JPH06335623A - Deaerating film and deaerating method - Google Patents

Deaerating film and deaerating method

Info

Publication number
JPH06335623A
JPH06335623A JP12700093A JP12700093A JPH06335623A JP H06335623 A JPH06335623 A JP H06335623A JP 12700093 A JP12700093 A JP 12700093A JP 12700093 A JP12700093 A JP 12700093A JP H06335623 A JPH06335623 A JP H06335623A
Authority
JP
Japan
Prior art keywords
porous layer
membrane
degassing
film
permeability coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12700093A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Toshikazu Suganuma
俊和 菅沼
Yasuko Watanabe
泰子 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP12700093A priority Critical patent/JPH06335623A/en
Publication of JPH06335623A publication Critical patent/JPH06335623A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a deaerating film having excellent deaerating performance by making the oxygen permeability coefficient of a base material constituting a porous layer equal to or above a fixed value in a composite film composed of the porous layer and a nonporous layer. CONSTITUTION:The composite film is composed of the porous layer of 4- methylpentene-1 based polymer or the like and the nonporous layer. The base material constituting the porous layer of the composite film has >=1X10<-9> ((cm<3>(STP).cm)/(cm<2>.S.cmHg)) oxygen permeability coefficient and is used as a deaerating film. The obtained film has excellent deaerating performance, that is, has high deaeration treating ability per unit of film area, and is capable of producing a liquid low in dissolved gas concn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラー供給水の脱酸
素、人工透析液の脱酸素、半導体洗浄用水の脱酸素、電
気部品や金属部品の洗浄用水の脱酸素、逆浸透膜への供
給水の脱酸素、脱酸素による上・中水の赤水防止、貯蔵
水の微生物繁殖防止、冷却水などの配管の腐食防止、液
体中の気泡の除去および発生防止、廃水からの硫化水素
除去などの廃水処理、食用油やジュースなどの液状食品
の脱酸素、害虫駆除用脱酸素水の製造、硫化油の脱硫化
水素等の分野で必要とされる、液体に溶解している気体
または揮発製物質を、膜を用いて除去または回収するた
めの脱気膜および該膜を用いた脱気方法を提供する。
BACKGROUND OF THE INVENTION The present invention relates to the deoxidation of boiler feed water, the deoxygenation of artificial dialysate, the deoxidization of semiconductor cleaning water, the deoxidation of cleaning water of electrical parts and metal parts, and the supply to reverse osmosis membranes. Deoxidization of water, prevention of red water in clean water by deoxidation, prevention of microbial propagation of stored water, prevention of corrosion of piping such as cooling water, removal and generation of bubbles in liquid, removal of hydrogen sulfide from wastewater, etc. Gas or volatile substance dissolved in liquid, which is required in the fields of wastewater treatment, deoxidation of liquid foods such as edible oil and juice, production of deoxygenated water for pest control, dehydrogenation of sulfurized oil, etc. There is provided a degassing membrane for removing or recovering the above using a membrane, and a degassing method using the membrane.

【0002】[0002]

【従来の技術】膜を介して、液体、例えば水(以下、特
に液体の種類を区別する必要がある場合以外は、液体が
水の場合について説明する)に溶解している気体または
揮発性物質を除去または回収(以下これらを脱気と称す
る)するための膜は、気体(揮発性物質の蒸気を含む)
を透過させ、液体を透過させない必要があり、このよう
な膜として、均質膜、疎水性多孔質膜、非多孔質層を有
する不均質膜、非多孔質層を有する複合膜などが使用さ
れている。
2. Description of the Related Art Gas or volatile substance dissolved in a liquid, for example, water (hereinafter, the case where the liquid is water unless otherwise particularly required to be distinguished is described) through a membrane. Membrane for removing or collecting (hereinafter referred to as degassing) is a gas (including vapor of volatile substance)
It is necessary to allow the liquid to pass through and not the liquid.For such a film, a homogeneous film, a hydrophobic porous film, a heterogeneous film having a non-porous layer, a composite film having a non-porous layer, etc. are used. There is.

【0003】これらの中で、気体を良く透過させ、水蒸
気を透過させにくい不均質膜や複合膜が脱気膜として優
れている。非多孔質層を有する複合膜とは、多孔質の支
持体層と非多孔質層とから成る構造の膜である。また、
多孔質層と非多孔質層とが同一の素材で形成されたもの
は不均質膜と呼ばれている。複合膜は、機械的強度が求
められる多孔質層と、透過選択性が求められる非多孔質
層にそれぞれ適する素材を採用できるため、優れた膜を
構成し易いという特徴がある。
Among these, a heterogeneous film or a composite film, which allows gas to permeate well and water vapor to hardly permeate, is excellent as a degassing film. The composite membrane having a non-porous layer is a membrane having a structure including a porous support layer and a non-porous layer. Also,
A film in which the porous layer and the non-porous layer are made of the same material is called a heterogeneous film. The composite membrane is characterized in that it is easy to form an excellent membrane because it is possible to adopt materials suitable for the porous layer required for mechanical strength and the non-porous layer required for permeation selectivity.

【0004】しかしながら従来、複合膜の製造において
多孔質層の構成素材の選定に当り、機械的強度や耐熱
性、寸法安定性、多孔質構造形成の容易さ、その表面に
非多孔質を形成する容易さ(界面張力や接着性など)な
どの条件で選定されているものの、多孔質層を構成する
素材の気体透過係数については全く考慮されていなかっ
た。
However, conventionally, in the selection of the constituent material of the porous layer in the production of the composite membrane, mechanical strength, heat resistance, dimensional stability, easiness of forming a porous structure, and formation of a non-porous surface. Although selected according to conditions such as ease (interfacial tension and adhesiveness), no consideration was given to the gas permeability coefficient of the material forming the porous layer.

【0005】[0005]

【発明が解決すべき課題】本発明者等は、脱気用の複合
膜において、従来考慮されていなかった多孔質層を構成
する素材の気体透過係数が、脱気性能に影響することを
見いだし、優れた脱気性能、即ち膜面積当りの脱気処理
量の向上や残存溶存気体濃度の低下を実現するため、多
孔質層の構成素材の気体透過係数の条件、および多孔質
層を構成する素材の気体透過係数と非多孔質層を構成す
る素材の気体透過係数との関係について鋭意検討した結
果、本発明に到達した。
DISCLOSURE OF THE INVENTION The present inventors have found that, in a degassing composite membrane, the gas permeability coefficient of a material constituting a porous layer, which has not been considered in the past, affects degassing performance. In order to achieve excellent degassing performance, that is, to improve the amount of degassing treatment per membrane area and to reduce the concentration of residual dissolved gas, the conditions of the gas permeability coefficient of the constituent material of the porous layer and the porous layer are configured. As a result of extensive studies on the relationship between the gas permeability coefficient of the material and the gas permeability coefficient of the material forming the non-porous layer, the present invention has been accomplished.

【0006】[0006]

【課題を解決するための手段】即ち本発明の要旨は、多
孔質層と非多孔質層からなる複合膜であって、多孔質層
を構成する素材の酸素透過係数が1×10-9[〔cm3
(STP)・cm〕/〔 cm2・s・cmHg〕]以上
であることを特徴とする脱気膜にある。以下、本発明の
要部について説明する。
Means for Solving the Problems That is, the gist of the present invention is a composite membrane comprising a porous layer and a non-porous layer, and the oxygen permeability coefficient of the material constituting the porous layer is 1 × 10 −9 [ [Cm 3
(STP) · cm] / [cm 2 · s · cmHg]] or more. The main part of the present invention will be described below.

【0007】本発明の複合膜(単に膜と称する場合もあ
る)は、多孔質層を構成する素材の酸素透過係数が1×
10-9[〔cm3(STP)・cm〕/〔cm2・s・c
mHg〕](以下同単位で記述する)以上であり、好ま
しくは2×10-9以上である。多孔質層を構成する素材
の酸素透過係数がこの値より低いと、膜の脱気性能が低
下する。多孔質層を構成する素材の酸素透過係数は高い
ほど好ましいが、1×10-8以上では効果が飽和し、そ
れ以上にしても脱気性能の向上は少なくなる。
In the composite membrane of the present invention (sometimes simply referred to as a membrane), the oxygen permeability coefficient of the material constituting the porous layer is 1 ×.
10 -9 [[cm 3 (STP) · cm] / [cm 2 · s · c]
mHg]] (hereinafter described in the same units) or more, preferably 2 × 10 −9 or more. When the oxygen permeability coefficient of the material forming the porous layer is lower than this value, the degassing performance of the membrane is deteriorated. The higher the oxygen permeability coefficient of the material forming the porous layer is, the more preferable. However, the effect is saturated at 1 × 10 −8 or more, and even if it is more than that, the improvement of deaeration performance is small.

【0008】多孔質層を構成する素材として本発明に用
いることの出来る素材の例としては、4−メチルペンテ
ン−1系重合体が好ましい。本発明で言う4−メチルペ
ンテン−1系重合体とは、ポリ−4−メチルペンテン−
1および4−メチルペンテン−1を主成分とする共重合
体であり、例えばエチレン、プロピレン、イソブチレ
ン、ブテン−1,ペンテンなどのオレフィンとの共重合
体であり、共重合体中の4−メチルペンテン−1の組成
比が60%以上のものである。また、ポリフェニレンオ
キサイドおよびその誘導体、例えば2,6−ジメチルポ
リフェニレンオキサイド、やポリフェニレンオキサイド
との共重合体も用いることができ、またこれらの混合物
であってもよい。
As an example of a material which can be used in the present invention as a material for forming the porous layer, a 4-methylpentene-1 type polymer is preferable. The 4-methylpentene-1 type polymer referred to in the present invention means poly-4-methylpentene-
1- and 4-methylpentene-1 as a main component, for example, ethylene, propylene, isobutylene, butene-1, pentene and other olefins, 4-methyl in the copolymer The composition ratio of pentene-1 is 60% or more. Further, polyphenylene oxide and derivatives thereof, for example, 2,6-dimethylpolyphenylene oxide, and copolymers with polyphenylene oxide can also be used, or a mixture thereof may be used.

【0009】これらの中でも、ポリ−4−メチルペンテ
ン−1および2,6−ジメチルポリフェニレンオキサイ
ドが高い酸素透過速度と高い機械的強度を持ち、特に好
ましい。本発明においては、非多孔質層の酸素透過係数
も、複合膜の脱気特性に影響する場合がある。即ち、本
発明の脱気膜を使用するに当り、多孔質層側に液体が接
する使用方法においては、非多孔質層を構成する素材の
酸素透過係数そのものは脱気特性には影響しない。(但
し、非多孔質層の酸素透過速度は脱気特性に影響す
る。)しかし、非多孔質層側に液体が接する使用方法に
おいては、非多孔質層の構成素材が、どのような酸素透
過係数を有するかが脱気特性に影響する。
Of these, poly-4-methylpentene-1 and 2,6-dimethylpolyphenylene oxide are particularly preferable because they have a high oxygen transmission rate and high mechanical strength. In the present invention, the oxygen permeability coefficient of the non-porous layer may also affect the degassing property of the composite membrane. That is, when the degassing membrane of the present invention is used, when the liquid is in contact with the porous layer side, the oxygen permeation coefficient itself of the material forming the non-porous layer does not affect the degassing property. (However, the oxygen permeation rate of the non-porous layer affects the degassing property.) However, in the usage method in which the liquid is in contact with the non-porous layer side, what kind of oxygen permeation does the constituent material of the non-porous layer have? Having a coefficient affects the degassing characteristics.

【0010】非多孔質層を構成する素材の酸素透過係数
が、多孔質層を構成する素材の酸素透過係数の値以下、
好ましくは1/2以下である場合に脱気効果が大きく、
非多孔質層を構成する素材の酸素透過係数がこれより大
きい場合には、多孔質層を構成する素材の酸素透過係数
の影響は小さくなる。なお、本発明における多孔質層を
構成する素材の気体透過係数と非多孔質層を構成する素
材の気体透過係数の関係は、膜を透過する気体種の透過
係数で比較すべきであるが、素材の酸素透過係数は、他
の種類の気体種の透過係数とほぼ比例関係にあり、酸素
透過係数で代表させることができる。
The oxygen permeability coefficient of the material forming the non-porous layer is less than or equal to the oxygen permeability coefficient of the material forming the porous layer,
The deaeration effect is large when it is preferably 1/2 or less,
When the oxygen permeability coefficient of the material forming the non-porous layer is larger than this, the influence of the oxygen permeability coefficient of the material forming the porous layer becomes small. The relationship between the gas permeability coefficient of the material constituting the porous layer and the gas permeability coefficient of the material constituting the non-porous layer in the present invention should be compared by the permeability coefficient of the gas species that permeates the membrane, The oxygen permeability coefficient of a material is almost proportional to the permeability coefficients of other kinds of gas, and can be represented by the oxygen permeability coefficient.

