is inevitable, but the chemical addition can be performed at an open or low pressure.
  • FIG. 4 shows an example of the case where the second semipermeable membrane unit 11 and the third semipermeable membrane unit 25 are used together.
  • the first semipermeable membrane unit 8 and It is possible to control the recovery rate ( permeate / feed water) of the second semipermeable membrane unit 11 so that the water quality of the purified water 13 is satisfied at a certain level.
  • the fluctuation that is, the amount of water sent to the concentrated water storage tank 24
  • the third semipermeable membrane unit 25 can be controlled by the third semipermeable membrane unit 25.
  • FIG. 5 shows an example in which the concentration separation unit 18 is applied instead of the third semipermeable membrane unit 25 and FIG. 6 shows the separation of the permeated water 26 of the third semipermeable membrane unit 25 by the concentration separation unit 18. Then, an example in which the concentrated water 19 is refluxed upstream of the first semipermeable membrane unit 8 is shown.
  • the semipermeable membrane unit applicable to the present invention is not particularly limited, but for easy handling, a hollow fiber membrane-like or flat membrane-like semipermeable membrane is housed in a casing to form a fluid separation element (element). It is preferable to use what was loaded in a pressure vessel.
  • the fluid separation element is formed of a flat membrane, for example, generally a semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes.
  • TM700 series and TM800 series manufactured by Toray Industries, Inc. can be mentioned. It is also preferable to configure the semipermeable membrane unit by connecting one or more fluid separation elements in series or in parallel.
  • the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane.
  • a composite film having a very thin functional layer formed of another material may be used.
  • the feed water is concentrated. Therefore, scale inhibitors, acids and alkalis are added to the feed water of each semipermeable membrane unit to prevent scale precipitation due to concentration and to adjust pH. It is possible to In addition, it is preferable to implement scale inhibitor addition upstream from pH adjustment so that the addition cost can be exhibited. It is also preferable to prevent an abrupt concentration or pH change in the vicinity of the addition port by providing an in-line mixer immediately after the addition of the chemical, or by directly contacting the addition port with the flow of the supply water. .
  • the scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used.
  • organic polymers synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid can be used, and ethylenediaminetetraacetic acid can be used as a monomer.
  • polyphosphate etc. can be used as an inorganic type scale inhibitor.
  • polyphosphate and ethylenediaminetetraacetic acid are particularly preferably used from the viewpoints of availability, ease of operation such as solubility, and cost.
  • the polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom.
  • Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc.
  • sulfuric acid, sodium hydroxide, and calcium hydroxide are generally used as the acid and alkali, but hydrochloric acid, oxalic acid, potassium hydroxide, sodium bicarbonate, ammonium hydroxide, and the like can also be used. However, it is better not to use calcium or magnesium in order to prevent an increase in scale components in seawater.
  • sand filtration when sand filtration is used for pretreatment, it is possible to apply gravity-type filtration that naturally flows down, or it is possible to apply pressurized filtration in which a pressure tank is filled with sand. .
  • sand to be filled single-component sand can be applied.
  • anthracite, silica sand, garnet, pumice, and the like can be combined to increase filtration efficiency.
  • the microfiltration membrane and the ultrafiltration membrane are not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular membrane, a pleat type, or any other shape can be used as appropriate.
  • the material of the membrane is also particularly limited, and inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used.
  • inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used.
  • inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used
  • the feed water contains a large amount of soluble organic matter
  • a chelating agent such as an organic polymer electrolyte or sodium hexametaphosphate may be added, or exchanged with soluble ions using an ion exchange resin or the like.
  • iron or manganese is present in a soluble state, it is also preferable to use an aeration oxidation filtration method, a contact oxidation filtration method, or the like.
  • nanofiltration membrane for pretreatment in order to remove specific ions and polymers in advance and operate the purification apparatus for radioactive halogen-containing water of the present invention with high efficiency.
  • the present invention relates to a method and apparatus for purifying radioactive halogen-containing water that removes radioactive halogen, particularly radioactive iodine, from seawater, river water, groundwater, wastewater-treated water, etc. containing radioactive halogen, and is contained in trace amounts in water. Radioactive iodine can be removed efficiently.

Abstract

The present invention relates to a method and a device for purifying water that contains a radioactive halogen, in which the water containing a radioactive halogen is regulated so as to have an oxidation/reduction potential of 800 mV or less and subjected to solid-liquid separation, and the obtained pretreated water is then regulated so as to have an oxidation/reduction potential of 500 mV or less and treated with a semipermeable-membrane unit to separate the pretreated water into concentrated wastewater and filtrate water. The radioactive halogen, in particular, radioactive iodine, is thereby removed from the water, e.g., seawater, river water, groundwater, or treated wastewater, which contains the radioactive halogen. Thus, the radioactive iodine contained in a slight amount in water is efficiently removed.

