JP3638426B2 - Ceramic composite member for deaeration and deaeration method using the same - Google Patents

Ceramic composite member for deaeration and deaeration method using the same Download PDF

Info

Publication number
JP3638426B2
JP3638426B2 JP03510398A JP3510398A JP3638426B2 JP 3638426 B2 JP3638426 B2 JP 3638426B2 JP 03510398 A JP03510398 A JP 03510398A JP 3510398 A JP3510398 A JP 3510398A JP 3638426 B2 JP3638426 B2 JP 3638426B2
Authority
JP
Japan
Prior art keywords
degassing
ceramic composite
porous support
liquid
composite member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03510398A
Other languages
Japanese (ja)
Other versions
JPH11226368A (en
Inventor
喜裕 由宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03510398A priority Critical patent/JP3638426B2/en
Publication of JPH11226368A publication Critical patent/JPH11226368A/en
Application granted granted Critical
Publication of JP3638426B2 publication Critical patent/JP3638426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気体又は揮発性物質が溶解した液体あるいは液状物質から、該気体又は揮発性物質を効率良く分離して除去、又は回収するために適用される脱気用セラミック複合部材並びにそれを用いた脱気方法に関するものである。
【0002】
【従来の技術】
従来から液体あるいは液状物質を使用する上で、該液体あるいは液状物質中に溶解している種々の気体や揮発性物質を分離して除去、又は回収する、いわゆる脱気する必要のある分野は極めて多岐にわたっている。
【0003】
例えば、配管や容器、冷却装置等の腐蝕防止を目的としたボイラーやタービン、原子力発電用等の真水や海水等の供給水の脱酸素や脱炭酸ガス、上・中水の赤水防止や貯蔵水の微生物繁殖防止を目的とした水道水等の脱酸素、酒やビール、ジュースあるいは食用油等の液状食品の変質防止を目的とした脱酸素、人工透析液等の医療用脱酸素液の製造、写真現像液等に代表される液体や液状物質中の気泡の除去及び発生防止、逆浸透膜への供給液の脱酸素、陰イオン交換樹脂の効果を持続させるためのイオン交換水プロセスの脱酸素や脱炭酸ガス、生菌の発生とシリコンウエハーの酸化防止のための半導体洗浄用の超純水の脱酸素、電気部品や金属部品の洗浄用水の脱酸素、分析精度向上のための分析機器関連の液体あるいは液状物質の脱気等の分野が上げられる。
【0004】
特に、半導体洗浄用に使用される超純水は、生菌の発生を抑えかつシリコンウエハーの酸化を防ぐため、溶存酸素濃度が厳しく規制されてきたが、昨今の超LSI製造用の超純水には、溶存酸素濃度が10ppb以下に超脱気することが必要とされ、その上、地球環境面からも洗浄用フロンの代替として大量の超純水が使われるようになり、更に、前記半導体製造関係では超純水だけでなく、レジスト液のようなウェットプロセシングで用いられるあらゆる液体からの脱気についても厳しい要求が出されており、ますます効率の良い脱気技術、とりわけ脱酸素の技術が要求されている。
【0005】
このような各種分野における液体あるいは液状物質からの脱気には、従来から各種物理的脱気法や化学的脱気法が採用されており、物理的脱気法では加熱脱気法や真空脱気法、あるいは膜式脱気法が、化学的脱気法では脱酸素剤注入法やイオン交換樹脂法等が良く知られている。
【0006】
しかしながら、前記加熱脱気法は高温操作のために危険性が高く、又、真空脱気法では真空系から液体を引き出すポンプが必要になる等、いずれも装置が大規模になるという欠点があり、又、脱酸素剤注入法は、前記機械的脱気により処理後の残存酸素をヒドラジンや亜硫酸ナトリウム等の脱酸素剤の化学反応を利用して除去するものであるが、毒性の問題もあって主に中高圧ボイラー用に用途が限定されており、更に、イオン交換樹脂法は再生処理が必要であるという問題がある。
【0007】
又、他に高純度の窒素やアルゴンガス等の不活性ガスで酸素を置換する不活性ガス置換法があるが、これは実験室規模で適用されるに過ぎないものである。
【0008】
従って、工業的には前記物理的脱気法である気体分離機能を有する膜を介して気液界面を大きくして減圧側に気体を分離する膜式脱気法が、装置が小型で処理工程が簡便であること等の優れた特徴から有望視されている。
【0009】
かかる膜式脱気法としては、例えば、ポリ−4−メチルペンテン−1系の高分子材料から成る多孔質中空糸膜を用いて脱気する方法(特開平2−107317号公報参照)や、機械的強度や耐熱性、寸法安定性等が容易に得られる高分子材料から成る多孔質支持膜上に、透過選択性に優れた同じく高分子材料から成る非多孔質活性層を形成した中空糸形状、又はスパイラル形状の複合膜を用いて脱気する方法(特開平6−335623号公報、特開平3−139304号公報参照)等が提案されている。
【0010】
【発明が解決しようとする課題】
しかしながら、前記多孔質中空糸膜を用いた脱気法では、一般に、気体又は揮発性物質の透過速度は速いものの、液体あるいは液状物質の成分の透過速度に対する気体又は揮発性物質の透過速度の比、即ち選択率が悪く、液体あるいは液状物質の成分が膜表面に浸み出してきて操作性が悪くなることから脱気のための減圧度を上げることができず、他方、非多孔質活性層を有する複合膜では前記選択率は高いものの、液体あるいは液状物質中に溶解した気体又は揮発性物質の透過速度が遅いため脱気効率が悪いという課題があった。
【0011】
特に、前記半導体製造関係においては、ウェットプロセシングで使用する各種液体から効率的に、かつ経時的に安定して溶存気体を除去することが可能なより高精度な脱気用の膜が望まれているが、前記高分子材料から成る膜では、分離対象物は高分子鎖間隙、いわゆる自由体積孔を透過することになるが、高分子鎖のゆらぎ等により自由体積孔のサイズに分布があるため、分離対象物に対する分画サイズの制御には限界があり、そのために従来の有機高分子膜では、それが多孔質膜であっても、あるいは非多孔質活性層を有する膜であっても、液体あるいは液状物質をほとんど通さず、かつ高いガス透過率を維持した状態で効率的に前記液体あるいは液状物質に溶解した気体又は揮発性物質を分離して脱気することは困難であるという課題があった。
【0012】
【発明の目的】
本発明は前記課題に鑑み成されたもので、その目的は、気体又は揮発性物質が溶解した液体あるいは液状物質から、過度に液体あるいは液状成分を流出させることなく、前記気体又は揮発性物質のみを高いガス透過率を維持したまま、効率的に分離するのに好適な気体分離機能を有する脱気用セラミック複合部材並びにそれを用いた脱気方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明者は、前記課題に鑑み鋭意研究を重ねた結果、多孔質体内の細孔における撥水性が、液体あるいは液状物質に溶解した気体又は揮発性物質の透過に大きく関与することを見いだし、優れた脱気特性、即ち、液体あるいは液状成分をほとんど通さず、かつ高いガス透過率を維持した状態で、工業的に大量処理できる効率的な脱気処理法を実現すべく、前記多孔質体の撥水性と液体あるいは液状物質に溶解した気体又は揮発性物質の分離性能との関係について検討し、本発明に至った。
【0014】
即ち、本発明の脱気用セラミック複合部材は、2.0μm以下の平均細孔径を有する多孔質支持体の細孔内壁に、一般式が
【0015】
【化1】

Figure 0003638426
【0016】
で表される撥水性を有するシリコンアルコキシドを用いてフッ素とシリコンとの複合膜を被着形成して成ることを特徴とするものである。
【0017】
又、本発明の脱気用セラミック複合部材は、前記多孔質支持体の表面に、該多孔質支持体の平均細孔径より小さい平均細孔径を有する被覆層を形成して成るものであること、前記被覆層が、γ−アルミナ(Al2 3 )より成るものであること、更に、前記多孔質支持体が管状体であることが、脱気特性上、より望ましいものである。
【0018】
又、本発明の脱気方法は、2.0μm以下の平均細孔径を有する多孔質支持体の細孔内壁に被着形成した、一般式が
【0019】
【化1】
Figure 0003638426
【0020】
で表される撥水性を有するシリコンアルコキシドを用いたフッ素とシリコンとの複合膜を有する脱気用セラミック複合部材に液体あるいは液状物質を接触させ、該液体あるいは液状物質に溶解している気体又は揮発性物質を、選択的に前記脱気用セラミック複合部材を透過させてこれを分離することを特徴とするものである。
【0021】
特に、本発明の脱気方法に用いる脱気用セラミック複合部材は、該脱気用セラミック複合部材を構成する多孔質支持体の表面に、平均細孔径が前記多孔質支持体より小さい被覆層を形成したものが望ましく、該被覆層が、γ−アルミナ(Al2 3 )より成るものであること、更に、前記脱気用セラミック複合部材を構成する多孔質支持体が、管状体であることがより好ましいものである。
【0022】
【作用】
本発明の脱気用セラミック複合部材並びにそれを用いた脱気方法は、脱気用セラミック複合部材を構成する多孔質支持体の細孔内壁が撥水性のシリコンアルコキシドから成るフッ素とシリコンとの複合膜を被着形成したことから、その撥水作用により、液体あるいは液状物質は多孔質支持体の細孔内を透過することができず、該液体あるいは液状物質に溶解している気体又は揮発性物質のみが透過することになる。
【0023】
従って、気体又は揮発性物質が溶解した液体あるいは液状物質を脱気用セラミックス複合部材を隔てて反対側を減圧すると、その液体あるいは液状物質に溶解していた気体または揮発性物質の構成分子のみが多孔質内を通過するため、過度に液体あるいは液状物質の成分を流出させることなく、効率的に前記気体又は揮発性物質を透過させることができる。
【0024】
【発明の実施の形態】
以下、本発明の脱気用セラミック複合部材並びにそれを用いた脱気方法について詳述する。
【0025】
本発明の脱気用セラミック複合部材は、平均細孔径が2.0μm以下である多孔質支持体と、該多孔質支持体の細孔内壁に被着形成した、一般式が
【0026】
【化1】
Figure 0003638426
【0027】
で表される撥水性を有するシリコンアルコキシドより成るフッ素とシリコンとの複合膜とで構成されるものであり、前記多孔質支持体の平均細孔径が2.0μmを越えると、前記フッ素とシリコンとの複合膜を多孔質支持体の細孔内壁に被着形成しても液体あるいは液状物質に対する撥水作用を示さず、それらが通過してしまい脱気特性が低下するためである。
【0028】
次に、本発明の多孔質支持体は、素材としてはα−アルミナや安定化ジルコニア、分相ガラス等が適用可能であり、前記素材から成る多孔質支持体は、ガス透過の圧力損失を可能な限り低くするためには20%以上の気孔率を、又、脱気用セラミック複合部材の集合体を組み立てる際に破損したり、脱気操作中に多孔質支持体構成粒子の脱粒が起こらないよう支持体の強度を確保するためには40%以下の気孔率を有するものであることが望ましい。
【0029】
また、本発明の多孔質支持体の形状形態は、特に限定されるものではなく、平板状や中空状の構造体、管状体等のいずれでも良いが、脱気効率や前記集合体としての取り扱い易さからは管状体が望ましく、又、かかる管状体は押し出し成形法等により、比較的、簡単に作製できるというメリットがある。
【0030】
更に、前記多孔質支持体を管状体で構成する場合には、管状体を数十本から数百本束ねて集合体に組み立てた時に膜面積が十分大きくなるようにするため、該管状体の外径は可能な限り小さい方がよいが、強度との兼ね合いからは2〜5mmが好適である。
【0031】
又、本発明における撥水性を有するシリコンアルコキシドとは、一般式が
【0032】
【化1】
Figure 0003638426
【0033】
で表されるものであり、例えば、CF3 2 4 Si(OCH3 3 やC6 132 4 Si(OC2 5 3 、C8 172 4 Si(OC2 5 3 等が挙げられ、特に撥水効果の安定性という点からはC6 132 4 Si(OC2 5 3 が好適に用いられる。
【0034】
一方、本発明の被覆層とは、その平均細孔径が多孔質支持体よりも小さいもので、前記多孔質支持体と反応せず、多孔質支持体の表面を層状に覆い平滑な表面を形成するものであれば、その材質は問わない。
【0035】
