JP2725311B2 - Hollow fiber membrane type gas-liquid contactor - Google Patents

Hollow fiber membrane type gas-liquid contactor

Info

Publication number
JP2725311B2
JP2725311B2 JP25593888A JP25593888A JP2725311B2 JP 2725311 B2 JP2725311 B2 JP 2725311B2 JP 25593888 A JP25593888 A JP 25593888A JP 25593888 A JP25593888 A JP 25593888A JP 2725311 B2 JP2725311 B2 JP 2725311B2
Authority
JP
Japan
Prior art keywords
gas
hollow fiber
membrane
liquid
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25593888A
Other languages
Japanese (ja)
Other versions
JPH02102714A (en
Inventor
孝典 穴沢
真 宮下
一高 村田
弘幸 赤須
理七 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP25593888A priority Critical patent/JP2725311B2/en
Publication of JPH02102714A publication Critical patent/JPH02102714A/en
Application granted granted Critical
Publication of JP2725311B2 publication Critical patent/JP2725311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は膜を介して液体と気体を接触せしめ、液体中
への気体の溶解もしくは液体中に含有する気体の放出も
しくはこれらの溶解と放出とを同時に行なわしめること
を目的とした気液接触装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention brings a liquid and a gas into contact with each other through a membrane, and dissolves the gas into the liquid or releases the gas contained in the liquid, or dissolves and releases these gases. And a gas-liquid contact device for the purpose of simultaneously performing the above steps.

本発明は、例えば医薬品、食品産業に於る酵母や好気
性菌といった微生物の培養に於る酸素供給、好気性菌に
よる廃水処理に於る酸素供給、化学工業、医薬品工業に
於る空気酸化、オゾン酸化、養魚、魚類の運搬に於る酸
素供給、水耕栽培に於る培養液への酸素供給、美顔用、
健康飲料用の高酸素水の製造、また気体中の一種以上の
成分を液体へ溶解させる事により除去する用途として例
えば廃ガス浄化に於るSOx、NOx、H2S等の除去、醗酵メ
タンガスよりのCO2除去、また液体の脱ガスの用途とし
て例えばボイラー供給水や逆浸透膜への供給液の脱酸
素、半導体洗浄用超純水の脱酸素、配管や冷却装置の防
錆を目的とした、水や海水を脱酸素、脱炭酸ガス、微生
物培養液からのCO2除去、廃水中の有機溶剤の除去、ま
た気体の溶解と放出を同時に行なう用途として例えば微
生物に於るO2供給とCO2除去等の産業分野に利用でき
る。
The present invention is, for example, the supply of oxygen in the cultivation of microorganisms such as yeast and aerobic bacteria in the pharmaceutical and food industries, the supply of oxygen in the treatment of wastewater by aerobic bacteria, the air oxidation in the chemical industry, the pharmaceutical industry, Ozone oxidation, fish farming, oxygen supply in transporting fish, oxygen supply to culture medium in hydroponics, for facial beauty,
Production of high oxygen water for health drinks, also於Ru SOx as applications to remove, for example, in the waste gas purification by dissolving one or more components in the gas to liquid, NOx, removal of such H 2 S, from the fermentation methane CO 2 removal, also was deoxygenated of feed to the degassing applications as for example boiler feed water, reverse osmosis membranes of the liquid, deoxygenation of semiconductor cleaning ultrapure water, the rust of piping and cooling device intended , water and sea water deoxygenation, decarbonation, CO 2 removal from microbial broth, removal of the organic solvent in the wastewater, also a於Ru O 2 supplied as applications performing dissolution and release at the same time, for example, microorganisms of the gaseous CO It can be used in industrial fields such as 2 removal.

[従来の技術] 中空糸膜型気液接触装置に用いられる膜としては、従
来シリコンゴムチューブ(特公昭58−20261)、ポリプ
ロピレン多孔質中空糸(特開昭55−1816)、ポリ四フッ
化エチレン(PTFE)多孔質チューブ、ポリスルホン多孔
質中空糸(H.YASUDA等;Journal of Applied Polymer Sc
inece,16、595−601(1972))等が知られている。しか
るに、シリコンゴムチューブは気体の透過速度が遅く、
かつ細い中空糸の製造が困難な為、装置がかさばる、耐
圧が小さく(特に中空糸外部を加圧する場合)加圧によ
る透過速度の増加を計れない等の欠点を有していた。ま
た多孔質膜は気体透過速度に於てシリコンゴムチューブ
より優れるものの、気泡の発生が生じ易くやはり加圧に
制限がある事、長期間使用すると膜面の汚れにより液が
細孔内に侵入・閉そくし、気体透過速度が激減する事、
同様の理由で界面活性剤を含む系や有機溶媒系に使用で
きない事等の欠点を有していた。
[Prior art] Conventional silicon rubber tubes (Japanese Patent Publication No. 58-20261), polypropylene porous hollow fibers (Japanese Patent Application Laid-Open No. 55-1816), polytetrafluoride Ethylene (PTFE) porous tube, polysulfone porous hollow fiber (H.YASUDA, etc .; Journal of Applied Polymer Sc
inece, 16 , 595-601 (1972)) and the like. However, silicone rubber tubes have a low gas permeation rate,
Since it is difficult to produce a thin hollow fiber, the apparatus has a drawback that the apparatus is bulky, the pressure resistance is small (especially when the outside of the hollow fiber is pressurized), and the increase in the permeation speed due to pressurization cannot be measured. Although porous membranes are superior to silicon rubber tubes in gas permeation rate, they tend to generate bubbles and are also limited in pressurization. Blockage, drastically decreasing gas permeation rate,
For the same reason, it has a disadvantage that it cannot be used for a system containing a surfactant or an organic solvent system.

一方、気液接触装置の構造面に於ては、装置の作り易
さの点から、中空糸内側に液体を流す、いわゆる内部灌
流型が主流である。しかしながら、内部灌流型は液側境
膜抵抗が大きくなり、膜に気体透過速度の高い物を用い
ても、装置としてのガス交換速度は低いレベルに止ま
り、必要膜面積が大きくなって、装置が高価格にならざ
るを得なかった。また液体側の圧力損失も大きくなり、
ポンプの大型化や運転電力費の増大を招いていた。
On the other hand, in terms of the structure of the gas-liquid contacting device, the so-called internal perfusion type, in which a liquid flows inside the hollow fiber, is the mainstream from the viewpoint of ease of manufacturing the device. However, in the case of the internal perfusion type, the liquid-side membrane resistance increases, and even if a substance having a high gas permeation rate is used for the membrane, the gas exchange rate of the apparatus remains at a low level, and the required membrane area increases, and the apparatus becomes large. It had to be expensive. The pressure loss on the liquid side also increases,
This has led to an increase in the size of the pump and an increase in operating power costs.

また、外部灌流型は、圧力損失が小さくなる利点の他
に、液体の撹拌効果によってガス交換率が増大し、必要
膜面積が少なくて済む事が期待されるが、現実には中空
糸の充填ムラなどの原因による液体の偏流が生じて、液
体と膜との実質的な接触面積が少なくなるため、やはり
必要膜面積の増大を招いていた。
In addition, the external perfusion type is expected to reduce the pressure loss, increase the gas exchange rate due to the effect of stirring the liquid, and reduce the required membrane area. Since the liquid drifts due to unevenness and the like, and the substantial contact area between the liquid and the film is reduced, the required film area is also increased.

さらに流体からガスを除去する用途、例えば、水の脱
酸素に用いられる中空糸膜型気液接触装置に於ては、ガ
スを除去すべき流体を中空糸外部に流すタイプ(ガスを
除去すべき流体が液体の場合は外部灌流型)では、残存
ガス量を一定レベル以下にまで除く事は困難であり、中
空糸外部に流すタイプは実用化されていなかった。
Further, in applications for removing gas from a fluid, for example, in a hollow fiber membrane type gas-liquid contacting device used for deoxidation of water, a type in which a fluid from which gas is to be removed flows to the outside of the hollow fiber (gas removal is required) In the case of an external perfusion type when the fluid is a liquid, it is difficult to remove the residual gas amount to a certain level or less, and a type in which the amount of gas remaining outside the hollow fiber is not practically used.

[発明が解決しようとする問題点] 本発明者等は上記欠点が除かれた、コンパクトでかつ
適用範囲が広い装置、特に、流体からの気体の除去に当
っても高い性能を発揮する膜型気液接触装置を実現する
ために、隔膜および気液接触装置の構造の双方について
鋭意検討し、本発明に到達した。
[Problems to be Solved by the Invention] The present inventors have solved the above-mentioned drawbacks, and have a compact and widely applicable device, particularly a membrane type which exhibits high performance even in removing gas from a fluid. In order to realize the gas-liquid contact device, the present inventors have made intensive studies on both the structure of the diaphragm and the structure of the gas-liquid contact device, and have reached the present invention.

[問題点を解決する為の手段] 即ち、本発明の要旨は、液体と気体とをガス交換膜を
介して接触させ、膜を通してガスを移動または相互に交
換させる気液接触装置において、ガス交換膜が、ポリ−
(4−メチルペンテン−1)を実質的主要成分とする材
料よりなる、25℃における見かけの酸素透過係数P′
(O2)が4×10-9[cm3(STP)/cm2,sec,cmHg]以上
で、かつ25℃における酸素と窒素の分離係数α(O2/
N2)が1.1以上の中空糸膜であって、該中空糸が、中空
糸同士または他の糸条とによって組織されたシート状物
の重畳体または集束体の状態で、ケース内に組み込まれ
ていることを特徴とする中空糸膜型気液接触装置に存す
る。
[Means for Solving the Problems] That is, the gist of the present invention is to provide a gas-liquid contacting device for bringing a liquid and a gas into contact with each other via a gas exchange membrane and moving or mutually exchanging the gas through the membrane. If the membrane is poly-
An apparent oxygen permeability coefficient P ′ at 25 ° C. made of a material having (4-methylpentene-1) as a substantially main component.
(O 2 ) is 4 × 10 −9 [cm 3 (STP) / cm 2 , sec, cmHg] or more, and the separation coefficient α (O 2 /
N 2 ) is a hollow fiber membrane of 1.1 or more, wherein the hollow fiber is incorporated in a case in a state of a superposed body or a bundle of sheet-like materials organized by hollow fibers or other yarns. And a hollow fiber membrane type gas-liquid contact device.

そして、本発明の中空糸膜型気液接触装置は、中空糸
膜の外側に接して液体が流通し、中空糸膜内側へガス透
過される外部灌流型の、液体からの脱ガスに用いられる
ものであり、また、中空糸膜の外側に接して混合気体が
流通し、中空糸膜内側を流れる液体へ特定種のガスが分
別移行される内部灌流型のものがあり、更にまた、中空
糸のシート状物が、並列に配列された中空糸を、それと
ほぼ直角となる他の糸条で、簾状に編組したものでもあ
る。
The hollow fiber membrane type gas-liquid contact device of the present invention is used for degassing from a liquid, which is an external perfusion type in which liquid flows in contact with the outside of the hollow fiber membrane and gas is permeated to the inside of the hollow fiber membrane. In addition, there is an internal perfusion type in which a gas mixture flows in contact with the outside of the hollow fiber membrane, and a specific type of gas is separated and transferred to a liquid flowing inside the hollow fiber membrane. Is also obtained by braiding hollow fibers arranged in parallel with other yarns which are substantially perpendicular to the hollow fibers in a cord shape.

本発明は、その要部についてみると、先ずガス交換膜
に関する。
The present invention firstly relates to a gas exchange membrane as to its main parts.

この種の装置に利用されるガス交換膜は、その断面構
造により分類すれば、細孔が膜の表裏に連通しているも
の(連通孔膜)と連通していないもの(非連通孔膜)に
大別される。従来使用されているポリプロピレン、PTFE
等の多孔質膜は連通孔膜である。非連通孔膜は細孔が全
く存在しないもの(均質膜、シリコンゴムチューブはこ
れに属する)と、細孔が存在していてもそれが表裏に連
絡していないもの(非対称膜)に分けられる。そして、
この非対称膜には、多孔質部分と非多孔質部分が同一の
素材から成る不均質膜と、両部分が別の素材で構成され
た複合膜がある。
Gas exchange membranes used in this type of apparatus can be classified according to their cross-sectional structure, when the pores communicate with the front and back of the membrane (communication pore membrane) and when the pores do not communicate (non-communication pore membrane). Are roughly divided into Conventionally used polypropylene and PTFE
Are porous membranes. Non-communicating pore membranes can be classified into membranes that have no pores (homogeneous membranes, silicone rubber tubes belong to them) and membranes that have pores but do not communicate on the front and back (asymmetric membranes) . And
The asymmetric membrane includes a heterogeneous membrane in which a porous portion and a non-porous portion are made of the same material, and a composite membrane in which both portions are made of different materials.

長期間の使用に耐え、また界面活性剤等を含有する液
体に対しても安定して使用可能ならしめるには、非連通
孔膜が目的に合致する。しかしながら非連通孔膜は気体
が溶解拡散機構で透過する為、透過速度が多孔質膜に比
べて劣るのが常である。即ちこれまで一般に知られてい
るところでは、膜を介しての気体の水への溶解速度は、
多孔質膜>複合膜>非多孔均質膜である。
In order to withstand long-term use and to be able to be used stably even in a liquid containing a surfactant or the like, the non-communication pore membrane meets the purpose. However, the gas is permeated by the dissolution-diffusion mechanism in the non-communication pore membrane, so that the permeation speed is usually inferior to that of the porous membrane. That is, it is generally known that the rate of dissolution of gas into water through a membrane is as follows.
Porous membrane> composite membrane> non-porous homogeneous membrane.

本発明において使用する中空糸膜は、膜壁内部に微細
な空隙(ポイド)を含有するものの膜の少なくとも一表
面、即ち中空糸の外表面、内表面の一方もしくは両方に
実質的に細孔が開口していないいわゆる不均質膜の構造
を持つ。この構造により液の細孔内へ侵入による透過性
能の低下が防がれる。
Although the hollow fiber membrane used in the present invention contains fine voids (voids) inside the membrane wall, pores are substantially formed on at least one surface of the membrane, that is, one or both of the outer surface and the inner surface of the hollow fiber. It has a so-called heterogeneous film structure that is not open. With this structure, a decrease in permeation performance due to intrusion of the liquid into the pores is prevented.

従来、この様な不均質膜や複合膜は気液系での気体透
過速度即ち液体への気体溶解速度や液体からの気体放出
速度の点で連通孔を持つ多孔質膜に劣るものであった。
しかしながら本発明者等は、膜が特徴的な気体透過特性
を持つポリ(4−メチルペンテン−1)で構成された膜
である場合に、特異的に気液ガス交換速度が高くなる事
を見出した。非連通孔膜の場合には気体が高分子化合物
中を溶解・拡散により透過するのであるから、このよう
に非連通孔膜が、気体が体積流で移動・透過する連通孔
膜より高い透過速度を示すのは驚くべきことである。さ
らに、本発明に用いる膜は、ポリプロピレンその他の多
孔質膜上に非多孔質層を形成した、いわゆる複合膜に比
べても、気液系に於て高い透過速度を示す事も注目に値
する。
Conventionally, such a heterogeneous membrane or a composite membrane is inferior to a porous membrane having a communication hole in terms of a gas permeation rate in a gas-liquid system, that is, a gas dissolution rate in a liquid or a gas release rate from a liquid. .
However, the present inventors have found that when the membrane is a membrane composed of poly (4-methylpentene-1) having characteristic gas permeation characteristics, the gas-liquid gas exchange rate is specifically increased. Was. In the case of a non-communicating pore membrane, gas permeates through a polymer compound by dissolution and diffusion, and thus the non-communicating pore membrane has a higher permeation rate than a communicating pore membrane in which gas moves and permeates by volume flow. Is surprising. It is also noteworthy that the membrane used in the present invention exhibits a higher permeation rate in a gas-liquid system than a so-called composite membrane in which a non-porous layer is formed on a polypropylene or other porous membrane.

膜の構造即ち膜壁内部の空隙の存在や膜表面に於る細
孔の開口状態は、ある程度走査型電子顕微鏡(SEM)に
よって観測可能であるが、細孔が微細である事や観察範
囲が狭小である事等の理由によりSEM観察を膜の構造や
性能の特定に用いるのは適当でない。膜壁内部の空隙の
存在量や膜の表裏を連通する細孔(ピンホール)の存在
の程度は酸素及び窒素の見掛の気体透過係数と分離係数
を測定することにより明確に判定できる。即ち膜内部に
空隙や細孔が存在する場合には気体が溶解・拡散により
透過すべき実質的な厚みが減少し、次式で算出される見
掛の酸素透過係数P′(O2)が、素材の酸素透過係数P
(O2)(=1.6×10-9[cm3(STP)cm/cm2・sec・cmH
g])より大となる。ここで見掛の透過係数とは膜厚と
して空隙を含んだ見掛の膜厚を用いて算出した透過係数
の事である。測定はASTM D1434に準拠して行なう。ま
た見掛の膜厚は中空糸断面の光学顕微鏡観察により測定
できる。
The structure of the film, that is, the existence of voids inside the film wall and the opening state of pores on the film surface can be observed to some extent by a scanning electron microscope (SEM). It is not appropriate to use SEM observation to specify the structure and performance of the film because of its small size. The amount of voids inside the membrane wall and the extent of the presence of pores (pinholes) communicating between the front and back of the membrane can be clearly determined by measuring the apparent gas permeation coefficient and separation coefficient of oxygen and nitrogen. That is, when there are voids or pores inside the membrane, the substantial thickness through which the gas permeates by dissolution and diffusion decreases, and the apparent oxygen permeability coefficient P ′ (O 2 ) calculated by the following equation becomes , Material oxygen permeability coefficient P
(O 2 ) (= 1.6 × 10 -9 [cm 3 (STP) cm / cm 2 · sec · cmH
g]). Here, the apparent transmission coefficient is a transmission coefficient calculated using the apparent film thickness including a void as the film thickness. The measurement is performed according to ASTM D1434. The apparent film thickness can be measured by observing the cross section of the hollow fiber with an optical microscope.

但しV:透過したガスの体積[cm3(STP)] l:見掛の膜厚[cm] A:膜面積[cm2] t:透過に要した時間[sec] Δp:膜表裏の圧力差[cmHg] 本発明に用いる事のできる膜は、P′(O2)が4×10
-9[単位は前出に同じ]以上のものであり、より好まし
くは1×10-8以上である。P′(O2)が4×10-9より小
さい膜は気体交換の速度が小さく、装置がかさばりメリ
ットが少ない。
Where V: volume of permeated gas [cm 3 (STP)] l: apparent film thickness [cm] A: film area [cm 2 ] t: time required for permeation [sec] Δp: pressure difference between front and back of membrane [CmHg] The film that can be used in the present invention has P '(O 2 ) of 4 × 10
-9 [the unit is the same as described above] or more, and more preferably 1 × 10 -8 or more. Membrane with P '(O 2 ) less than 4 × 10 -9 has a lower gas exchange rate and the equipment is less bulky.

膜の表裏に連通した細孔(ピンホール)の有無と存在
量は酸素/窒素の分離係数α(O2/N2)の測定により判
定できる。ここで 連通孔が存在しない場合にはα(O2/N2)は、加工条
件により異なるものの3.6〜5.0を示す。一方連通孔を通
って気体が膜を透過する場合には例えば中川:高圧ガ
ス、18(9)、471(1981)に記載されている様にα(O
2/N2)は1以下となる。従って両機構が並存する場合に
は、α(O2/N2)はこの中間の値となるが、連通孔を透
過する速度は溶解・拡散機構で透過する速度に比べ103
〜104倍早いから、わずかな連通孔の存在でもα(O2/
N2)は急激に低下する。本発明に用いる事のできる膜は
α(O2/N2)が1.1以上のものである。混合気体から特に
選択的に一種(もしくはそれ以上)の気体を溶解させる
場合にはα(O2/N2)が高い事が好ましい。
The presence or absence and the amount of pores (pinholes) communicating with the front and back of the membrane can be determined by measuring the oxygen / nitrogen separation coefficient α (O 2 / N 2 ). here When there is no communication hole, α (O 2 / N 2 ) varies depending on the processing conditions but ranges from 3.6 to 5.0. On the other hand, when gas permeates the membrane through the communication hole, for example, Nakagawa: high-pressure gas, α (O) as described in 18 (9), 471 (1981)
2 / N 2 ) is 1 or less. Therefore, when both mechanisms coexist, α (O 2 / N 2 ) has an intermediate value, but the speed of transmission through the communication hole is 10 3 times lower than the speed of transmission by the dissolution / diffusion mechanism.
~ 10 4 times faster, so even with the presence of a few communicating holes, α (O 2 /
N 2 ) drops sharply. The film that can be used in the present invention has α (O 2 / N 2 ) of 1.1 or more. It is preferable that α (O 2 / N 2 ) be high when one (or more) gas is particularly selectively dissolved from the mixed gas.

気体が溶解・拡散機構で透過する非多孔層の、膜全体
における平均厚みは、気体透過速度の実測値から算出す
る事ができる。即ち透過する気体は、膜中の遮断層を溶
解・拡散流れで透過する部分と膜の表裏を連結する連通
孔をクヌーセン流れで透過する部分の和であるとして
(並列構造)解いた式を用い、酸素透過速度および窒素
透過速度の実測値から計算される。計算式は、例えば特
開昭59−196706号に記載されている。
The average thickness of the entire non-porous layer through which the gas permeates by the dissolution / diffusion mechanism can be calculated from the measured value of the gas permeation rate. In other words, the permeating gas is calculated by using the equation (parallel structure) solved assuming that the permeating gas is the sum of the portion permeating through the barrier layer in the membrane by the dissolution / diffusion flow and the portion permeating through the communication hole connecting the front and back of the membrane by the Knudsen flow. , Oxygen transmission rate and nitrogen transmission rate. The calculation formula is described, for example, in JP-A-59-196706.

本発明者等は同じ見掛の酸素透過係数P′(O2)を示
す膜でも、非多孔層の厚みLが小さいほど気液系でのガ
ス交換能力が高い事を見出した。その理由の詳細につい
ては不明であるが、液体から気体への又は気体から液体
へのガスの移行に際して、連通孔透過部の寄与は、非多
孔層透過部の寄与に比べて小さい事によるものであろ
う。本発明に用いる事のできる、中空繊維膜の非多孔層
厚みは10μm以下、好ましくは2μm以下、さらに好ま
しくは0.7μm以下である。しかしながら製造技術上、
非多孔層厚みを0.01μm以下にする事は極めて困難であ
る。
The present inventors have found that, even with a membrane having the same apparent oxygen permeability coefficient P '(O 2 ), the smaller the thickness L of the non-porous layer, the higher the gas exchange capacity in a gas-liquid system. Although the details of the reason are unclear, the contribution of the communicating hole transmitting portion is smaller than that of the non-porous layer transmitting portion when transferring gas from liquid to gas or from gas to liquid. There will be. The thickness of the non-porous layer of the hollow fiber membrane that can be used in the present invention is 10 μm or less, preferably 2 μm or less, and more preferably 0.7 μm or less. However, due to manufacturing technology,
It is extremely difficult to reduce the thickness of the non-porous layer to 0.01 μm or less.

本発明に用いる中空糸の内径は、70〜500μmである
事が好ましい。70μm以下では中空糸の内側に流す気体
又は液体の圧力損失が大きく、動力費がかさむ。500μ
m以上では見掛の透過係数の大きな膜を製造する事が困
難になると共に、装置体積当りの膜表面積が小さくな
り、装置のコンパクト化という面での利点が無くなる。
内径は、装置の寸法や目的に応じて選ぶ事ができる。
The hollow fiber used in the present invention preferably has an inner diameter of 70 to 500 μm. If it is 70 μm or less, the pressure loss of the gas or liquid flowing inside the hollow fiber is large, and the power cost increases. 500μ
Above m, it is difficult to produce a membrane having a large apparent transmission coefficient, and the membrane surface area per unit volume is small, so that there is no advantage in terms of downsizing of the unit.
The inner diameter can be selected according to the size and purpose of the device.

膜厚は、中空率にして30〜90%にするのが好ましい。
ここに 中空率が30%以下では内径に比し表面積が小さく効率が
悪い。90%以上では直径に比し膜厚が薄く力学的強度が
低下し、破損を生じる確率が高くなると共に耐圧も低下
する。
The film thickness is preferably 30 to 90% in terms of hollow ratio.
here When the hollow ratio is 30% or less, the surface area is smaller than the inner diameter, and the efficiency is poor. At 90% or more, the film thickness is smaller than the diameter, the mechanical strength is reduced, the probability of occurrence of breakage is increased, and the breakdown voltage is reduced.

本発明に用いる中空糸膜は、ポリ(4−メチルペンテ
ン−1)から成る事を一つの特徴とするものである。該
膜がポリプロピレン多孔質膜やPTFE多孔質膜、それにこ
れらの多孔質膜上に非多孔質層を形成したいわゆる複合
膜に比べて気液系に於て特異的に大きな気体透過速度を
示す理由は不明であるが、素材の持つ基本的な特性、例
えば大きな気体透過係数(P(O2)=1.6×10-9、単位
は前出)や小さな表面エネルギー(約24dyne/cm)に帰
因するのであろう。従って本発明に用いる中空糸の素材
はポリ(4−メチルペンテン−1)を実質的に主要成分
とすれば良く、膜の物性値に大きな影響を与えない範囲
で他の物質を含有する事ができる。即ちポリ(4−メチ
ルペンテン−1)を70体積%以上含有する組成物を本発
明に用いる事ができるし、酸化防止剤や防黴剤、生物の
付着防止剤等の添加物を適量混合しても良い。また4−
メチルペンテン−1 70モル%以上と他のモノマーから
なる共重合体も素材として用い得る。さらに膜表面を変
成する等(たとえば特開昭62−19206)の処理を加えた
ものも本発明に使用できる。
One feature of the hollow fiber membrane used in the present invention is that it is composed of poly (4-methylpentene-1). Reason why this membrane shows a specific high gas permeation rate in a gas-liquid system compared to a polypropylene porous membrane, a PTFE porous membrane, and a so-called composite membrane in which a non-porous layer is formed on these porous membranes Although it is unknown, it is attributable to basic properties of the material, such as a large gas permeability coefficient (P (O 2 ) = 1.6 × 10 -9 , the unit is mentioned above) and a small surface energy (about 24 dyne / cm). Will do. Accordingly, the material of the hollow fiber used in the present invention may be essentially composed of poly (4-methylpentene-1), and may contain other substances within a range that does not significantly affect the physical properties of the membrane. it can. That is, a composition containing 70% by volume or more of poly (4-methylpentene-1) can be used in the present invention, and an appropriate amount of additives such as an antioxidant, a fungicide, and a biofouling inhibitor are mixed. May be. 4-
A copolymer consisting of methylpentene-1 at least 70 mol% and another monomer can also be used as a material. Further, those obtained by applying treatments such as denaturing the film surface (for example, JP-A-62-119206) can also be used in the present invention.

本発明に用いる事のできる膜は、例えば特開昭59−19
6706、特開昭59−229320、特開昭61−101206、特開昭61
−101227に開示されている製造方法で製造する事ができ
る。また他の方法としては例えばポリ(4−メチルペン
テン−1)多孔質膜上にポリ(4−メチルペンテン−
1)の非多孔層をコートした複合膜の製法によって不均
質膜構造を形成する方法(例えば特開昭62−45318等)
を挙げる事ができるし、それ以外の製膜方法を採用する
こともできる。
The membrane that can be used in the present invention is described in, for example, JP-A-59-19.
6706, JP-A-59-229320, JP-A-61-101206, JP-A-61-61206
It can be manufactured by the manufacturing method disclosed in -101227. As another method, for example, poly (4-methylpentene-1) is formed on a porous poly (4-methylpentene-1) membrane.
A method of forming a heterogeneous membrane structure by the method of 1) for producing a composite membrane coated with a non-porous layer (for example, JP-A-62-45318)
And other film forming methods can be adopted.

本発明はまた、気液接触装置の構造に関する。これま
でに知られている中空糸型気液接触装置の代表的な構造
の概略を第1図の縦部分断面図に示した。
The invention also relates to the structure of the gas-liquid contact device. An outline of a typical structure of a known hollow fiber type gas-liquid contact device is shown in a vertical partial sectional view of FIG.

それを図に沿って説明するとケース(1)の内部に中
空糸膜(2)が繊維束状に挿入され、両端の樹脂封止部
(3)で樹脂により封止されており、膜の中空部分は両
端面で開口している。中空糸膜の中空部に液体を流す場
合には、液体は導入口(4)より入り、中空糸膜の中空
部を流れた後排出口(5)よりモジュールの外へ出る。
気体は導入口(6)よりモジュールに導かれ、中空糸外
部を流れた後排出口(7)よりモジュールの外へ出る。
一方中空糸膜外部空間に液体を流す場合は導入口(6)
より液体を導入し排出口(7)より排出する。気体は導
入口(4)より導入し中空糸膜の中空部を通過し排出口
(5)より排出される。
The hollow fiber membrane (2) is inserted into the case (1) in the form of a fiber bundle, and is sealed with resin at the resin sealing portions (3) at both ends. The part is open at both ends. When a liquid flows into the hollow portion of the hollow fiber membrane, the liquid enters through the inlet (4), flows through the hollow portion of the hollow fiber membrane, and then exits the module through the outlet (5).
The gas is guided to the module through the inlet (6), flows outside the hollow fiber, and then out of the module through the outlet (7).
On the other hand, when the liquid flows into the outer space of the hollow fiber membrane, the inlet (6)
More liquid is introduced and discharged from the discharge port (7). The gas is introduced from the inlet (4), passes through the hollow portion of the hollow fiber membrane, and is discharged from the outlet (5).

中空糸膜型気液接触装置を用いて、ある流体から特定
種のガスを除去する場合(この代表的な例は、水の脱酸
素である。以下の説明の便宜上、水の脱酸素に適用する
場合について説明する。)、ガスを除去しようとする流
体、即ち水を中空糸の内側へ流す方法(内部灌流)しか
実用化されていない(例えば特開昭60−255120)。その
理由は種々あろうが、例えば前記の代表的な構造の中空
糸膜型気液接触装置に於て、水を中空糸の外側に流す
(外部灌流)と、中空糸束の充填ムラや中空糸の疎水性
によって生じる中空糸のかたよりに起因する水のチャン
ネリング(偏流)が生じ、これが原水入口と脱気水出口
とを短絡することとなって、水中溶存酸素濃度がある値
(例えば0.5ppm)以下にならないのである。即ち、水の
流量を減じ水と膜との接触時間を如何に長くしても、高
脱酸素水は得られない。これは脱気を目的とした気液接
触装置に於ては致命的であり、そのため、圧損の増大や
膜面積当りのガス交換効率の低さにもかかわらず流路の
短絡のない内部灌流型の水の脱気装置しか実用化されて
いないのであろう。また、ガスを除去すべき流体が気体
の場合の例として、空気や廃ガスからのNOxの除去が挙
げられる。この例では、空気に含まれるNOxを隔膜気液
接触装置を通して水もしくはアルカリに吸収させ除去す
るが、この場合にも、排出ガス中のNOx残留濃度をある
値以下(例えば0.6ppm以下)にするには、水の脱酸素と
同じ理由により中空糸内側に廃ガスを流すタイプである
必要があった。
When a specific type of gas is removed from a certain fluid by using a hollow fiber membrane type gas-liquid contact device (a typical example is deoxidation of water. Only the method of flowing a fluid from which gas is to be removed, that is, water, into the inside of the hollow fiber (internal perfusion) has been put into practical use (for example, Japanese Patent Application Laid-Open No. 60-255120). Although the reasons may be various, for example, in the hollow fiber membrane type gas-liquid contacting device having the above-described typical structure, when water flows outside the hollow fiber (external perfusion), uneven filling of the hollow fiber bundle and hollow space occur. Water channeling (drift) resulting from the twisting of the hollow fiber caused by the hydrophobicity of the yarn occurs, which short-circuits the raw water inlet and the degassed water outlet, and the dissolved oxygen concentration in the water has a certain value (for example, 0.5 ppm) or less. That is, no matter how long the flow rate of water is reduced and the contact time between water and the membrane is increased, highly deoxygenated water cannot be obtained. This is fatal in a gas-liquid contact device for the purpose of degassing, and therefore, despite the increased pressure drop and low gas exchange efficiency per membrane area, there is no short circuit in the internal perfusion type. It seems that only water degassing equipment has been put into practical use. An example of the case where the fluid from which gas is to be removed is a gas is removal of NOx from air and waste gas. In this example, NOx contained in air is removed by absorption into water or alkali through a diaphragm gas-liquid contact device. In this case as well, the NOx residual concentration in the exhaust gas is reduced to a certain value or less (for example, 0.6 ppm or less). Needs to be of a type in which waste gas flows inside the hollow fiber for the same reason as deoxidation of water.

本発明に於ては、中空糸を中空糸同士もしくは他の糸
条とによって組織されたシート状物(以下中空糸シート
と言う)の重畳物または収束体の状態でケースに組み込
む事によって、中空糸外部を流れる流体の偏流と流路と
の短絡を防ぎ、ガスを除去すべき流体が中空糸の外側に
接して流れる構造をとってもガスの残留濃度を極めて少
なくでき、本発明に用いる中空糸膜の特性を気液接触装
置の構造で損ねること無く十分発揮させる事ができる。
In the present invention, the hollow fiber is incorporated into the case in the form of a superimposed or convergent sheet-like material (hereinafter, referred to as a hollow fiber sheet) formed by hollow fibers or other yarns. The hollow fiber membrane used in the present invention is capable of preventing the uneven flow of the fluid flowing outside the yarn and the short circuit between the flow paths and having a structure in which the fluid from which the gas to be removed flows in contact with the outside of the hollow fiber has a very low residual gas concentration. Can be sufficiently exhibited without impairing the structure of the gas-liquid contact device.

中空糸シートの形状としては、中空糸同士が3゜〜90
゜の角度で交叉した織物、中空糸を緯糸とし、通常の糸
条を経糸として編まれ、もしくは織られた簾状のもの
が、本発明に使用し得る。簾の中空糸間隙は用途、使用
条件に応じて任意に設定することができるが、中空糸外
径の1/50〜10倍程度が好ましく、1/5〜2倍がさらに好
ましい。装置体積当りの膜の充填効率を上げるため、ま
た中空糸外側の境膜抵抗を減じる事により膜面積当りの
処理量を上げるためには、間隔を小さくする事が好まし
い。しかし、間隙を小さくすると、中空糸間隔のムラの
影響が大きくなって、かえって効率が低下するため、中
空糸間隔のムラの程度にもよるが、間隙は0.1mm以上に
とるのが効率的である。中空糸外部に流す流体が水の場
合には中空糸間隙は0.1〜0.3mmが最も好ましい。
The shape of the hollow fiber sheet is such that the hollow fibers are
Fabrics and hollow fibers crossed at an angle of ゜ are wefts and ordinary yarns are woven or woven as warps, which can be used in the present invention. Hollow fiber gap blinds applications, can be arbitrarily set according to the use conditions, 1 / 50-10 times of the hollow fiber outer diameter is preferably 1 / 5-2 times more preferred. In order to increase the efficiency of filling the membrane per unit volume and to increase the throughput per membrane area by reducing the membrane resistance outside the hollow fiber, it is preferable to reduce the interval. However, when the gap is reduced, the effect of the unevenness of the hollow fiber spacing becomes large, and the efficiency is rather reduced.Therefore, depending on the degree of the unevenness of the hollow fiber spacing, it is efficient to set the gap to 0.1 mm or more. is there. When the fluid flowing outside the hollow fiber is water, the gap between the hollow fibers is most preferably 0.1 to 0.3 mm.

一方、中空糸外部を流れる流体の流量を上げたい場
合、圧力損失を小さくする場合、流体が固体やゲル等を
分散する場合には、比較的広くとることが好ましい。間
隙を中空糸外径10倍以上に広くとると、装置への充填効
率が低下し、装置体積当りの膜面積が小さくなる。中空
糸シートを気液接触装置のケースに充填する形状として
は、シートをスパイラルに巻いた形状、棒や多孔パイプ
に巻きつけて充填した形状、折りたたんで充填した形状
など、採用する気液接触のタイプに合わせて任意の形状
を採用し得る。気液接触のタイプとしては、パラレルフ
ロー、カウンターフロー、クロスフロー等、目的用途に
応じて任意に選択し得るが、本発明の中空糸の性能を発
揮させ、また中空糸をシート状にする効果を十分に上げ
るには、流体が中空糸シート面を貫流する向きに流れる
クロスフロータイプが最も好ましい。この様な構造の実
施態様としては、実施例に示す様に角型の箱型ケース
に、中空糸シートを積層して並べた形状や、多孔パイプ
に中空糸シートをスパイラル状に巻きつけ、流体を中心
から外周へ向けて又は外周から中心へ向けて流すタイプ
を例示できる。
On the other hand, when it is desired to increase the flow rate of the fluid flowing outside the hollow fiber, when reducing the pressure loss, and when the fluid disperses a solid or gel, it is preferable to make the fluid relatively wide. If the gap is made as large as 10 times or more the outer diameter of the hollow fiber, the filling efficiency of the device decreases, and the membrane area per device volume decreases. As the shape of filling the hollow fiber sheet into the case of the gas-liquid contacting device, the shape of the gas-liquid contact that is adopted, such as the shape of a sheet wound spirally, the shape of a rod or a perforated pipe wound and filled, the shape of folded and filled, etc. Any shape can be adopted according to the type. The type of gas-liquid contact can be arbitrarily selected depending on the intended use, such as parallel flow, counter flow, cross flow, etc., but the effect of the hollow fiber of the present invention is exhibited and the hollow fiber is formed into a sheet. In order to sufficiently increase the flow rate, a cross flow type in which a fluid flows in a direction of flowing through the hollow fiber sheet surface is most preferable. As an embodiment of such a structure, as shown in the example, a hollow box-shaped case is formed by stacking and arranging hollow fiber sheets in a square box-shaped case, or a hollow fiber sheet is spirally wound around a perforated pipe, and a fluid is provided. Can be illustrated from the center toward the outer periphery or from the outer periphery toward the center.

[発明の効果] 本発明は、特徴ある中空糸を用いることにより多孔質
膜型のガス交換装置の持っていた欠点、即ち使用時間の
制限や液体の種類の制限、使用条件の制限を取除き、し
かもシリコンゴムや複合膜による非多孔膜型のガス交換
装置の長所を保持しつつ、ガス透過速度や耐圧に於る欠
点を解決した事により、装置をコンパクトにできると同
様に、広汎な対象に使用できるという利点を有してい
る。とりわけ、本発明が、これまでに知られていた非多
孔質膜のみならず、これまでの多孔質膜に比べても液体
への酸素透過速度、および液体からの脱酸素速度が大巾
に優れている事は驚くべきことである。
[Effects of the Invention] The present invention eliminates the disadvantages of the gas exchange device of the porous membrane type by using the characteristic hollow fiber, that is, the limitation on the use time, the type of liquid, and the limitation on the use conditions. In addition, while maintaining the advantages of a non-porous membrane type gas exchange device made of silicon rubber or a composite membrane, by solving the disadvantages of gas permeation speed and pressure resistance, it is possible to make the device compact as well as a wide range of objects. It has the advantage that it can be used for In particular, the present invention has a far superior oxygen permeation rate to a liquid and a deoxygenation rate from a liquid as compared to a conventionally known non-porous membrane as well as a conventional porous membrane. That is surprising.

本発明はまた、中空糸をシート状にして気液接触装置
に組込む事により、気液ガス交換効率を飛躍的に高め
る。これは、これまでに知られている均質膜や不均質膜
や複合膜に比べて改善効果が高いものである。その理由
としては、本発明の膜は気液系に於ける中空糸膜自体の
ガス交換速度が高いため、装置構造の改善によって液体
側境膜抵抗を減じれば、膜本来の性能が発揮されるため
であろうと推察される。
The present invention also dramatically improves gas-liquid gas exchange efficiency by incorporating the hollow fiber into a sheet shape and incorporating it into the gas-liquid contact device. This has a higher improvement effect than conventionally known homogeneous films, heterogeneous films and composite films. The reason is that the membrane of the present invention has a high gas exchange rate of the hollow fiber membrane itself in the gas-liquid system, so if the liquid side membrane resistance is reduced by improving the device structure, the original performance of the membrane is exhibited. It is presumed that it is because.

この特徴は、気体、液体を問わずある流体からガスを
除去する用途に適用し、かつ、ガスを除去すべき流体を
中空糸の外側に接して流す場合に特に発揮される。そし
てまた同様に、気体、液体を問わず、ある液体にガスを
飽和近くまで供給する用途に適用し、かつ、ガスを供給
すべき流体を中空糸の外側に接して流す場合において
も、特に本発明の特徴が発揮される。即ち、この様な場
合には、中空糸をシート状にして組み込む方法を採らな
ければ、例えば水の脱酸素において溶存酸素量の原水を
1/20以下にする事が困難であるし、また例えば水への酸
素供給において溶存酸素量を飽和の95%以上にまで高め
る事が困難である。一方、本発明の中空糸をシート状に
して装置に組み込み、流路長等の構造を用途や使用条件
に合わせて最適化すれば、これまでに知られていた膜を
用いるよりも、コンパクトで高性能の装置とする事がで
きる。
This feature is particularly exerted when applied to an application for removing gas from a certain fluid irrespective of gas or liquid, and when a fluid from which gas is to be removed flows in contact with the outside of the hollow fiber. Similarly, when the present invention is applied to an application in which a gas is supplied to a certain liquid up to near saturation regardless of the gas or the liquid, and the fluid to be supplied with the gas flows in contact with the outside of the hollow fiber, the present invention is particularly applicable. The features of the invention are exhibited. That is, in such a case, if the method of incorporating the hollow fiber into a sheet shape is not adopted, for example, in the deoxidation of water, the raw water having the dissolved oxygen amount is used.
It is difficult to make it less than 1/20, and it is also difficult to increase the amount of dissolved oxygen to more than 95% of saturation, for example, in supplying oxygen to water. On the other hand, if the hollow fiber of the present invention is incorporated into a device in the form of a sheet and the structure such as the flow path length is optimized according to the application and use conditions, it is more compact than using a conventionally known membrane. It can be a high-performance device.

本発明の装置構造による効果は、上記の脱気や給気の
例の様に気液−ガス交換を極限近くまで(平衡点近くま
で)行わせる場合に顕著であるが、通常の気液ガス交換
装置に於ても、偏流が無くなって有効膜面積が増加する
ことによる効率の向上が認められる。
The effect of the device structure of the present invention is remarkable when the gas-liquid-gas exchange is performed to a limit as close as possible (to a point near the equilibrium point) as in the above-described examples of degassing and air supply. Also in the exchange device, it is recognized that the efficiency is improved by eliminating the drift and increasing the effective membrane area.

[実施例] 以下実施例に沿って本発明を更に具体的に説明する
が、本発明はこれらの例によって限定されない。
[Examples] Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例 1 メルトインデックス(ASTM D1238、260℃、5kg)26
のポリ(4−メチルペンテン−1)を直径6mmの円環型
ノズルを用いて紡糸温度290℃、引取速度120m/分、ドラ
フト200で溶融紡糸を行ない外径350μm、内径280μm
の中空糸を得た。この時ノズル下5〜35cmの範囲を温度
18℃、風速1.0m/秒の横風で冷却し、長さ4mの紡糸筒を
経た後ノズル下5.5mの位置で巻き取った。得られた中空
糸を温度35℃、延伸倍率(DR)1.1でローラー系を用い
て連続的に配向延伸し、続いてDR=1.3で延伸しつつ200
℃の熱風循環恒温槽中に導入し5秒間滞留させ熱処理を
行なった。熱処理された糸をさらにローラー系にて連続
的に35℃、DR1.2の冷延伸、150℃、DR1.4の熱延伸及び2
00℃、DR0.9の熱固定を行なう事により外径250μm、内
径200μm、見掛の膜厚25μmの中空糸膜を得た。この
中空糸膜は白色を呈しており、ボイドの発生が推定でき
たがSEM(走査型電子顕微鏡)観察によれば、中空糸内
外表面共に、SEM解像力(約50Å)以上の細孔は全く観
察されなかった。ASTM D1434(圧力法)により測定し
た気体透過特性はP′(O2)=7.5×10-8(単位は前
出。以下同じ)、P′(N2)2.4×10-8、α(O2/N2)=
3.1であり、これから計算される非多孔層の厚みは0.59
μmであった(特開昭59−196706号参照)。
Example 1 Melt index (ASTM D1238, 260 ° C, 5 kg) 26
The poly (4-methylpentene-1) was melt-spun using a 6 mm-diameter annular nozzle at a spinning temperature of 290 ° C., a take-up speed of 120 m / min, and a draft 200, with an outer diameter of 350 μm and an inner diameter of 280 μm.
Was obtained. At this time, the temperature within the range of 5 to 35 cm below the nozzle is
After cooling at 18 ° C. with a cross wind at a wind speed of 1.0 m / sec and passing through a spinning cylinder having a length of 4 m, winding was performed at a position 5.5 m below the nozzle. The obtained hollow fiber is continuously oriented and stretched by using a roller system at a temperature of 35 ° C. and a draw ratio (DR) of 1.1.
The mixture was introduced into a hot air circulating thermostat at ℃ and kept for 5 seconds to perform heat treatment. The heat-treated yarn is further continuously rolled with a roller system at 35 ° C, cold drawing of DR1.2, 150 ° C, hot drawing of DR1.4 and 2
By performing heat fixing at 00 ° C. and DR 0.9, a hollow fiber membrane having an outer diameter of 250 μm, an inner diameter of 200 μm, and an apparent film thickness of 25 μm was obtained. This hollow fiber membrane was white, and it was possible to estimate the occurrence of voids. However, according to SEM (scanning electron microscope) observation, pores with SEM resolving power (about 50 mm) or more were observed on both the inner and outer surfaces of the hollow fiber. Was not done. The gas permeation characteristics measured by ASTM D1434 (pressure method) are as follows: P '(O 2 ) = 7.5 × 10 −8 (unit is as described above; the same applies hereinafter), P ′ (N 2 ) 2.4 × 10 −8 , α (O 2 / N 2 ) =
3.1 and the non-porous layer thickness calculated from this is 0.59
μm (see JP-A-59-196706).

この中空糸膜(2)を緯糸とし、30デニール12フィラ
メントのポリエステル糸を経糸(10)として、絡み織り
によって緯糸密度25本/cm、経糸密度1本/cmの簾状中空
糸シートを形成した。この中空糸シートを第2図に示す
様にスパイラルに巻き、これを第1図の中空糸の束の代
りにケースに挿入し、ポリウレタンで封止する事により
気液接触装置を製造した。この時、ケースの内径は35m
m、封入した中空糸数は3000本、封止部を除く中空糸の
実効長は20cmであり、中空糸外表面基準の有効膜面積は
0.473cm2となる。
This hollow fiber membrane (2) was used as a weft, and a 30-denier 12-filament polyester yarn was used as a warp (10) to form a hollow fiber sheet having a weft density of 25 / cm and a warp density of 1 / cm by entanglement. . This hollow fiber sheet was spirally wound as shown in FIG. 2, inserted into a case instead of the bundle of hollow fibers shown in FIG. 1, and sealed with polyurethane to produce a gas-liquid contact device. At this time, the inner diameter of the case is 35m
m, the number of enclosed hollow fibers is 3,000, the effective length of the hollow fibers excluding the sealing part is 20 cm, and the effective membrane area based on the outer surface of the hollow fibers is
0.473 cm 2 .

この気液接触装置の導入口(6)より中空糸の外側に
接するように温度25℃、溶存酸素量7.8ppmの水道水を1
/分の流速で流し、一方、導入口(4)および排出口
(5)をドライ型真空ポンプにて7トルに減圧したとこ
ろ、排出口(7)から流出する水の溶解酸素量は、ポー
ラログラフ型酸素濃度計(電気化学計器株式会社製DOL
−10型)による測定で0.5ppmであった。
Tap water having a temperature of 25 ° C. and a dissolved oxygen content of 7.8 ppm was placed in contact with the outside of the hollow fiber from the inlet (6) of the gas-liquid contact device.
When the inlet (4) and the outlet (5) were evacuated to 7 torr by a dry vacuum pump, the amount of dissolved oxygen in the water flowing out from the outlet (7) was determined by a polarographic method. Type oxygen analyzer (DOL manufactured by Electrochemical Instruments Co., Ltd.)
-10) was 0.5 ppm.

比較例 1 簾状中空糸シートの代りに単なる中空糸の束を挿入し
た以外は、中空糸の本数や寸法等を実施例1と全く同様
にして作成した気液接触装置について、実施例1と同様
の測定を行なったところ、流出水の溶存酸素量は2.2ppm
であった。そこで水の流速を0.1/分まで下げ、気液
の接触時間を10倍にしたが、溶存酸素濃度は1.2ppmまで
下がったにとどまった。
Comparative Example 1 A gas-liquid contact device made in exactly the same manner as in Example 1 except that a bundle of hollow fibers was inserted instead of a hollow fiber sheet, and When the same measurement was performed, the dissolved oxygen content of the effluent was 2.2 ppm.
Met. Therefore, the water flow rate was reduced to 0.1 / min and the gas-liquid contact time was increased ten times, but the dissolved oxygen concentration was reduced to only 1.2 ppm.

比較例 2 比較例1と全く同じ気液接触装置を用い、中空糸内側
に水を流し、外側を減圧した他は比較例1と同じ測定を
行った。流出水の溶存酸素濃度は、流速が1/分のと
き0.7ppm、0.1/分のとき0.2ppmであった。
Comparative Example 2 The same measurement as in Comparative Example 1 was performed using the same gas-liquid contact device as in Comparative Example 1, except that water was flowed inside the hollow fiber and the pressure was reduced outside. The dissolved oxygen concentration of the effluent was 0.7 ppm when the flow rate was 1 / min, and 0.2 ppm when the flow rate was 0.1 / min.

実施例 2 メルトインデックス(ASTM D1238による)26のポリ
−4−メチルペンテン−1を、直径6mmの円環型中空繊
維用ノズルを用いて、紡糸温度290℃、引取速度300m/
分、ドラフト270で溶融紡糸し、外径343μm、膜厚34μ
mの中空繊維を得た。この時ノズル口下、3〜35cmの範
囲を温度25℃、風速1.5m/秒の風で冷却した。得られた
中空繊維を温度35℃、延伸倍率(DR)1.05で、ローラー
系を用いて連続的に非晶延伸し、次いで200℃、DR1.05
で熱風循環型恒温槽中に導入して5秒間滞留させる事に
より熱風処理を行ない、引続き35℃、DR1.4の冷延伸、1
50℃、DR1.4の熱延伸、および200℃、DR0.9の熱固定を
行なって、外径255μm、膜厚25μmの中空繊維膜を得
た。この膜の内径表面を12.000倍のSEMで観察したとこ
ろ、外表面は平滑で細孔がほとんど認められず、内表面
には0.1μm程度の微細孔が多数認められた。
Example 2 Poly-4-methylpentene-1 having a melt index of 26 (according to ASTM D1238) was spun at a spinning temperature of 290 ° C. and a take-up speed of 300 m / using a 6 mm diameter annular hollow fiber nozzle.
Minutes, melt spinning with draft 270, outer diameter 343μm, film thickness 34μ
m hollow fibers were obtained. At this time, a range of 3 to 35 cm below the nozzle opening was cooled by a wind having a temperature of 25 ° C. and a wind speed of 1.5 m / sec. The obtained hollow fiber was continuously subjected to amorphous drawing using a roller system at a temperature of 35 ° C. and a draw ratio (DR) of 1.05.
The hot air treatment is performed by introducing into a hot air circulating type thermostatic bath at 5 seconds and staying for 5 seconds.
Heat stretching at 50 ° C. and DR 1.4 and heat setting at 200 ° C. and DR 0.9 were performed to obtain a hollow fiber membrane having an outer diameter of 255 μm and a film thickness of 25 μm. Observation of the inner diameter surface of this film with a SEM at a magnification of 12.000 revealed that the outer surface was smooth and almost no pores were observed, and a number of fine pores of about 0.1 μm were observed on the inner surface.

この中空繊維膜0.5gを長さ約10mmに切って比重びんに
詰め、真空ポンプで1×10-2トル以下に脱気したのち水
銀を充填して重量を計るピクノメトリーで測定したとき
の空孔率は23%であった。またこの中空繊維をガラス管
に封入し、ASTM D1434圧力法に準拠して25℃にて気体
透過速度を測定したところ、P′(O2)=1.6×10
-7(単位は前出。以下同じ)、P′(N2)=6.4×1
0-8、α(O2/N2)=2.5、計算された非多孔層の厚さは
0.31μmであった(特開昭59−196706号参照)。
0.5 g of this hollow fiber membrane is cut into a length of about 10 mm, packed in a pycnometer, evacuated to 1 × 10 -2 torr or less with a vacuum pump, filled with mercury, weighed, and weighed by pycnometry. The porosity was 23%. When this hollow fiber was sealed in a glass tube and the gas permeation rate was measured at 25 ° C. in accordance with the ASTM D1434 pressure method, P ′ (O 2 ) = 1.6 × 10
-7 (unit is as above; the same applies hereinafter), P '(N 2 ) = 6.4 × 1
0 -8 , α (O 2 / N 2 ) = 2.5, calculated non-porous layer thickness is
It was 0.31 μm (see JP-A-59-196706).

この中空糸を緯糸とし、30デニール12フィラメントの
ポリエステル糸を経糸として、縦編み法にて緯糸密度28
本/cm、経糸密度1.5本/cmの簾状中空糸とシートを形成
した。この中空糸シートを多数の穴の開いた外径20mmの
多孔パイプを芯としてスパイラルに巻き、多孔パイプご
とケースに装填し、封止する事によって、第3図に示し
た構造の気液接触装置を製作した。
This hollow fiber is used as the weft, the polyester yarn of 30 denier 12 filaments is used as the warp, and the warp knitting method has a weft density of 28.
A cord / hollow fiber and a sheet having a density of 1.5 yarns / cm and a warp density of 1.5 yarns / cm were formed. The hollow fiber sheet is spirally wound around a perforated pipe having a large number of holes and having an outer diameter of 20 mm, loaded into a case together with the perforated pipe, and sealed to form a gas-liquid contact device having the structure shown in FIG. Was made.

この気液接触装置に組込まれた中空糸膜の有効長さは
30cm、シート積層厚(スパイラルシートの外径マイナス
内径の1/2)は4cmであり、有効膜面積は12.4m2であっ
た。
The effective length of the hollow fiber membrane incorporated in this gas-liquid contactor is
30 cm, sheet lamination thickness (1/2 of the outer diameter minus the inner diameter of the spiral sheet) is 4 cm, effective membrane area was 12.4 m 2.

この気液接触装置の導入口(6)より中空糸の外側に
溶存酸素濃度7.9ppmの25℃の水道水を17/分の流速で
流し、一方、中空糸の内側に通じる導入口(4)および
排出口(5)を真空ポンプにて10トルに減圧した。排出
口(7)より流出する水の溶存酸素濃度を測ったところ
0.3ppmであった。
25 ° C. tap water with a dissolved oxygen concentration of 7.9 ppm flows at a flow rate of 17 / min from the inlet (6) of the gas-liquid contact device to the outside of the hollow fiber, while the inlet (4) communicating with the inside of the hollow fiber. And the outlet (5) was evacuated to 10 torr with a vacuum pump. When the dissolved oxygen concentration of the water flowing out from the outlet (7) is measured
0.3 ppm.

実施例 3 実施例2で使用したものと同じ中空糸膜を緯糸とし、
30デニール12フィラメントのポリエステル糸を経糸とし
て、三本絡み織りにて経糸密度20本/cm、経糸密度2本/
cmの簾状中空糸シートを製作した。この中空糸シートを
第4図に示す様に折り畳んで、積層密度が30枚/cm、幅1
0cm、厚さ6cmの中空糸シートの重畳体を形成した。この
重畳体を8mm間隔で直径3mmの多数の開孔を穿設した厚さ
3.5mmの2枚のポリプロピレン多孔板で挟持して、角筒
状のハウジング内に収容した。そして中空糸の両端をポ
リウレタン樹脂の隔壁でハウジングに液密に接着し、か
つ重畳体の両端面とハウジングの側面に形成された空隙
に接着剤を充填して第5図に示す気液接触装置を製作し
た。この気液接触装置の中空糸の有効長は30cmであり、
有効膜面積は8.5cm2であった。この気液接触装置の導入
口(6)より中空糸外側に接する側に溶存酸素濃度7.8p
pm、温度25℃の水を10/分の流速で流し、導入口
(4)および排出口(5)から中空糸内側を真空ポンプ
にて10トルに減圧したところ、流出する水の溶存酸素濃
度は0.1ppm以下であった。
Example 3 The same hollow fiber membrane as used in Example 2 was used as a weft,
Using 30 denier 12 filament polyester yarn as warp, warp density of 20 / cm, warp density of 2 /
cm-shaped hollow fiber sheet was manufactured. This hollow fiber sheet was folded as shown in FIG. 4 to have a lamination density of 30 sheets / cm and a width of 1
A stack of hollow fiber sheets having a thickness of 0 cm and a thickness of 6 cm was formed. Thickness of this superimposed body with many holes of 3 mm diameter at 8 mm intervals
It was sandwiched between two 3.5 mm polypropylene porous plates and housed in a rectangular tubular housing. The two ends of the hollow fiber are liquid-tightly bonded to the housing with polyurethane resin partition walls, and the gap formed between both end surfaces of the superposed body and the side surface of the housing is filled with an adhesive to provide a gas-liquid contact device shown in FIG. Was made. The effective length of the hollow fiber of this gas-liquid contact device is 30 cm,
The effective membrane area was 8.5 cm 2 . Dissolved oxygen concentration of 7.8p from the inlet (6) of this gas-liquid contacting device
pm, water at a temperature of 25 ° C. was flowed at a flow rate of 10 / min, and the inside of the hollow fiber was evacuated to 10 torr with a vacuum pump from the inlet (4) and the outlet (5). Was 0.1 ppm or less.

【図面の簡単な説明】[Brief description of the drawings]

第1図は従来知られている中空糸膜型気液接触装置の代
表例を示す部分縦断正面図であり、第2図は中空糸シー
トをスパイラルに巻いた中空糸束の斜視図、第3図は実
施例2に示される中空糸膜型気液接触装置の縦断面図、
第4図は中空糸シートを折り畳んで重畳体を形成する場
合の概念的斜視図、第5図は実施例3に示される本発明
装置の部分破断斜視図である。 図中の符号は以下の通りである。 1……ケース、2……中空糸膜、3……樹脂封止部、
4、6……導入口……5、7……排出口、8……キャッ
プ、9……多孔パイプ、9′……多孔板、10……経糸。
FIG. 1 is a partial longitudinal front view showing a typical example of a conventionally known hollow fiber membrane type gas-liquid contact device, FIG. 2 is a perspective view of a hollow fiber bundle in which a hollow fiber sheet is spirally wound, and FIG. The figure is a longitudinal sectional view of the hollow fiber membrane type gas-liquid contact device shown in Example 2,
FIG. 4 is a conceptual perspective view in the case where a hollow fiber sheet is folded to form a superposed body, and FIG. 5 is a partially cutaway perspective view of the apparatus of the present invention shown in the third embodiment. The reference numerals in the figure are as follows. 1 ... case, 2 ... hollow fiber membrane, 3 ... resin sealing part,
4, 6 ... Inlet ... 5, 7 ... Outlet, 8 ... Cap, 9 ... Perforated pipe, 9 '... Perforated plate, 10 ... Warp.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−45318(JP,A) 特開 昭61−101227(JP,A) 特開 昭59−229320(JP,A) 特開 昭59−19506(JP,A) 特開 昭55−1816(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-45318 (JP, A) JP-A-61-101227 (JP, A) JP-A-59-229320 (JP, A) JP-A-59-229320 19506 (JP, A) JP-A-55-1816 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液体と気体とをガス交換膜を介して接触さ
せ、膜を通してガスを移動または相互に交換させる気液
接触装置において、ガス交換膜が、ポリ−(4−メチル
ペンテン−1)を実質的主要成分とする材料よりなる、
25℃における見かけの酸素透過係数P′(O2)が4×10
-9[cm3(STP)/cm2,sec,cmHg]以上で、かつ25℃にお
ける酸素と窒素の分離係数α(O2/N2)が1.1以上の中空
糸膜であって、該中空糸が、中空糸同士または他の糸条
とによって組織されたシート状物の重畳体または集束体
の状態で、ケース内に組み込まれていることを特徴とす
る中空糸膜型気液接触装置。
1. A gas-liquid contacting device for bringing a liquid and a gas into contact with each other via a gas exchange membrane and moving or exchanging the gas through the membrane, wherein the gas exchange membrane comprises poly- (4-methylpentene-1). Consisting essentially of a material having
The apparent oxygen permeability coefficient P '(O 2 ) at 25 ° C. is 4 × 10
-9 [cm 3 (STP) / cm 2 , sec, cmHg] or more, and a separation coefficient α (O 2 / N 2 ) of oxygen and nitrogen at 25 ° C. of 1.1 or more is a hollow fiber membrane. A hollow fiber membrane-type gas-liquid contact device, wherein a yarn is incorporated in a case in a state of a superimposed body or a bundle of sheet-like materials organized by hollow fibers or other yarns.
【請求項2】中空糸膜の外側に接して液体が流通し、中
空糸膜内側へガス透過される外部灌流型の、液体からの
脱ガスに用いられる請求項1に記載の中空糸膜型気液接
触装置。
2. The hollow fiber membrane type according to claim 1, which is used for degassing from a liquid, of an external perfusion type in which a liquid flows in contact with the outside of the hollow fiber membrane and gas is permeated inside the hollow fiber membrane. Gas-liquid contact device.
【請求項3】中空糸膜の外側に接して混合気体が流通
し、中空糸膜内側を流れる液体へ特定種のガスが分別移
行される内部灌流型のものである請求項1に記載の中空
糸膜型気液接触装置。
3. The hollow perfusion type according to claim 1, wherein a gas mixture flows in contact with the outside of the hollow fiber membrane, and a specific kind of gas is separated and transferred to a liquid flowing inside the hollow fiber membrane. Thread film type gas-liquid contact device.
【請求項4】中空糸のシート状物が、並行に配列された
中空糸を、それとほぼ直角となる他の糸条で、簾状に編
組したものである請求項1、2または3に記載の中空糸
膜気液接触装置。
4. The hollow fiber sheet-like material according to claim 1, 2 or 3, wherein the hollow fibers arranged in parallel are braided with other yarns which are substantially perpendicular thereto. Hollow fiber membrane gas-liquid contact device.
JP25593888A 1988-10-13 1988-10-13 Hollow fiber membrane type gas-liquid contactor Expired - Lifetime JP2725311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25593888A JP2725311B2 (en) 1988-10-13 1988-10-13 Hollow fiber membrane type gas-liquid contactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25593888A JP2725311B2 (en) 1988-10-13 1988-10-13 Hollow fiber membrane type gas-liquid contactor

Publications (2)

Publication Number Publication Date
JPH02102714A JPH02102714A (en) 1990-04-16
JP2725311B2 true JP2725311B2 (en) 1998-03-11

Family

ID=17285658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25593888A Expired - Lifetime JP2725311B2 (en) 1988-10-13 1988-10-13 Hollow fiber membrane type gas-liquid contactor

Country Status (1)

Country Link
JP (1) JP2725311B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402818B1 (en) 2000-06-02 2002-06-11 Celgard Inc. Degassing a liquid with a membrane contactor
WO2020122303A1 (en) * 2018-12-14 2020-06-18 주식회사 앱스필 Ceramic hollow fiber membrane module for contact film process
KR20200073746A (en) * 2018-12-14 2020-06-24 주식회사 앱스필 Ceramic hollow fiber membrane module for membrane contactor process
KR20200073757A (en) * 2018-12-14 2020-06-24 주식회사 앱스필 Ceramic hollow fiber membrane contactor module with high performance

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671594B2 (en) * 1989-11-07 1994-09-14 荏原インフイルコ株式会社 Method and apparatus for removing dissolved oxygen in water
US5449457A (en) * 1991-04-22 1995-09-12 Hoechst Celanese Corporation Liquid membrane modules with minimal effective membrane thickness and methods of making the same
DE4412756C2 (en) * 1994-04-13 1996-06-20 Gore W L & Ass Gmbh Hose assembly and method of making the same
US6558450B2 (en) * 2001-03-22 2003-05-06 Celgard Inc. Method for debubbling an ink
US6616841B2 (en) 2001-06-21 2003-09-09 Celgard Inc. Hollow fiber membrane contactor
JP5731093B2 (en) * 2005-11-30 2015-06-10 コニカミノルタ株式会社 Inkjet ink degassing method and inkjet ink manufacturing method
JP4994279B2 (en) * 2008-03-19 2012-08-08 芝浦メカトロニクス株式会社 Microbubble generator
EP2349522B1 (en) * 2008-09-25 2015-02-25 Veolia Water Solutions & Technologies Support Method for treating sea water with a view to producing injection water for undersea petroleum drilling, and corresponding equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402818B1 (en) 2000-06-02 2002-06-11 Celgard Inc. Degassing a liquid with a membrane contactor
WO2020122303A1 (en) * 2018-12-14 2020-06-18 주식회사 앱스필 Ceramic hollow fiber membrane module for contact film process
KR20200073746A (en) * 2018-12-14 2020-06-24 주식회사 앱스필 Ceramic hollow fiber membrane module for membrane contactor process
KR20200073757A (en) * 2018-12-14 2020-06-24 주식회사 앱스필 Ceramic hollow fiber membrane contactor module with high performance
KR102203817B1 (en) * 2018-12-14 2021-01-15 주식회사 앱스필 Ceramic hollow fiber membrane module for membrane contactor process
KR102203813B1 (en) * 2018-12-14 2021-01-15 주식회사 앱스필 Ceramic hollow fiber membrane contactor module with high performance

Also Published As

Publication number Publication date
JPH02102714A (en) 1990-04-16

Similar Documents

Publication Publication Date Title
US5254143A (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
EP0299381B2 (en) Membrane-type artificial lung and method of using it
US5192320A (en) Artificial lung and method of using it
JP2725311B2 (en) Hollow fiber membrane type gas-liquid contactor
JP2725312B2 (en) Porous hollow fiber membrane type gas-liquid contactor
US9694326B2 (en) Composite hollow fiber membrane and hollow fiber membrane module
CA2345892A1 (en) Degassing a liquid with a membrane contactor
JP2512937B2 (en) Membrane type gas-liquid contactor
CN111801152B (en) Membrane separation system and method for operating membrane separation system
US10583664B2 (en) Hollow fiber membrane module
EP0470377A2 (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
JPH06121920A (en) Hollow fiber membrane
JPH119902A (en) Module for liquid deaeration
JPS63264127A (en) Porous membrane type gas-liquid contact device
JPH05208120A (en) Spiral separation membrane element
JPH0760082A (en) Method and apparatus for adjusting specific resistance of ultrapure water
JPH06134210A (en) Deaeration film module
JPH03249907A (en) Spiral type deaerating element and method for using this element
JPH0751505A (en) Method and apparatus for removal of gal dissolved in aqueous solution
JPH0788304A (en) Module for removing dissolved gas and supplying gas
JPH09150041A (en) Externally perfusion-type gas/liquid contact module
JPH11262640A (en) Hollow fiber membrane module
JPH09117643A (en) Hollow fiber membrane module
JPH10296005A (en) Method for ultradeaeration of liquid and deaeration apparatus thereof