Description

放射性ハロゲン含有水の浄化方法、透過水の製造方法および放射性ハロゲン含有水の浄化装置Method for purifying radioactive halogen-containing water, method for producing permeated water, and device for purifying radioactive halogen-containing water
 本発明は、放射性ハロゲン、特に放射性ヨウ素を含有する海水、河川水、地下水、排水処理水を浄化する方法および放射性ハロゲン含有水の浄化装置に関するものである。 The present invention relates to a method for purifying seawater, river water, groundwater, wastewater treated water containing radioactive halogen, particularly radioactive iodine, and a device for purifying radioactive halogen-containing water.
 近年電力エネルギー製造システムの中核を担っている原子力発電において、使用済み核燃料の処理は非常に重要な課題となっている。使用済みの核燃料からウランやプルトニウムを回収再利用する場合、大量の水を利用し、放射性物質、とくに、放射性ヨウ素を含有するプロセス廃水が生成する。このプロセス廃水から放射性物質を分離除去し、安全な水を回収することが求められている。また、発電所タービンの定期修理や突然の停止などの場合にも設備内に滞留するプロセス水には放射性ヨウ素が含有している場合が多く、さらに、万一の放射能漏れ事故の場合には、自然環境中の水が放射能を帯びることになるため、その濃度が許容範囲を超える場合、分離除去することが非常に重要となる。 In recent years, in the nuclear power generation that plays a central role in the power energy production system, the disposal of spent nuclear fuel has become a very important issue. When recovering and reusing uranium and plutonium from spent nuclear fuel, a large amount of water is used to produce process wastewater containing radioactive materials, especially radioactive iodine. It is required to separate and remove radioactive substances from the process wastewater and to collect safe water. In addition, in the case of periodic repairs or sudden shutdowns of power plant turbines, the process water staying in the facility often contains radioactive iodine, and in the event of a radioactive leak accident Since the water in the natural environment becomes radioactive, it is very important to separate and remove it when the concentration exceeds the allowable range.
 水中の放射性物質を分離除去する方法として、活性炭、イオン交換樹脂、ゼオライトといったものに吸着させる方法が最もポピュラーであり、例えば、非特許文献1や特許文献1,2において例示されている。さらに、最近では、非特許文献2に示されるように、様々な膜分離の適用も試みられている。また、特許文献3には、廃水に還元剤を添加した後に低分子を除去可能な逆浸透膜で除去する例が挙げられている。 As a method of separating and removing radioactive substances in water, a method of adsorbing on activated carbon, ion exchange resin, zeolite, etc. is the most popular, and is exemplified in Non-Patent Document 1 and Patent Documents 1 and 2, for example. Furthermore, recently, as shown in Non-Patent Document 2, various membrane separation applications have been attempted. Further, Patent Document 3 gives an example in which a reducing agent is added to wastewater and then removed with a reverse osmosis membrane capable of removing low molecules.
 しかしながら、吸着剤では、とくに原廃水の塩分濃度が高い場合は、塩分によってヨウ素などのハロゲンを吸着する能力が阻害されるため、好ましくない。また、直接高濃度の原廃水を処理すると、吸着剤そのものに放射性物質が濃縮され、処理設備の危険性が高まるという問題があった。また、還元剤を添加してから逆浸透膜で除去する方法は、ヨウ素を除去しやすい安定状態にしやすいが、廃水が河川水や雨水など自然水との混合水であったり、廃水そのものが天然由来であったりする場合、ハロゲンが各種不純物に取り込まれて錯体を形成するなどして、複雑な平衡状態を形成するため、還元剤を多量に添加する必要があったりするなど、還元剤の効果が十分に発揮できない場合があった。 However, adsorbents are not preferred, especially when the salinity of the raw wastewater is high because the ability to adsorb halogens such as iodine is inhibited by the salinity. In addition, when directly treating high-concentration raw wastewater, there is a problem that radioactive materials are concentrated in the adsorbent itself, and the risk of the treatment facility increases. In addition, the method of removing with a reverse osmosis membrane after adding a reducing agent is easy to achieve a stable state in which iodine is easily removed, but the wastewater is mixed with natural water such as river water or rainwater, or the wastewater itself is natural. When it comes from, the effect of the reducing agent, such as the need to add a large amount of reducing agent in order to form a complex equilibrium state, such as halogen is taken into various impurities to form a complex May not be fully demonstrated.
特開昭58-156898号公報JP 58-156898 A 特開2000-9892号公報JP 2000-9892 A 特開昭61-116695号公報JP 61-116695 A
 本発明の目的は、放射性ハロゲンを含有する海水、河川水、地下水、排水処理水などから効率的に、ハロゲン、特にヨウ素を除去することにある。 An object of the present invention is to efficiently remove halogens, in particular iodine, from seawater, river water, groundwater, wastewater treated water, etc. containing radioactive halogens.
 前記課題を解決するために、本発明は次の構成をとる。 In order to solve the above problems, the present invention has the following configuration.
 (1)放射性ハロゲン含有水の酸化還元電位を800mV以下にして固液分離し、次いで、得られた前処理水の酸化還元電位を500mV以下にして半透膜ユニットで処理して濃縮廃水と透過水に分離する放射性ハロゲン含有水の浄化方法。 (1) Solid-liquid separation by setting the oxidation-reduction potential of radioactive halogen-containing water to 800 mV or less, and then treating it with a semipermeable membrane unit by setting the oxidation-reduction potential of the obtained pretreated water to 500 mV or less. A method for purifying radioactive halogen-containing water separated into water.
 (2)固液分離で0.45μm以上の微粒子を99%以上除去することを特徴とする(1)に記載の放射性ハロゲン含有水の浄化方法。 (2) The method for purifying radioactive halogen-containing water according to (1), wherein 99% or more of fine particles of 0.45 μm or more are removed by solid-liquid separation.
 (3)半透膜ユニット処理後の透過水を吸着ユニットで処理することを特徴とする(1)または(2)に記載の放射性ハロゲン含有水の浄化方法。 (3) The method for purifying radioactive halogen-containing water according to (1) or (2), wherein the permeated water after treatment with the semipermeable membrane unit is treated with an adsorption unit.
 (4)吸着ユニットがアニオン交換体からなることを特徴とする(3)に記載の放射性ハロゲン含有水の浄化方法。 (4) The method for purifying radioactive halogen-containing water according to (3), wherein the adsorption unit comprises an anion exchanger.
 (5)半透膜ユニット処理後の透過水のpHを8以上にして、さらに半透膜ユニットで処理することを特徴とする(1)~(4)のいずれかに記載の放射性ハロゲン含有水の浄化方法。 (5) The radioactive halogen-containing water according to any one of (1) to (4), wherein the pH of the permeated water after the treatment with the semipermeable membrane unit is adjusted to 8 or more and further treated with the semipermeable membrane unit Purification method.
 (6)固液分離の洗浄排水を別の固液分離装置で処理することを特徴とする(1)~(5)のいずれかに記載の放射性ハロゲン含有水の浄化方法。 (6) The method for purifying radioactive halogen-containing water according to any one of (1) to (5), wherein the washing wastewater for solid-liquid separation is treated with another solid-liquid separation device.
 (7)半透膜ユニット処理後の濃縮廃水をさらに半透膜ユニット、晶析または蒸発処理して浄化水を得ることを特徴とする(1)~(6)のいずれかに記載の放射性ハロゲン含有水の浄化方法。 (7) The radioactive halogen according to any one of (1) to (6), wherein the concentrated waste water after the semipermeable membrane unit treatment is further subjected to a semipermeable membrane unit, crystallization or evaporation treatment to obtain purified water Purification method of contained water.
 (8)半透膜ユニットで処理する前に脱気を行うことを特徴とする(1)~(7)のいずれかに記載の放射性ハロゲン含有水の浄化方法。 (8) The method for purifying radioactive halogen-containing water according to any one of (1) to (7), wherein deaeration is performed before treatment with the semipermeable membrane unit.
 (9)(1)~(8)のいずれかに記載の放射性ハロゲン含有水の浄化方法を行うことで透過水を得る透過水の製造方法。 (9) A method for producing permeated water that obtains permeated water by performing the method for purifying radioactive halogen-containing water according to any one of (1) to (8).
 (10)放射性ハロゲン含有水を固液分離して前処理水を得る固液分離ユニットと、固液分離ユニット処理前の酸化還元電位を測定する第1の酸化還元電位計と、前処理水に還元剤を添加する還元剤添加ユニットと、還元剤が添加された前処理水を濃縮廃水と透過水に分離する半透膜ユニットと、半透膜ユニット処理前の酸化還元電位を測定する第2の酸化還元電位計を備えた放射性ハロゲン含有水の浄化装置。 (10) A solid-liquid separation unit that obtains pretreatment water by solid-liquid separation of radioactive halogen-containing water, a first oxidation-reduction potentiometer that measures the oxidation-reduction potential before treatment of the solid-liquid separation unit, and pretreatment water A reducing agent addition unit for adding a reducing agent; a semipermeable membrane unit for separating pretreated water to which the reducing agent is added into concentrated wastewater and permeated water; and a second for measuring a redox potential before the semipermeable membrane unit treatment. Purification equipment for radioactive halogen-containing water equipped with a redox potentiometer.
 (11)半透膜ユニットの透過水を処理する吸着ユニットを備えたことを特徴とする(10)に記載の水の浄化装置。 (11) The water purification device according to (10), further comprising an adsorption unit for treating the permeated water of the semipermeable membrane unit.