即ち、前記多孔質支持体表面に被覆層を形成せずに直接、多孔質支持体の細孔内壁に撥水性を有するシリコンアルコキシドより成るフッ素とシリコンとの複合膜を形成した場合に比べて、該被覆層を形成した場合には細孔がより緻密になり、液体あるいは液状物質の漏れ出しが抑制され、より好ましくなる。
【0036】
かかる被覆層として、例えば、多孔質支持体としてα−アルミナを選んだ場合にはγ−アルミナが好適であり、かかるγ−アルミナから成る被覆層はベーマイトゾルをコーティングした後、400〜900℃の温度で熱処理することにより形成できるものである。
【0037】
又、特に管状構造をした多孔質支持体の表面に、シリカを主成分とする金属酸化物から成るセラミック層を被覆するとより好適となる。
【0038】
かくして得られた脱気用セラミック複合部材は、例えば、50本束ねてケース内に熱硬化性樹脂で固定し、特に、前記脱気用セラミック複合部材の片側に液体あるいは液状物質を流しながら、脱気用セラミック複合部材の他方の側を減圧することにより、該液体あるいは液状物質に溶解している気体又は揮発性物質の脱気が効果的に行われるものである。
【0039】
次に、本発明の脱気方法は、多孔質支持体の細孔内壁に、一般式が
【0040】
【化1】
Figure 0003638426
【0041】
で表される撥水性を有するシリコンアルコキシドを用いて被着形成したフッ素とシリコンとの複合膜と、平均細孔径が2.0μm以下である多孔質支持体とで構成される脱気用セラミック複合部材を介して、液体又は液状物質に溶解している気体又は揮発性物質を脱気する方法であって、脱気する液体又は液状物質を前記脱気用セラミック複合部材の片側に接触させ、他方の側に気体又は揮発性物質を選択的に透過させて分離することを特徴とするものである。
【0042】
従って、本発明の脱気方法では、脱気用セラミック複合部材の片側に液体又は液状物質を接触させ、他方の側を減圧したり、脱気する気体又は揮発性物質以外のものを流したり、更には脱気する気体又は揮発性物質を溶解していない液体又は液状物質を流したり、あるいは脱気する気体又は揮発性物質の吸着剤を充填したりする各種方法を採用し得るが、少なくとも液体又は液状物質を接触させるのは前記細孔内壁に撥水性を有する前記フッ素とシリコンとの複合膜を形成した側であることが肝要である。
【0043】
又、本発明の脱気用セラミック複合部材において、平板状や中空状の構造体、管状体等を成すいかなる形状であっても、前記脱気用セラミック複合部材の細孔内壁が撥水性を有するように形成されておれば良く、前記撥水性を有する部分が脱気用セラミック複合部材の内側や外側、あるいは多層構造であっても何ら問題はなく脱気を行うことができる。
【0044】
又、本発明の脱気用セラミック複合部材は、従来の有機高分子膜に比べて高い強度と耐薬品性に優れているが故に、種々の条件下での脱気が可能となり、例えば、純水からの脱気は勿論のこと、酸や塩基性水溶液、あるいはイソプロピルアルコール等の有機溶媒からの脱気や、水に溶解した微量のアルコールや芳香族化合物の除去に対しても、特性劣化することなく安定して用いることができ、更に、高粘性の各種溶液に対しても、該溶液を加圧することで効率的な脱気が可能である。
【0045】
【実施例】
以下、本発明の脱気用セラミック複合部材並びにそれを用いた脱気方法について、その一例を詳述する。
【0046】
(実施例1)
本発明を評価するに際し、先ず、(トリデカフルオロ−1、1、2、2−テトラヒドロオクチル)トリエトキシシラン(C6 132 4 Si(OC2 5 3 )5.1g(0.01モル)に、塩化水素(HCl)0.007モルを含む水0.14g(0.01モル)とエタノール(C2 5 OH)36.9g(0.1モル)の混合物を滴下して加水分解し、ゾルを作製した。
【0047】
次に、得られたゾルに外径が3mm、厚さが0.4mm、長さが250mmで気孔率が39%であるα−アルミナ(Al2 3 )多孔質管を30秒間浸漬し、5mm/秒の速度で引き上げ、室温で1時間乾燥した後、300℃で焼成して撥水性を有する複合膜を被着したセラミック複合管を作製した。
【0048】
次に、前記セラミック複合管を50本用意し、その両端をポリウレタン樹脂で束ねて図1に示すような試験装置のケース2内に装着すると共に、セラミック複合管3を樹脂封止部4、5でポリウレタン樹脂を用いて封止し、評価用の脱気装置1を作製した。
【0049】
尚、前記セラミック複合管3の有効長さは220mmで、その集合体の有効膜面積は0.10m2 であった。
【0050】
評価は、前記脱気装置1の原液導入口6より溶存酸素濃度が8ppmの純水を0.5リットル/分の流速で流し、セラミック複合管3の内側に通じる吸引口7、8を真空ポンプで150torrに減圧して脱気した。
【0051】
この時、処理液排出口9より排出された純水の溶存酸素量を測定したところ2.0ppmであり、更に、100時間連続運転しても特性及びセラミック複合管の外観に変化は認められなかった。
【0052】
(実施例2)
実施例1のα−アルミナ(Al2 3 )多孔質管の表面に、厚さ2μmのγ−アルミナ(Al2 3 )被覆層を被着形成した多孔質支持体を用いる以外は、実施例と全く同一条件でセラミック複合管を作製した。
【0053】
次いで、実施例1と同様にして評価用の脱気装置を組み立て、実施例1と同一条件で評価したところ、純水の溶存酸素量は2.0ppmであり、100時間連続運転しても特性及びセラミック複合管の外観に変化は認められなかった
(比較例)
一方、ポリ−4−メチルペンテン−1を主成分とする外径が350μm、内径が260μm、平均細孔径が0.06μmの多孔質中空糸を用いて実施例1と同様の評価用の脱気装置を組立てた。
【0054】
尚、前記多孔質中空糸の有効長さは220mmで、その集合体の有効膜面積は0.12m2 であった。
【0055】
実施例1と同様にして溶存酸素濃度が8ppmの純水を0.5リットル/分の流速で流し、多孔質中空糸の内側に通じる吸引口を真空ポンプで150torrに減圧して処理液排出口より排出された純水の溶存酸素量を測定したが、測定値は5.5ppmを示し、更に、5時間連続運転した時点で吸引口に水滴が認められた。
【0056】
【発明の効果】
叙上の如く、本発明の脱気用セラミック複合部材並びにそれを用いた脱気方法は、脱気用セラミック複合部材として、2.0μm以下の平均細孔径を有する多孔質支持体の細孔内壁に撥水性を有するシリコンアルコキシドを用いて被着形成したフッ素とシリコンとの複合膜と、前記多孔質支持体とで構成されたものであることから、かかる脱気用セラミック複合部材の片側に液体あるいは液状物質を接触させ、該液体あるいは液状物質に溶解している気体又は揮発性物質を選択的に前記脱気用セラミック複合部材を透過させ、他方の側に前記気体又は揮発性物質を分離することから、気体又は揮発性物質が溶解した液体あるいは液状物質から、液体あるいは液状成分の浸み出しを極力少なくして、目的とする気体又は揮発性物質のみを高いガス透過率を維持したまま選択的に、かつ効率的に分離できる脱気用セラミック複合部材並びにそれを用いた脱気方法を得ることができる。
