JP5920577B2 - Surface coated cutting tool with excellent fracture resistance and wear resistance - Google Patents

Surface coated cutting tool with excellent fracture resistance and wear resistance Download PDF

Info

Publication number
JP5920577B2
JP5920577B2 JP2012137936A JP2012137936A JP5920577B2 JP 5920577 B2 JP5920577 B2 JP 5920577B2 JP 2012137936 A JP2012137936 A JP 2012137936A JP 2012137936 A JP2012137936 A JP 2012137936A JP 5920577 B2 JP5920577 B2 JP 5920577B2
Authority
JP
Japan
Prior art keywords
layer
coating layer
particles
hard coating
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012137936A
Other languages
Japanese (ja)
Other versions
JP2013046955A (en
Inventor
峻 佐藤
峻 佐藤
和明 仙北屋
和明 仙北屋
田中 耕一
耕一 田中
田中 裕介
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012137936A priority Critical patent/JP5920577B2/en
Priority to PCT/JP2012/065805 priority patent/WO2012176827A1/en
Priority to CN201280003131.4A priority patent/CN103124608B/en
Publication of JP2013046955A publication Critical patent/JP2013046955A/en
Application granted granted Critical
Publication of JP5920577B2 publication Critical patent/JP5920577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides

Description

本発明は、例えば、炭素鋼、合金工具鋼等の被削材の正面フライス加工において、硬質被覆層の耐欠損性を向上させることにより、長期の使用にわたってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides, for example, a surface coating that exhibits excellent wear resistance over a long period of use by improving the fracture resistance of a hard coating layer in face milling of work materials such as carbon steel and alloy tool steel. The present invention relates to a cutting tool (hereinafter referred to as a coated tool).

従来、例えば、特許文献1に開示されているように、硬質被覆層の有するドロップレットを起点に結晶成長した化合物の結晶粒が皮膜表面に突き出しており、化合物の結晶粒の長手方向長さをh(μm)、硬質被覆層の層厚T(μm)としたとき、6≦T≦30、0.1≦h/T≦1.2とすることによって、ドロップレットを起点とした巨大な柱状結晶を成長させ、圧縮応力を低減化することで密着性を損なわずに厚膜化を実現した表面被覆切削工具が知られている。   Conventionally, for example, as disclosed in Patent Document 1, the crystal grains of a compound that has grown from the droplets of the hard coating layer have protruded from the coating surface, and the longitudinal length of the crystal grains of the compound is When h (μm) and the layer thickness T (μm) of the hard coating layer are 6 ≦ T ≦ 30 and 0.1 ≦ h / T ≦ 1.2, a huge column shape starting from the droplet There is known a surface-coated cutting tool that realizes a thick film by growing crystals and reducing compressive stress without impairing adhesion.

また、特許文献2に開示されているように、被覆層の表面に複数のマクロ粒子が突出し、底刃および外周刃の切刃に続くすくい面においてマクロ粒子が基体と被覆層との界面の垂線方向に対して切刃から遠ざかる方向に平均で5〜20%の角度で突出しており、マクロ粒子が傾いて突出することで切りくずの衝撃を分散させ、マクロ粒子が脱落することを抑制でき、耐チッピング性を向上させたエンドミル等の表面被覆切削工具が知られている。   Further, as disclosed in Patent Document 2, a plurality of macro particles protrude from the surface of the coating layer, and the macro particles are perpendicular to the interface between the substrate and the coating layer on the rake face that follows the cutting edge of the bottom blade and the outer peripheral blade. It protrudes at an angle of 5 to 20% on average in a direction away from the cutting edge with respect to the direction, and the impact of the chips can be dispersed by protruding the macro particles inclined, and the macro particles can be prevented from dropping off. Surface-coated cutting tools such as end mills with improved chipping resistance are known.

さらに、特許文献3に開示されているように、WC基超硬合金を含むサーメット、セラミックスおよび高速度工具鋼のうちのいずれかからなる硬質材料基体の表面に、単層または複層からなる硬質被覆層を0.5〜20μmの平均層厚で形成し、硬質被覆層の少なくとも1層に0.2〜2μmの粒径をもったTi,Zr,Hf,およびAl、並びにこれらの2種以上の合金のうちの少なくとも1種からなる金属粒が5〜30%の縦断面面積率で分散分布した組織を有する金属粒分散層で構成することで、耐チッピング性を向上させた表面被覆切削工具が知られている。   Furthermore, as disclosed in Patent Document 3, a hard layer made of a single layer or multiple layers is formed on the surface of a hard material substrate made of any of cermet, ceramics, and high-speed tool steel containing a WC-base cemented carbide. Ti, Zr, Hf, and Al having a coating layer formed with an average layer thickness of 0.5 to 20 μm and a particle size of 0.2 to 2 μm in at least one of the hard coating layers, and two or more of these A surface-coated cutting tool having improved chipping resistance by comprising a metal particle dispersed layer having a structure in which metal particles comprising at least one of the above alloys are dispersed and distributed at a longitudinal cross-sectional area ratio of 5 to 30% It has been known.

特開2008−75178号公報JP 2008-75178 A 特開2008−238336号公報JP 2008-238336 A 特開平6−170610号公報JP-A-6-170610

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、被覆工具は一段と過酷な条件下で使用されるようになってきており、耐欠損性を高めるために、前記特許文献1〜3に示されるような手法で、被覆工具の性能向上がなされてきているが、耐欠損性の改善は未だ十分とはいえない。
前記特許文献3のように、硬質被覆層内に金属粒子を分散させることにより、膜内部の応力を緩和させ、耐欠損性を向上させることができる。ところが、通常、ターゲットから発生した金属粒子は基体に付着する前に凝固するため、金属粒子は形状や基体表面に対する角度がランダムな状態で皮膜に取り込まれる。球状に形成された粒子や、細長いものでも膜厚方向に縦長の粒子は切削時に抵抗を受けやすく脱落しやすい上、脱落時に膜表面を大きく損傷させてしまい、表面粗度が増すことで耐欠損性が低下するという課題がある。そのため、硬質被覆層内に単純に金属粒子を分散させただけでは、例えば、炭素鋼、合金工具鋼等の被削材を、耐摩耗性と耐欠損性が同時に必要とされる正面フライスなどの加工形態で加工した場合において、硬質被覆層が欠損を発生しやすく、その結果、比較的短時間で使用寿命に至るのが現状である。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、炭素鋼、合金工具鋼等の被削材を正面フライスなどの加工形態で加工した場合であっても、すぐれた耐摩耗性と耐欠損性を発揮する表面被覆切削工具を提供することである。
In recent years, there is a strong demand for energy saving and energy saving in cutting, and with this, coated tools are increasingly used under severer conditions. Although the performance of the coated tool has been improved by the method as shown in -3, the improvement of the fracture resistance is still not sufficient.
As in Patent Document 3, by dispersing metal particles in the hard coating layer, the stress inside the film can be relaxed and the fracture resistance can be improved. However, since the metal particles generated from the target are usually solidified before adhering to the substrate, the metal particles are taken into the film in a state where the shape and the angle with respect to the substrate surface are random. Particles that are formed in a spherical shape or elongated in the film thickness direction, even if they are elongated, are subject to resistance during cutting and easily fall off, and the surface of the film is greatly damaged when dropped, resulting in increased chip roughness due to increased surface roughness. There is a problem that the performance decreases. Therefore, by simply dispersing the metal particles in the hard coating layer, for example, a work material such as carbon steel or alloy tool steel can be used, such as a face mill that requires wear resistance and fracture resistance at the same time. When processed in the processing mode, the hard coating layer is likely to be damaged, and as a result, the service life is reached in a relatively short time.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is excellent even when a work material such as carbon steel or alloy tool steel is processed in a processing form such as a face mill. To provide a surface-coated cutting tool that exhibits wear resistance and fracture resistance.

そこで、本発明者らは、前述のような観点から、耐摩耗性と耐欠損性が同時に必要とされる正面フライス加工などの加工形態に用いられた場合においても、長期の使用にわたってすぐれた耐摩耗性を発揮する被覆工具について鋭意研究を行った結果、以下の知見を得た。   Therefore, from the above viewpoint, the present inventors have excellent resistance over a long period of use even when used in processing forms such as face milling that require wear resistance and fracture resistance at the same time. As a result of intensive studies on coated tools that exhibit wear, the following findings were obtained.