 本発明によって、放射性ハロゲンを含有する海水、河川水、地下水、排水処理水などから効率的に、ハロゲン、特にヨウ素を除去することができ、放流もしくは再利用可能な、安全な水を製造することが可能となる。 According to the present invention, it is possible to efficiently remove halogen, particularly iodine, from seawater, river water, groundwater, wastewater treated water, etc. containing radioactive halogen, and to produce safe water that can be discharged or reused. Is possible.
本発明の放射性ハロゲン含有水の浄化方法の一実施態様を示す概略フロー図である。It is a schematic flowchart which shows one embodiment of the purification method of radioactive halogen containing water of this invention. 本発明に係る、透過水をさらに半透膜ユニットで処理する放射性ハロゲン含有水の浄化方法の一実施態様を示す概略フロー図である。It is a schematic flowchart which shows one embodiment of the purification method of the radioactive halogen containing water which further processes permeated water by a semipermeable membrane unit based on this invention. 本発明に係る、濃縮水をさらに半透膜ユニットで処理する放射性ハロゲン含有水の浄化方法の一実施態様を示す概略フロー図である。It is a schematic flowchart which shows one embodiment of the purification method of the radioactive halogen containing water which further processes concentrated water with a semipermeable membrane unit based on this invention. 本発明に係る、透過水と濃縮水をともに、さらに半透膜ユニットで処理する放射性ハロゲン含有水の浄化方法の一実施態様を示す概略フロー図である。It is a general | schematic flowchart which shows one embodiment of the purification method of the radioactive halogen containing water which treats both permeated water and concentrated water with a semipermeable membrane unit based on this invention. 本発明に係る、濃縮水を濃縮分離ユニットで分離処理する放射性ハロゲン含有水の浄化方法の一実施態様を示す概略フロー図である。It is a schematic flowchart which shows one embodiment of the purification method of the radioactive halogen containing water which carries out the separation process of the concentrated water by a concentration separation unit based on this invention. 本発明にかかる、濃縮水をさらに半透膜ユニットで濃縮した後に濃縮分離ユニット分離する放射性ハロゲン含有水の浄化方法の一実施態様を示す概略フロー図である。It is a schematic flowchart which shows one embodiment of the purification method of the radioactive halogen containing water concerning the present invention which further concentrates the concentrated water with a semipermeable membrane unit and then separates the concentrated separation unit.
 以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明がこれらに限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to these.
 本発明の放射性ハロゲン含有水の浄化装置の一例を図1に示す。図1に示す放射性ハロゲン含有水の浄化装置では、原廃水1が廃水タンク2で一旦貯留された後、供給ポンプ3によって前処理ユニット4で処理され、前処理水槽5に送られる。ここで、前処理ユニット4は、懸濁物質除去を目的としており、沈降分離、浮上分離、砂ろ過、膜ろ過が挙げられるが、本発明が目的とする放射性ハロゲン除去という観点からは、凝集剤の添加による廃棄物増加は好ましくないため、凝集剤を添加せず、かつ確実に懸濁成分を除去できる膜ろ過を適用することが好ましい。また、放射性ハロゲンの除去率を上げる目的でアルカリを添加すると、スケールが析出しやすくなるため、濃縮が困難になり好ましくない。さらに、水処理の取水で一般的に適用される次亜塩素酸などの酸化剤を添加すると、原廃水中の有機物が分解し、低分子化するとともに、ハロゲンと反応したり、次亜塩素酸との交換反応が起こったりして成分が複雑化し、前処理効率・除去率が低下するため、本発明においては添加するべきではない。さらに、何らかの成分によって廃水が酸化状態にある場合もそのまま処理すると、配管中や前処理などに付着した汚れや有機物などが分解され、漏出してくる場合があるため、前処理に供する廃水の酸化還元電位が高い場合は、予め、還元剤を添加するなどして、酸化状態にならないようにすることが好ましい。ただし、前処理で還元状態にすると、嫌気化し懸濁物と反応してしまう場合があるため、半透膜ユニットに供給される時点で還元状態を維持するためには、前処理前での還元剤の添加は最小限に抑えることが好ましい。具体的には、酸化還元電位を800mV以下、好ましくは500mV以下に抑え、かつ、200mV以上にすると好ましい。もちろん、地下やタンク内の嫌気状態に滞留している廃水などでは、廃水が予め200mVを下回る酸化還元電位である場合があるが、そのような場合は、そのまま前処理に供給することに問題はない。ただし、廃水に含まれる懸濁性有機物などにはある程度ハロゲンが錯体になったり、吸着されたりするなどして取り込まれているため、廃水の酸化還元電位を半透膜ユニットへの供給水の酸化還元電位よりも低くすると、懸濁物に取り込まれているハロゲンがイオン化して固液分離できず、その後に酸化還元電位が上がって、半透膜ユニットで除去しにくい傾向に向かうため、前処理ユニット4に供給する廃水の酸化還元電位に比べて第1の半透膜ユニット8に供給する前処理水の酸化還元電位を低くしておくことが好ましい。なお、配管の洗浄を目的として、間欠的(例えば、数分~数十分/日)に酸化剤を添加することを否定するものではないが、その間の処理水質変動に留意する必要がある。また、その間だけ、凝集剤や吸着剤を添加することも可能である。 An example of the purification apparatus for radioactive halogen-containing water of the present invention is shown in FIG. In the purification apparatus for radioactive halogen-containing water shown in FIG. 1, raw wastewater 1 is temporarily stored in a wastewater tank 2, then processed by a pretreatment unit 4 by a supply pump 3, and sent to a pretreatment water tank 5. Here, the pretreatment unit 4 is intended to remove suspended substances, and includes sedimentation separation, flotation separation, sand filtration, and membrane filtration. From the viewpoint of the removal of radioactive halogen targeted by the present invention, the flocculant is used. Therefore, it is preferable not to add a flocculant and to apply membrane filtration that can reliably remove suspended components. In addition, when alkali is added for the purpose of increasing the removal rate of radioactive halogen, scale is likely to precipitate, which makes it difficult to concentrate. Furthermore, when an oxidizing agent such as hypochlorous acid, which is generally applied in water treatment water intake, is added, organic substances in the raw wastewater are decomposed to lower the molecular weight, react with halogens, and hypochlorous acid. In the present invention, it should not be added, because the components are complicated by the exchange reaction with the other components and the pretreatment efficiency and removal rate are reduced. Furthermore, even if wastewater is in an oxidized state due to some component, if it is treated as it is, dirt or organic matter adhering to the piping or pretreatment may be decomposed and leaked out, so the wastewater used for pretreatment is oxidized. When the reduction potential is high, it is preferable to prevent the oxidation state by adding a reducing agent in advance. However, if it is reduced to pretreatment, it may become anaerobic and react with the suspension. Therefore, in order to maintain the reduced state at the time when it is supplied to the semipermeable membrane unit, reduction before pretreatment is required. It is preferred to minimize the addition of agents. Specifically, it is preferable that the oxidation-reduction potential is 800 mV or less, preferably 500 mV or less, and 200 mV or more. Of course, wastewater that stays in an anaerobic state in the basement or in the tank may have a redox potential lower than 200 mV in advance. In such a case, there is a problem with supplying it to the pretreatment as it is. Absent. However, since suspended organic matter contained in wastewater is incorporated to some extent by complexing or adsorbing halogen, the oxidation-reduction potential of the wastewater is oxidized by the supply water to the semipermeable membrane unit. If the potential is lower than the reduction potential, the halogen incorporated in the suspension is ionized and solid-liquid separation cannot be performed, and then the redox potential rises and tends to be difficult to remove with a semipermeable membrane unit. It is preferable to lower the oxidation-reduction potential of the pretreatment water supplied to the first semipermeable membrane unit 8 as compared with the oxidation-reduction potential of the wastewater supplied to the unit 4. In addition, it is not deny that the oxidizing agent is added intermittently (for example, several minutes to several tens of minutes / day) for the purpose of cleaning the piping, but it is necessary to pay attention to fluctuations in treated water during that time. Moreover, it is also possible to add a flocculant and an adsorbent only during that time.
 前処理水は、酸化還元電位をハロゲンの還元電位以下、具体的には500mV以下、好ましくは、200mV以下、さらに好ましくは100mV以下となるように還元剤注入ユニット6で還元剤が添加された後に、第1の昇圧ポンプ7によって第1の半透膜ユニット8に送られて分離処理される(本発明の第1の実施態様)。前述のように、廃水の酸化還元電位が200mVを下回る場合も、第1の半透膜ユニット8に供給されるまでに、酸化還元電位が上昇する場合があるので、第1の半透膜ユニット8に供給される前の酸化還元電位を測定し、好ましくは還元剤を十分に添加して、第1の半透膜ユニット8に供給される前処理水の酸化還元電位が200mV以下、さらに好ましくは100mV以下に維持することが好ましい。 After the reducing agent is added in the reducing agent injection unit 6 so that the pretreatment water has an oxidation-reduction potential below the halogen reduction potential, specifically 500 mV or less, preferably 200 mV or less, more preferably 100 mV or less. Then, it is sent to the first semipermeable membrane unit 8 by the first booster pump 7 and separated (first embodiment of the present invention). As described above, even when the oxidation-reduction potential of the waste water is less than 200 mV, the oxidation-reduction potential may rise before being supplied to the first semi-permeable membrane unit 8, so the first semi-permeable membrane unit. The oxidation-reduction potential before being supplied to 8 is measured, and preferably the reducing agent is sufficiently added so that the oxidation-reduction potential of the pretreated water supplied to the first semipermeable membrane unit 8 is 200 mV or less, more preferably Is preferably maintained at 100 mV or less.