【図面の簡単な説明】
【図1】本発明の脱気用セラミック複合部材を組み込んだ評価用の脱気装置の概要を示す断面図である。
【符号の説明】
1 脱気装置
2 ケース
3 セラミック複合管
4、5 樹脂封止部
6 原液導入口
7、8 吸引口
9 処理液排出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a degassing ceramic composite member applied for efficiently separating and removing or recovering a gas or volatile substance from a liquid or liquid substance in which the gas or volatile substance is dissolved, and using the same. It was related to the deaeration method.
[0002]
[Prior art]
In the past, when a liquid or liquid substance is used, various fields in which the various gases and volatile substances dissolved in the liquid or liquid substance are separated and removed or recovered, so-called deaeration is extremely important. There are a wide variety.
[0003]
For example, boilers and turbines for the prevention of corrosion of pipes, containers, cooling devices, etc. Deoxygenation and decarboxylation of fresh water and seawater for nuclear power generation, etc. Deoxygenation of tap water, etc. for the purpose of preventing the growth of microorganisms, deoxygenation for the purpose of preventing deterioration of liquid foods such as liquor, beer, juice or edible oil, production of medical deoxygenates such as artificial dialysate, Removal and prevention of bubbles in liquids and liquid substances typified by photographic developer, deoxygenation of feed solution to reverse osmosis membrane, deoxygenation of ion exchange water process to maintain the effect of anion exchange resin And decarbonation gas, generation of viable bacteria and deoxidation of ultrapure water for semiconductor cleaning to prevent oxidation of silicon wafers, deoxygenation of cleaning water for electrical parts and metal parts, and analytical instruments for improving analysis accuracy Degassing liquids or liquid substances Field is raised.
[0004]
In particular, ultrapure water used for semiconductor cleaning has been strictly regulated in order to suppress the generation of viable bacteria and prevent oxidation of silicon wafers. In addition, it is necessary to deaerate the dissolved oxygen concentration to 10 ppb or less, and in addition, from the viewpoint of the global environment, a large amount of ultrapure water is used as an alternative to cleaning CFCs. There are strict requirements for degassing not only ultrapure water but also all liquids used in wet processing such as resist solutions, and more efficient degassing technology, especially deoxygenation technology, It is requested.
[0005]
Various degassing methods and chemical degassing methods have been conventionally employed for degassing liquids and liquid substances in various fields. In physical degassing methods, heat degassing methods and vacuum degassing methods are used. As the gas method or the membrane type deaeration method, the oxygen scavenger injection method or the ion exchange resin method is well known as the chemical deaeration method.
[0006]
However, the heat degassing method is highly dangerous due to high temperature operation, and the vacuum degassing method has a disadvantage that the apparatus becomes large in scale, such as requiring a pump for drawing liquid from the vacuum system. In addition, the oxygen scavenger injection method removes residual oxygen after the treatment by mechanical deaeration using a chemical reaction of oxygen scavengers such as hydrazine and sodium sulfite, but there is also a problem of toxicity. In particular, the use is limited to medium and high pressure boilers, and further, the ion exchange resin method has a problem of requiring regeneration treatment.
[0007]
In addition, there is an inert gas replacement method in which oxygen is replaced with an inert gas such as high-purity nitrogen or argon gas, but this is only applied on a laboratory scale.
[0008]
Therefore, the membrane type deaeration method which enlarges the gas-liquid interface and separates the gas to the decompression side through the membrane having the gas separation function, which is the physical deaeration method industrially, has a small apparatus and a processing step. Is promising because of its excellent features such as simplicity.
[0009]
Examples of such a membrane degassing method include a method of degassing using a porous hollow fiber membrane made of a poly-4-methylpentene-1 polymer material (see JP-A-2-107317), A hollow fiber in which a non-porous active layer made of the same polymer material with excellent permselectivity is formed on a porous support membrane made of a polymer material that can easily obtain mechanical strength, heat resistance, dimensional stability, etc. A method of deaeration using a composite membrane having a shape or a spiral shape (see JP-A-6-335623 and JP-A-3-139304) has been proposed.
[0010]
[Problems to be solved by the invention]
However, in the deaeration method using the porous hollow fiber membrane, although the permeation rate of the gas or volatile substance is generally high, the ratio of the permeation rate of the gas or volatile substance to the permeation rate of the component of the liquid or liquid substance is high. That is, the selectivity is poor and the operability becomes worse due to the liquid or liquid component leaching out to the membrane surface, so the degree of vacuum for deaeration cannot be increased, while the non-porous active layer In the composite membrane having the above, although the selectivity is high, there is a problem that the deaeration efficiency is poor because the permeation rate of the gas or the volatile substance dissolved in the liquid or liquid substance is slow.
[0011]
In particular, in the semiconductor manufacturing relation, a highly accurate degassing film capable of efficiently and stably removing dissolved gas from various liquids used in wet processing over time is desired. However, in the membrane made of the above-mentioned polymer material, the separation object permeates the polymer chain gap, so-called free volume pores, but the size of the free volume pores is distributed due to fluctuations in the polymer chains. In addition, there is a limit to the control of the fraction size with respect to the separation target. Therefore, in the conventional organic polymer membrane, even if it is a porous membrane or a membrane having a non-porous active layer, The problem that it is difficult to separate and degas efficiently the gas or volatile substance dissolved in the liquid or liquid substance while passing almost no liquid or liquid substance and maintaining high gas permeability There was.
[0012]
OBJECT OF THE INVENTION
The present invention has been made in view of the above-mentioned problems, and its object is to provide only the gas or volatile substance without causing the liquid or liquid component to flow out excessively from the liquid or liquid substance in which the gas or volatile substance is dissolved. It is an object of the present invention to provide a degassing ceramic composite member having a gas separation function suitable for efficient separation while maintaining a high gas permeability and a degassing method using the same.
[0013]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventor has found that the water repellency in the pores in the porous body is greatly involved in the permeation of the liquid or gas dissolved in the liquid substance or volatile substance. In order to realize an efficient degassing process that can be industrially mass-treated while maintaining a high gas permeability while passing almost no liquid or liquid component. The relationship between the water repellency and the separation performance of gas or volatile substance dissolved in a liquid or liquid substance was studied, and the present invention was achieved.
[0014]
That is, the degassing ceramic composite member of the present invention has the general formula represented by the general formula on the pore inner wall of the porous support having an average pore diameter of 2.0 μm or less.
[Chemical 1]
Figure 0003638426
[0016]
A composite film of fluorine and silicon is formed by using a silicon alkoxide having water repellency represented by the following formula.
[0017]
Further, the degassing ceramic composite member of the present invention is formed by forming a coating layer having an average pore diameter smaller than the average pore diameter of the porous support on the surface of the porous support. It is more desirable in terms of deaeration characteristics that the coating layer is made of γ-alumina (Al 2 O 3 ), and that the porous support is a tubular body.
[0018]
In the degassing method of the present invention, the general formula formed on the inner wall of the pore of the porous support having an average pore diameter of 2.0 μm or less has the general formula:
[Chemical 1]
Figure 0003638426
[0020]
A liquid or liquid substance is brought into contact with a ceramic composite member for deaeration having a composite film of fluorine and silicon using a silicon alkoxide having water repellency represented by the following: gas or volatilization dissolved in the liquid or liquid substance The active substance is selectively permeated through the degassing ceramic composite member to separate it.
[0021]
In particular, the degassing ceramic composite member used in the degassing method of the present invention has a coating layer having an average pore diameter smaller than that of the porous support on the surface of the porous support constituting the degassing ceramic composite member. The formed layer is desirable, the coating layer is made of γ-alumina (Al 2 O 3 ), and the porous support constituting the degassing ceramic composite member is a tubular body. Is more preferable.
[0022]
[Action]
The degassing ceramic composite member and the degassing method using the same according to the present invention are a composite of fluorine and silicon in which the pore inner wall of the porous support constituting the degassing ceramic composite member is made of water-repellent silicon alkoxide. Since the film is deposited, the liquid or liquid substance cannot permeate through the pores of the porous support due to its water repellency, and the gas or volatile substance dissolved in the liquid or liquid substance Only the substance will permeate.
[0023]
Therefore, if the liquid or liquid substance in which the gas or volatile substance is dissolved is depressurized on the opposite side across the degassing ceramic composite member, only the constituent molecules of the gas or volatile substance dissolved in the liquid or liquid substance will be present. Since it passes through the porous body, the gas or the volatile substance can be efficiently permeated without causing the liquid or liquid substance component to flow out excessively.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the ceramic composite member for deaeration of the present invention and the deaeration method using the same will be described in detail.
[0025]
The degassing ceramic composite member of the present invention has a general formula in which a porous support having an average pore diameter of 2.0 μm or less and an inner wall of a pore of the porous support are formed.
[Chemical 1]
Figure 0003638426
[0027]
When the average pore diameter of the porous support exceeds 2.0 μm, the fluorine and silicon are composed of a composite film of fluorine and silicon made of silicon alkoxide having water repellency represented by This is because even if the composite membrane is formed on the inner wall of the pores of the porous support, it does not exhibit a water-repellent effect on the liquid or liquid substance, and they pass through and the deaeration characteristic is lowered.
[0028]
Next, as the material of the porous support of the present invention, α-alumina, stabilized zirconia, phase-separated glass, etc. can be applied, and the porous support made of the material enables a gas transmission pressure loss. In order to make it as low as possible, the porosity of 20% or more is not damaged, and when the assembly of the ceramic composite member for deaeration is assembled, the particles constituting the porous support body do not fall during the deaeration operation. In order to ensure the strength of the support, it is desirable to have a porosity of 40% or less.
[0029]
Further, the shape and shape of the porous support of the present invention is not particularly limited, and may be any of a flat or hollow structure, a tubular body, etc., but the deaeration efficiency and the handling as the aggregate are not limited. A tubular body is desirable for ease of use, and such a tubular body has an advantage that it can be relatively easily produced by an extrusion method or the like.
[0030]
Further, in the case where the porous support is constituted by a tubular body, in order to make the membrane area sufficiently large when the tubular body is assembled into an assembly by bundling several hundred to several hundreds of the tubular body, The outer diameter should be as small as possible, but is preferably 2 to 5 mm in view of strength.
[0031]
The silicon alkoxide having water repellency in the present invention is represented by the general formula:
[Chemical 1]
Figure 0003638426
[0033]
For example, CF 3 C 2 H 4 Si (OCH 3 ) 3 , C 6 F 13 C 2 H 4 Si (OC 2 H 5 ) 3 , C 8 F 17 C 2 H 4 Si ( OC 2 H 5 ) 3 and the like. C 6 F 13 C 2 H 4 Si (OC 2 H 5 ) 3 is preferably used particularly from the viewpoint of the stability of the water repellent effect.
[0034]
On the other hand, the coating layer of the present invention has an average pore size smaller than that of the porous support, does not react with the porous support, and forms a smooth surface by covering the surface of the porous support in layers. Any material can be used.
[0035]
That is, compared with the case where a composite film of fluorine and silicon made of silicon alkoxide having water repellency is directly formed on the pore inner wall of the porous support without forming a coating layer on the surface of the porous support, When the coating layer is formed, the pores become denser and leakage of the liquid or liquid substance is suppressed, which is more preferable.
[0036]
As such a coating layer, for example, when α-alumina is selected as the porous support, γ-alumina is suitable. The coating layer composed of such γ-alumina is coated with boehmite sol and then heated to 400 to 900 ° C. It can be formed by heat treatment at a temperature.
[0037]
In particular, it is more preferable that the surface of the porous support having a tubular structure is coated with a ceramic layer made of a metal oxide mainly composed of silica.
[0038]
For example, 50 degassing ceramic composite members thus obtained are bundled and fixed in a case with a thermosetting resin, and in particular, degassing is performed while flowing a liquid or liquid substance on one side of the degassing ceramic composite member. By depressurizing the other side of the ceramic composite member for gas, the gas or volatile substance dissolved in the liquid or liquid substance is effectively degassed.
[0039]
Next, in the degassing method of the present invention, the general formula is expressed on the pore inner wall of the porous support.
[Chemical 1]
Figure 0003638426
[0041]
A degassing ceramic composite comprising a composite film of fluorine and silicon deposited using a silicon alkoxide having water repellency represented by the formula: and a porous support having an average pore diameter of 2.0 μm or less A method of degassing a gas or a volatile substance dissolved in a liquid or liquid substance through a member, wherein the liquid or liquid substance to be deaerated is brought into contact with one side of the degassing ceramic composite member, and the other The gas or volatile substance is selectively permeated to the side of the gas and separated.
[0042]
Therefore, in the degassing method of the present invention, a liquid or liquid substance is brought into contact with one side of the ceramic composite member for degassing, the other side is depressurized, or a gas other than the gas or volatile substance to be degassed is flowed, Furthermore, various methods of flowing a liquid or liquid substance that does not dissolve the gas or volatile substance to be degassed, or filling an adsorbent of the gas or volatile substance to be degassed can be used. Alternatively, it is important that the liquid substance is brought into contact with the side on which the composite film of fluorine and silicon having water repellency is formed on the inner wall of the pore.
[0043]
Further, in the degassing ceramic composite member of the present invention, the inner wall of the pores of the degassing ceramic composite member has water repellency regardless of the shape of a flat or hollow structure or tubular body. Degassing can be performed without any problem even if the water repellent portion is inside or outside the degassing ceramic composite member or a multilayer structure.
[0044]
In addition, since the degassing ceramic composite member of the present invention is superior in strength and chemical resistance compared to conventional organic polymer membranes, it can be degassed under various conditions. Not only deaeration from water, but also degassing from acids, basic aqueous solutions, or organic solvents such as isopropyl alcohol, and removal of trace amounts of alcohols and aromatic compounds dissolved in water, the characteristics deteriorate. In addition, it is possible to efficiently deaerate various highly viscous solutions by pressurizing the solutions.
[0045]
【Example】
Hereinafter, an example of the degassing ceramic composite member of the present invention and the degassing method using the same will be described in detail.
[0046]
(Example 1)
In evaluating the present invention, first, 5.1 g of (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane (C 6 F 13 C 2 H 4 Si (OC 2 H 5 ) 3 ) ( 0.01 mol), a mixture of 0.14 g (0.01 mol) of water containing 0.007 mol of hydrogen chloride (HCl) and 36.9 g (0.1 mol) of ethanol (C 2 H 5 OH) was added dropwise. And then hydrolyzed to prepare a sol.
[0047]
Next, an α-alumina (Al 2 O 3 ) porous tube having an outer diameter of 3 mm, a thickness of 0.4 mm, a length of 250 mm and a porosity of 39% was immersed in the obtained sol for 30 seconds, After pulling up at a rate of 5 mm / second and drying at room temperature for 1 hour, a ceramic composite tube having a water-repellent composite film deposited by firing at 300 ° C. was produced.
[0048]
Next, 50 ceramic composite pipes are prepared, and both ends thereof are bundled with polyurethane resin and mounted in the case 2 of the test apparatus as shown in FIG. And using a polyurethane resin to produce a deaerator 1 for evaluation.
[0049]
The effective length of the ceramic composite tube 3 was 220 mm, and the effective membrane area of the aggregate was 0.10 m 2 .
[0050]
Evaluation is made by flowing pure water with a dissolved oxygen concentration of 8 ppm from the stock solution inlet 6 of the degassing device 1 at a flow rate of 0.5 liter / minute, and suction ports 7 and 8 leading to the inside of the ceramic composite tube 3 are vacuum pumps. And deaerated under reduced pressure to 150 torr.
[0051]
At this time, the amount of dissolved oxygen in pure water discharged from the treatment liquid discharge port 9 was measured and found to be 2.0 ppm. Furthermore, no change was observed in the characteristics and appearance of the ceramic composite tube even after 100 hours of continuous operation. It was.
[0052]
(Example 2)
This was carried out except that a porous support having a 2 μm-thick γ-alumina (Al 2 O 3 ) coating layer formed on the surface of the α-alumina (Al 2 O 3 ) porous tube of Example 1 was used. A ceramic composite tube was prepared under exactly the same conditions as in the example.
[0053]
Next, an evaluation degassing apparatus was assembled in the same manner as in Example 1 and evaluated under the same conditions as in Example 1. As a result, the dissolved oxygen content of pure water was 2.0 ppm. No change was observed in the appearance of the ceramic composite tube (Comparative example)
On the other hand, degassing for evaluation similar to that of Example 1 using a porous hollow fiber mainly composed of poly-4-methylpentene-1 having an outer diameter of 350 μm, an inner diameter of 260 μm, and an average pore diameter of 0.06 μm. The device was assembled.
[0054]
The effective length of the porous hollow fiber was 220 mm, and the effective membrane area of the aggregate was 0.12 m 2 .
[0055]
In the same manner as in Example 1, pure water with a dissolved oxygen concentration of 8 ppm was flowed at a flow rate of 0.5 liter / min, and the suction port leading to the inside of the porous hollow fiber was reduced to 150 torr with a vacuum pump, and the treatment liquid discharge port The amount of dissolved oxygen in the pure water discharged was measured. The measured value was 5.5 ppm, and water droplets were observed at the suction port after 5 hours of continuous operation.
[0056]
【The invention's effect】
As described above, the degassing ceramic composite member of the present invention and the degassing method using the same are used as the degassing ceramic composite member as the pore inner wall of a porous support having an average pore diameter of 2.0 μm or less. Since it is composed of a composite film of fluorine and silicon deposited using silicon alkoxide having water repellency, and the porous support, a liquid is provided on one side of the degassing ceramic composite member. Alternatively, a liquid substance is brought into contact, a gas or volatile substance dissolved in the liquid or the liquid substance is selectively permeated through the degassing ceramic composite member, and the gas or volatile substance is separated on the other side. Therefore, from the liquid or liquid substance in which the gas or volatile substance is dissolved, the leaching of the liquid or liquid component is reduced as much as possible, and only the target gas or volatile substance is increased. Selected while maintaining the transmittance manner and efficiently ceramic composite member deaerating be separated and deaerated method using the can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an outline of an evaluation deaeration apparatus incorporating a deaeration ceramic composite member of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Deaeration device 2 Case 3 Ceramic composite pipe 4, 5 Resin sealing part 6 Stock solution introduction port 7, 8 Suction port 9 Treatment solution discharge port

Claims (8)

平均細孔径が2.0μm以下である多孔質支持体と、該多孔質支持体の細孔内壁に、一般式が
Figure 0003638426
で表される撥水性を有するシリコンアルコキシドを用いて被着形成したフッ素とシリコンとの複合膜とから成る脱気用セラミック複合部材。
A porous support having an average pore diameter of 2.0 μm or less and a pore inner wall of the porous support have a general formula
Figure 0003638426
A ceramic composite member for deaeration comprising a composite film of fluorine and silicon deposited using a silicon alkoxide having water repellency represented by:
前記多孔質支持体の表面に、該多孔質支持体の平均細孔径より小さい平均細孔径を有する被覆層を形成して成ることを特徴とする請求項1に記載の脱気用セラミック複合部材。The degassing ceramic composite member according to claim 1, wherein a coating layer having an average pore diameter smaller than the average pore diameter of the porous support is formed on the surface of the porous support. 前記被覆層が、γ−アルミナ(Al2 3 )より成ることを特徴とする請求項2に記載の脱気用セラミック複合部材。The degassing ceramic composite member according to claim 2, wherein the coating layer is made of γ-alumina (Al 2 O 3 ). 前記多孔質支持体が、管状体であることを特徴とする請求項1乃至3のいずれかに記載の脱気用セラミック複合部材。The degassing ceramic composite member according to any one of claims 1 to 3, wherein the porous support is a tubular body. 平均細孔径が2.0μm以下である多孔質支持体と、該多孔質支持体の細孔内壁に、一般式が
Figure 0003638426
で表される撥水性を有するシリコンアルコキシドを用いて被着形成したフッ素とシリコンとの複合膜とから成る脱気用セラミック複合部材に液体あるいは液状物質を接触させ、該液体あるいは液状物質に溶解している気体又は揮発性物質を選択的に前記脱気用セラミック複合部材を透過させて前記気体又は揮発性物質を分離することを特徴とする脱気方法。
A porous support having an average pore diameter of 2.0 μm or less and a pore inner wall of the porous support have a general formula
Figure 0003638426
A liquid or liquid substance is brought into contact with a ceramic composite member for deaeration composed of a composite film of fluorine and silicon deposited using a silicon alkoxide having water repellency represented by the following formula, and dissolved in the liquid or liquid substance: A degassing method, wherein the gas or volatile material is selectively permeated through the degassing ceramic composite member to separate the gas or volatile material.
前記脱気用セラミック複合部材は、該脱気用セラミック複合部材を構成する多孔質支持体の表面に、該多孔質支持体の平均細孔径より小さい平均細孔径を有する被覆層が形成されていることを特徴とする請求項5に記載の脱気方法。In the degassing ceramic composite member, a coating layer having an average pore diameter smaller than the average pore diameter of the porous support is formed on the surface of the porous support constituting the degassing ceramic composite member. The deaeration method according to claim 5. 前記被覆層が、γ−アルミナ(Al2 3 )より成ることを特徴とする請求項6に記載の脱気方法。The degassing method according to claim 6, wherein the coating layer is made of γ-alumina (Al 2 O 3 ). 前記脱気用セラミック複合部材を構成する多孔質支持体が、管状体であることを特徴とする請求項5乃至7のいずれかに記載の脱気方法。The degassing method according to any one of claims 5 to 7, wherein the porous support constituting the degassing ceramic composite member is a tubular body.
JP03510398A 1998-02-17 1998-02-17 Ceramic composite member for deaeration and deaeration method using the same Expired - Fee Related JP3638426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03510398A JP3638426B2 (en) 1998-02-17 1998-02-17 Ceramic composite member for deaeration and deaeration method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03510398A JP3638426B2 (en) 1998-02-17 1998-02-17 Ceramic composite member for deaeration and deaeration method using the same

Publications (2)

Publication Number Publication Date
JPH11226368A JPH11226368A (en) 1999-08-24
JP3638426B2 true JP3638426B2 (en) 2005-04-13

Family

ID=12432610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03510398A Expired - Fee Related JP3638426B2 (en) 1998-02-17 1998-02-17 Ceramic composite member for deaeration and deaeration method using the same

Country Status (1)

Country Link
JP (1) JP3638426B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061895A (en) * 2001-01-18 2002-07-25 이광래 Process for producing inorganic membrane with ultrahydrophobic property
JP4605920B2 (en) * 2001-02-27 2011-01-05 京セラ株式会社 Gas separation filter
SG169794A1 (en) * 2008-09-25 2011-04-29 Otv Sa Method for treating sea water with a view to producing injection water for undersea petroleum drilling, and corresponding equipment
CN113226507B (en) * 2018-12-28 2023-01-13 Dic株式会社 Degassing system and method for producing same, method for degassing liquid, degassing unit, degassing module, and method for producing natural resource

Also Published As

Publication number Publication date
JPH11226368A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
JP6845919B2 (en) How to operate a porous membrane for membrane distillation and a module for membrane distillation
US6821430B2 (en) Method of treating reverse osmosis membrane element, and reverse osmosis membrane module
WO2000063122A1 (en) Method for purifying turbid water
Genduso et al. Hydrophobic polydimethylsiloxane thin-film composite membranes for the efficient pervaporative desalination of seawater and brines
JP3638426B2 (en) Ceramic composite member for deaeration and deaeration method using the same
JP7159353B2 (en) Membrane distillation module and membrane distillation apparatus using the same
JPH03169304A (en) Spiral type degassing membrane module
JP2008080255A (en) Pure water making apparatus
JPH0768103A (en) Membrane deaerating method
CN113164873B (en) Membrane distillation assembly and membrane distillation device
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP3582986B2 (en) Ceramic composite member for degassing and degassing method using the same
JPH11216303A (en) Ceramic composite member for degassing and degassing method
Kobayashi et al. Purification Method for Achieving Low Trace Metals in Ultra-High Purity Chemicals
JPH06134446A (en) Method for manufacturing deaerated water and module for manufacture of deaerated water
JP2012000571A (en) Porous body for deaeration, and deaeration apparatus having the same
JP2002102640A (en) Gas separation module and gas separation apparatus
JP2006159144A (en) Composite membrane
JPH057049B2 (en)
JP2005195499A (en) Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane
JP2584011B2 (en) Degassing method of dissolved gas in liquid
JP2022066364A (en) Use of nano-porous carbon membrane for separating water/organic mixture
JP3652137B2 (en) Organic vapor separator and organic vapor separation method using the same
JP2024007836A (en) composite semipermeable membrane
JP2022146345A (en) Raw material liquid concentration system and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees