JPH05208121A - Method for making porous membrane hydrophilic - Google Patents

Method for making porous membrane hydrophilic

Info

Publication number
JPH05208121A
JPH05208121A JP1505592A JP1505592A JPH05208121A JP H05208121 A JPH05208121 A JP H05208121A JP 1505592 A JP1505592 A JP 1505592A JP 1505592 A JP1505592 A JP 1505592A JP H05208121 A JPH05208121 A JP H05208121A
Authority
JP
Japan
Prior art keywords
water
membrane
concentration
less
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1505592A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Yasuko Kuninaga
泰子 國長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP1505592A priority Critical patent/JPH05208121A/en
Publication of JPH05208121A publication Critical patent/JPH05208121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To simply make a hydrophobic porous membrane hydrophilic without bringing about the contamination of said membrane with a foreign substance by dipping the porous membrane in degassed water wherein the concn. of dissolved air is a definite ratio of the saturated concn. of dissolved air or less. CONSTITUTION:A hydrophobic porous membrane composed of polypropylene or polyethylene is dipped in water degassed so that the concn. of dissolved air is reduced to 80% or less, pref., 50% or less of the saturated concn. of dissolved air and the concn. of dissolved oxygen is reduced to 80% or less, pref., 50% or less of the saturated concn. of dissolved oxygen. Since the hydrophobic porous membrane can be made hydrophilic by this method without using a surfactant or an org. solvent, the remaining possibility of a foreign substance is eliminated and the removal thereof by washing is unnecessary and labor or cost can be omitted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質膜により水また
は水溶液を媒体とする液体を濾過する用途一般に適用で
き、例えば、医療、製薬、食品工業、化学工業、上水処
理、廃水処理などの分野で利用される。
INDUSTRIAL APPLICABILITY The present invention can be generally applied to filtration of a liquid containing water or an aqueous solution as a medium through a porous membrane, for example, medical, pharmaceutical, food industry, chemical industry, tap water treatment, waste water treatment, etc. Used in the field of.

【0002】[0002]

【従来の技術】精密濾過膜、限外濾過膜、逆浸透膜など
の多孔質膜は、疎水性ポリマーで構成することにより、
経時的変化の減少、対生物安定性の増加、温度変化の減
少、耐圧の向上、製造時の乾燥による性能変化の減少な
どのメリットが生じる。
2. Description of the Related Art Porous membranes such as microfiltration membranes, ultrafiltration membranes and reverse osmosis membranes are composed of a hydrophobic polymer,
There are advantages such as a decrease in change over time, an increase in biostability, a decrease in temperature change, an improvement in pressure resistance, and a decrease in performance change due to drying during manufacturing.

【0003】しかしながら、水または水溶液を媒体とす
る液体を濾過する場合、疎水性多孔質膜はそのままで
は、水や水性媒体が細孔内に入らず濾過不能である。水
を加圧すると細孔に水が圧入され、透過するようにはな
るものの、疎水性の程度や孔径によっては大きな圧力が
必要であり、強力なポンプが必要になったり、場合によ
っては膜の破壊圧力以上の圧力が必要となる。また、膜
には細孔径分布があるため、小径の細孔には依然として
水が入らず、濾過に働かない部分が生じ、このため濾過
可能であっても透過水量が小さくなる。従って、疎水性
の膜を水または水溶液を媒体とする液体の濾過に使用す
る場合、使用前に細孔内部を濡らす処理、即ち親水化処
理が必要とされる。
However, when a liquid containing water or an aqueous solution as a medium is filtered, the hydrophobic porous membrane cannot be filtered because the water or aqueous medium does not enter the pores. When water is pressurized, water is pressed into the pores and permeates, but depending on the degree of hydrophobicity and pore size, a large pressure is required, and a powerful pump may be required, or in some cases, the membrane A pressure higher than the breaking pressure is required. In addition, since the membrane has a pore size distribution, water does not still enter the small pores, and a portion that does not work for filtration occurs. Therefore, even if filtration is possible, the amount of permeated water becomes small. Therefore, when the hydrophobic membrane is used for filtering a liquid using water or an aqueous solution as a medium, a treatment for wetting the inside of the pores, that is, a hydrophilic treatment is required before use.

【0004】この親水化方法としては、界面活性剤水溶
液にて膜を濡らしてから水と置換する方法、エタノール
やグリセリンなどの有機溶剤で膜を濡らしてから水と置
換する方法、膜を加圧水中に浸漬して細孔内に水を圧入
する方法などが知られており、また永久親水化法とし
て、膜をプラズマ処理その他の方法により細孔表面を親
水性物質化する方法が知られている。
As the method for hydrophilizing, a method of wetting the membrane with an aqueous solution of a surfactant and then substituting with water, a method of wetting the membrane with an organic solvent such as ethanol or glycerin and then substituting with water, and the membrane with pressurized water are used. It is known to immerse the membrane in water to press the water into the pores, and as a permanent hydrophilization method, a method in which the membrane surface is made hydrophilic by a plasma treatment or other method is known. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、界面活
性剤や有機溶剤を使用する方法は、使用に当ってこれら
の物質を洗浄除去する必要があり、特に医療、製薬、食
品工業などの、汚染を嫌う用途において手間やコストの
増加を招いていたし、また加圧する方法は特別な装置が
必要であり、オンサイトでの実施には困難があった。さ
らに、永久親水化法は、膜製造コストの上昇を招いてい
た。
However, in the method using a surfactant or an organic solvent, it is necessary to wash and remove these substances before use. It causes labor and cost increase in unfavorable applications, and the pressurizing method requires a special device, which makes it difficult to carry out on-site. Furthermore, the permanent hydrophilization method has led to an increase in membrane production cost.

【0006】[0006]

【課題を解決するための手段】本発明者等は、疎水性多
孔質膜を、異物質による汚染を招くことなく、しかも簡
単に膜を親水化できる方法について検討し、本発明に到
達した。
Means for Solving the Problems The present inventors have arrived at the present invention by studying a method for easily hydrophilizing a hydrophobic porous membrane without causing contamination by foreign substances.

【0007】即ち本発明の要旨は、多孔質膜を、溶存空
気濃度が飽和溶存空気濃度の80%以下にまで脱気され
た水又は溶存酸素濃度が飽和溶存酸素濃度の80%以下
にまで脱気された水、溶存空気濃度が飽和溶存空気濃度
の80%以下にまで脱気され、かつ溶存酸素濃度が飽和
溶存酸素濃度の80%以下にまで脱気された水、あるい
は溶存空気濃度が飽和溶存空気濃度の50%以下にまで
脱気され、かつ溶存酸素濃度が飽和溶存酸素濃度の50
%以下にまで脱気された水に浸漬することを特徴とする
多孔質膜の親水化方法にある。
[0007] That is, the gist of the present invention is to remove water from a porous membrane in which the dissolved air concentration is degassed to 80% or less of the saturated dissolved air concentration or to dissolve the dissolved oxygen concentration to 80% or less of the saturated dissolved oxygen concentration. Vaporized water, dissolved air concentration is deaerated to 80% or less of saturated dissolved air concentration, and dissolved oxygen concentration is saturated Deaerated to 80% or less of dissolved oxygen concentration, or dissolved air concentration is saturated Degassed to 50% or less of the dissolved air concentration, and the dissolved oxygen concentration is 50% of the saturated dissolved oxygen concentration.
In a method for making a porous membrane hydrophilic, which is characterized in that it is immersed in water that is degassed to a content of not more than 10%.

【0008】[0008]

【構成】本発明の対象となる疎水性の多孔質膜は、0.
5〜10000ナノメ−トルの孔径の細孔を膜内に有す
る膜であり、細孔が膜の一方の面から他の面まで連通し
ている膜である。このような膜は液体の濾過膜として使
用され、細孔径により濾別能や分画能が決定される。細
孔の寸法は、膜の厚み方向の全体にわたって均一であっ
ても良いし、分布を持った、例えば非対称膜と呼ばれる
物であってもよい。
[Constitution] The hydrophobic porous membrane which is the subject of the present invention is
The membrane has pores having a pore diameter of 5 to 10000 nanometers in the membrane, and the pores communicate from one surface of the membrane to the other surface. Such a membrane is used as a liquid filtration membrane, and its filtering ability and fractionating ability are determined by the pore size. The size of the pores may be uniform over the entire thickness of the film, or may be a distributed one, for example, an asymmetric film.

【0009】多孔質膜が疎水性であることは、膜に水を
透過させることで判定できる。毛管現象で周知のよう
に、膜が親水性であればゼロまたは僅かな加圧で水が透
過するが、疎水性の場合には大きな圧力差が必要とな
る。本発明の対象となる疎水性の膜とは、25℃の蒸留
水を透過させるために0.1Kgf/cm2以上の圧力
差が必要な膜である。疎水性の膜としては、例えば、ポ
リプロピレン、ポリエチレン、ポリ4−メチルペンテン
−1等のポリオレフィン、ポリフッ化ビニリデン、ポリ
テトラフロロエチレン等のフッ素樹脂、ポリ塩化ビニ
ル、ポリ塩化ビニリデンなどの塩素含有樹脂、シリコン
樹脂、ポリスルホン、ポリエ−テルスルホン、ポリフェ
ニレンスルフィド、ポリエ−テルエ−テルケトン、など
のポリマーを主たる素材とした膜や、これらの構成要素
をその一部に含有するポリマーを素材とした膜が挙げら
れる。勿論これらは一例であり、これらに限定されるも
のではない。また、本発明の膜の形態は特に制約はな
い。例えば平膜、中空糸膜、管状膜に適用できる。
The hydrophobicity of the porous membrane can be determined by allowing water to permeate the membrane. As is well known in the capillarity, if the membrane is hydrophilic, water permeates with zero or slight pressure, but if it is hydrophobic, a large pressure difference is required. The hydrophobic membrane that is the subject of the present invention is a membrane that requires a pressure difference of 0.1 Kgf / cm 2 or more in order to allow distilled water at 25 ° C. to permeate. As the hydrophobic film, for example, polypropylene, polyethylene, polyolefin such as poly 4-methylpentene-1, polyvinylidene fluoride, fluororesin such as polytetrafluoroethylene, polyvinyl chloride, chlorine-containing resin such as polyvinylidene chloride, Examples thereof include membranes mainly made of polymers such as silicone resin, polysulfone, polyethersulfone, polyphenylene sulfide, and polyetheretherketone, and membranes made of a polymer containing some of these constituent elements. Of course, these are examples, and the present invention is not limited to these. The form of the film of the present invention is not particularly limited. For example, it can be applied to flat membranes, hollow fiber membranes, tubular membranes.

【0010】本発明において、膜を親水化処理する水
は、溶存空気濃度が飽和溶存空気濃度の80%以下、好
ましくは50%以下、更に好ましくは30%以下にまで
脱気された水及び/または溶存酸素濃度が飽和溶存酸素
濃度の80%以下、好ましくは50%以下、更に好まし
くは30%以下にまで脱気された水である(このような
水を以下脱気水と称する)。溶存空気濃度または溶存酸
素濃度がこの値を越えると親水化の効果が減じたり、親
水化処理に要する時間が長くなる。溶存空気濃度または
溶存酸素濃度の下限は、実施する上で自ずと限界はあろ
うが、低いこと自体による不都合はないため、本発明で
は限定することを要しない。10%以下あるいは1%以
下であることも、本発明の効果を発揮する上で好ましい
が、脱気水製造コストが増加する。
In the present invention, the water for hydrophilizing the membrane is water and / or deaerated to a dissolved air concentration of 80% or less, preferably 50% or less, and more preferably 30% or less of the saturated dissolved air concentration. Alternatively, it is water deaerated to a dissolved oxygen concentration of 80% or less, preferably 50% or less, and more preferably 30% or less of the saturated dissolved oxygen concentration (such water is hereinafter referred to as deaerated water). If the dissolved air concentration or dissolved oxygen concentration exceeds this value, the effect of hydrophilization is reduced, or the time required for hydrophilization treatment becomes long. The lower limit of the dissolved air concentration or the dissolved oxygen concentration may be naturally limited in practice, but it is not necessary to limit it in the present invention because there is no inconvenience due to its low value. It is also preferable that the content is 10% or less or 1% or less in order to exert the effect of the present invention, but the degassed water production cost increases.

【0011】また本発明においては、溶存空気濃度が飽
和溶存空気濃度の80%以下、好ましくは50%以下、
更に好ましくは30%以下にまで脱気され、かつ溶存酸
素濃度が飽和溶存酸素濃度の80%以下、好ましくは5
0%以下、更に好ましくは30%以下にまで脱気された
水であることがより好ましい。
In the present invention, the dissolved air concentration is 80% or less, preferably 50% or less, of the saturated dissolved air concentration.
More preferably, it is degassed to 30% or less, and the dissolved oxygen concentration is 80% or less of the saturated dissolved oxygen concentration, preferably 5
It is more preferable that the water is degassed to 0% or less, further preferably 30% or less.

【0012】本発明で言う溶存空気濃度とは、溶存酸素
濃度と溶存窒素濃度の和をいう。溶存空気濃度は、オス
トワルド法(実験化学講座1基本操作[I]、241
頁、1975年、丸善)や、マススペクトル法で測定す
ることができる。溶存酸素濃度は上記方法の他、ガルバ
ニ電池型やポ−ラログラフ型などの簡便な酸素濃度計で
測定することができる。飽和溶存空気(または酸素)濃
度とは、1気圧の大気に接している水に溶解する空気
(または酸素)の平衡濃度を言い、飽和溶存空気濃度は
飽和溶存酸素濃度と飽和溶存窒素濃度の和をいう。飽和
溶存空気(および酸素)濃度は水温に依存するが、本発
明においては、使用する水の温度における値をいう。飽
和溶存酸素濃度および飽和溶存空気濃度の値は、例えば
25℃における水の飽和溶存酸素濃度は約8.1重量p
pm(以下、単にppmと記載する)、飽和溶存窒素濃
度は約13.8ppm、飽和溶存空気濃度は約22pp
mである(化学便覧による)。
The dissolved air concentration referred to in the present invention means the sum of the dissolved oxygen concentration and the dissolved nitrogen concentration. The dissolved air concentration is determined by the Ostwald method (Experimental Chemistry Course 1 Basic Operation [I], 241
Page, 1975, Maruzen) or the mass spectrum method. The dissolved oxygen concentration can be measured by a simple oxygen concentration meter such as a galvanic cell type or polarographic type in addition to the above method. Saturated dissolved air (or oxygen) concentration refers to the equilibrium concentration of air (or oxygen) dissolved in water in contact with the atmosphere at 1 atm, and saturated dissolved air concentration is the sum of saturated dissolved oxygen concentration and saturated dissolved nitrogen concentration. Say. The saturated dissolved air (and oxygen) concentration depends on the water temperature, but in the present invention, it means the value at the temperature of the water used. The values of the saturated dissolved oxygen concentration and the saturated dissolved air concentration are, for example, about 25 wt.
pm (hereinafter, simply referred to as ppm), saturated dissolved nitrogen concentration is about 13.8 ppm, saturated dissolved air concentration is about 22 pp
m (according to the Chemical Handbook).

【0013】一般に、水の溶存空気(酸素)濃度は、通
常、飽和空気(酸素)濃度に近い値である。しかしなが
ら稀には、導水管中での酸素消費、地下水脈中での酸素
消費、水温の変動、湖沼や貯水槽における藻類の光合成
による酸素供給などにより、その値が変化する場合もあ
る。本発明においては、自然に脱気された水であって
も、所定の溶存空気(酸素)濃度のものであれば使用す
ることができる。
Generally, the dissolved air (oxygen) concentration of water is usually a value close to the saturated air (oxygen) concentration. However, in rare cases, the value may change due to oxygen consumption in the conduit, oxygen consumption in the groundwater vein, fluctuations in water temperature, oxygen supply by photosynthesis of algae in lakes and reservoirs, and the like. In the present invention, even naturally degassed water can be used as long as it has a predetermined dissolved air (oxygen) concentration.

【0014】本発明で云う水とは、いわゆる水、例えば
水道水、井戸水、湯冷まし、湯、蒸留水、濾過水、無菌
水などの他に、水溶液や水性分散液も含む。水溶液の例
としては、例えば海水や食塩水などの無機塩の水溶液、
酸・塩基の水溶液、殺菌剤水溶液、濾過処理すべき水溶
液を挙げることができ、分散液の例として、濾過すべき
分散液を挙げることができる。水は任意に選択すること
ができるが、それぞれの用途において特別な洗浄や除去
操作を行う必要がない水を選択することが好ましい。例
えば、血漿分離に使用する場合には生理的食塩水を、食
品工業や製薬に使用する場合には蒸留水、濾過水、無菌
水などを使用することが好ましい。
The water referred to in the present invention includes so-called water, such as tap water, well water, hot water cooling, hot water, distilled water, filtered water, sterile water, and the like, as well as an aqueous solution and an aqueous dispersion. Examples of the aqueous solution include an aqueous solution of an inorganic salt such as seawater or saline solution,
An acid / base aqueous solution, a bactericide aqueous solution, an aqueous solution to be filtered can be mentioned, and an example of the dispersion liquid can be a dispersion liquid to be filtered. Although water can be arbitrarily selected, it is preferable to select water which does not require special washing and removing operations in each application. For example, physiological saline is preferably used when used for plasma separation, and distilled water, filtered water, sterile water, etc. are preferably used when used in the food industry or pharmaceuticals.

【0015】本発明で用いる脱気水を製造する方法とし
ては、気体が透過し液体は透過しない膜の一方の側に原
水を通し他の側を減圧する膜式真空脱気(例えば特開昭
63−258605)、充填塔やスプレ−塔内を減圧す
るいわゆる真空脱気、水を沸点あるいは沸点付近まで加
熱し、溶解度の減少を利用する加熱脱気、不活性ガスの
バブリング、超音波脱気、溶存酸素を水素その他の還元
剤と反応させる方法などの方式があり、任意の方式を採
用し得る。これらの中で、膜式真空脱気が、装置が小形
であること、取扱が容易であること、高度の脱気が可能
であることなどの点で好ましい。膜式真空脱気に次いで
真空脱気が好ましい。
As a method for producing degassed water used in the present invention, a membrane-type vacuum degassing in which raw water is passed through one side of a membrane through which gas is permeated but liquid is not permeated and the other side is depressurized (see, for example, Japanese Patent Laid-Open Publication No. Sho. 63-258605), so-called vacuum degassing for decompressing the inside of a packed tower or a spray tower, heating degassing for heating water to or near the boiling point to utilize the decrease in solubility, bubbling of an inert gas, ultrasonic degassing. There are methods such as a method of reacting dissolved oxygen with hydrogen and other reducing agents, and any method can be adopted. Among these, the membrane-type vacuum deaeration is preferable in that the apparatus is small, easy to handle, and highly deaerated. Vacuum degassing is preferred next to membrane vacuum degassing.

【0016】通常、水の脱気処理によって、溶存酸素と
溶存窒素はほぼ並行して除去されるが、例えば還元剤に
よる酸素吸収のように、脱気方法によっては一方が選択
的に除去される場合も生じる。発明者等は種々検討した
結果、溶存空気が飽和濃度であっても、溶存酸素濃度が
飽和溶存酸素濃度の一定割合以下でれば、効果がみられ
ることを見いだした。溶存空気濃度を測定するオストワ
ルド法は手間と時間がかかり、またマススペクトル法は
オンサイトでの測定が困難であるのに対し、酸素濃度計
による溶存酸素の測定は簡便かつ速やかに測定すること
ができるというメリットも有するため、酸素濃度で判定
することが好ましい。
Usually, dissolved oxygen and dissolved nitrogen are removed almost in parallel by degassing of water, but one is selectively removed depending on the degassing method, such as oxygen absorption by a reducing agent. Sometimes it happens. As a result of various studies, the inventors have found that even if the dissolved air has a saturated concentration, an effect can be seen if the dissolved oxygen concentration is a fixed ratio or less of the saturated dissolved oxygen concentration. The Ostwald method for measuring the concentration of dissolved air is time-consuming and time-consuming, and the mass spectrum method is difficult to measure on-site, whereas the measurement of dissolved oxygen by an oximeter is simple and quick. Since there is a merit that it can be performed, it is preferable to make the determination based on the oxygen concentration.

【0017】脱気水は、放置すると空気が再溶解し、攪
拌により溶解速度が増大する。したがって、脱気水製造
後速やかに使用することが好ましく、また、脱気水を取
り扱う際には、空気の巻き込みや攪拌をなるべく避ける
のが好ましい。即ちモジュール化後の膜を脱気水に浸漬
する際、モジュールの下側から導入することが好まし
い。
When deaerated water is left to stand, the air is redissolved and the rate of dissolution is increased by stirring. Therefore, it is preferable to use the degassed water immediately after the production, and it is preferable to avoid entrapment and stirring of air when handling the degassed water. That is, when the membrane after modularization is immersed in degassed water, it is preferable to introduce it from the lower side of the module.

【0018】本発明の親水化処理は、多孔質膜を脱気水
に浸漬することにより行われる。この時、膜の両面が脱
気水に接触することが必要である。即ち、膜が中空糸膜
や管状膜の場合には膜の内外両表面が脱気水に接触する
ことが必要である。膜の片面や一部が脱気水に接触しな
い場合にはその部分は親水化されない。浸漬処理は任意
の方法で実施することができる。即ち、滞留させた脱気
水に膜を浸漬する方法、脱気水の流水に浸漬する方法な
どである。滞留させた脱気水に膜を浸漬する方法の場合
には、脱気水を取り替えて複数回浸漬処理することも好
ましい。処理時間は特に制約はなく、また、脱気の程度
や水温によっても大きく変わり得るが、通常1分〜1時
間で処理することが可能である。脱気水の脱気の程度が
高いほど、また水温が高いほど必要時間が短くなる。ま
た脱気の程度が低い場合には、流水に浸漬する方法や脱
気水を取り替えて複数回浸漬処理する方法により、処理
時間を短縮できる。一旦親水化した膜は、乾燥させない
限り、空気と接触させてもよい。
The hydrophilic treatment of the present invention is carried out by immersing the porous membrane in degassed water. At this time, it is necessary to contact both sides of the membrane with degassed water. That is, when the membrane is a hollow fiber membrane or a tubular membrane, it is necessary that both the inner and outer surfaces of the membrane come into contact with degassed water. If one side or part of the membrane does not come into contact with degassed water, that part is not made hydrophilic. The immersion treatment can be carried out by any method. That is, there are a method of immersing the membrane in the retained deaerated water, a method of immersing the membrane in running deaerated water, and the like. In the case of the method of immersing the membrane in the retained degassed water, it is also preferable to replace the degassed water and perform the dipping treatment a plurality of times. The treatment time is not particularly limited, and can be largely changed depending on the degree of degassing and the water temperature, but the treatment can usually be performed for 1 minute to 1 hour. The higher the degree of degassing of the degassed water and the higher the water temperature, the shorter the required time. Further, when the degree of deaeration is low, the treatment time can be shortened by a method of immersing in running water or a method of replacing the deaerated water and immersing a plurality of times. The once hydrophilized membrane may be contacted with air as long as it is not dried.

【0019】膜の製造から使用に至る一連の流れの中
で、親水化処理を行う時点についても特に制約はない。
膜をモジュール化する前であってもよいし、モジュール
化後であってもよいが、モジュール化後に処理すること
が好ましい。また、親水化処理を行った後に、湿潤状態
で流通・販売することも可能であるし、乾燥状態で流通
・販売され、使用する前に親水化処理することも可能で
あるが、使用する直前に親水化処理することが好まし
い。
There is no particular restriction on the point of time at which the hydrophilic treatment is carried out in the series of steps from the production of the membrane to the use thereof.
The treatment may be performed before or after modularization of the membrane, but it is preferable to perform the treatment after modularization. In addition, after being hydrophilized, it can be distributed / sold in a wet state, or can be distributed / sold in a dry state and hydrophilized before use, but just before use. It is preferable to perform hydrophilic treatment.

【0020】親水化処理を行う際の圧力は常圧以上であ
ることが好ましく、常圧で行うことが特別な加圧装置を
必要としないため好ましい。しかしながらモジュール化
後に親水処理を行う場合など、加圧することが容易な場
合には、加圧下で行うことも好ましい。
The pressure at which the hydrophilization treatment is performed is preferably atmospheric pressure or higher, and it is preferable to perform the hydrophilization treatment at atmospheric pressure because no special pressurizing device is required. However, when it is easy to apply pressure, such as when performing hydrophilic treatment after modularization, it is also preferable to perform under pressure.

【0021】[0021]

【作用】脱気水は、空気と接触するとその空気を吸収溶
解させることが知られている。脱気水に多孔質膜を浸漬
すると、膜の細孔内の空気が水に溶解し、それに伴い水
が細孔内に進入し充満することにより、細孔表面は強制
的に濡らされる。一旦細孔内に水が充填されると、通常
の空気飽和水に置換しても、水は膜を透過することがで
きる。また親水化処理後に膜を空気中に取り出しても、
乾燥させない限り親水性は失われない。
It is known that deaerated water absorbs and dissolves the air when it comes into contact with the air. When the porous membrane is immersed in degassed water, the air in the pores of the membrane dissolves in the water, and the water then enters the pores to fill the pores, forcing the surfaces of the pores to be wet. Once the pores are filled with water, water can permeate the membrane even if replaced with normal air saturated water. Even if the film is taken out into the air after the hydrophilic treatment,
The hydrophilicity is not lost unless it is dried.

【0022】[0022]

【実施例】以下、実施例にて本発明を更に具体的に説明
するが、これらの例により本発明が限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

【0023】[実施例1] (測定用膜モジュールの製作)ヘキスト・セラニーズ社
製ポリプロピレン多孔質中空糸膜[外径400μm、内
径330μm、孔径0.4×0.04μm(カタログ
値)]約5000本を筒型のハウジングに組込み、中空
糸外表面基準の膜面積が約1m2の膜モジュールを作製
した。このモジュールを用い、第1図に示したように配
管を接続した。
[Example 1] (Production of a membrane module for measurement) A polypropylene porous hollow fiber membrane manufactured by Hoechst Celanese Co., Ltd. [outer diameter 400 μm, inner diameter 330 μm, pore diameter 0.4 × 0.04 μm (catalog value)] about 5000 The book was incorporated into a cylindrical housing to prepare a membrane module having a hollow fiber outer surface standard membrane area of about 1 m 2 . Using this module, piping was connected as shown in FIG.

【0024】(疎水性膜であることの確認)この膜モジ
ュールの下部の接続口4から、中空糸2の内側に接する
側に25℃の蒸留水を導入し、バルブ10を閉として
0.1Kgf/cm2Gの水圧をかけた測定を行った
が、水の透過は認められなかった。
(Confirmation of Hydrophobic Membrane) Distilled water at 25 ° C. was introduced from the lower connection port 4 of the membrane module to the side in contact with the inside of the hollow fiber 2, and the valve 10 was closed to 0.1 Kgf. The measurement was performed by applying a water pressure of / cm 2 G, but no water permeation was observed.

【0025】(脱気水の製造)特開昭63−25860
5の実施例6と同様の方法で、ポリ(4−メチルペンテ
ン−1)を素材とする不均質膜を組み込んだ脱気モジュ
ールを作成した。このモジュールの中空糸内側に接する
側に蒸留水を毎分3リットルで流し、中空糸膜外側に接
する部分を水流アスピレ−タにて約20torrに減圧
することにより、温度25℃、マススペクトル法により
測定した溶存酸素濃度が3.5ppm(飽和濃度の43
%)、溶存窒素濃度が、8.7ppm(飽和濃度の63
%)、溶存空気濃度が12.2ppm(飽和濃度の55
%)の脱気水を得た。
(Production of Degassed Water) JP-A-63-25860
A degassing module incorporating a heterogeneous membrane made of poly (4-methylpentene-1) was prepared in the same manner as in Example 6 of 5. Distilled water was flowed at a rate of 3 liters per minute on the side in contact with the inside of the hollow fiber of this module, and the portion in contact with the outside of the hollow fiber membrane was depressurized to about 20 torr with a water flow aspirator, at a temperature of 25 ° C. by mass spectrometry. The measured dissolved oxygen concentration is 3.5 ppm (saturation concentration of 43
%), The dissolved nitrogen concentration is 8.7 ppm (63% of the saturation concentration).
%), Dissolved air concentration 12.2 ppm (saturation concentration 55
%) Deaerated water was obtained.

【0026】(親水化処理)次いで脱気水を、膜モジュ
ールの接続口4および5から導入し、接続口6および7
からオーバーフロ−させて、膜の内表面側および外表面
側に完全に満たし、バルブ8および9を閉じて30分間
放置することにより親水化処理を行った。この時、接続
口6および7は解放とし、膜両側の水圧を共に大気圧に
保った。
(Hydrophilic treatment) Next, degassed water is introduced from the connection ports 4 and 5 of the membrane module, and the connection ports 6 and 7 are introduced.
To completely fill the inner surface side and the outer surface side of the membrane, close the valves 8 and 9 and leave them for 30 minutes for hydrophilic treatment. At this time, the connection ports 6 and 7 were opened, and the water pressure on both sides of the membrane was kept at atmospheric pressure.

【0027】(透水試験)親水化処理したモジュールに
接続口4から25℃の蒸留水を導入し、バルブ10を閉
じて0.1Kgf/cm2Gの圧力を掛けたところ、4
30l/分で、透過した。
(Water permeation test) Distilled water at 25 ° C. was introduced into the hydrophilically treated module from the connection port 4, the valve 10 was closed, and a pressure of 0.1 Kgf / cm 2 G was applied.
Permeate at 30 l / min.

【0028】[比較例1]脱気水の代わりに、温度25
℃の脱気処理しない蒸留水(溶存酸素濃度8.2pp
m、溶存空気濃度14.1ppm)を用いたこと以外は
実施例1と全く同じ試験を行ったところ、浸漬処理後も
水の透過は全く認められなかった。
[Comparative Example 1] A temperature of 25 was used instead of degassed water.
Distilled water without degassing at ℃ (Dissolved oxygen concentration 8.2pp
m, dissolved air concentration 14.1 ppm), exactly the same test as in Example 1 was conducted, and no permeation of water was observed even after the immersion treatment.

【0029】[実施例2] (疎水性膜であることの確認)ポリテトラフロロエチレ
ン製の直径47mmの実験用平膜(アドバンテック社
製、孔径0.5μm)を、濾過ホルダーに装着し、膜の
一方の側に25℃の蒸留水を導入し、0.1Kgf/c
2Gの水圧をかけたところ、水は全く透過しなかっ
た。
Example 2 (Confirmation of Hydrophobic Membrane) An experimental flat membrane made of polytetrafluoroethylene and having a diameter of 47 mm (Advantech Co., Ltd., pore diameter 0.5 μm) was mounted on a filtration holder to form a membrane. Distilled water at 25 ° C was introduced to one side of 0.1kgf / c
When water pressure of m 2 G was applied, water did not permeate at all.

【0030】(脱気水の製造)実施例1で使用したもの
と同じ装置に流す流量を変えることで、溶存酸素濃度が
0.5ppm(飽和濃度の6.2%)、溶存窒素濃度
が、0.9ppm(飽和濃度の6.5%)、溶存空気濃
度が1.4ppm(飽和濃度の6.4%)の脱気水を作
成した。
(Production of degassed water) The dissolved oxygen concentration was 0.5 ppm (6.2% of the saturated concentration) and the dissolved nitrogen concentration was changed by changing the flow rate to the same apparatus as that used in Example 1. Degassed water having a concentration of 0.9 ppm (6.5% of saturation concentration) and a dissolved air concentration of 1.4 ppm (6.4% of saturation concentration) was prepared.

【0031】(親水化処理)この脱気水を膜の両面に満
たし、15分間放置した後に同様の透過試験を行ったと
ころ、水は3200l/m2.hrで透過した。
(Hydrophilic treatment) Both sides of the membrane were filled with this degassed water, and the same permeation test was conducted after standing for 15 minutes. Water permeated at 3200 l / m 2 .hr.

【0032】[実施例3]疎水性の膜として、ポリスル
ホン製限外濾過膜の直径47mmの平膜(日東電工製N
TU−3150、分画分子量5万)を蒸留水およびエタ
ノールで充分に洗浄した後乾燥したものを使用したこと
以外は、実施例2と同様の処理と試験を行った。結果
は、最初全く透過しなかった水が、親水化処理後は38
l/m2.hrで透過した。
[Example 3] As a hydrophobic membrane, a polysulfone ultrafiltration membrane having a diameter of 47 mm (Nitto Denko N
TU-3150, molecular weight cut off of 50,000) was thoroughly washed with distilled water and ethanol and then dried, and the same treatments and tests as in Example 2 were carried out. The result is that the water that had not permeated at first was 38 after the hydrophilization treatment.
It permeated at 1 / m 2 .hr.

【0033】[実施例4]実施例1と同様にして製造し
た脱気水を貯水槽にとり、溶存酸素濃度計で測定しつつ
大気下で攪拌し、溶存酸素濃度が6.1ppm(飽和濃
度の75%)となった時点でこれを用いて親水化処理を
行ったこと、および浸漬時間が1時間であること以外は
実施例2と同様の処理および試験を行った。使用した脱
気水をマススペクトル法で測定したところ、溶存窒素濃
度は11.1ppm(飽和濃度の81%)、溶存空気濃
度は17.2ppm(飽和濃度の78%)であった。透
水試験の結果、透過流束は2180l/m2.hrであっ
た。
Example 4 Degassed water produced in the same manner as in Example 1 was placed in a water tank and stirred under the atmosphere while measuring with a dissolved oxygen concentration meter to obtain a dissolved oxygen concentration of 6.1 ppm (at a saturated concentration of (75%), the same treatment and test as in Example 2 were carried out except that the hydrophilization treatment was performed using this and the immersion time was 1 hour. When the deaerated water used was measured by the mass spectrum method, the dissolved nitrogen concentration was 11.1 ppm (81% of the saturated concentration), and the dissolved air concentration was 17.2 ppm (78% of the saturated concentration). As a result of the water permeability test, the permeation flux was 2180 l / m 2 .hr.

【0034】[比較例2]実施例1と同様にして製造し
た脱気水を貯水槽にとり、溶存酸素濃度計で測定しつつ
大気下で攪拌し、溶存酸素濃度が7.3ppm(飽和濃
度の90%)となった時点でこれを用いて親水化処理を
行ったこと以外は実施例2と同様の処理および試験を行
った。使用した脱気水をマススペクトル法で測定したと
ころ、溶存窒素濃度は13.0ppm(飽和濃度の94
%)、溶存空気濃度は20.3ppm(飽和濃度の92
%)であった。透水試験の結果、水の透過は全く見られ
なかった。
[Comparative Example 2] Degassed water produced in the same manner as in Example 1 was placed in a water tank and stirred in the atmosphere while measuring with a dissolved oxygen concentration meter to obtain a dissolved oxygen concentration of 7.3 ppm (saturated concentration 90%), the same treatment and test as in Example 2 were performed except that the hydrophilic treatment was performed using this. When the degassed water used was measured by the mass spectrum method, the dissolved nitrogen concentration was 13.0 ppm (saturated concentration of 94%).
%), Dissolved air concentration is 20.3 ppm (saturated concentration 92
%)Met. As a result of the water permeability test, no water permeation was observed.

【0035】[0035]

【発明の効果】本発明は、疎水性の多孔質膜を親水化す
るにあたり、界面活性剤や有機溶剤などを使用すること
なく親水化することができるため、使用に当ってこれら
の物質を洗浄除去する必要がなく、手間やコストの増加
を招かない。また、特に医療、製薬、食品工業などの汚
染を嫌う用途において、これらの異物質の残留の恐れが
なくなる。また加圧による親水化法と異なり、大がかり
な装置の必要がなく、オンサイトで実施できる。また、
永久親水化法のように、膜製造コストの上昇を招かな
い。
INDUSTRIAL APPLICABILITY According to the present invention, when hydrophobizing a hydrophobic porous membrane, it can be hydrophilized without using a surfactant or an organic solvent. Therefore, these substances are washed before use. It does not need to be removed, which does not increase labor and cost. In addition, especially in applications such as medical treatment, pharmaceuticals, food industry, etc. where the contamination is disliked, there is no risk of these foreign substances remaining. Also, unlike the hydrophilization method by pressurization, it does not require a large-scale device and can be carried out on-site. Also,
Unlike the permanent hydrophilic method, it does not increase the membrane production cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で使用する配管を接続した膜モジュー
ルの部分縦断面図模式図ある。
FIG. 1 is a schematic partial vertical cross-sectional view of a membrane module to which a pipe used in Example 1 is connected.

【符号の説明】[Explanation of symbols]

1 膜モジュール 2 中空糸膜 3 樹脂封止部 4 接続口 5 接続口 6 接続口 7 接続口 8 バルブ 9 バルブ 10 バルブ 1 Membrane Module 2 Hollow Fiber Membrane 3 Resin Sealing Part 4 Connection Port 5 Connection Port 6 Connection Port 7 Connection Port 8 Valve 9 Valve 10 Valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】多孔質膜を、溶存空気濃度が飽和溶存空気
濃度の80%以下にまで脱気された水、又は溶存酸素濃
度が飽和溶存酸素濃度の80%以下にまで脱気された水
に浸漬することを特徴とする多孔質膜の親水化方法。
1. Water obtained by degassing a porous membrane to a dissolved air concentration of 80% or less of a saturated dissolved air concentration, or water degassed to a dissolved oxygen concentration of 80% or less of a saturated dissolved oxygen concentration. A method for hydrophilizing a porous membrane, which comprises immersing in a porous membrane.
【請求項2】多孔質膜を、溶存空気濃度が飽和溶存空気
濃度の80%以下にまで脱気され、かつ溶存酸素濃度が
飽和溶存酸素濃度の80%以下にまで脱気された水に浸
漬することを特徴とする多孔質膜の親水化方法。
2. A porous membrane is immersed in water that has been degassed to a dissolved air concentration of 80% or less of a saturated dissolved air concentration and a dissolved oxygen concentration of 80% or less of a saturated dissolved oxygen concentration. A method for making a porous membrane hydrophilic.
【請求項3】多孔質膜を、溶存空気濃度が飽和溶存空気
濃度の50%以下にまで脱気され、かつ溶存酸素濃度が
飽和溶存酸素濃度の50%以下にまで脱気された水に浸
漬することを特徴とする多孔質膜の親水化方法。
3. A porous membrane is immersed in water that has been degassed to a dissolved air concentration of 50% or less of a saturated dissolved air concentration and a dissolved oxygen concentration of 50% or less of a saturated dissolved oxygen concentration. A method for making a porous membrane hydrophilic.
【請求項4】多孔質膜が、ポリオレフィン、ポリテトラ
フロロエチレンまたはポリスルホンから構成されている
ことを特徴とする請求項1〜3のいずれか1項記載の多
孔質膜の親水化方法。
4. The method for hydrophilizing a porous membrane according to claim 1, wherein the porous membrane is composed of polyolefin, polytetrafluoroethylene or polysulfone.
JP1505592A 1992-01-30 1992-01-30 Method for making porous membrane hydrophilic Pending JPH05208121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1505592A JPH05208121A (en) 1992-01-30 1992-01-30 Method for making porous membrane hydrophilic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1505592A JPH05208121A (en) 1992-01-30 1992-01-30 Method for making porous membrane hydrophilic

Publications (1)

Publication Number Publication Date
JPH05208121A true JPH05208121A (en) 1993-08-20

Family

ID=11878154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1505592A Pending JPH05208121A (en) 1992-01-30 1992-01-30 Method for making porous membrane hydrophilic

Country Status (1)

Country Link
JP (1) JPH05208121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935845A (en) * 1989-10-31 1999-08-10 The United States Of America As Represented By Theadministrator, National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers
WO2011108418A1 (en) 2010-03-01 2011-09-09 株式会社 フジミインコーポレーテッド Filtration method for non-deaired liquid
WO2011108419A1 (en) 2010-03-01 2011-09-09 株式会社 フジミインコーポレーテッド Liquid filtration method
CN109126483A (en) * 2018-09-30 2019-01-04 上海恩捷新材料科技有限公司 A kind of method of polyethene microporous membrane surface hydrophilic modification and the modified polyethylene film formed by it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935845A (en) * 1989-10-31 1999-08-10 The United States Of America As Represented By Theadministrator, National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers
WO2011108418A1 (en) 2010-03-01 2011-09-09 株式会社 フジミインコーポレーテッド Filtration method for non-deaired liquid
WO2011108419A1 (en) 2010-03-01 2011-09-09 株式会社 フジミインコーポレーテッド Liquid filtration method
CN102834156A (en) * 2010-03-01 2012-12-19 福吉米株式会社 Liquid filtration method
JPWO2011108419A1 (en) * 2010-03-01 2013-06-27 株式会社フジミインコーポレーテッド Liquid filtration method
JPWO2011108418A1 (en) * 2010-03-01 2013-06-27 株式会社フジミインコーポレーテッド Filtration of undegassed liquid
JP5730851B2 (en) * 2010-03-01 2015-06-10 株式会社フジミインコーポレーテッド Filtration of undegassed liquid
CN109126483A (en) * 2018-09-30 2019-01-04 上海恩捷新材料科技有限公司 A kind of method of polyethene microporous membrane surface hydrophilic modification and the modified polyethylene film formed by it

Similar Documents

Publication Publication Date Title
JP6845919B2 (en) How to operate a porous membrane for membrane distillation and a module for membrane distillation
EP0273267B1 (en) Method of separating a particular component from its liquid solution
JP6003646B2 (en) Membrane module cleaning method
WO2013047398A1 (en) Composite semipermeable membrane
JP2017205740A (en) Composite membrane
EP3088073B1 (en) High-functional polyamide-based dry water treatment separator and method for manufacturing same
JP6544245B2 (en) Composite semipermeable membrane
EP0470377A2 (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
JP6202473B2 (en) Stock solution for porous membrane
JPH0523553A (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus, and gas-dissolving liquid manufacturing method
JPH04176303A (en) Method for removing gas dissolved in liquid
KR20170015118A (en) Coated ptfe membrane
JPH05208121A (en) Method for making porous membrane hydrophilic
KR102072877B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
CN108430612B (en) Composite semipermeable membrane
US20210146312A1 (en) Process for cleaning a membrane comprising drying the membrane
JP2004195380A (en) Package of liquid separation membrane module, method for manufacturing the package and method for preserving the module
JP2013202580A (en) Method for evaluating water permeability of hollow fiber membrane
US11517861B2 (en) Water treatment separation membrane, water treatment module comprising same, and manufacturing method therefor
JP3638426B2 (en) Ceramic composite member for deaeration and deaeration method using the same
KR102342446B1 (en) Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
KR102288130B1 (en) Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
WO2023276642A1 (en) Forward osmosis membrane module and manufacturing method therefor
KR20190048996A (en) Method for manufacturing water treatment module and water treatment module prepared by thereof
JP2584011B2 (en) Degassing method of dissolved gas in liquid