 ここで、廃水の酸化還元電位の測定位置は、前処理ユニット4の前、とくに、取水近傍であることが好ましいが、前処理ユニット4の後ろにあっても、本発明の目的を実質的に達成することが可能である。すなわち、前処理ユニット4の出口で高い酸化還元電位を示した場合に、前処理ユニット4の前で還元剤を添加するなどの対応をとることができる。もちろん、前処理ユニット4の前後両方で酸化還元電位を監視することも全く問題ない。 Here, the measurement position of the oxidation / reduction potential of the wastewater is preferably in front of the pretreatment unit 4, particularly in the vicinity of the water intake, but even if it is behind the pretreatment unit 4, the object of the present invention is substantially achieved. It is possible to achieve. That is, when a high oxidation-reduction potential is shown at the outlet of the pretreatment unit 4, it is possible to take measures such as adding a reducing agent in front of the pretreatment unit 4. Of course, there is no problem in monitoring the oxidation-reduction potential both before and after the pretreatment unit 4.
 また、第1の半透膜ユニット8の前の酸化還元電位を抑えるにあたっても、半透膜ユニットの前で酸化還元電位を監視することが一般的であるが、半透膜ユニットの濃縮水の酸化還元電位を監視すること、さらには、両方でも差し支えない。とくに、両方監視することによって、半透膜ユニット内での酸化還元電位上昇が起こった場合のことを考慮すると、両方に備えることも好ましい。さらに、還元剤注入ユニット6の前後で酸化還元電位を監視すると、還元剤注入量の制御もしやすく、また、注入以上の検知も行いやすいので、好ましい実施態様の一つである。 In order to suppress the redox potential in front of the first semipermeable membrane unit 8, it is common to monitor the redox potential in front of the semipermeable membrane unit. Monitoring the redox potential, or both. In particular, it is also preferable to prepare for both in consideration of a case where an increase in the redox potential in the semipermeable membrane unit occurs by monitoring both. Furthermore, monitoring the oxidation-reduction potential before and after the reducing agent injection unit 6 makes it easy to control the amount of reducing agent injection, and to easily detect more than injection, which is one of the preferred embodiments.
 酸化還元電位の測定に関しては、市販のORP計(酸化還元電位計)を使ってオンラインもしくはオフラインで測定することが可能であるが、オフラインで測定する場合は、外気の溶解や温度変化の影響を受けるため、オンラインで測定することが好ましいが、特に制約されるものではない。本用途に適したORP計としては、例えば、横川電機株式会社製のPH202(もしくはOR100)/OR8EFG、PH72/OR72SNなどを挙げることができる。 The redox potential can be measured online or offline using a commercially available ORP meter (redox potential meter). However, when measuring offline, the effects of dissolution of the outside air and temperature changes can be observed. In order to receive, it is preferable to measure online, but it is not particularly limited. Examples of the ORP meter suitable for this application include PH202 (or OR100) / OR8EFG and PH72 / OR72SN manufactured by Yokogawa Electric Corporation.
 この半透膜による分離処理は、ヨウ素を除去することを第1の目的とし、本発明においては、第1の半透膜ユニット8の供給水を還元状態にすることによって第1の半透膜ユニット8におけるヨウ素の除去率を向上させることができるが、さらに、第2の目的として、後段の吸着ユニット12において吸着処理される場合に阻害物質となる他のハロゲンなどを除去することができる。 The separation treatment by the semipermeable membrane has a first purpose of removing iodine. In the present invention, the first semipermeable membrane is obtained by reducing the supply water of the first semipermeable membrane unit 8. Although the removal rate of iodine in the unit 8 can be improved, further, as a second object, other halogens and the like that become inhibitors when being adsorbed in the adsorption unit 12 at the subsequent stage can be removed.
 第1の半透膜ユニット8の透過水は、水質が満足する場合は、そのまま、浄化水13として放流もしくは再利用に供することが出来るが、引き続いて、吸着ユニット12で処理され、ヨウ素濃度を低減することが好ましい(本発明の第3の実施態様)。ここで、適用可能な吸着ユニット12としては、活性炭やイオン交換樹脂など、ヨウ素を吸着できるものであれば、特に制限されるものではないが、吸着効率が高く脱着・再生が可能である点からアニオン交換樹脂が最適である(本発明の第4の実施態様)。ところで、第1の半透膜ユニット8の濃縮廃水は、必要に応じてエネルギー回収ユニット23で圧力エネルギーを回収した後に、濃縮(減容)水貯留槽24に蓄えられる。 When the water quality is satisfactory, the permeated water of the first semipermeable membrane unit 8 can be discharged or reused as purified water 13 as it is, but subsequently treated by the adsorption unit 12 to reduce the iodine concentration. It is preferable to reduce (the third embodiment of the present invention). Here, the applicable adsorption unit 12 is not particularly limited as long as it can adsorb iodine such as activated carbon or ion exchange resin, but it has high adsorption efficiency and can be desorbed / regenerated. An anion exchange resin is optimal (fourth embodiment of the present invention). By the way, the concentrated waste water of the first semipermeable membrane unit 8 is stored in the concentrated (volume-reduced) water storage tank 24 after the pressure energy is recovered by the energy recovery unit 23 as necessary.
 図1では、半透膜ユニットが1段の場合を例示しているが、図2に示すように、半透膜を複数段にすることも可能である。この場合、中間水槽9や第2の昇圧ポンプ10を備えることも可能であるし、第1の半透膜ユニット8の透過側と第2の半透膜ユニット11の供給側を直結して、中間水槽9を省略したり、第2の昇圧ポンプ10を省略したりすることも可能である。ここで、第2の半透膜ユニット11の除去性能を高める目的で、再度還元剤を添加することも可能であるが、第1の半透膜ユニット8の前で還元剤が添加されていることを鑑み、pHを8以上、好ましくは9以上にしてから第2の半透膜ユニット11に供給することがさらに好ましい(本発明の第5の実施態様)。すなわち、半透膜の荷電特性にもよるが、還元剤が酸性もしくは中性の場合は、第1の半透膜ユニット8の透過水も酸性にシフトしていることが多く、この場合はアルカリを添加して、pHを上げることになる。なお、図2では第2の半透膜ユニット11の濃縮水は、ヨウ素濃度が高められているため、第1の半透膜ユニット8の上流に還流することも好ましい。 FIG. 1 illustrates the case where the semipermeable membrane unit has one stage, but as shown in FIG. 2, the semipermeable membrane may have a plurality of stages. In this case, it is possible to provide the intermediate water tank 9 and the second booster pump 10, or directly connect the transmission side of the first semipermeable membrane unit 8 and the supply side of the second semipermeable membrane unit 11, It is possible to omit the intermediate water tank 9 or omit the second booster pump 10. Here, for the purpose of enhancing the removal performance of the second semipermeable membrane unit 11, it is possible to add a reducing agent again, but the reducing agent is added in front of the first semipermeable membrane unit 8. In view of this, it is more preferable that the pH be 8 or more, preferably 9 or more, and then supplied to the second semipermeable membrane unit 11 (fifth embodiment of the present invention). That is, depending on the charge characteristics of the semipermeable membrane, when the reducing agent is acidic or neutral, the permeated water of the first semipermeable membrane unit 8 is often shifted to acidic. To increase the pH. In FIG. 2, the concentrated water of the second semipermeable membrane unit 11 is preferably returned to the upstream side of the first semipermeable membrane unit 8 because the iodine concentration is increased.
 前処理ユニット4の分離性能に関しては、後段の半透膜ユニットへの負荷を低減するために、凝集剤の添加なしで懸濁物質を確実に処理できることが好ましい。具体的には、0.45μm以上の微粒子を95%以上、さらに好ましくは、99%以上除去することができ、さらには、0.01μm以上の微粒子を80%以上、さらには、90%以上除去できることが好ましい(本発明の第2の実施態様)。 Regarding the separation performance of the pretreatment unit 4, it is preferable that the suspended substance can be reliably treated without the addition of a flocculant in order to reduce the load on the subsequent semipermeable membrane unit. Specifically, fine particles of 0.45 μm or more can be removed by 95% or more, more preferably 99% or more, and furthermore, 0.01 μm or more of fine particles can be removed by 80% or more, and further 90% or more. Preferably, it can be done (second embodiment of the invention).
 ここで、膜の微粒子の除去性能は、0.45μmの場合、例えば、ポリスチレンラテックス微粒子(岩井化学薬品株式会社製、K045)もしくは同等品を純水20ppm分散させ、膜ろ過した濾液の濃度を測定することによって得ることができる。また、0.01μmの場合は、分子量の異なるデキストラン(例えば、分子量70kDa、100kDa、200kDa、500kDa)を1000ppm含む液をそれぞれ調製、ろ過を行い、原水とろ液の濃度から得られた阻止率を元に、ゴンペルツ関数によって近似曲線を作成し、150kDaを0.01μmと見なし、150kDaのときの阻止性能を推算することによって得ることができる。 Here, when the removal performance of the fine particles of the membrane is 0.45 μm, for example, polystyrene latex fine particles (K045, manufactured by Iwai Chemicals Co., Ltd.) or equivalent are dispersed in 20 ppm of pure water, and the concentration of the filtrate after membrane filtration is measured. Can be obtained. In the case of 0.01 μm, liquids containing 1000 ppm of dextran having different molecular weights (for example, molecular weights of 70 kDa, 100 kDa, 200 kDa, and 500 kDa) are prepared and filtered, respectively. In addition, an approximated curve can be created by the Gompertz function, 150 kDa is regarded as 0.01 μm, and the blocking performance at 150 kDa is estimated.
 なお、濾液を得る方法としては、例えば、平膜の場合は、膜面積11.64cmの攪拌型ウルトラフォルダー(UHP-43K、容量70mL)を用い、圧力10kPaで分散液を攪拌させながら、ろ過し、ろ過開始後25~50mLまでの25mLをサンプリングする方法、中空糸膜の場合は、有効長20cm×2本程度のミニモジュールを作製して、見かけの膜面線速度が1~1.5m/sになるようにして、圧力5kPaで分散液を通水し、中空糸膜の内部の5倍量の水がろ過された時点から、濾液のサンプリングを行う方法が挙げられる。 As a method for obtaining the filtrate, for example, in the case of a flat membrane, a stirring type ultra folder (UHP-43K, capacity 70 mL) having a membrane area of 11.64 cm 2 is used, and the dispersion is stirred while being stirred at a pressure of 10 kPa. In the case of hollow fiber membranes, a mini-module having an effective length of about 20 cm × 2 pieces is produced, and the apparent membrane surface linear velocity is 1 to 1.5 m. A method of sampling the filtrate from the point of time when the dispersion liquid is passed through at a pressure of 5 kPa so that 5 times the amount of water inside the hollow fiber membrane is filtered.
 ところで、固液分離に用いた前処理ユニット4からは、沈降汚泥や洗浄排水が生じる。とくに、前処理が砂ろ過や膜分離の場合は、定期的な逆洗が必要となるため、処理水の2~10%程度の量の洗浄排水を生じる。そこで、図4に例示するように、この洗浄排水を他の固液分離ユニット17でさらに分離処理して、排水を減容することが好ましい(本発明の第6の実施態様)。このような用途に用いられる固液分離ユニット17としては、やはり、膜分離装置が適しているが、とくに、逆洗排水槽16に直接固液分離ユニット17を浸漬するタイプのものが好適である。これによって、前処理ユニット4から生じる放射性物質を減容することができる。また、固液分離ユニット17で得られたろ過水は、図4に例示するように廃水タンク2に戻すこともできれば、前処理ユニット4の前に戻すことも可能である。さらに、原廃水によっては、揮発性のヨウ素を含有している場合もあるため、あらかじめ放射性物質を含まないもしくは低濃度含有する気体で曝気するなどして、脱気しておくことによって揮発性のヨウ素を除去することも可能である(本発明の第8の実施態様)。揮発性のヨウ素は廃水のpHや温度などによっては半透膜ユニットで除去しにくい場合があり、後段でpH調整する場合を鑑みても添加薬品量も減らすことが出来るため、好ましい態様である。 By the way, sedimentation sludge and washing waste water are generated from the pretreatment unit 4 used for solid-liquid separation. In particular, when the pretreatment is sand filtration or membrane separation, regular backwashing is necessary, so that about 2-10% of the treated water is discharged. Therefore, as illustrated in FIG. 4, it is preferable to further separate the washing wastewater with another solid-liquid separation unit 17 to reduce the wastewater volume (sixth embodiment of the present invention). As the solid-liquid separation unit 17 used for such an application, a membrane separation apparatus is still suitable, but in particular, a type in which the solid-liquid separation unit 17 is directly immersed in the backwash drainage tank 16 is suitable. . Thereby, the volume of radioactive material generated from the pretreatment unit 4 can be reduced. Moreover, the filtered water obtained by the solid-liquid separation unit 17 can be returned to the waste water tank 2 as illustrated in FIG. 4 or can be returned to the front of the pretreatment unit 4. Furthermore, since some raw wastewater may contain volatile iodine, it can be volatile by degassing it by aeration with a gas that does not contain radioactive materials or contain low concentrations in advance. It is also possible to remove iodine (eighth embodiment of the present invention). Volatile iodine may be difficult to remove with a semipermeable membrane unit depending on the pH or temperature of the wastewater, and this is a preferred embodiment because the amount of added chemicals can be reduced in view of the case of pH adjustment at a later stage.
 さらに、第1の半透膜ユニット8の濃縮廃水も減容化することが好ましい。減容化の方法については特に制約はないが、再度半透膜を用いる方法、蒸発法、晶析が特に好ましく採用できる(本発明の第7の実施態様)。図3には、第1の半透膜ユニット8の濃縮廃水を第3の半透膜ユニット25で処理する場合を例示する。この場合、プロセスや運転条件によっては、第1の半透膜ユニット8の透過水よりも水質が悪い第3の半透膜ユニットの透過水26が生成する場合があるが、再利用の用途に応じて使い分けることができる場合は問題なく、また、第1の半透膜ユニット8の上流に還流することも可能である。 Furthermore, it is preferable to reduce the volume of the concentrated waste water of the first semipermeable membrane unit 8. The volume reduction method is not particularly limited, but a method using a semipermeable membrane, an evaporation method, and crystallization can be particularly preferably employed (seventh embodiment of the present invention). FIG. 3 illustrates a case where the concentrated wastewater of the first semipermeable membrane unit 8 is processed by the third semipermeable membrane unit 25. In this case, depending on the process and operating conditions, the permeated water 26 of the third semipermeable membrane unit, which has a lower quality than the permeated water of the first semipermeable membrane unit 8, may be generated. There is no problem if it can be properly used depending on the situation, and it is also possible to return to the upstream side of the first semipermeable membrane unit 8.
 ここで、原廃水1に銅やコバルト、マンガンなどが存在すると、還元剤と反応して酸化剤を生成する場合があり、第1の半透膜ユニット8を通って来た濃縮水の還元力が低下し、酸化還元電位が上昇することがあるので、第1の半透膜ユニット8の濃縮廃水に再度還元剤を添加することも好ましい態様である。また、還元剤の添加によって、pHが低下すると、半透膜によるヨウ素の除去性能は低下傾向になるが、第3の半透膜ユニット25でのスケール発生が抑制される条件になる場合は、濃縮を高めることが可能となり、好ましい態様である。具体的には、第3の半透膜ユニット25への供給水のpHを7以下にするとよい。 Here, if copper, cobalt, manganese, or the like is present in the raw wastewater 1, it may react with the reducing agent to generate an oxidizing agent, and the reducing power of the concentrated water that has passed through the first semipermeable membrane unit 8. It is also a preferable aspect that a reducing agent is added again to the concentrated waste water of the first semipermeable membrane unit 8 since the oxidation-reduction potential may increase. In addition, when the pH is lowered by the addition of a reducing agent, the iodine removal performance by the semipermeable membrane tends to decrease, but when the conditions for suppressing the generation of scale in the third semipermeable membrane unit 25 are satisfied, Concentration can be increased, which is a preferred embodiment. Specifically, the pH of the water supplied to the third semipermeable membrane unit 25 is preferably 7 or less.
 なお、図3では、第1の半透膜ユニット8の濃縮水ラインと第3の半透膜ユニット25への供給水ラインを直結して中間昇圧ポンプ28で昇圧するようにしているが、第1の半透膜ユニット8の濃縮水を一旦中間タンクなどに貯留した後に改めて昇圧ポンプで第3の半透膜ユニット25に供給することももちろん問題ない。これによって、第1の半透膜ユニット8の濃縮水の圧力エネルギーを回収したとしてもエネルギーロスは避けられないが、薬液添加を開放もしくは低圧で実施できるようになる。 In FIG. 3, the concentrated water line of the first semipermeable membrane unit 8 and the supply water line to the third semipermeable membrane unit 25 are directly connected to increase the pressure by the intermediate booster pump 28. There is of course no problem that the concentrated water of one semipermeable membrane unit 8 is temporarily stored in an intermediate tank or the like and then supplied again to the third semipermeable membrane unit 25 by a booster pump. As a result, even if the pressure energy of the concentrated water in the first semipermeable membrane unit 8 is recovered, energy loss is inevitable, but the chemical addition can be performed at an open or low pressure.
 図4には、第2の半透膜ユニット11と第3の半透膜ユニット25を併用する場合の一例を示すが、このようなシステムにすることによって、第1の半透膜ユニット8と第2の半透膜ユニット11の回収率(=透過水/供給水)を調節して、ある程度のレベルで浄化水13の水質が満足するように制御することが可能であり、さらに、生じる水量変動(すなわち、濃縮水貯留槽24に送られる水量)を第3の半透膜ユニット25でコントロールすることが可能となる。 FIG. 4 shows an example of the case where the second semipermeable membrane unit 11 and the third semipermeable membrane unit 25 are used together. By using such a system, the first semipermeable membrane unit 8 and It is possible to control the recovery rate (= permeate / feed water) of the second semipermeable membrane unit 11 so that the water quality of the purified water 13 is satisfied at a certain level. The fluctuation (that is, the amount of water sent to the concentrated water storage tank 24) can be controlled by the third semipermeable membrane unit 25.
 図5には第3の半透膜ユニット25の代わりに、濃縮分離ユニット18を適用した場合の一例、図6は、第3の半透膜ユニット25の透過水26を濃縮分離ユニット18で分離し、濃縮水19を第1の半透膜ユニット8の上流に還流する一例を示す。 FIG. 5 shows an example in which the concentration separation unit 18 is applied instead of the third semipermeable membrane unit 25, and FIG. 6 shows the separation of the permeated water 26 of the third semipermeable membrane unit 25 by the concentration separation unit 18. Then, an example in which the concentrated water 19 is refluxed upstream of the first semipermeable membrane unit 8 is shown.
 本発明においては、上記で説明した本発明の実施態様のいずれかで放射性ハロゲン含有水の浄化を行い透過水を得ることも好ましい実施態様である。 In the present invention, it is also a preferred embodiment to obtain permeated water by purifying radioactive halogen-containing water in any of the embodiments of the present invention described above.
 本発明に適用可能な半透膜ユニットとしては、特に制約はないが、取扱いを容易にするため中空糸膜状や平膜状の半透膜を筐体に納めて流体分離素子(エレメント)としたものを耐圧容器に装填したものを用いることが好ましい。流体分離素子は、平膜で形成する場合、例えば、多数の孔を穿設した筒状の中心パイプの周りに、半透膜を流路材(ネット)とともに円筒状に巻回したものが一般的であり、市販製品としては、東レ(株)製逆浸透膜エレメントTM700シリーズやTM800シリーズを挙げることができる。これら、流体分離素子は1本でも、また、複数本を直列あるいは並列に接続して半透膜ユニットを構成することも好ましい。 The semipermeable membrane unit applicable to the present invention is not particularly limited, but for easy handling, a hollow fiber membrane-like or flat membrane-like semipermeable membrane is housed in a casing to form a fluid separation element (element). It is preferable to use what was loaded in a pressure vessel. When the fluid separation element is formed of a flat membrane, for example, generally a semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes. As commercial products, reverse osmosis membrane element TM700 series and TM800 series manufactured by Toray Industries, Inc. can be mentioned. It is also preferable to configure the semipermeable membrane unit by connecting one or more fluid separation elements in series or in parallel.
 半透膜素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い機能層を有する複合膜のどちらでもよい。 Polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer can be used for the semipermeable membrane material. In addition, the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane. Either a composite film having a very thin functional layer formed of another material may be used.
 半透膜ユニットにおいては、供給水が濃縮されるため、濃縮によるスケール析出を防止したりpH調整のためにそれぞれの半透膜ユニットの供給水に対してスケール防止剤や酸・アルカリを添加したりすることが可能である。なお、スケール防止剤添加は、その添加高価を発揮できるように、pH調整よりも上流側で実施することが好ましい。また、薬品添加の直後にはインラインミキサーを設けたり、添加口を供給水の流れに直接接触するようにするなどして添加口近傍での急激な濃度やpH変化を防止したりすることも好ましい。 In the semipermeable membrane unit, the feed water is concentrated. Therefore, scale inhibitors, acids and alkalis are added to the feed water of each semipermeable membrane unit to prevent scale precipitation due to concentration and to adjust pH. It is possible to In addition, it is preferable to implement scale inhibitor addition upstream from pH adjustment so that the addition cost can be exhibited. It is also preferable to prevent an abrupt concentration or pH change in the vicinity of the addition port by providing an in-line mixer immediately after the addition of the chemical, or by directly contacting the addition port with the flow of the supply water. .
 スケール防止剤とは、溶液中の金属、金属イオンなどと錯体を形成し、金属あるいは金属塩を可溶化させるもので、有機や無機のイオン性ポリマーあるいはモノマーが使用できる。有機系のポリマーとしてはポリアクリル酸、スルホン化ポリスチレン、ポリアクリルアミド、ポリアリルアミンなどの合成ポリマーやカルボキシメチルセルロース、キトサン、アルギン酸などの天然高分子が、モノマーとしてはエチレンジアミン四酢酸などが使用できる。また、無機系のスケール防止剤としてはポリリン酸塩などが使用できる。これらのスケール防止剤の中では入手のしやすさ、溶解性など操作のしやすさ、価格の点から特にポリリン酸塩、エチレンジアミン四酢酸(EDTA)が好適に用いられる。ポリリン酸塩とはヘキサメタリン酸ナトリウムを代表とする分子内に2個以上のリン原子を有し、アルカリ金属、アルカリ土類金属とリン酸原子などにより結合した重合無機リン酸系物質をいう。代表的なポリリン酸塩としては、ピロリン酸四ナトリウム、ピロリン酸二ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘプタポリリン酸ナトリウム、デカポリリン酸ナトリウム、メタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、およびこれらのカリウム塩などがあげられる。 The scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used. As organic polymers, synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid can be used, and ethylenediaminetetraacetic acid can be used as a monomer. Moreover, polyphosphate etc. can be used as an inorganic type scale inhibitor. Among these scale inhibitors, polyphosphate and ethylenediaminetetraacetic acid (EDTA) are particularly preferably used from the viewpoints of availability, ease of operation such as solubility, and cost. The polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom. Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc.
 一方、酸やアルカリとしては、硫酸や水酸化ナトリウム、水酸化カルシウムが一般的に用いられるが、塩酸、シュウ酸、水酸化カリウム、重炭酸ナトリウム、水酸化アンモニウムなどを使用することもできる。但し、海水へのスケール成分の増加を防止するためには、カルシウムやマグネシウムは使用しない方がよい。 On the other hand, sulfuric acid, sodium hydroxide, and calcium hydroxide are generally used as the acid and alkali, but hydrochloric acid, oxalic acid, potassium hydroxide, sodium bicarbonate, ammonium hydroxide, and the like can also be used. However, it is better not to use calcium or magnesium in order to prevent an increase in scale components in seawater.
 ここで、前処理に砂ろ過を用いる場合は、自然に流下する方式の重力式ろ過を適用することもできれば、加圧タンクの中に砂を充填した加圧式ろ過を適用することも可能である。充填する砂も、単一成分の砂を適用することが可能であるが、例えば、アンスラサイト、珪砂、ガーネット、軽石など、を組み合わせて、ろ過効率を高めることが可能である。精密ろ過膜や限外ろ過膜についても、特に制約はなく、平膜、中空糸膜、管状型膜、プリーツ型、その他いかなる形状のものも適宜用いることができる。膜の素材についても、特に限定されるもの、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースや、セラミック等の無機素材を用いることができるが、原水性状によっては、劣化しやすいものがあるので注意が必要である。また、ろ過方式にしても供給水を加圧してろ過する加圧ろ過方式や透過側を吸引してろ過する吸引ろ過方式のいずれも適用可能である。 Here, when sand filtration is used for pretreatment, it is possible to apply gravity-type filtration that naturally flows down, or it is possible to apply pressurized filtration in which a pressure tank is filled with sand. . As the sand to be filled, single-component sand can be applied. For example, anthracite, silica sand, garnet, pumice, and the like can be combined to increase filtration efficiency. The microfiltration membrane and the ultrafiltration membrane are not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular membrane, a pleat type, or any other shape can be used as appropriate. The material of the membrane is also particularly limited, and inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used. However, depending on the raw water form, there are some that are prone to deterioration, so care must be taken. Moreover, even if it is a filtration system, any of the pressure filtration system which pressurizes and filters supply water, and the suction filtration system which sucks and filters the permeation | transmission side are applicable.
 一方、供給水に溶解性の有機物が多く含まれている場合は、加圧浮上や活性炭ろ過を適用するのも好ましい。また、溶解性の無機物が多く含まれている場合は、有機系高分子電解質やヘキサメタ燐酸ソーダなどのキレート剤を添加したり、イオン交換樹脂などを用いて溶解性イオンと交換したりするとよい。また、鉄やマンガンが可溶な状態で存在しているときは、曝気酸化ろ過法や接触酸化ろ過法などを用いることも好ましい。 On the other hand, when the feed water contains a large amount of soluble organic matter, it is also preferable to apply pressurized flotation or activated carbon filtration. In addition, when a large amount of soluble inorganic substance is contained, a chelating agent such as an organic polymer electrolyte or sodium hexametaphosphate may be added, or exchanged with soluble ions using an ion exchange resin or the like. In addition, when iron or manganese is present in a soluble state, it is also preferable to use an aeration oxidation filtration method, a contact oxidation filtration method, or the like.
 あらかじめ特定イオンや高分子などを除去し、本発明の放射性ハロゲン含有水の浄化装置を高効率で運転することを目的として、前処理にナノろ過膜を用いることも可能である。 It is also possible to use a nanofiltration membrane for pretreatment in order to remove specific ions and polymers in advance and operate the purification apparatus for radioactive halogen-containing water of the present invention with high efficiency.
 本発明は、放射性ハロゲンを含有する海水、河川水、地下水、排水処理水などから放射性ハロゲン、特に放射性ヨウ素を除去する放射性ハロゲン含有水の浄化方法および装置に関するものであり、水中に微量に含まれる放射性ヨウ素を効率的に除去することができる。 The present invention relates to a method and apparatus for purifying radioactive halogen-containing water that removes radioactive halogen, particularly radioactive iodine, from seawater, river water, groundwater, wastewater-treated water, etc. containing radioactive halogen, and is contained in trace amounts in water. Radioactive iodine can be removed efficiently.
1:原廃水
2:廃水タンク
3:供給ポンプ
4:前処理ユニット
5:前処理水槽
6:還元剤注入ユニット
7:第1の昇圧ポンプ
8:第1の半透膜ユニット
9:中間水槽
10:第2の昇圧ポンプ
11:第2の半透膜ユニット
12:吸着ユニット
13:浄化水
14:バルブ
15:逆洗水槽
16:逆洗排水槽
17:固液分離ユニット
18:濃縮分離ユニット
19:濃縮水
20:脱気ユニット
21:凝縮ユニット
22:回収蒸気
23:エネルギー回収ユニット
24:濃縮水貯留槽
25:第3の半透膜ユニット
26:第3の半透膜ユニットの透過水
27:第3の半透膜ユニットの濃縮水
28:中間昇圧ポンプ
29:アルカリ添加ユニット
1: Raw waste water 2: Waste water tank 3: Supply pump 4: Pretreatment unit 5: Pretreatment water tank 6: Reductant injection unit 7: First booster pump 8: First semipermeable membrane unit 9: Intermediate water tank 10: Second booster pump 11: Second semipermeable membrane unit 12: Adsorption unit 13: Purified water 14: Valve 15: Backwash water tank 16: Backwash drainage tank 17: Solid-liquid separation unit 18: Concentration separation unit 19: Concentration Water 20: Degassing unit 21: Condensing unit 22: Recovery steam 23: Energy recovery unit 24: Concentrated water storage tank 25: Third semipermeable membrane unit 26: Permeated water 27 of the third semipermeable membrane unit 27: Third Concentrated water 28 of the semipermeable membrane unit: Intermediate pressurizing pump 29: Alkali addition unit

Claims (11)

  1. 放射性ハロゲン含有水の酸化還元電位を800mV以下にして固液分離し、次いで、得られた前処理水の酸化還元電位を500mV以下にして半透膜ユニットで処理して濃縮廃水と透過水に分離する放射性ハロゲン含有水の浄化方法。 Solid-liquid separation with a redox potential of radioactive halogen-containing water of 800 mV or less, and then treatment with a semipermeable membrane unit with a redox potential of pretreated water of 500 mV or less to separate into concentrated waste water and permeated water. A method for purifying radioactive halogen-containing water.
  2. 固液分離で0.45μm以上の微粒子を99%以上除去することを特徴とする請求項1に記載の放射性ハロゲン含有水の浄化方法。 The method for purifying radioactive halogen-containing water according to claim 1, wherein 99% or more of fine particles of 0.45 µm or more are removed by solid-liquid separation.
  3. 半透膜ユニット処理後の透過水を吸着ユニットで処理することを特徴とする請求項1または2に記載の放射性ハロゲン含有水の浄化方法。 The method for purifying radioactive halogen-containing water according to claim 1 or 2, wherein the permeated water after the semipermeable membrane unit treatment is treated with an adsorption unit.
  4. 吸着ユニットがアニオン交換体からなることを特徴とする請求項3に記載の放射性ハロゲン含有水の浄化方法。 The method for purifying radioactive halogen-containing water according to claim 3, wherein the adsorption unit comprises an anion exchanger.
  5. 半透膜ユニット処理後の透過水のpHを8以上にして、さらに半透膜ユニットで処理することを特徴とする請求項1~4のいずれかに記載の放射性ハロゲン含有水の浄化方法。 The method for purifying radioactive halogen-containing water according to any one of claims 1 to 4, wherein the pH of the permeated water after the treatment with the semipermeable membrane unit is set to 8 or more, and further the treatment with the semipermeable membrane unit is performed.
  6. 固液分離の洗浄排水を別の固液分離装置で処理することを特徴とする請求項1~5のいずれかに記載の放射性ハロゲン含有水の浄化方法。 The method for purifying radioactive halogen-containing water according to any one of claims 1 to 5, wherein the washing wastewater for solid-liquid separation is treated by another solid-liquid separation device.
  7. 半透膜ユニット処理後の濃縮廃水をさらに半透膜ユニット、晶析または蒸発処理して浄化水を得ることを特徴とする請求項1~6のいずれかに記載の放射性ハロゲン含有水の浄化方法。 The method for purifying radioactive halogen-containing water according to any one of claims 1 to 6, wherein the purified waste water is further obtained by subjecting the concentrated waste water after the semipermeable membrane unit treatment to a semipermeable membrane unit, crystallization or evaporation treatment. .
  8. 半透膜ユニットで処理する前に脱気を行うことを特徴とする請求項1~7のいずれかに記載の放射性ハロゲン含有水の浄化方法。 The method for purifying radioactive halogen-containing water according to any one of claims 1 to 7, wherein deaeration is performed before the treatment with the semipermeable membrane unit.
  9. 請求項1~8のいずれかに記載の放射性ハロゲン含有水の浄化方法を行うことで透過水を得る透過水の製造方法。 A method for producing permeated water, wherein permeated water is obtained by performing the method for purifying radioactive halogen-containing water according to any one of claims 1 to 8.
  10. 放射性ハロゲン含有水を固液分離して前処理水を得る固液分離ユニットと、固液分離ユニット処理前の酸化還元電位を測定する第1の酸化還元電位計と、前処理水に還元剤を添加する還元剤添加ユニットと、還元剤が添加された前処理水を濃縮廃水と透過水に分離する半透膜ユニットと、半透膜ユニット処理前の酸化還元電位を測定する第2の酸化還元電位計を備えた放射性ハロゲン含有水の浄化装置。 A solid-liquid separation unit that obtains pretreatment water by solid-liquid separation of radioactive halogen-containing water, a first oxidation-reduction potentiometer that measures the oxidation-reduction potential before treatment of the solid-liquid separation unit, and a reducing agent in the pretreatment water A reducing agent addition unit to be added; a semipermeable membrane unit that separates pretreated water to which the reducing agent is added into concentrated wastewater and permeated water; and a second oxidation-reduction that measures a redox potential before the semipermeable membrane unit treatment. A device for purifying radioactive halogen-containing water with an electrometer.
  11. 半透膜ユニットの透過水を処理する吸着ユニットを備えたことを特徴とする請求項10に記載の水の浄化装置。 The water purification device according to claim 10, further comprising an adsorption unit for treating the permeated water of the semipermeable membrane unit.
PCT/JP2012/059849 2011-04-21 2012-04-11 Method for purifying water containing radioactive halogen, process for producing filtrate water, and device for purifying water containing radioactive halogen WO2012144384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522851A JPWO2012144384A1 (en) 2011-04-21 2012-04-11 Method for purifying radioactive halogen-containing water, method for producing permeated water, and device for purifying radioactive halogen-containing water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-094709 2011-04-21
JP2011094709 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144384A1 true WO2012144384A1 (en) 2012-10-26

Family

ID=47041495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059849 WO2012144384A1 (en) 2011-04-21 2012-04-11 Method for purifying water containing radioactive halogen, process for producing filtrate water, and device for purifying water containing radioactive halogen

Country Status (2)

Country Link
JP (1) JPWO2012144384A1 (en)
WO (1) WO2012144384A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128748A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Desalination system
JP2017186771A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2017186772A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2017186770A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater processing method
EP3225595A4 (en) * 2014-11-27 2018-06-27 Toray Industries, Inc. Water production method
CN109741850A (en) * 2018-12-27 2019-05-10 中核四0四有限公司 A kind of processing unit and method of uranium purifying conversion apparatus for production line cleaning solution
JP2020060098A (en) * 2016-04-04 2020-04-16 清水建設株式会社 Underground water recharge system
EP3778496A4 (en) * 2018-03-27 2021-07-14 Toray Industries, Inc. Water treatment method and water treatment apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162285A (en) * 1983-03-04 1984-09-13 Asahi Chem Ind Co Ltd Method for electrolyzing salt by ion exchange membrane method
JPS61116695A (en) * 1984-11-12 1986-06-04 科学技術庁原子力局長 Method of treating aqueous solution containing radioactive iodine
JPH07191190A (en) * 1993-12-27 1995-07-28 Power Reactor & Nuclear Fuel Dev Corp Waste water processing device of facility handling radioactive material
JP2005037147A (en) * 2003-07-15 2005-02-10 Showa Engineering Co Ltd Removal method of radioiodine from condenser and low-pressure turbine
JP2005305265A (en) * 2004-04-20 2005-11-04 Jfe Engineering Kk Method for removing iodine from salt water
JP2008064703A (en) * 2006-09-11 2008-03-21 Japan Organo Co Ltd Method and device for treating radioactive substance-containing effluent
JP2008296188A (en) * 2007-06-04 2008-12-11 Toray Ind Inc Membrane separation apparatus and membrane separation method
JP2010201313A (en) * 2009-03-02 2010-09-16 Kurita Water Ind Ltd Reverse osmosis membrane separation method
JP2011161435A (en) * 2010-01-14 2011-08-25 Toray Ind Inc Treating method for recovering performance of semipermeable membrane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162285A (en) * 1983-03-04 1984-09-13 Asahi Chem Ind Co Ltd Method for electrolyzing salt by ion exchange membrane method
JPS61116695A (en) * 1984-11-12 1986-06-04 科学技術庁原子力局長 Method of treating aqueous solution containing radioactive iodine
JPH07191190A (en) * 1993-12-27 1995-07-28 Power Reactor & Nuclear Fuel Dev Corp Waste water processing device of facility handling radioactive material
JP2005037147A (en) * 2003-07-15 2005-02-10 Showa Engineering Co Ltd Removal method of radioiodine from condenser and low-pressure turbine
JP2005305265A (en) * 2004-04-20 2005-11-04 Jfe Engineering Kk Method for removing iodine from salt water
JP2008064703A (en) * 2006-09-11 2008-03-21 Japan Organo Co Ltd Method and device for treating radioactive substance-containing effluent
JP2008296188A (en) * 2007-06-04 2008-12-11 Toray Ind Inc Membrane separation apparatus and membrane separation method
JP2010201313A (en) * 2009-03-02 2010-09-16 Kurita Water Ind Ltd Reverse osmosis membrane separation method
JP2011161435A (en) * 2010-01-14 2011-08-25 Toray Ind Inc Treating method for recovering performance of semipermeable membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128748A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Desalination system
EP3225595A4 (en) * 2014-11-27 2018-06-27 Toray Industries, Inc. Water production method
JP2017186771A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2017186772A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2017186770A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater processing method
JP2020060098A (en) * 2016-04-04 2020-04-16 清水建設株式会社 Underground water recharge system
EP3778496A4 (en) * 2018-03-27 2021-07-14 Toray Industries, Inc. Water treatment method and water treatment apparatus
CN109741850A (en) * 2018-12-27 2019-05-10 中核四0四有限公司 A kind of processing unit and method of uranium purifying conversion apparatus for production line cleaning solution

Also Published As

Publication number Publication date
JPWO2012144384A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012144384A1 (en) Method for purifying water containing radioactive halogen, process for producing filtrate water, and device for purifying water containing radioactive halogen
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
Kabay et al. Adsorption-membrane filtration (AMF) hybrid process for boron removal from seawater: an overview
WO2013031689A1 (en) Method and apparatus for purifying water containing radioactive substance and/or heavy metal
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
TWI616404B (en) Method and device for processing boron-containing water
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
JP2007152265A (en) Method for operating freshwater production device and freshwater production device
WO2014020762A1 (en) Water treatment device
Kumar et al. Removal of phenol from coke‐oven wastewater by cross‐flow nanofiltration membranes
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
JP2016016384A (en) Evaluation device and evaluation method for osmosis membrane module
JP2015188786A (en) Positive permeation processing system
JP6881435B2 (en) Water treatment method and water treatment equipment
WO2011155281A1 (en) Freshwater-generating device, and freshwater-generating method
JP5867082B2 (en) Fresh water production method
JP6648695B2 (en) Operating method of semipermeable membrane separation device
WO2009107332A1 (en) Wastewater treatment apparatus and method of wastewater treatment
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
CN207108703U (en) One kind purifying membrane system
JPH09248429A (en) Separation method and apparatus therefor
JP2012200696A (en) Desalting method and desalting apparatus
JP2012225755A (en) Radioactive contamination water processing system, barge type radioactive contamination water processing facility, radioactive contamination water processing method, and on-barge radioactive contamination water processing method
WO2016111370A1 (en) Water treatment method
JP2011104504A (en) Washing method of water treatment facility

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012522851

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773778

Country of ref document: EP

Kind code of ref document: A1