即ち、本発明者らは、硬質被覆層として、AlとTiとSiの複合炭窒化物層または複合窒化物層(以下、(Al,Ti,Si)(N,C)で示す)を平均層厚0.5〜8.0μmで被覆形成した被覆工具において、前記(Al,Ti,Si)(N,C)層内に構成元素の90原子%以上が金属元素である粒子(以下、単に「金属粒子」と呼ぶ)を含有しており、その粒子は、平均断面長径0.05〜0.5μmで硬質被覆層中に3〜18%の縦断面面積比率で分散分布し、その粒子のうち、構成元素が50原子%以上のAlを含み、かつ縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子の縦断面面積比率をA%、それ以外の粒子の縦断面面積比率をB%としたとき、0.3≦A/(A+B)であることによって、(Al,Ti,Si)(N,C)層はすぐれた耐欠損性を示すようになり、その結果、長期の使用にわたってすぐれた耐摩耗性を発揮することを見出した。   That is, the present inventors have used an average layer of a composite carbonitride layer or composite nitride layer of Al, Ti, and Si (hereinafter referred to as (Al, Ti, Si) (N, C)) as the hard coating layer. In a coated tool formed by coating with a thickness of 0.5 to 8.0 μm, particles in which 90 atomic% or more of constituent elements are metal elements in the (Al, Ti, Si) (N, C) layer (hereinafter simply referred to as “ The metal particles are referred to as “metal particles”, and the particles have an average cross-sectional major axis of 0.05 to 0.5 μm and are distributed and distributed in the hard coating layer at a longitudinal cross-sectional area ratio of 3 to 18%. The ratio of the longitudinal sectional area of the particles containing Al of 50 atomic% or more, the aspect ratio of the longitudinal sectional shape being 2.0 or more, and the acute angle of the sectional major axis with respect to the substrate surface being 45 ° or less is A%, When the longitudinal cross-sectional area ratio of the other particles is B%, 0.3 ≦ A / (A + B) By some, (Al, Ti, Si) (N, C) layer is to exhibit excellent chipping resistance, As a result, it has been found to exhibit wear resistance excellent long-term use.

硬質被覆層は、PVD法を用いて炭化タングステン基超硬合金からなる工具基体表面に成膜する。例えば、本発明は、図1にその概略を示すアークイオンプレーティング装置を用いて成膜を行うことができる。この場合、炉全体の雰囲気温度を制御するヒーターに加え、ターゲット前面に筒状ヒーターを設けることでターゲット前面の空間を高温にする。これによりターゲットから発生する金属粒子が雰囲気中で凝固することを防ぐことができ、高温のまま基体へ付着させることで、金属粒子は付着時の衝撃によって基体表面の形状に沿って変形する。金属粒子は基体表面の形状に沿って変形するため、基体表面が平滑であれば、皮膜の縦断面(基体表面に対して垂直な断面)から見て基体表面に沿った偏平形状となり、金属粒子の断面形状の断面長径が基体表面となす鋭角は45°以下に制御される。金属粒子を硬質被覆層内に分散分布させることで被覆層内の応力が緩和され、さらに金属粒子を基体表面に沿ったアスペクト比の大きい偏平形状とすることで切削時の抵抗が小さくなり、金属粒子は脱落しにくく、また脱落した場合でも膜厚方向への損傷が小さくなる。また、硬質被覆層は下地の凹凸を反映して成長するので、偏平形状の金属粒子を分散させても被覆層の平滑性は損なわれない。その結果、耐欠損性にすぐれた硬質被覆層を提供できる。また、筒状ヒーターからの輻射熱による皮膜へのダメージは基体治具に冷却機構を設けることで防ぐことができる。このような機構を有した成膜装置で成膜することで、本発明の特徴を持つ皮膜が形成される。
さらに、(Al,Ti,Si)(N,C)層における前記粒子の平均断面長径および縦断面面積比率、組成、縦断面形状のアスペクト比、アスペクト比2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子の粒子全体に対する縦断面面積比率は、ターゲット前面の空間の温度、ターゲットのアーク電流、ターゲット表面の磁力等を変調させることで制御できることを見出した。
また、前記硬質被覆層の表面に、少なくともTi、Cr、Alのいずれかの元素を含み、前記元素とSiの群から選ばれる一種以上の元素の窒化物、炭化物または炭窒化物のいずれかであり、ビッカース硬さが2500Hv以上かつ平均層厚0.5〜3.0μmである表面層を備えることによって、硬質被覆層の効果と相まって、より一層耐摩耗性を発揮することを見出したのである。ここで、前述の記載において、「少なくともTi、Cr、Alのいずれかの元素」と「前記元素とSiの群から選ばれる一種以上の元素」とが同じ元素となっても構わない。
また、前記超硬合金と硬質被覆層との間に、少なくともTiを含み、Ti、Cr、Al、Siの群から選ばれる一種以上の元素の窒化物または炭窒化物である平均層厚0.1〜2.0μmの中間層を備えることによって、硬質被覆層の効果と相まって、より一層耐欠損性を発揮することを見出したのである。
以上のような知見に基づき、本発明を完成するに至った。
The hard coating layer is formed on the surface of the tool base made of a tungsten carbide base cemented carbide using the PVD method. For example, in the present invention, film formation can be performed using an arc ion plating apparatus whose outline is shown in FIG. In this case, in addition to the heater that controls the atmospheric temperature of the entire furnace, a cylindrical heater is provided on the front surface of the target to increase the temperature of the front surface of the target. As a result, the metal particles generated from the target can be prevented from solidifying in the atmosphere, and the metal particles are deformed along the shape of the surface of the substrate due to the impact at the time of adhesion by adhering to the substrate at a high temperature. Since the metal particles are deformed along the shape of the substrate surface, if the substrate surface is smooth, the metal particles have a flat shape along the substrate surface as viewed from the longitudinal section of the coating (cross section perpendicular to the substrate surface). The acute angle between the major axis of the cross-sectional shape and the surface of the substrate is controlled to 45 ° or less. Dispersing and distributing the metal particles in the hard coating layer relieves stress in the coating layer. Further, by making the metal particles flat with a large aspect ratio along the substrate surface, the resistance during cutting is reduced and the metal is reduced. The particles are difficult to fall off, and even when dropped, damage in the film thickness direction is reduced. In addition, since the hard coating layer grows reflecting the unevenness of the base, even if flat metal particles are dispersed, the smoothness of the coating layer is not impaired. As a result, a hard coating layer having excellent fracture resistance can be provided. Further, damage to the film due to radiant heat from the cylindrical heater can be prevented by providing a cooling mechanism in the base jig. A film having the characteristics of the present invention is formed by forming a film with a film forming apparatus having such a mechanism.
Further, in the (Al, Ti, Si) (N, C) layer, the average cross-sectional long diameter and longitudinal cross-sectional area ratio, composition, aspect ratio of the vertical cross-sectional shape, aspect ratio of 2.0 or more and cross-sectional long diameter of the particles It has been found that the ratio of the longitudinal sectional area of the particles having an acute angle of 45 ° or less to the whole particles can be controlled by modulating the temperature of the space in front of the target, the arc current of the target, the magnetic force of the target surface, and the like.
Further, the surface of the hard coating layer contains at least one of Ti, Cr, and Al, and is one of nitride, carbide or carbonitride of one or more elements selected from the group of the element and Si It was found that by providing a surface layer having a Vickers hardness of 2500 Hv or more and an average layer thickness of 0.5 to 3.0 μm, the wear effect is further exhibited in combination with the effect of the hard coating layer. . Here, in the above description, “at least one element of Ti, Cr, and Al” and “one or more elements selected from the group of the element and Si” may be the same element.
In addition, the average layer thickness of 0.1 or more elements selected from the group of Ti, Cr, Al, and Si, including at least Ti between the cemented carbide and the hard coating layer is 0. It has been found that by providing an intermediate layer of 1 to 2.0 μm, the fracture resistance is further exhibited in combination with the effect of the hard coating layer.
Based on the above findings, the present invention has been completed.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金からなる工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
前記硬質被覆層は、組成式:(Al1−x−yTiSi)(N1−z)(但し、0.3≦x≦0.7、0≦y≦0.1、0≦z≦0.3)で表される平均層厚0.5〜8.0μmの複合炭窒化物層または複合窒化物層からなり、
前記硬質被覆層は、構成元素の90原子%以上が金属元素である粒子を含有しており、前記粒子は、平均断面長径0.05〜0.5μmで前記硬質被覆層中に3〜18%の縦断面面積比率で分散分布し、
前記粒子のうち、構成元素に50原子%以上のAlを含み、かつ縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子の縦断面面積比率をA%、それ以外の粒子の縦断面面積比率をB%としたとき、
0.3≦A/(A+B)
であることを特徴とする表面被覆切削工具。
(2) 前記硬質被覆層の表面に、少なくともTi、Cr、Alのいずれかの元素を含み、前記元素とSiの群から選ばれる一種以上の元素の窒化物、炭化物または炭窒化物のいずれかであり、ビッカース硬さが2500Hv以上かつ平均層厚0.5〜3.0μmである表面層を備えたことを特徴とする(1)記載の表面被覆切削工具。
(3) 前記工具基体と硬質被覆層との間に、少なくともTiを含み、Ti、Cr、Al、Siの群から選ばれる一種以上の元素の窒化物または炭窒化物である平均層厚0.1〜2.0μmの中間層を備えたことを特徴とする(1)または(2)記載の表面被覆切削工具。」
に特徴を有する。
The present invention has been made based on the above findings,
To "(1) the surface of the tool substrate made of tungsten carbide based cemented carbide, the surface-coated cutting tool hard substance coating layer is formed,
The hard coating layer has a composition formula: (Al 1-xy Ti x Si y ) (N 1-z C z ) (where 0.3 ≦ x ≦ 0.7, 0 ≦ y ≦ 0.1, A composite carbonitride layer or a composite nitride layer having an average layer thickness of 0.5 to 8.0 μm represented by 0 ≦ z ≦ 0.3),
The hard coating layer contains particles in which 90 atomic% or more of the constituent elements are metal elements, and the particles have an average cross-sectional major axis of 0.05 to 0.5 μm and 3 to 18% in the hard coating layer. Is distributed with a longitudinal section area ratio of
Among the particles, the vertical cross-sectional area ratio of particles containing 50 atomic% or more of Al as a constituent element, the aspect ratio of the vertical cross-sectional shape being 2.0 or higher, and the acute angle between the major axis of the cross-section and the substrate surface being 45 ° or less Is A%, and the vertical cross-sectional area ratio of the other particles is B%,
0.3 ≦ A / (A + B)
A surface-coated cutting tool characterized in that
(2) The surface of the hard coating layer includes at least one of Ti, Cr, and Al, and is any one of nitride, carbide, or carbonitride of one or more elements selected from the group of the element and Si The surface-coated cutting tool according to (1), further comprising a surface layer having a Vickers hardness of 2500 Hv or more and an average layer thickness of 0.5 to 3.0 μm.
(3) Between the tool base and the hard coating layer, an average layer thickness of at least Ti, which is a nitride or carbonitride of one or more elements selected from the group of Ti, Cr, Al, and Si. The surface-coated cutting tool according to (1) or (2), comprising an intermediate layer of 1 to 2.0 μm. "
It has the characteristics.