【0011】非多孔質層の素材は、製膜性や製膜方法、
あるいは気体透過の選択性や水蒸気透過性などにより、
用途、目的に応じたものを選択できる。一般的に、酸素
透過係数の小さな素材は気体分離能が高く、また機械的
強度も高い。よって、溶存気体の脱気に物質選択性を持
たせたい場合や、水蒸気の透過を特に抑制したい場合、
高度の耐圧性や耐熱性を持たせたい場合には酸素透過係
数の小さな素材を選定する。
The material of the non-porous layer is a film forming property or a film forming method,
Alternatively, due to gas permeability selectivity and water vapor permeability,
You can select the one that suits your purpose and purpose. Generally, a material having a small oxygen permeability coefficient has high gas separation ability and high mechanical strength. Therefore, if you want to have substance selectivity to degas the dissolved gas, or if you want to particularly suppress the permeation of water vapor,
If you want to have a high degree of pressure resistance and heat resistance, select a material with a low oxygen permeability coefficient.

【0012】但し本発明において、非多孔質層を構成す
る素材として、多孔質層を構成する素材の酸素透過係数
の値以下、好ましくは1/2以下であるような、比較的
低い酸素透過係数の素材を使用する場合でも、本発明の
膜の酸素透過速度が遅いことを意味するものではない。
本発明の膜の酸素透過速度は、1×10-6[〔cm
3(STP)〕/〔cm2・s・cmHg〕](以下度単
位で記述する)以上であることが好ましく、1×10-5
以上であることがさらに好ましい。酸素透過速度の高い
複合膜は、非多孔層の厚みを薄く成形することで実現で
きる。
However, in the present invention, as a material constituting the non-porous layer, a relatively low oxygen permeability coefficient which is equal to or less than the oxygen permeability coefficient of the material constituting the porous layer, preferably 1/2 or less. The use of the above material does not mean that the oxygen permeation rate of the membrane of the present invention is slow.
The oxygen permeation rate of the membrane of the present invention is 1 × 10 −6 [[cm
3 (STP)] / [cm 2 · s · cmHg]] (hereinafter described in degrees), and preferably 1 × 10 −5
It is more preferable that the above is satisfied. A composite membrane having a high oxygen transmission rate can be realized by forming the non-porous layer thin.

【0013】本発明の脱気膜の形態には特に制約はな
く、平膜、中空糸膜、管状膜などであってよい。しかし
中空糸膜が、優れた脱気性能を示す点で好ましい。本発
明の脱気膜は、それぞれ1層以上の多孔質層と非多孔質
層とからなる複合膜であり、各層の数や積層順序などの
構造は何ら限定されない。例えば、膜の一方の側が非多
孔質層であり他の側が多孔質層である2層以上の多層構
造の膜であってもよく、非多孔質層の両面に多孔質層が
形成された3層以上の多層構造の膜であってもよく、ま
た多孔質層の両面に非多孔質層が形成された3層以上の
多層構造の膜であってもよい。
The form of the degassing membrane of the present invention is not particularly limited and may be a flat membrane, a hollow fiber membrane, a tubular membrane or the like. However, hollow fiber membranes are preferred because they exhibit excellent degassing performance. The degassing membrane of the present invention is a composite membrane composed of at least one porous layer and a non-porous layer, and the structure such as the number of layers or the stacking order is not limited at all. For example, the membrane may have a multi-layered structure of two or more layers in which one side of the membrane is a non-porous layer and the other side is a porous layer, and the porous layer is formed on both sides of the non-porous layer. It may be a multi-layered film having three or more layers, or may be a multi-layered film having three or more layers in which a non-porous layer is formed on both surfaces of a porous layer.

【0014】この第1の膜は代表的には各1層からなる
膜であって酸素透過速度の高い膜を形成し易く、第2の
膜は代表的には3層膜であって取扱性が良く、第3の膜
は代表的には多層膜であってピンホールが生じにくく、
また有機溶剤系の脱気に適するという特徴がある。膜が
中空糸膜の場合には、非多孔質層は外側に形成されてい
ても、内側に形成されていても、中間層に形成されてい
てもよい。多孔質層は膜の厚み方向に孔径分布を持っ
た、いわゆる非対称構造であってもよい。多孔質層の厚
みは任意であるが、5μm〜1mmが適当である。また
多孔質層における細孔の孔径も特に限定されず、0.0
05μm〜100μmが好ましい。非多孔質層の厚みも
任意であり、0.01〜100μmが好ましい。
The first film is typically a film consisting of one layer each, which facilitates formation of a film having a high oxygen permeation rate, and the second film is typically a three-layer film, which is easy to handle. The third film is typically a multi-layer film, and pinholes are less likely to occur,
Further, it has a feature that it is suitable for degassing an organic solvent system. When the membrane is a hollow fiber membrane, the non-porous layer may be formed on the outer side, the inner side or the intermediate layer. The porous layer may have a so-called asymmetric structure having a pore size distribution in the thickness direction of the membrane. The thickness of the porous layer is arbitrary, but 5 μm to 1 mm is suitable. The pore size of the pores in the porous layer is also not particularly limited, and is 0.0
05 μm to 100 μm is preferable. The thickness of the non-porous layer is also arbitrary and is preferably 0.01 to 100 μm.

【0015】非多孔質層とは、該層を貫く細孔(連通細
孔。ピンホ−ルと呼ぶ場合もある)が存在しないもので
あるが、実質的には多少の連通細孔が存在することも許
容される。非多孔質層に存在する連通細孔の許容量は気
体透過測定により判定できる。非多孔質層にピンホール
が全く存在しない場合には、膜の酸素/窒素透過速度比
(理想的分離係数とも呼ばれる)は素材のそれと一致す
るが、わずかでもピンホ−ルが存在すると急激に低下
し、ピンホ−ルの増加とともに、多孔質膜の透過機構で
あるクヌ−セン流機構の理想的分離係数(=0.934
5)に近付く。本発明の膜は酸素/窒素透過速度比が
0.96以上のものである。
The non-porous layer is one in which there are no pores (communication pores; sometimes called pinholes) penetrating the layer, but there are substantially some communication pores. Is also acceptable. The allowable amount of communicating pores present in the non-porous layer can be determined by gas permeation measurement. When there are no pinholes in the non-porous layer, the oxygen / nitrogen permeation rate ratio (also called the ideal separation factor) of the membrane matches that of the material, but even with a slight amount of pinholes, it drops sharply. However, as the number of pinholes increases, the ideal separation coefficient (= 0.934) of the Knu-Sen flow mechanism which is the permeation mechanism of the porous membrane
Approach 5). The membrane of the present invention has an oxygen / nitrogen permeation rate ratio of 0.96 or more.

【0016】本発明の複合膜の製造方法についても何ら
制約を設ける必要はない。素材に適した方法を選択する
ことができる。例えば、多孔質層の形成方法として、溶
融法、湿式法、乾式法、半湿式乾式法、冷却法、ブレン
ド−溶出法などが使用できるし、非多孔質層の成形方法
としては、コーティング法、液面展開法、界面重合法、
光重合法、共押出し法、不均質膜の表面改質などの方法
が挙げられる。
There is no need to impose any restrictions on the method for producing the composite membrane of the present invention. A method suitable for the material can be selected. For example, as a method for forming the porous layer, a melting method, a wet method, a dry method, a semi-wet dry method, a cooling method, a blend-elution method, or the like can be used, and a forming method for the non-porous layer is a coating method, Liquid surface expansion method, interfacial polymerization method,
Examples thereof include photopolymerization method, coextrusion method, and surface modification of a heterogeneous film.

【0017】本発明の脱気方法は、多孔質層と非多孔質
層とからなる複合膜を介して液体に溶解している気体を
脱気する方法であって、該複合膜の多孔質層を構成する
素材の酸素透過係数が1×10-9以上であることを特徴
とする脱気方法である。
The degassing method of the present invention is a method for degassing a gas dissolved in a liquid through a composite membrane composed of a porous layer and a non-porous layer, which is a porous layer of the composite membrane. The degassing method is characterized in that the oxygen permeation coefficient of the material constituting the above is 1 × 10 −9 or more.

【0018】本発明の脱気方法は、液体に溶解している
気体や揮発性物質を膜を透過させることにより除去また
は回収する方法であり、(1)膜の片側に脱気すべき液
体を接触させ他の側を減圧する方法、(2)膜の片側に
脱気すべき液体を接触させ、他の側に脱気すべき気体以
外の気体を流す方法、(3)膜の片側に脱気すべき液体
を接触させ、他の側に脱気すべき気体を溶解していない
液体を流す方法、(4)膜の片側に脱気すべき液体を接
触させ、他の側に脱気すべき気体の吸収剤を配する方法
などを採り得る。
The degassing method of the present invention is a method of removing or recovering a gas or a volatile substance dissolved in a liquid by permeating the film, and (1) a liquid to be degassed on one side of the film. Method of contacting and depressurizing the other side, (2) Method of bringing liquid to be degassed into contact with one side of the membrane and flowing gas other than gas to be degassed to the other side, (3) Degassing to one side of the membrane A method of bringing a liquid to be degassed into contact with a liquid that does not dissolve the gas to be degassed into the other side, and (4) bringing the liquid to be degassed into contact with one side of the membrane and degassing into the other side. A method of arranging an absorbent for a gas to be used can be adopted.

【0019】本発明に於ては、膜の表裏が非対称である
場合、膜のどちら側に脱気すべき液体を流すことも可能
である。例えば、膜の一方の側が非多孔質層であり他の
側が多孔質層である2層以上の多層構造の膜、代表的に
は各1層から成る膜の場合には、用途目的に応じて、多
孔質層側あるいは非多孔質層側に脱気すべき液体を流す
ことができる。例えば、脱気すべき液体が水であり多孔
質層を構成する素材が疎水性である場合などは、多孔質
層側に脱気すべき液体を流すことができる。
In the present invention, when the front and back of the membrane are asymmetric, it is possible to flow the liquid to be degassed on either side of the membrane. For example, in the case of a film having a multi-layered structure of two or more layers in which one side of the film is a non-porous layer and the other side is a porous layer, typically a film consisting of one layer each, depending on the purpose of use, The liquid to be degassed can be flowed to the porous layer side or the non-porous layer side. For example, when the liquid to be degassed is water and the material forming the porous layer is hydrophobic, the liquid to be degassed can be flowed to the porous layer side.

【0020】この脱気方法は、本発明の効果が大きく現
れるため好ましい。多孔質膜による脱気の場合、空孔率
が低いと脱気特性も低下することが知られているが、本
発明の脱気方法においては、多孔質層の空孔率の影響は
ほとんど見られない。そのため、空孔率が低く強度の高
い膜を使用することができる。さらに、非多孔質層を構
成する素材を選択するに当って疎水性/親水性や、膨潤
性などの制約がなくなる利点がある。(これらのこと
は、両表面が多孔質層である膜を使用する場合も同様で
ある。)
This degassing method is preferable because the effect of the present invention is greatly exhibited. In the case of degassing with a porous membrane, it is known that a low porosity also lowers the degassing property, but in the degassing method of the present invention, the effect of the porosity of the porous layer is hardly seen. I can't. Therefore, a film having low porosity and high strength can be used. Further, there is an advantage that there are no restrictions on hydrophobicity / hydrophilicity, swelling property, etc. when selecting the material forming the non-porous layer. (These are the same when using a membrane whose both surfaces are porous layers.)

【0021】一方、脱気すべき液体の表面張力が小さい
場合、例えば有機液体や界面活性剤含有水の場合には、
非多孔質層側に脱気すべき液体を流すことが好適であ
る。液体は非多孔質層により遮蔽され、多孔質層の細孔
を充填することがない。(両表面に非多孔質層を有する
膜を使用する場合も同様である。) 本発明の脱気方法はこれらのいずれの場合にも効果を発
揮するが、非多孔質層側に脱気すべき液体を流す場合に
は、本発明の効果の程度は、非多孔質層を構成する素材
の気体透過係数の値や、非多孔質層の厚みなどにも依存
する。
On the other hand, when the liquid to be degassed has a small surface tension, for example, in the case of an organic liquid or water containing a surfactant,
It is preferable to flow the liquid to be degassed to the non-porous layer side. The liquid is shielded by the non-porous layer and does not fill the pores of the porous layer. (The same applies when using a film having a non-porous layer on both surfaces.) Although the degassing method of the present invention is effective in any of these cases, degassing is performed on the non-porous layer side. In the case of flowing an appropriate liquid, the degree of the effect of the present invention depends on the value of the gas permeability coefficient of the material forming the non-porous layer, the thickness of the non-porous layer, and the like.

【0022】本発明は、液体から酸素、窒素、炭酸ガ
ス、塩素、水素、硫化水素などの各種の気体を除去する
用途、即ち、ボイラー供給水の脱酸素、人工透析液の脱
酸素、半導体洗浄用水の脱酸素、電気部品や金属部品の
洗浄用水の脱酸素、逆浸透膜への供給水の脱酸素、脱酸
素による上・中水の赤水防止、貯蔵水の微生物繁殖防
止、冷却水などの配管の腐食防止、液体中の気泡の除去
および発生防止、廃水からの硫化水素除去などの廃水処
理、食用油やジュースなどの液状食品の脱酸素、害虫駆
除用脱酸素水の製造、硫化油の脱硫化水素等の用途分野
で使用できる。
The present invention is used for removing various gases such as oxygen, nitrogen, carbon dioxide, chlorine, hydrogen and hydrogen sulfide from a liquid, that is, deoxygenation of boiler feed water, deoxygenation of artificial dialysate, semiconductor cleaning. Deoxidization of water for use, deoxidation of water for washing electric parts and metal parts, deoxidation of water supplied to the reverse osmosis membrane, prevention of red water in upper and middle water due to deoxidation, prevention of microbial growth of stored water, cooling water, etc. Prevention of corrosion of pipes, removal and prevention of bubbles in liquids, treatment of wastewater such as removal of hydrogen sulfide from wastewater, deoxidation of liquid foods such as cooking oil and juice, production of deoxidized water for pest control, It can be used in applications such as desulfurization.

【0023】また、水中に溶解あるいは分散して存在す
る揮発性物質、例えばトリハロメタン、トリクロロエチ
レン、トリクロロエタン、メタノール、アセトンなどを
除去する用途として、廃水処理や上水の浄化に使用でき
る。さらに、上・中水に含まれるアンモニア、クロラミ
ン、2メチルイソボルネオ−ルなどの悪臭物質を除去す
る脱臭装置として使用できる。
Further, it can be used for wastewater treatment or purification of tap water for the purpose of removing volatile substances such as trihalomethane, trichloroethylene, trichloroethane, methanol, acetone, etc. existing in a state of being dissolved or dispersed in water. Furthermore, it can be used as a deodorizing device for removing malodorous substances such as ammonia, chloramine, and 2-methylisoborneol contained in clean water.

【0024】[0024]

【実施例】以下本発明を実施例によりさらに具体的に説
明するが、もとより、これらに本発明が制約されるもの
ではない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto.

【0025】[実施例1]本実施例では、多孔質層の構
成素材の酸素透過係数が1×10-9[〔cm3(ST
P)・cm〕/〔cm2・s・cmHg〕](以下同単
位)以上であり、非多孔質層を構成する素材の酸素透過
係数が、多孔質層を構成する素材の酸素透過係数より低
い複合膜の例を示す。
Example 1 In this example, the oxygen permeability coefficient of the constituent material of the porous layer was 1 × 10 −9 [[cm 3 (ST
P) · cm] / [cm 2 · s · cmHg]] (hereinafter the same unit), and the oxygen permeability coefficient of the material forming the non-porous layer is greater than that of the material forming the porous layer. An example of a low composite membrane is shown.

【0026】(複合膜の作製)ポリ−4−メチルペンテ
ン−1(酸素透過係数=2.0×10-9、酸素/窒素透
過係数比=4.2)を使用し、特開昭63−26412
7「多孔質膜型気液接触装置」の実施例1に開示されて
いる方法と同様の溶融紡糸方法により、外径約260μ
m、内径約200μmの多孔質中空糸膜を作製した。こ
の中空糸膜の内表面には長径0.02μm、短径0.0
1μmの細孔が開口しており、外表面には長径0.04
μm、短径0.02μmの細孔が開口していた。
(Preparation of Composite Membrane) Poly-4-methylpentene-1 (oxygen permeation coefficient = 2.0 × 10 -9 , oxygen / nitrogen permeation coefficient ratio = 4.2) was used, and it was disclosed in Japanese Patent Laid-Open No. 63- 26412
7. By a melt spinning method similar to the method disclosed in Example 1 of “porous membrane gas-liquid contactor”, the outer diameter was about 260 μm.
A porous hollow fiber membrane having a diameter of m and an inner diameter of about 200 μm was produced. The inner surface of this hollow fiber membrane has a major axis of 0.02 μm and a minor axis of 0.02 μm.
1 μm pores are opened and the outer surface has a major axis of 0.04
The pores having a diameter of μm and a minor axis of 0.02 μm were open.

【0027】また水銀ポロシメータメーターにより測定
した空孔率は32%であった。この中空糸多孔質膜を酸
素プラズマ処理により親水化したところ、水との接触角
が115度から77度に低下した。その後、中空糸膜
を、平均分子量32万のポリスチレンの0.3%メチル
エチルケトン(MEK)溶液に浸漬し、100℃で熱風
乾燥した。このコーティング操作を3回繰り返して作製
した複合膜の気体透過特性は、酸素透過速度=1.1×
10-5、酸素/窒素透過速度比=2.2であった。
The porosity measured by a mercury porosimeter was 32%. When this hollow fiber porous membrane was made hydrophilic by oxygen plasma treatment, the contact angle with water decreased from 115 degrees to 77 degrees. Then, the hollow fiber membrane was immersed in a 0.3% methyl ethyl ketone (MEK) solution of polystyrene having an average molecular weight of 320,000, and dried with hot air at 100 ° C. The gas permeation characteristics of the composite membrane produced by repeating this coating operation three times were as follows: oxygen permeation rate = 1.1 ×
The oxygen / nitrogen permeation rate ratio was 10 −5 = 2.2.

【0028】(脱気試験1)この中空糸複合膜100本
(外表面積123cm2)を、第2図に記載されている
内容積500mlの試験装置に装着し、中空糸膜の外側
(非多孔質層側)には溶存酸素濃度8.5重量ppm
(以下重量ppmを単にppmと記載する)の空気飽和
水を、攪拌しつつ10ml/分で流し、中空糸内側は水
流アスピレ−タ−にて約17torrに減圧した。この
時の流出液の溶存酸素濃度は0.90ppmであった。
(Deaeration test 1) 100 hollow fiber composite membranes (outer surface area 123 cm 2 ) were attached to a test apparatus having an inner volume of 500 ml shown in FIG. Concentration of dissolved oxygen is 8.5 wt ppm
Air saturated water (hereinafter, weight ppm is simply referred to as ppm) was flowed at 10 ml / min while stirring, and the inside of the hollow fiber was depressurized to about 17 torr with a water flow aspirator. The dissolved oxygen concentration of the effluent at this time was 0.90 ppm.

【0029】(脱気試験2)この中空糸膜200本(内
表面積188cm2)を第1図に示す形状のモジュール
に組み込み、中空糸膜内側(多孔質層側)に溶存酸素濃
度8.5ppmの空気飽和水を10ml/分で流し、中
空糸外側は水流アスピレ−タ−にて約17torrに減
圧した。この時、流出液の溶存酸素濃度は0.18pp
mであった。
(Deaeration test 2) 200 hollow fiber membranes (inner surface area 188 cm 2 ) were incorporated into a module having the shape shown in FIG. 1, and the dissolved oxygen concentration was 8.5 ppm inside the hollow fiber membrane (the porous layer side). The air-saturated water was flowed at 10 ml / min, and the outside of the hollow fiber was depressurized to about 17 torr with a water aspirator. At this time, the dissolved oxygen concentration of the effluent is 0.18 pp
It was m.

【0030】[比較例1]本比較例では、多孔質層を構
成する素材の気体透過係数が1.0×10-9未満であ
り、非多孔質層を構成する素材の気体透過係数が多孔質
層を構成する素材の気体透過係数より低い場合の例を示
す。
Comparative Example 1 In this comparative example, the gas permeability coefficient of the material forming the porous layer is less than 1.0 × 10 −9 , and the gas permeability coefficient of the material forming the non-porous layer is porous. An example is shown in which the gas permeability coefficient is lower than that of the material forming the quality layer.

【0031】(複合膜の作製)ポリプロピレン(酸素透
過係数=1.0×10-10、酸素/窒素透過係数比=
3.1)を使用し、特開昭53−38715「多孔質ポ
リプロピレン中空糸の製造方法」に開示されている溶融
紡糸方法により、外径約260μm、内径約200μm
の多孔質中空糸膜を作製した。この中空糸膜の内外両表
面には長径0.03μm、短径0.02μmの細孔が開
口していた。また水銀ポロシメータメーターにより測定
した空孔率は35%であった。この中空糸多孔質膜を酸
素プラズマ処理により親水化したところ、水との接触角
が95度から70度に低下した。この中空糸膜に、実施
例1と同様のコーティング処理を行うことにより作製し
た複合膜の気体透過特性は、酸素透過速度=1.1×1
-5、酸素/窒素透過速度比=1.2であった。
(Preparation of Composite Membrane) Polypropylene (Oxygen Permeability Coefficient = 1.0 × 10 −10 , Oxygen / Nitrogen Permeability Coefficient Ratio =
Using 3.1), the melt spinning method disclosed in JP-A-53-38715, “Method for producing porous polypropylene hollow fiber”, has an outer diameter of about 260 μm and an inner diameter of about 200 μm.
A porous hollow fiber membrane of was prepared. The inner and outer surfaces of this hollow fiber membrane had pores with a major axis of 0.03 μm and a minor axis of 0.02 μm. The porosity measured with a mercury porosimeter was 35%. When this hollow fiber porous membrane was made hydrophilic by oxygen plasma treatment, the contact angle with water decreased from 95 degrees to 70 degrees. The gas permeation characteristics of the composite membrane produced by subjecting this hollow fiber membrane to the same coating treatment as in Example 1 were as follows: oxygen permeation rate = 1.1 × 1
0 -5 , oxygen / nitrogen permeation rate ratio = 1.2.

【0032】(脱気試験3)実施例1の脱気試験1と同
様の試験を行った結果、流出液の溶存酸素濃度は1.2
9ppmであった。
(Deaeration test 3) As a result of the same test as the deaeration test 1 of Example 1, the dissolved oxygen concentration of the effluent was 1.2.
It was 9 ppm.

【0033】(脱気試験4)実施例1の脱気試験2と同
様の試験を行った結果、流出液の溶存酸素濃度は0.2
8ppmであった。
(Deaeration test 4) As a result of the same test as the deaeration test 2 of Example 1, the dissolved oxygen concentration of the effluent was 0.2.
It was 8 ppm.

【0034】[実施例2]本実施例では、多孔質層を構
成する素材の酸素透過係数が1×10-9以上であり、非
多孔質層を構成する素材の酸素透過係数が、多孔質層を
構成する素材の酸素透過係数より高い複合膜の例を示
す。
Example 2 In this example, the oxygen permeability coefficient of the material forming the porous layer is 1 × 10 −9 or more, and the oxygen permeability coefficient of the material forming the non-porous layer is porous. An example of a composite membrane having an oxygen permeability coefficient higher than that of the material forming the layer is shown.

【0035】(複合膜の作製)コーティング処理が、
0.2torrのヘキサメチルジシロキサン存在下、5
0w、30分間のプラズマ重合であること以外は実施例
1と同様にして中空糸複合膜を作製した。得られた複合
膜の気体透過特性は、酸素透過速度=3.1×10-5
酸素/窒素透過速度比=1.8であった。
(Preparation of composite film) The coating treatment is
In the presence of 0.2 torr hexamethyldisiloxane, 5
A hollow fiber composite membrane was produced in the same manner as in Example 1 except that plasma polymerization was performed for 0 w and 30 minutes. The gas permeation characteristics of the obtained composite membrane were as follows: oxygen permeation rate = 3.1 × 10 −5 ,
The oxygen / nitrogen permeation rate ratio was 1.8.

【0036】(脱気試験5)実施例1の脱気試験1と同
様の試験を行った結果、流出液の溶存酸素濃度は0.8
9ppmであった。
(Deaeration test 5) As a result of the same test as the deaeration test 1 of Example 1, the dissolved oxygen concentration of the effluent was 0.8.
It was 9 ppm.

【0037】(脱気試験6)実施例1の脱気試験2と同
様の試験を行った結果、流出液の溶存酸素濃度は0.1
8ppmであった。
(Deaeration test 6) As a result of the same test as the deaeration test 2 of Example 1, the dissolved oxygen concentration of the effluent was 0.1.
It was 8 ppm.

【0038】[比較例2]本比較例では、多孔質層を構
成する素材の酸素透過係数が1×10-9未満であり、非
多孔質層を構成する素材の酸素透過係数が、多孔質層を
構成する素材の酸素透過係数より高い複合膜の例を示
す。
Comparative Example 2 In this comparative example, the oxygen permeability coefficient of the material forming the porous layer was less than 1 × 10 −9 , and the oxygen permeability coefficient of the material forming the non-porous layer was porous. An example of a composite membrane having an oxygen permeability coefficient higher than that of the material forming the layer is shown.

【0039】(複合膜の作製)コーティング処理が、
0.2rorrのヘキサメチルジシロキサン存在下、5
0w、30分間のプラズマ重合であること以外は実施例
1と同様にして中空糸複合膜を作製した。得られた複合
膜の気体透過特性は、酸素透過速度=2.9×10-5
酸素/窒素透過速度比=1.3であった。
(Preparation of composite film) The coating treatment is
In the presence of 0.2 lorr hexamethyldisiloxane, 5
A hollow fiber composite membrane was produced in the same manner as in Example 1 except that plasma polymerization was performed for 0 w and 30 minutes. The gas permeation characteristics of the obtained composite membrane were as follows: oxygen permeation rate = 2.9 × 10 −5 ,
The oxygen / nitrogen permeation rate ratio was 1.3.

【0040】(脱気試験7)実施例1の脱気試験1と同
様の試験を行った結果、流出液の溶存酸素濃度は0.9
2ppmであった。
(Deaeration test 7) As a result of the same test as the deaeration test 1 of Example 1, the dissolved oxygen concentration of the effluent was 0.9.
It was 2 ppm.

【0041】(脱気試験8)実施例1の脱気試験2と同
様の試験を行った結果、流出液の溶存酸素濃度は0.2
5ppmであった。
(Deaeration test 8) As a result of the same test as the deaeration test 2 of Example 1, the dissolved oxygen concentration in the effluent was 0.2.
It was 5 ppm.

【0042】[0042]

【効果】 本発明は、液体から各種の気体または揮発性
物質を除去する膜式脱気において優れた脱気性能を有す
る脱気膜、即ち膜面積当りの脱気処理量が高く、低い溶
存気体濃度の液体の製造を可能にする脱気膜、およびに
該脱気膜を用いた脱気方法を提供する。
[Effects] The present invention provides a degassing membrane having excellent degassing performance in membrane-type degassing for removing various gases or volatile substances from a liquid, that is, a high degassing treatment amount per membrane area and a low dissolved gas. Provided are a degassing membrane that enables production of a liquid having a concentration, and a degassing method using the degassing membrane.

【0043】[0043]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による中空糸膜を装着した気液接触モジ
ュールの模式図である。
FIG. 1 is a schematic view of a gas-liquid contact module equipped with a hollow fiber membrane according to the present invention.

【図2】本発明を評価するための測定装置の模式図であ
る。
FIG. 2 is a schematic diagram of a measuring device for evaluating the present invention.

【符号の説明】[Explanation of symbols]

1:筒体 2:中空糸膜 3:樹脂封止部 4:気体導入口 5:気体排出口 6:液体導入口 7:液体排出口 11:ケース 12:磁気攪拌機 13:攪拌子 14:酸素センサー 15:液体導入口 16:液体排出口 17:気体導入口 18:気体排出口 19,20:バルブ 21:中空糸膜 22:ゴム栓 23:樹脂封止部 1: Cylindrical body 2: Hollow fiber membrane 3: Resin sealing part 4: Gas inlet port 5: Gas outlet port 6: Liquid inlet port 7: Liquid outlet port 11: Case 12: Magnetic stirrer 13: Stirrer 14: Oxygen sensor 15: Liquid inlet 16: Liquid outlet 17: Gas inlet 18: Gas outlet 19, 20: Valve 21: Hollow fiber membrane 22: Rubber plug 23: Resin sealing part

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 多孔質層と非多孔質層とからなる複合膜
であって、複合膜の多孔質層を構成する素材の酸素透過
係数が1×10-9[〔cm3(STP)・cm〕/〔cm2
・s・cmHg〕]以上であることを特徴とする脱気
膜。
1. A composite membrane comprising a porous layer and a non-porous layer, wherein a material constituting the porous layer of the composite membrane has an oxygen permeability coefficient of 1 × 10 −9 [[cm 3 (STP). cm] / [cm 2
· S · cmHg]] or higher.
【請求項2】 多孔質層を構成する素材が、4−メチル
ペンテン−1系重合体である請求項1記載の脱気膜。
2. The degassing membrane according to claim 1, wherein the material constituting the porous layer is a 4-methylpentene-1 type polymer.
【請求項3】 複合膜が中空糸膜である請求項1記載の
脱気膜。
3. The degassing membrane according to claim 1, wherein the composite membrane is a hollow fiber membrane.
【請求項4】 非多孔質層を構成する素材の酸素透過係
数が、多孔質層を構成する素材の酸素透過係数の値以下
である請求項1、2または3記載の脱気膜。
4. The degassing membrane according to claim 1, 2 or 3, wherein the oxygen permeation coefficient of the material forming the non-porous layer is equal to or less than the oxygen permeation coefficient of the material forming the porous layer.
【請求項5】 非多孔質層と多孔質層の構成素材の酸素
透過係数が1×10-9[〔cm3(STP)・cm〕/
〔cm2・s・cmHg〕]以上である多孔質層とから
なる複合膜を用いることを特徴とする、液体に溶解して
いる気体または揮発性物質の脱気方法。
5. The oxygen permeability coefficient of the constituent materials of the non-porous layer and the porous layer is 1 × 10 −9 [[cm 3 (STP) · cm] /
A method of degassing a gas or a volatile substance dissolved in a liquid, which comprises using a composite film comprising a porous layer having a pressure of [cm 2 · s · cmHg] or more.
【請求項6】 非多孔質層を構成する素材の酸素透過係
数が、多孔質層を構成する素材の酸素透過係数の値以下
である請求項5記載の脱気方法。
6. The degassing method according to claim 5, wherein the oxygen permeability coefficient of the material forming the non-porous layer is not more than the oxygen permeability coefficient value of the material forming the porous layer.
【請求項7】 多孔質層を構成する素材が、4−メチル
ペンテン−1系重合体である請求項5記載の脱気方法。
7. The degassing method according to claim 5, wherein the material constituting the porous layer is a 4-methylpentene-1 type polymer.
【請求項8】 複合膜が中空糸膜である請求項5記載の
脱気方法。
8. The degassing method according to claim 5, wherein the composite membrane is a hollow fiber membrane.
【請求項9】 複合膜の多孔質層側に液体を接触させる
請求項5〜8のいずれか1つに記載の脱気方法。
9. The degassing method according to claim 5, wherein a liquid is brought into contact with the porous layer side of the composite membrane.
【請求項10】 液体が、水または水溶液である請求項
5〜8のいずれか1つに記載の脱気方法。
10. The degassing method according to claim 5, wherein the liquid is water or an aqueous solution.
【請求項11】 脱気する気体が酸素である請求項5〜
8のいずれか1つに記載の脱気方法。
11. The gas to be degassed is oxygen.
8. The degassing method according to any one of 8.
JP12700093A 1993-05-28 1993-05-28 Deaerating film and deaerating method Pending JPH06335623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12700093A JPH06335623A (en) 1993-05-28 1993-05-28 Deaerating film and deaerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12700093A JPH06335623A (en) 1993-05-28 1993-05-28 Deaerating film and deaerating method

Publications (1)

Publication Number Publication Date
JPH06335623A true JPH06335623A (en) 1994-12-06

Family

ID=14949198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12700093A Pending JPH06335623A (en) 1993-05-28 1993-05-28 Deaerating film and deaerating method

Country Status (1)

Country Link
JP (1) JPH06335623A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU668267B2 (en) * 1992-11-26 1996-04-26 Otsuka Pharmaceutical Co., Ltd. Method for preventing and treating disturbances of intestinal mucous membrane
WO1999017866A1 (en) * 1997-10-02 1999-04-15 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane
EP1052011A1 (en) * 1997-04-30 2000-11-15 Mitsubishi Rayon Co., Ltd. Ink deaerating hollow yarn membrane, ink deaerating method, ink deaerating apparatus, ink cartridge manufacturing method, and ink
US6328785B1 (en) 1998-12-11 2001-12-11 Fuji Photo Film Co., Ltd. Method of degassing aqueous coating solution
WO2013147187A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
JP2013202475A (en) * 2012-03-28 2013-10-07 Sumitomo Metal Mining Engineering Co Ltd Method of removing ammonia from ammonia-containing wastewater
JP2015071712A (en) * 2013-10-03 2015-04-16 コニカミノルタ株式会社 Coating liquid production method
US9120053B2 (en) 2010-09-29 2015-09-01 Mitsubishi Rayon Co., Ltd. Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module
WO2017104638A1 (en) * 2015-12-14 2017-06-22 Dic株式会社 Alcohol production method and alcohol deaeration method
JP2017112900A (en) * 2015-12-24 2017-06-29 Dic株式会社 Natural pigment-containing beverage and production method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU668267B2 (en) * 1992-11-26 1996-04-26 Otsuka Pharmaceutical Co., Ltd. Method for preventing and treating disturbances of intestinal mucous membrane
US6860922B2 (en) 1997-04-30 2005-03-01 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane for the degassing of inks, ink degassing method, ink degassing apparatus, method for the fabrication of an ink cartridge, and ink
US6824261B2 (en) 1997-04-30 2004-11-30 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane for the degassing of inks, ink degassing method, ink degassing apparatus, method for the fabrication of an ink cartridge, and ink
EP1052011A1 (en) * 1997-04-30 2000-11-15 Mitsubishi Rayon Co., Ltd. Ink deaerating hollow yarn membrane, ink deaerating method, ink deaerating apparatus, ink cartridge manufacturing method, and ink
EP1052011A4 (en) * 1997-04-30 2002-04-24 Mitsubishi Rayon Co Ink deaerating hollow yarn membrane, ink deaerating method, ink deaerating apparatus, ink cartridge manufacturing method, and ink
US6858063B2 (en) 1997-04-30 2005-02-22 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane for the degassing of inks, ink degassing method, ink degassing apparatus, method for the fabrication of an ink cartridge, and ink
US6379796B1 (en) 1997-10-02 2002-04-30 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane
WO1999017866A1 (en) * 1997-10-02 1999-04-15 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane
US6328785B1 (en) 1998-12-11 2001-12-11 Fuji Photo Film Co., Ltd. Method of degassing aqueous coating solution
US9120053B2 (en) 2010-09-29 2015-09-01 Mitsubishi Rayon Co., Ltd. Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module
JP2013202475A (en) * 2012-03-28 2013-10-07 Sumitomo Metal Mining Engineering Co Ltd Method of removing ammonia from ammonia-containing wastewater
WO2013147187A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
JPWO2013147187A1 (en) * 2012-03-30 2015-12-14 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
US9694313B2 (en) 2012-03-30 2017-07-04 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane and hollow fiber membrane module
JP2015071712A (en) * 2013-10-03 2015-04-16 コニカミノルタ株式会社 Coating liquid production method
WO2017104638A1 (en) * 2015-12-14 2017-06-22 Dic株式会社 Alcohol production method and alcohol deaeration method
JPWO2017104638A1 (en) * 2015-12-14 2018-08-09 Dic株式会社 Liquor production method and liquor degassing method
JP2017112900A (en) * 2015-12-24 2017-06-29 Dic株式会社 Natural pigment-containing beverage and production method thereof

Similar Documents

Publication Publication Date Title
US5078755A (en) Method of removing dissolved gas from liquid
KR102285048B1 (en) Operating method of porous membrane for membrane distillation and module for membrane distillation
US6168648B1 (en) Spiral wound type membrane module, spiral wound type membrane element and running method thereof
Singh Hybrid membrane systems for water purification: technology, systems design and operations
JP5869038B2 (en) Degassing liquid with membrane contactor
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
EP1371409B1 (en) Separating film, separating film element, separating film module, sewage and waste water treatment device, and separating film manufacturing method
US5123937A (en) Deaerating film and deaerating method
WO2017045983A1 (en) Process for making membranes
JPH06335623A (en) Deaerating film and deaerating method
JP2512937B2 (en) Membrane type gas-liquid contactor
JP2725311B2 (en) Hollow fiber membrane type gas-liquid contactor
JPH05208120A (en) Spiral separation membrane element
CN108430612B (en) Composite semipermeable membrane
JPH06134210A (en) Deaeration film module
JPH07232042A (en) Micro porous membrane
US20210146312A1 (en) Process for cleaning a membrane comprising drying the membrane
JP2949732B2 (en) Degassing method using pervaporation membrane module
Khulbe et al. Synthetic membranes for membrane processes
JPH0632239Y2 (en) Small boiler with separation membrane treatment device
JPH0380983A (en) Gas-liquid contact type water purifying apparatus and method
JPH04156903A (en) Degasification membrane device
JPH02303587A (en) Device and method for cleaning water
JPS6223401A (en) Ultrafiltration membrane
JPH10249105A (en) Water treatment device having in-water dissolved gas removing function and gaseous co2 adding function, method of removing in-water dissolved gas, and method of adding gaseous co2 to water