本発明について、以下に詳細を説明する。   The present invention will be described in detail below.

(Al,Ti,Si)(N,C)層からなる硬質被覆層:
(Al,Ti,Si)(N,C)層(AlとTiとSiの複合炭窒化物層または複合窒化物層)からなる硬質被覆層においては、その構成成分であるAl成分が高温硬さと耐熱性を向上させ、Ti成分が高温強度を向上させ、また、Si成分が耐酸化性を向上させる。さらに、AlとTiとが共存することによって高温耐酸化性を向上させる作用がある。ところが、(Al,Ti,Si)(N,C)層において、AlとSiとの合量に占めるTiの含有割合が30原子%未満であると、溶着性の高い被削材の正面フライス切削加工において、被削材および切粉に対する耐溶着性を確保することができず、また、高温強度も低下するため、溶着、欠損を発生しやすくなる。一方、AlとSiとの合量に占めるTiの含有割合が70原子%を超えると、相対的なAl含有割合の減少により、高温硬さの低下、耐熱性の低下が生じ、偏摩耗の発生、熱塑性変形の発生等により耐摩耗性が低下する。したがって、AlとSiとの合量に占めるTiの含有割合は、30〜70原子%とすることが望ましい。
また、Siは含有させなくても一定の効果が奏されるが、AlとTiとの合量に占めるSiの含有割合が10原子%以下の範囲でSiを含有させることにより耐酸化性が向上し、高温硬さも向上するため、より好ましい。一方、AlとTiとの合量に占めるSiの含有割合が10原子%を超えると、(Al,Ti,Si)(N,C)層の高温靭性、高温強度が低下するので、AlとTiとの合量に占めるSiの含有割合は、0〜10原子%とすることが望ましい。
硬質被覆層において、一部のNをCに置き換えることでさらに耐摩耗性を向上させることができる。一方でCを含有するほど耐欠損性は低下するので、Nに対するCの含有割合は、0〜30原子%とすることが望ましい。
硬質被覆層の層厚が0.5μm未満だと金属粒子を内部に分散させても所望の効果が得ることができず、一方、8.0μmを越えると切刃部に欠損が生じやすくなるため、平均層厚は0.5〜8.0μmとした。
Hard coating layer composed of (Al, Ti, Si) (N, C) layer:
In a hard coating layer composed of an (Al, Ti, Si) (N, C) layer (a composite carbonitride layer or composite nitride layer of Al, Ti, and Si), an Al component as a constituent component thereof has high-temperature hardness. Heat resistance is improved, Ti component improves high temperature strength, and Si component improves oxidation resistance. Furthermore, the coexistence of Al and Ti has the effect of improving high-temperature oxidation resistance. However, in the (Al, Ti, Si) (N, C) layer, when the content ratio of Ti in the total amount of Al and Si is less than 30 atomic%, face milling of the work material with high weldability is performed. In the processing, the welding resistance to the work material and the chips cannot be ensured, and the high-temperature strength also decreases, so that welding and chipping are likely to occur. On the other hand, if the Ti content in the total amount of Al and Si exceeds 70 atomic%, the relative decrease in the Al content causes a decrease in high-temperature hardness and a decrease in heat resistance, resulting in uneven wear. In addition, wear resistance decreases due to occurrence of thermoplastic deformation. Therefore, the content ratio of Ti in the total amount of Al and Si is preferably 30 to 70 atomic%.
In addition, although a certain effect can be obtained even if Si is not contained, the oxidation resistance is improved by containing Si in a content ratio of Si of 10 atomic% or less in the total amount of Al and Ti. In addition, since the high temperature hardness is also improved, it is more preferable. On the other hand, when the content ratio of Si in the total amount of Al and Ti exceeds 10 atomic%, the high temperature toughness and high temperature strength of the (Al, Ti, Si) (N, C) layer are reduced. The content ratio of Si in the total amount is preferably 0 to 10 atomic%.
In the hard coating layer, the wear resistance can be further improved by replacing part of N with C. On the other hand, since the defect resistance decreases as C is contained, the content ratio of C with respect to N is preferably 0 to 30 atomic%.
If the thickness of the hard coating layer is less than 0.5 μm, the desired effect cannot be obtained even if the metal particles are dispersed inside. On the other hand, if the thickness exceeds 8.0 μm, the cutting edge tends to be damaged. The average layer thickness was 0.5 to 8.0 μm.

(Al,Ti,Si)(N,C)層中における金属粒子の平均断面長径:
本発明において、断面長径とは、基体表面に垂直な皮膜断面における金属粒子の断面形状で最も長い直径を意味する。内部に金属粒子を含有することで、皮膜内の残留応力が緩和され、膜内の応力分布が均一になるため、耐欠損性が向上する。この際、金属粒子の平均断面長径が0.05μmより小さいと目的とする応力緩和効果が得られない。一方、金属粒子の平均断面長径が0.5μmより大きい場合、皮膜と平行方向に大きく広がる金属粒子が多くなるため、炭窒化物膜の柱状の結晶成長が阻害され、その結果、膜の付着強度が低下し、耐欠損性が低下する。したがって、(Al,Ti,Si)(N,C)層中における金属粒子の平均断面長径は0.05〜0.5μmとすることが望ましく、より好ましくは0.05〜0.3μmである。ただし、粒子の平均断面長径が上記の範囲であっても、金属粒子のアスペクト比が2.0以下あるいは金属粒子の縦断面形状における断面長径が基体表面となす鋭角が45°以上の場合には切削時のこすれ摩擦によって金属粒子が脱落しやすく、また脱落時に膜が深さ方向に大きくえぐられるため、耐欠損性の低下を招く。ここで、本発明における金属粒子とは、構成元素の90原子%以上が金属元素である粒子を意味している。また、構成元素中の窒素、炭素の合量が増加すると硬度が増し、応力緩和効果が低下するため、金属粒子中に含まれる窒素、炭素の量は合量で5原子%以内であることが望ましい。
Average cross-section major axis of metal particles in the (Al, Ti, Si) (N, C) layer:
In the present invention, the cross-sectional major axis means the longest diameter in the cross-sectional shape of the metal particles in the film cross section perpendicular to the substrate surface. By containing metal particles inside, the residual stress in the film is relaxed and the stress distribution in the film becomes uniform, so that the fracture resistance is improved. At this time, if the average cross-sectional major axis of the metal particles is smaller than 0.05 μm, the intended stress relaxation effect cannot be obtained. On the other hand, when the average cross-sectional major axis of the metal particles is larger than 0.5 μm, the number of metal particles spreading greatly in the direction parallel to the film increases, so that the columnar crystal growth of the carbonitride film is inhibited, and as a result, the adhesion strength of the film Decreases, and the fracture resistance decreases. Therefore, the average cross-sectional major axis of the metal particles in the (Al, Ti, Si) (N, C) layer is desirably 0.05 to 0.5 μm, and more preferably 0.05 to 0.3 μm. However, even when the average cross-sectional major axis of the particles is in the above range, when the aspect ratio of the metal particles is 2.0 or less or the acute angle between the cross-sectional major axis in the vertical cross-sectional shape of the metal particles and the substrate surface is 45 ° or more The metal particles are likely to fall off due to rubbing friction during cutting, and the film is greatly swept away in the depth direction at the time of dropping, leading to a reduction in fracture resistance. Here, the metal particles in the present invention mean particles in which 90 atomic% or more of the constituent elements are metal elements. In addition, when the total amount of nitrogen and carbon in the constituent elements increases, the hardness increases and the stress relaxation effect decreases, so the total amount of nitrogen and carbon contained in the metal particles may be within 5 atomic%. desirable.

(Al,Ti,Si)(N,C)層中における金属粒子の縦断面面積比率:
金属粒子の縦断面面積比率が3%より小さいと膜内における金属粒子の割合が少なく、目的とする応力緩和効果が得られない。一方、18%より大きいと前述と同様結晶成長が阻害される上、膜内における金属粒子の割合が高くなると膜の硬さが低下するため、耐欠損性、耐摩耗性の低下を招く。したがって、(Al,Ti,Si)(N,C)層中における金属粒子は、3〜18%の縦断面面積比率で分散分布させることが望ましく、より好ましくは3〜12%である。
Vertical cross-sectional area ratio of metal particles in the (Al, Ti, Si) (N, C) layer:
If the vertical cross-sectional area ratio of the metal particles is smaller than 3%, the ratio of the metal particles in the film is small and the intended stress relaxation effect cannot be obtained. On the other hand, if it exceeds 18%, crystal growth is inhibited as described above, and if the ratio of the metal particles in the film increases, the hardness of the film decreases, leading to a decrease in chipping resistance and wear resistance. Therefore, it is desirable that the metal particles in the (Al, Ti, Si) (N, C) layer be distributed and distributed at a longitudinal cross-sectional area ratio of 3 to 18%, more preferably 3 to 12%.

構成元素に50原子%以上のAlを含み、かつ縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子の割合:
アスペクト比の大きい偏平形状の金属粒子を効果的に分散させるためには、低融点金属であるAlの、粒子の構成成分に占める割合が高いことが望ましい。50原子%以上のAlを含むことで金属粒子の融点が低くなるので、高アスペクト比の粒子が得られやすくなる。金属粒子はターゲット上の微小な溶融領域から発生するため、微小領域の組成の不均一性や溶融領域中の組成揺らぎによって、個々の金属粒子では、組成中のAl量がターゲット中のAl量よりも大きいものが発生し得る。一方で、全ての金属粒子における平均のAl量はターゲットのAl量に依存する。ここで、全ての金属粒子における平均のAl量はターゲット表面の磁力を用いて制御できる。例えば、AlTiターゲットの場合、蒸気圧の関係からAlが優先的に気化しやすいため、通常、ターゲットから発生する金属粒子の平均組成はターゲット組成と比べてTi寄りになる。ターゲット表面の磁力を高めるとアークスポットの速度が増加し、アークスポットが局所的に留まる時間が短くなるため、局所的な加熱が抑えられ、Alの気化を抑制することができ、ターゲットから発生する金属粒子の平均組成をAl寄りにすることができる。また、Alの気化が抑制されることで溶融領域におけるAl量が増加するため、個々の金属粒子を見た場合にも、Alが多く含まれた粒子が増加する。このようにして、同じ組成のターゲットを用いた場合でも金属粒子にAlを多く含ませることが可能である。
Alを50原子%以上含む金属粒子のうち、硬質被覆層の特定の縦断面において観察した縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子が少ない場合、切削時のこすれ摩耗によって金属粒子が脱落しやすく、また脱落時に膜が深さ方向に大きくえぐられるため、皮膜の表面粗度が増し、耐欠損性の低下を招く。つまり、構成元素に50原子%以上のAlを含み、かつ縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子の縦断面面積比率をA%、それ以外の粒子の縦断面面積比率をB%としたとき、A/(A+B)の値が0.3より小さい場合、所望の耐欠損性が得られないため、0.3≦A/(A+B)とする。
少なくともTi、Cr、Alのいずれかの元素を含み、前記元素とSiの群から選ばれる一種以上の元素の窒化物、炭化物または炭窒化物からなる表面層:
本発明では硬質被覆層内部の金属粒子が内部応力を緩和することで耐欠損性を向上させるが、一方で、内部の金属粒子量が増加すると、硬質被覆層全体の硬さが低下し、耐摩耗性がやや低下する。そこで、前記硬質被覆層の表面に硬度の高い皮膜を設けることで、総合的な切削性能をさらに向上させることができる。しかしながら、その平均層厚が0.5μm未満では、表面層の有する効果が十分に奏されず、一方、3.0μmを超えると硬質被覆層内部の応力が高まり、チッピングの発生を招くため好ましくない。したがって、その平均層厚は、0.5〜3.0μmと定めた。さらに、表面層のビッカース硬さが2500Hv未満では、耐摩耗性を向上させる作用が十分でないため、2500Hv以上と定めた。
少なくともTiを含み、Ti、Cr、Al、Siの群から選ばれる一種以上の元素の窒化物または炭窒化物からなる中間層:
本発明では硬質被覆層内部の金属粒子が内部応力を緩和することで耐欠損性を向上させているが、一方で、硬質被覆層内部の金属粒子量が増加すると、皮膜の柱状の結晶成長を阻害し、密着力がやや低下する。そこで、前記硬質被覆層と基材との間に、硬質被覆層の構成成分を含む親和性の高い皮膜を設けることで、さらに切削性能を向上させることができる。しかしながら、その平均層厚が0.1μm未満では、中間層の有する効果が十分に奏されず、一方、2.0μmを超えると皮膜内部の応力が高まり、剥離の発生を招くため好ましくない。したがって、その平均層厚は、0.1〜2.0μmと定めた。
Proportion of particles containing 50 atomic% or more of Al as a constituent element, having an aspect ratio of 2.0 or more in longitudinal section and an acute angle of 45 ° or less with respect to the surface of the substrate.
In order to effectively disperse flat metal particles having a large aspect ratio, it is desirable that Al, which is a low melting point metal, occupy a high proportion of the constituent components of the particles. By containing 50 atomic% or more of Al, the melting point of the metal particles is lowered, so that high aspect ratio particles are easily obtained. Since the metal particles are generated from a minute melting region on the target, the amount of Al in the composition is higher than the amount of Al in the target in each metal particle due to the non-uniformity of the composition in the minute region and the composition fluctuation in the melting region. Can also be large. On the other hand, the average Al amount in all the metal particles depends on the Al amount of the target. Here, the average amount of Al in all the metal particles can be controlled using the magnetic force of the target surface. For example, in the case of an AlTi target, Al is preferentially vaporized because of the vapor pressure, and therefore the average composition of metal particles generated from the target is usually closer to Ti than the target composition. Increasing the magnetic force on the target surface increases the speed of the arc spot and shortens the time that the arc spot stays locally, so that local heating can be suppressed and Al vaporization can be suppressed and generated from the target. The average composition of the metal particles can be closer to Al. Moreover, since the amount of Al in the melting region is increased by suppressing the vaporization of Al, even when individual metal particles are viewed, particles containing a large amount of Al increase. In this way, even when a target having the same composition is used, the metal particles can contain a large amount of Al.
Among metal particles containing 50 atomic% or more of Al, particles having an aspect ratio of 2.0 or more and a cross-sectional major axis of 45 ° or less with respect to the substrate surface when observed in a specific longitudinal section of the hard coating layer If there is little, the metal particles are likely to fall off due to rubbing wear during cutting, and the film is greatly swept away in the depth direction at the time of dropping, so the surface roughness of the film increases and the fracture resistance decreases. That is, the vertical cross-sectional area ratio of particles containing 50 atomic% or more of Al as a constituent element, the aspect ratio of the vertical cross-sectional shape being 2.0 or higher, and the acute angle of the cross-sectional major axis with the substrate surface being 45 ° or less is A%. When the ratio of the vertical cross-sectional area of the other particles is B%, if the value of A / (A + B) is smaller than 0.3, the desired fracture resistance cannot be obtained, so 0.3 ≦ A / ( A + B).
A surface layer comprising at least one element of Ti, Cr, Al and comprising a nitride, carbide, or carbonitride of one or more elements selected from the group of the element and Si:
In the present invention, the metal particles inside the hard coating layer improve the fracture resistance by relaxing internal stress. On the other hand, when the amount of the metal particles inside increases, the hardness of the entire hard coating layer decreases, Abrasion is slightly reduced. Therefore, the overall cutting performance can be further improved by providing a film with high hardness on the surface of the hard coating layer. However, if the average layer thickness is less than 0.5 μm, the effect of the surface layer is not sufficiently exerted. On the other hand, if it exceeds 3.0 μm, the stress inside the hard coating layer is increased and chipping occurs, which is not preferable. . Therefore, the average layer thickness was determined to be 0.5 to 3.0 μm. Furthermore, when the Vickers hardness of the surface layer is less than 2500 Hv, the effect of improving the wear resistance is not sufficient, so it was determined to be 2500 Hv or more.
An intermediate layer comprising at least Ti and a nitride or carbonitride of one or more elements selected from the group consisting of Ti, Cr, Al, and Si:
In the present invention, the metal particles inside the hard coating layer improve the fracture resistance by relieving internal stress. On the other hand, when the amount of metal particles inside the hard coating layer increases, the columnar crystal growth of the film increases. It interferes and the adhesion is slightly reduced. Therefore, the cutting performance can be further improved by providing a coating film having high affinity containing the constituent components of the hard coating layer between the hard coating layer and the base material. However, if the average layer thickness is less than 0.1 μm, the effect of the intermediate layer is not sufficiently achieved. On the other hand, if the average layer thickness exceeds 2.0 μm, the stress inside the film increases, which causes the occurrence of peeling. Therefore, the average layer thickness was determined to be 0.1 to 2.0 μm.

本発明の被覆工具は、炭化タングステン基超硬合金からなる工具基体の表面に、物理蒸着法によって硬質被覆層を形成した表面被覆切削工具において、硬質被覆層は、組成式:(Al1−x−yTiSi)(N1−z)(但し、0.3≦x≦0.7、0≦y≦0.1、0≦z≦0.3)で表される平均層厚0.5μm〜8.0μmの複合炭窒化物層または複合窒化物層からなり、硬質被覆層は、構成元素の90原子%以上が金属元素である金属粒子を含有しており、金属粒子は、平均断面長径0.05〜0.5μmで前記硬質被覆層中に3〜18%の縦断面面積比率で分散分布し、金属粒子のうち、構成元素に50原子%以上のAlを含み、かつ縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である金属粒子の縦断面面積比率をA%、それ以外の粒子の縦断面面積比率をB%としたとき、0.3≦A/(A+B)であることによって、皮膜はすぐれた耐欠損性を示し、その結果、例えば、炭素鋼、合金工具鋼等の被削材の正面フライス加工において、長期の使用にわたって硬質被覆層がすぐれた耐摩耗性を発揮するものである。
すなわち、金属粒子を硬質被覆層内に分散分布させることで、硬質被覆層内部の応力が緩和され、硬質被覆層内の応力分布が均一になるため、耐欠損性が向上する。通常のPVD法で成膜すると、ターゲットから発生した金属粒子は基板表面に到着前に凝固してしまう。このとき金属粒子はランダムな向きで皮膜内に取り込まれる。球状に近い金属粒子、あるいは細長いものでも皮膜の膜厚方向に縦長の金属粒子は切削時に大きな抵抗を受けやすく、脱落しやすい上、脱落時に皮膜を大きく損傷させてしまう。本発明では金属粒子を高温のまま基体に付着させることで、付着時の衝撃により基体表面の形に沿って変形させる。これにより、金属粒子は基体表面に垂直な断面から見て偏平な形状となる。金属粒子をアスペクト比の大きい偏平形状にすることで切削時の抵抗が小さくなり、金属粒子が脱落しにくく、また脱落時の膜厚方向への損傷も小さくなる。基体表面が平滑であれば金属粒子はアスペクト比の大きい偏平形状となるため、皮膜の縦断面において金属粒子断面形状の断面長径と基体表面とのなす鋭角は45°以下に制御される。皮膜は下地の凹凸を反映して成長するので、偏平形状の金属粒子を分散させても皮膜の平滑性は損なわれない。その結果、耐欠損性にすぐれた硬質被覆層を提供できる。
さらに硬質被覆層の表面に、平均層厚0.5〜3.0μmでビッカース硬さが2500Hv以上である少なくともTi、Cr、Alのいずれかの元素を含み、前記元素とSiの群から選ばれる元素の窒化物、炭化物または炭窒化物からなる表面層を形成した場合には、前記の効果に加えてすぐれた耐摩耗性を発揮するものである。
また、工具基体と硬質被覆層との間に、平均層厚0.1〜2.0μmである少なくともTiを含み、Ti、Cr、Al、Siの群から選ばれる元素の窒化物、炭化物または炭窒化物からなる中間層を形成した場合には、前記の効果に増してさらにすぐれた耐欠損性を発揮するものである。
The coated tool of the present invention is a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base made of a tungsten carbide base cemented carbide by a physical vapor deposition method. The hard coating layer has a composition formula: (Al 1-x -y Ti x Si y) (N 1-z C z) ( where an average layer represented by 0.3 ≦ x ≦ 0.7,0 ≦ y ≦ 0.1,0 ≦ z ≦ 0.3) It consists of a composite carbonitride layer or composite nitride layer having a thickness of 0.5 μm to 8.0 μm, and the hard coating layer contains metal particles in which 90 atomic% or more of the constituent elements are metal elements. , With an average cross-sectional major axis of 0.05 to 0.5 μm, dispersed and distributed in the hard coating layer at a longitudinal cross-sectional area ratio of 3 to 18%, and among the metal particles, the constituent element contains 50 atomic% or more of Al, and The acute angle formed by the aspect ratio of the longitudinal sectional shape being 2.0 or more and the major axis of the cross section being the surface of the substrate is 45. When the ratio of the vertical cross-sectional area of the metal particles below A is A% and the vertical cross-sectional area ratio of the other particles is B%, 0.3 ≦ A / (A + B). As a result, the hard coating layer exhibits excellent wear resistance over a long period of use in face milling of work materials such as carbon steel and alloy tool steel.
That is, by distributing and distributing the metal particles in the hard coating layer, the stress inside the hard coating layer is relaxed and the stress distribution in the hard coating layer becomes uniform, so that the fracture resistance is improved. When a film is formed by a normal PVD method, the metal particles generated from the target are solidified before reaching the substrate surface. At this time, the metal particles are taken into the film in a random orientation. Even when the metal particles are nearly spherical or elongated, the metal particles that are vertically long in the film thickness direction are easily subjected to great resistance during cutting, easily fall off, and greatly damage the film when dropped. In the present invention, the metal particles are adhered to the substrate at a high temperature, and are deformed along the shape of the surface of the substrate by an impact at the time of adhesion. As a result, the metal particles have a flat shape when viewed from a cross section perpendicular to the substrate surface. By making the metal particles flat with a large aspect ratio, the resistance during cutting is reduced, the metal particles are less likely to fall off, and the damage in the film thickness direction during dropping is reduced. If the substrate surface is smooth, the metal particles have a flat shape with a large aspect ratio. Therefore, the acute angle formed by the cross-sectional major axis of the metal particle cross-sectional shape and the substrate surface is controlled to 45 ° or less in the longitudinal section of the coating. Since the film grows reflecting the unevenness of the base, even if flat metal particles are dispersed, the smoothness of the film is not impaired. As a result, a hard coating layer having excellent fracture resistance can be provided.
Further, the surface of the hard coating layer contains at least one element of Ti, Cr, and Al having an average layer thickness of 0.5 to 3.0 μm and a Vickers hardness of 2500 Hv or more, and is selected from the group of the elements and Si When a surface layer made of elemental nitride, carbide or carbonitride is formed, it exhibits excellent wear resistance in addition to the above effects.
Further, a nitride, carbide or charcoal of an element selected from the group of Ti, Cr, Al and Si, which contains at least Ti having an average layer thickness of 0.1 to 2.0 μm between the tool base and the hard coating layer. In the case where an intermediate layer made of nitride is formed, the defect resistance is further improved in addition to the above effects.

本発明の被覆工具の硬質被覆層を成膜するアークイオンプレーティング装置の概略説明図を示す。The schematic explanatory drawing of the arc ion plating apparatus which forms the hard coating layer of the coating tool of this invention is shown. 本発明の被覆工具の硬質被覆層の概念を説明する縦断面模式図を本発明の特性値とともに示す。The longitudinal cross-sectional schematic diagram explaining the concept of the hard coating layer of the coating tool of this invention is shown with the characteristic value of this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で、ISO・SEEN1203AFTN1(超硬基体A〜E)を所定の形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部に幅0.15mm、角度20度のチャンファーホーニング加工することにより、WC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the blending composition shown in Table 1, further added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then subjected to ISO · SEEN1203AFTN1 (Carbide substrate A) at a pressure of 98 MPa. To E) are pressed into a green compact having a predetermined shape, and this green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and sintered. After linking, the tool bases A to E made of WC-based cemented carbide were manufactured by chamfer honing with a width of 0.15 mm and an angle of 20 degrees on the cutting edge.

つぎに、これらの工具基体A〜Eを、図1に示すアークイオンプレーティング装置に装入し、表2に示す条件で、Tiボンバードを施し、次いで、同じく表2に示す組成のターゲットを用い、同表の成膜条件で所定の層厚の(Al,Ti,Si)(N,C)層を蒸着形成する。前述したように、このとき、炉全体の雰囲気温度を制御するヒーターに加え、ターゲット前面に筒状ヒーターを設けることでターゲット前面の空間を高温にする。これによりターゲットから発生する金属粒子が雰囲気中で凝固することを防ぐことができ、金属粒子は基体表面へ付着した際に基体表面の形状に沿って変形する。筒状ヒーターからの輻射熱による皮膜へのダメージは基体治具に冷却機構を設けることで防ぐことができる。ターゲット前面の空間を加熱する筒状ヒーターはターゲットから見て基体方向に伸びており、長さはヒーターの先端がターゲット−基体間距離の2/3〜3/4ほどの位置にあることが望ましい。長すぎると皮膜に輻射熱によるダメージが入り、一方で短すぎるとターゲット前面に存在する高温の空間が狭くなるため、基体表面に付着前に金属粒子が凝固してしまう。ターゲット前面の空間を適切に加熱するためには、設置位置はターゲット表面から50mm以内の位置が望ましく、例えば、アノード電極の前面などに設置すると良い。基体の冷却機構は、例えば、基体治具に冷却水を流して冷却する方法がある。このようにして、表3に示す本発明被覆工具1〜10を製造した。なお、表中で述べた「本願の規定に沿う金属粒子」とは、皮膜に含まれる金属粒子の内、「構成元素に50原子%以上のAlを含み、かつ縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である金属粒子」のことを指す。   Next, these tool bases A to E are charged into the arc ion plating apparatus shown in FIG. 1, Ti bombarded is applied under the conditions shown in Table 2, and then a target having the composition shown in Table 2 is used. The (Al, Ti, Si) (N, C) layer having a predetermined layer thickness is formed by vapor deposition under the film forming conditions shown in the table. As described above, at this time, in addition to the heater that controls the atmospheric temperature of the entire furnace, a space in front of the target is raised by providing a cylindrical heater on the front surface of the target. As a result, the metal particles generated from the target can be prevented from solidifying in the atmosphere, and the metal particles are deformed along the shape of the substrate surface when adhering to the substrate surface. Damage to the film due to radiant heat from the cylindrical heater can be prevented by providing a cooling mechanism in the base jig. The cylindrical heater that heats the space in front of the target extends in the direction of the substrate when viewed from the target, and the length of the heater is preferably about 2/3 to 3/4 of the distance between the target and the substrate. . If it is too long, the film will be damaged by radiant heat. On the other hand, if it is too short, the high-temperature space existing on the front surface of the target will be narrowed, so that the metal particles will solidify before adhering to the substrate surface. In order to appropriately heat the space in front of the target, the installation position is preferably within 50 mm from the target surface, and for example, it may be installed on the front surface of the anode electrode. As a substrate cooling mechanism, for example, there is a method of cooling by flowing cooling water through a substrate jig. Thus, this invention coated tool 1-10 shown in Table 3 was manufactured. The “metal particles in accordance with the provisions of the present application” described in the table means “of the metal particles included in the coating” “the constituent element contains 50 atomic% or more of Al and the aspect ratio of the longitudinal section is 2”. It is a metal particle having an acute angle of not less than 0.0 and a major axis of the section with respect to the substrate surface of not more than 45 °.

前記本発明被覆工具1〜10の(Al,Ti,Si)(N,C)層について、基体表面に垂直な膜断面の組織観察と組成分析を、透過型電子顕微鏡−エネルギー分散型X線分光分析(TEM−EDS)を用いて行った。膜断面に対して0.01μm以下の空間分解能の元素マッピングを行い、被覆した(Al,Ti,Si)(N,C)層の組成が規定の範囲内であることを確認し、同時に膜断面において窒素と炭素の合量が10原子%以内である領域を金属粒子の断面と見なし、点分析によって金属粒子の組成を分析した。次に、金属粒子の断面と見なした領域における最大径を長径、それに直交する線分の最大径を短径とし、金属粒子の縦断面形状を楕円に近似した。(図2参照)ここで得られた長径が、本発明の断面長径xであり、その平均値が本願で規定する平均断面長径Xである。金属粒子の平均断面長径Xが0.05〜0.5μmの範囲内であることを確認し、長径、短径の長さから各々の金属粒子のアスペクト比と縦断面面積を算出した。さらに金属粒子を本願の規定に沿うもの、すなわち組成分析の結果において構成元素に50原子%以上のAlを含み、かつ縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子とそうでない粒子に区分し、それぞれの粒子の縦断面面積を合計した。そして、粒子の縦断面面積を皮膜の縦断面面積で除することにより、本願の規定に沿う粒子の縦断面面積比率A(%)、それ以外の粒子の縦断面面積比率B(%)を算出し、また、A/(A+B)の値を計算によって求めた。アスペクト比は、図2に示すように、楕円近似した金属粒子断面の長径xと短径yの長さの比を、長径xを分子、短径yを分母として取る。本発明では皮膜の断面画像から縦3μm×横4μmの範囲を無作為に10箇所選び出して前述した測定を行った。なお、層厚が3μmに満たない皮膜については面積が12平方μmとなるように適宜測定範囲を決定し、同様の測定を行った。
表3に、値をそれぞれ示す。値は前述の測定範囲5箇所の平均値である。ここで、「全金属粒子の平均Al量」を表2の条件と比較すると、ターゲット表面磁力の大きい条件ほど全金属粒子の平均Al量がターゲット組成に近づくことがわかり、ターゲット磁力を用いて確かに金属粒子の組成が制御できているとわかる。
また、図2に、本発明の被覆工具の硬質被覆層の概念を説明する縦断面模式図を本発明の特性値とともに示す。硬質被覆層中の金属粒子のうち観察面における縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下であるものを金属粒子Aとし、右ハッチを付し、それ以外の金属粒子を金属粒子Bとし、左ハッチを付している。
また、本発明被覆工具7〜10については、前記の硬質被覆層の表面に表3に示した組成、ビッカース硬さ、目標層厚の表面層を形成した。また、本発明被覆工具5〜8については、前記工具基体と硬質被覆層の間に表3に示した組成、目標層厚の中間層を形成した。図1のアークイオンプレーティング装置について、ターゲットの総設置数が3面以上あれば、表面層と中間層はそれぞれ別の組成の皮膜を用いることができる。なお、表面層と中間層の成膜時には、金属粒子の分散による効果の減少を防ぐため、筒状ヒーターは使用しない。
For the (Al, Ti, Si) (N, C) layers of the coated tools 1 to 10 of the present invention, the observation of the structure of the film cross section perpendicular to the substrate surface and the composition analysis were performed by transmission electron microscope-energy dispersive X-ray spectroscopy. Analysis (TEM-EDS) was used. Element mapping with a spatial resolution of 0.01 μm or less is performed on the film cross section, and it is confirmed that the composition of the coated (Al, Ti, Si) (N, C) layer is within the specified range. A region where the total amount of nitrogen and carbon is 10 atomic% or less is regarded as a cross section of the metal particle, and the composition of the metal particle is analyzed by point analysis. Next, the maximum diameter in the region regarded as the cross section of the metal particles was the long diameter, the maximum diameter of the line segment perpendicular to the long diameter was the short diameter, and the vertical cross-sectional shape of the metal particles was approximated to an ellipse. (See FIG. 2) The major axis obtained here is the sectional major axis x of the present invention, and the average value is the average sectional major axis X defined in the present application. The average cross-sectional major axis X of the metal particles was confirmed to be in the range of 0.05 to 0.5 μm, and the aspect ratio and vertical cross-sectional area of each metal particle were calculated from the lengths of the major axis and minor axis. Further, the metal particles conform to the provisions of the present application, that is, the compositional analysis results include 50 atomic% or more of Al, the longitudinal section has an aspect ratio of 2.0 or more, and the major axis has an acute angle with the substrate surface. Were divided into particles having a diameter of 45 ° or less and particles not having the same, and the vertical cross-sectional areas of the respective particles were totaled. Then, by dividing the vertical cross-sectional area of the particle by the vertical cross-sectional area of the film, the vertical cross-sectional area ratio A (%) of the particles according to the provisions of the present application and the vertical cross-sectional area ratio B (%) of the other particles are calculated. In addition, the value of A / (A + B) was obtained by calculation. As shown in FIG. 2, the aspect ratio takes the ratio of the major axis x to the minor axis y of the cross section of the metal particle approximated to an ellipse, with the major axis x as the numerator and the minor axis y as the denominator. In the present invention, the above-described measurement was performed by randomly selecting 10 points in a range of 3 μm in length × 4 μm in width from the cross-sectional image of the film. In addition, about the membrane | film | coat whose layer thickness is less than 3 micrometers, the measurement range was determined suitably so that an area might be set to 12 square micrometers, and the same measurement was performed.
Table 3 shows the values. The value is an average value of the five measurement ranges described above. Here, comparing the “average Al amount of all metal particles” with the conditions in Table 2, it can be seen that the average Al amount of all metal particles approaches the target composition as the condition of the target surface magnetic force increases. It can be seen that the composition of the metal particles can be controlled.
Moreover, the longitudinal cross-sectional schematic diagram explaining the concept of the hard coating layer of the coating tool of this invention with the characteristic value of this invention is shown in FIG. Of the metal particles in the hard coating layer, those having an aspect ratio of 2.0 or more in the longitudinal cross-sectional shape on the observation surface and an acute angle of 45 ° or less with the cross-sectional major axis with respect to the substrate surface are designated as metal particles A, and are provided with a right hatch. The other metal particles are referred to as metal particles B, which are left hatched.
Moreover, about this invention coated tools 7-10, the surface layer of the composition shown in Table 3, Vickers hardness, and target layer thickness was formed on the surface of the said hard coating layer. Moreover, about this invention coated tools 5-8, the intermediate layer of the composition shown in Table 3 and target layer thickness was formed between the said tool base | substrate and a hard coating layer. In the arc ion plating apparatus of FIG. 1, if the total number of targets installed is three or more, the surface layer and the intermediate layer can use films having different compositions. In forming the surface layer and the intermediate layer, a cylindrical heater is not used in order to prevent a decrease in the effect due to the dispersion of the metal particles.

また、比較の目的で、前記アークイオンプレーティング装置を用いて、工具基体A〜Eの表面に、実施例と同様に、表4に示す条件で、Tiボンバードを施し、次いで、同じく表4に示す条件で、金属粒子が分散分布した所定の層厚の(Al,Ti)(N,C)層、(Al,Ti,Si)(N,C)層を蒸着形成した。この時、筒状ヒーターの設定温度やターゲット表面磁力などの成膜条件を制御することにより、金属粒子の平均断面長径、アスペクト比を制御し、表5に示される比較被覆工具1〜10を作製した。
また、比較被覆工具7〜10については、前記の硬質被覆層の表面に表5に示した組成、ビッカース硬さ、目標層厚の表面層を形成した。また、比較被覆工具5〜8については、前記工具基体と硬質被覆層の間に表5に示した組成、目標層厚の中間層を形成した。
Further, for the purpose of comparison, Ti bombarding was performed on the surfaces of the tool bases A to E under the conditions shown in Table 4 using the arc ion plating apparatus under the conditions shown in Table 4, and then also in Table 4. Under the conditions shown, (Al, Ti) (N, C) layers and (Al, Ti, Si) (N, C) layers having a predetermined layer thickness in which metal particles were dispersed and distributed were formed by vapor deposition. At this time, by controlling the film forming conditions such as the set temperature of the cylindrical heater and the target surface magnetic force, the average cross-sectional major axis and the aspect ratio of the metal particles are controlled, and comparative coated tools 1 to 10 shown in Table 5 are produced. did.
Moreover, about the comparison coating tools 7-10, the surface layer of the composition shown in Table 5, the Vickers hardness, and target layer thickness was formed on the surface of the said hard coating layer. Moreover, about the comparison coating tools 5-8, the intermediate layer of the composition shown in Table 5 and target layer thickness was formed between the said tool base | substrate and the hard coating layer.

比較被覆工具1〜10の(Al,Ti)(N,C)層、(Al,Ti,Si)(N,C)層についても、その断面をTEM−EDSによって観察し、元素マッピングを行い、皮膜に含有される金属粒子のうち、縦断面形状のアスペクト比が2.0以上かつ断面長径が基板表面となす鋭角が45°以下である粒子の縦断面面積比率A(%)、それ以外の粒子の縦断面面積比率B(%)を測定し、また、A/(A+B)の値を計算によって求めた。さらに、縦断面形状の平均断面長径が0.05〜0.5μmの金属粒子の縦断面面積比率(%)を測定した。
これらの値を同じく表5にそれぞれ示す。
For the (Al, Ti) (N, C) layer and (Al, Ti, Si) (N, C) layer of the comparative coated tools 1 to 10, the cross section is observed by TEM-EDS, and element mapping is performed. Among the metal particles contained in the film, the longitudinal cross-sectional area ratio A (%) of particles whose aspect ratio of the longitudinal cross-sectional shape is 2.0 or more and the acute angle between the cross-sectional major axis and the substrate surface is 45 ° or less, other than that The longitudinal cross-sectional area ratio B (%) of the particles was measured, and the value of A / (A + B) was obtained by calculation. Furthermore, the longitudinal cross-sectional area ratio (%) of the metal particle whose average cross-sectional major axis of a longitudinal cross-sectional shape is 0.05-0.5 micrometer was measured.
These values are also shown in Table 5, respectively.

また、本発明被覆工具1〜10および比較被覆工具1〜10の各構成層の層厚を、走査型電子顕微鏡(SEM)を用いて測定したところ、いずれも表3、表5に示される目標層厚と実質的に同じ平均層厚を示した。   Moreover, when the layer thickness of each component layer of this invention coated tool 1-10 and comparative coated tool 1-10 was measured using the scanning electron microscope (SEM), all are the target shown by Table 3 and Table 5. The average layer thickness was substantially the same as the layer thickness.


つぎに、前記本発明被覆工具1〜10および比較被覆工具1〜10について、以下に示す条件で、正面フライス切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SKD61(HRC52)のブロック材
回転速度: 764/min、
切削速度: 300m/min、
切り込み: ap 2.0 mm、
一刃送り量: 0.1mm/刃、
切削油剤: エアー、
切削時間: 5 分、
表6に、前記切削試験の結果を示す。
Next, a face milling cutting test was performed on the present coated tools 1 to 10 and comparative coated tools 1 to 10 under the following conditions, and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / SKD61 (HRC52)
Rotational speed: 764 / min,
Cutting speed: 300 m / min,
Cutting depth: ap 2.0 mm,
Single-blade feed rate: 0.1 mm / tooth,
Cutting fluid: Air,
Cutting time: 5 minutes,
Table 6 shows the results of the cutting test.


表3、5、6に示される結果から、本発明の被覆工具は、硬質被覆層の(Al,Ti,Si)(N,C)層中に平均断面長径0.05〜0.5μmの金属粒子が3〜18%の縦断面面積比率で分散分布しており、金属粒子のうち、構成元素が50原子%以上のAlを含み、縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子の縦断面面積比率をA%、それ以外の粒子の縦断面面積比率をB%としたとき、0.3≦A/(A+B)であることから、正面フライス加工においてすぐれた耐欠損性を示し、その結果、長期にわたってすぐれた耐摩耗性を発揮する。
さらに、硬質被覆層の表面に、少なくともTi、Cr、Alのいずれかの元素を含み、前記元素とSiの群から選ばれる一種以上の元素の窒化物、炭化物または炭窒化物層のいずれかであり、ビッカース硬さが2500Hv以上かつ平均層厚0.5〜3.0μmである表面層を備えることにより、より一層の耐摩耗性を発揮する。
また、工具基体と硬質被覆層との間に、少なくともTiを含み、Ti、Cr、Al、Siの群から選ばれる一種以上の元素の窒化物または炭窒化物である平均層厚0.1〜2.0μmの中間層を備えることにより、より一層の耐欠損性を発揮する。
From the results shown in Tables 3, 5 and 6, the coated tool of the present invention is a metal having an average cross-section major axis of 0.05 to 0.5 μm in the (Al, Ti, Si) (N, C) layer of the hard coating layer. The particles are distributed and distributed in a vertical cross-sectional area ratio of 3 to 18%. Among the metal particles, the constituent element contains Al of 50 atomic% or more, the aspect ratio of the vertical cross-sectional shape is 2.0 or more, and the cross-sectional major axis is When the vertical cross-sectional area ratio of particles having an acute angle with the substrate surface of 45 ° or less is A% and the vertical cross-sectional area ratio of other particles is B%, 0.3 ≦ A / (A + B). It exhibits excellent fracture resistance in face milling, and as a result exhibits excellent wear resistance over a long period of time.
Further, the surface of the hard coating layer contains at least one of Ti, Cr, and Al, and is one of the nitride, carbide, or carbonitride layer of one or more elements selected from the group of the element and Si. In addition, by providing a surface layer having a Vickers hardness of 2500 Hv or more and an average layer thickness of 0.5 to 3.0 μm, further wear resistance is exhibited.
Further, an average layer thickness of 0.1 to 0.1 which is a nitride or carbonitride of one or more elements selected from the group consisting of Ti, Cr, Al, and Si, at least between the tool base and the hard coating layer. By providing an intermediate layer of 2.0 μm, further fracture resistance is exhibited.

これに対して、硬質被覆層の(Al,Ti,Si)(N,C)層中の平均断面長径0.05〜0.5μmの金属粒子の縦断面面積比率、金属粒子のうち、構成元素が50原子%以上のAlを含み、縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子の縦断面面積比率をA%、それ以外の粒子の縦断面面積比率をB%としたときのA/(A+B)のうちのいずれかが本発明で規定する範囲から外れる比較被覆工具1〜10は、正面フライス加工において、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, the longitudinal cross-sectional area ratio of the metal particles having an average cross-section major axis of 0.05 to 0.5 μm in the (Al, Ti, Si) (N, C) layer of the hard coating layer, among the metal particles, constituent elements A is the vertical cross-sectional area ratio of particles containing 50 atomic% or more of Al, the aspect ratio of the vertical cross-sectional shape being 2.0 or higher, and the acute angle of the cross-sectional major axis with respect to the substrate surface being 45 ° or less. Comparative coating tools 1 to 10 in which any one of A / (A + B) when the vertical cross-sectional area ratio is set to B% are out of the range defined in the present invention, chipping, chipping, etc. occur in face milling It is clear that the lifetime is reached in a short time.

前述のように、本発明の被覆工具は、例えば、炭素鋼、合金工具鋼等の被削材の高速切削加工において、すぐれた耐欠損性、耐摩耗性を発揮し、使用寿命の延命化を可能とするものであるが、他の被削材の切削加工、他の条件での切削加工で使用することも勿論可能である。
As described above, the coated tool of the present invention exhibits excellent chipping resistance and wear resistance in, for example, high-speed cutting of work materials such as carbon steel and alloy tool steel, thereby extending the service life. Needless to say, it is of course possible to use in cutting of other work materials and cutting under other conditions.

Claims (3)

炭化タングステン基超硬合金からなる工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
前記硬質被覆層は、組成式:(Al1−x−yTiSi)(N1−z)(但し、0.3≦x≦0.7、0≦y≦0.1、0≦z≦0.3)で表される平均層厚0.5〜8.0μmの複合炭窒化物層または複合窒化物層からなり、
前記硬質被覆層は、構成元素の90原子%以上が金属元素である粒子を含有しており、前記粒子は、平均断面長径0.05〜0.5μmで前記硬質被覆層中に3〜18%の縦断面面積比率で分散分布し、
前記粒子のうち、構成元素に50原子%以上のAlを含み、かつ縦断面形状のアスペクト比が2.0以上かつ断面長径が基体表面となす鋭角が45°以下である粒子の縦断面面積比率をA%、それ以外の粒子の縦断面面積比率をB%としたとき、
0.3≦A/(A+B)
であることを特徴とする表面被覆切削工具。
On the surface of the tool substrate made of tungsten carbide based cemented carbide, the surface-coated cutting tool hard substance coating layer is formed,
The hard coating layer has a composition formula: (Al 1-xy Ti x Si y ) (N 1-z C z ) (where 0.3 ≦ x ≦ 0.7, 0 ≦ y ≦ 0.1, A composite carbonitride layer or a composite nitride layer having an average layer thickness of 0.5 to 8.0 μm represented by 0 ≦ z ≦ 0.3),
The hard coating layer contains particles in which 90 atomic% or more of the constituent elements are metal elements, and the particles have an average cross-sectional major axis of 0.05 to 0.5 μm and 3 to 18% in the hard coating layer. Is distributed with a longitudinal section area ratio of
Among the particles, the vertical cross-sectional area ratio of particles containing 50 atomic% or more of Al as a constituent element, the aspect ratio of the vertical cross-sectional shape being 2.0 or higher, and the acute angle between the major axis of the cross-section and the substrate surface being 45 ° or less Is A%, and the vertical cross-sectional area ratio of the other particles is B%,
0.3 ≦ A / (A + B)
A surface-coated cutting tool characterized in that
前記硬質被覆層の表面に、少なくともTi、Cr、Alのいずれかの元素を含み、前記元素とSiの群から選ばれる一種以上の元素の窒化物、炭化物または炭窒化物層のいずれかであり、ビッカース硬さが2500Hv以上かつ平均層厚0.5〜3.0μmである表面層を備えたことを特徴とする請求項1記載の表面被覆切削工具。   The surface of the hard coating layer includes at least one of Ti, Cr, and Al, and is a nitride, carbide, or carbonitride layer of one or more elements selected from the group of the element and Si. The surface-coated cutting tool according to claim 1, comprising a surface layer having a Vickers hardness of 2500 Hv or more and an average layer thickness of 0.5 to 3.0 μm. 前記工具基体と硬質被覆層との間に、少なくともTiを含み、Ti、Cr、Al、Siの群から選ばれる一種以上の元素の窒化物または炭窒化物である平均層厚0.1〜2.0μmの中間層を備えたことを特徴とする請求項1または請求項2記載の表面被覆切削工具。
An average layer thickness of 0.1 to 2 which is a nitride or carbonitride of at least one element selected from the group of Ti, Cr, Al and Si at least between the tool base and the hard coating layer. The surface-coated cutting tool according to claim 1, further comprising a 0.0 μm intermediate layer.
JP2012137936A 2011-06-22 2012-06-19 Surface coated cutting tool with excellent fracture resistance and wear resistance Expired - Fee Related JP5920577B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012137936A JP5920577B2 (en) 2011-06-22 2012-06-19 Surface coated cutting tool with excellent fracture resistance and wear resistance
PCT/JP2012/065805 WO2012176827A1 (en) 2011-06-22 2012-06-21 Surface coating cutting tool with excellent defect resistance and abrasion resistance
CN201280003131.4A CN103124608B (en) 2011-06-22 2012-06-21 The surface-coated cutting tool of fracture resistance and excellent in abrasion resistance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011138402 2011-06-22
JP2011138402 2011-06-22
JP2011160650 2011-07-22
JP2011160650 2011-07-22
JP2012137936A JP5920577B2 (en) 2011-06-22 2012-06-19 Surface coated cutting tool with excellent fracture resistance and wear resistance

Publications (2)

Publication Number Publication Date
JP2013046955A JP2013046955A (en) 2013-03-07
JP5920577B2 true JP5920577B2 (en) 2016-05-18

Family

ID=47422658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137936A Expired - Fee Related JP5920577B2 (en) 2011-06-22 2012-06-19 Surface coated cutting tool with excellent fracture resistance and wear resistance

Country Status (3)

Country Link
JP (1) JP5920577B2 (en)
CN (1) CN103124608B (en)
WO (1) WO2012176827A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692171B2 (en) 2013-10-31 2017-06-27 Yazaki Corporation Waterproof connector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593776B2 (en) * 2015-01-22 2019-10-23 三菱マテリアル株式会社 Surface coated cutting tool
JP6399401B2 (en) * 2015-02-09 2018-10-03 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance, welding resistance and wear resistance
JP6421733B2 (en) * 2015-09-30 2018-11-14 三菱日立ツール株式会社 Hard coating, hard coating covering member, and manufacturing method thereof
CN112126883B (en) * 2020-08-20 2021-11-19 西安交通大学 Ultra-flat blade tip cutting coating with outward sharp corner and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3236910B2 (en) * 1996-03-13 2001-12-10 三菱マテリアル株式会社 Surface-coated tungsten carbide based cemented carbide cutting tool with excellent fracture resistance with hard coating layer
JP2002346812A (en) * 2001-05-25 2002-12-04 Ngk Spark Plug Co Ltd Cutting tool and tool with holder
JP4936703B2 (en) * 2005-10-27 2012-05-23 京セラ株式会社 Surface coated cutting tool
JP2008296292A (en) * 2007-05-29 2008-12-11 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2010023118A (en) * 2008-07-15 2010-02-04 Mitsubishi Materials Corp Surface-coated cutting tool exhibiting excellent self-lubricity
JP2011088250A (en) * 2009-10-23 2011-05-06 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer that exhibits superior chipping resistance
JP5035479B2 (en) * 2011-01-27 2012-09-26 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance and wear resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692171B2 (en) 2013-10-31 2017-06-27 Yazaki Corporation Waterproof connector

Also Published As

Publication number Publication date
CN103124608B (en) 2015-11-25
WO2012176827A1 (en) 2012-12-27
CN103124608A (en) 2013-05-29
JP2013046955A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
US9089981B2 (en) Surface-coated cutting tool
JP2006198735A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP6578935B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP5920577B2 (en) Surface coated cutting tool with excellent fracture resistance and wear resistance
JP2016165789A (en) Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance
JP5930187B2 (en) Surface coated cutting tool with excellent fracture resistance and wear resistance
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP5991529B2 (en) Surface coated cutting tool with excellent fracture resistance and wear resistance
JP2017159424A (en) Surface coated cutting tool having excellent chipping resistance and wear resistance
JP2013082057A (en) Surface coated cutting tool excellent in chipping resistance and wearing resistance
JP6593776B2 (en) Surface coated cutting tool
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP6857299B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6399401B2 (en) Surface coated cutting tool with excellent chipping resistance, welding resistance and wear resistance
JP2013082058A (en) Surface coated cutting tool excellent in chipping resistance and wearing resistance
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
WO2016117681A1 (en) Cutting tool for surface coating
JP2017159423A (en) Surface coated cutting tool having excellent chipping resistance and wear resistance
JP7054473B2 (en) Surface coating cutting tool
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5370919B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2009101462A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160329

R150 Certificate of patent or registration of utility model

Ref document number: 5920577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees