JP2010023118A - Surface-coated cutting tool exhibiting excellent self-lubricity - Google Patents
Surface-coated cutting tool exhibiting excellent self-lubricity Download PDFInfo
- Publication number
- JP2010023118A JP2010023118A JP2008183375A JP2008183375A JP2010023118A JP 2010023118 A JP2010023118 A JP 2010023118A JP 2008183375 A JP2008183375 A JP 2008183375A JP 2008183375 A JP2008183375 A JP 2008183375A JP 2010023118 A JP2010023118 A JP 2010023118A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- coating layer
- tool
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、特に、軟鋼、ステンレス鋼などのような溶着性の高い被削材を、高い発熱を伴う高速切削条件で切削加工した場合にも、硬質被覆層がすぐれた自己潤滑性を発揮し、長期に亘ってすぐれた耐摩耗性を示す表面被覆切削工具(以下、被覆工具という)に関するものである。 In particular, the present invention exhibits excellent self-lubricating properties even when a work material with high weldability, such as mild steel and stainless steel, is machined under high-speed cutting conditions with high heat generation. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of time.
一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, for coated tools, throwaway inserts that can be used detachably attached to the tip of a cutting tool for turning and planing of various steel and cast iron, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.
具体的な被覆工具としては、例えば、炭化タングステン基(以下、WC基で示す)超硬合金または炭窒化チタン基(以下、TiCN基で示す)サーメット等で構成された工具基体の表面に硬質皮膜を蒸着形成し、被覆工具の耐摩耗性、工具寿命の改善を図ったものが一般的に知られている。
例えば、工具基体表面に、AlとTiの複合窒化物系硬質被覆層を蒸着形成した被覆工具、また、工具基体表面に、AlとCrの複合窒化物系硬質被覆層を蒸着形成した被覆工具が、炭素鋼や合金鋼などの切削に用いられた場合には、すぐれた耐摩耗性を示すことが知られている。
また、上記の複合窒化物系硬質被覆層の上に、Ni酸化膜をさらに被覆形成することにより、被覆工具の潤滑性改善を図った被覆工具も知られている。
For example, a coated tool in which a composite nitride hard coating layer of Al and Ti is vapor-deposited on the surface of the tool base, and a coated tool in which a composite nitride hard coating layer of Al and Cr is vapor-deposited on the surface of the tool base. It is known that when used for cutting carbon steel or alloy steel, it exhibits excellent wear resistance.
In addition, a coated tool is also known that improves the lubricity of the coated tool by further forming a Ni oxide film on the composite nitride-based hard coating layer.
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを特に、軟鋼やステンレス鋼等のような溶着性の高い被削材を、高い発熱を伴う高速切削に用いた場合には、切削時に発生する高熱によって硬質被覆層が過熱されて、高温硬さ、潤滑性が不足したり、また溶着を生じたりするために、耐摩耗性の低下、チッピングの発生等が避けられず、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. In the case of a coated tool, there is no problem when it is used for cutting under normal conditions, but this is especially true for work materials with high weldability, such as mild steel and stainless steel, at high speed with high heat generation. When used for cutting, the hard coating layer is overheated by the high heat generated during cutting, resulting in insufficient high-temperature hardness and lubricity, and welding, resulting in reduced wear resistance and chipping. As a result, the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、高熱を発生する高速切削条件で溶着を生じやすい軟鋼、ステンレス鋼のような被削材を切削加工するにあたり、硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(イ)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング(AIP)装置を用い、装置中央部に工具基体(例えば、超硬基体)装着用回転テーブルを設け、装置内には、Ni炭窒化物あるいは窒化物(以下、Ni(C,N)で示す)層形成用カソード電極を設け、また、必要に応じて、例えば、AlとTiの複合窒化物(以下、(Al,Ti)Nで示す)系硬質被覆層形成用(あるいはAlとCrの複合窒化物(以下、(Al,Cr)Nで示す)系硬質被覆層形成用)カソード電極(以下、下地層形成用電極という)を設け、工具基体装着用回転テーブル上に工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気等の所定に雰囲気として、前記回転テーブルを回転させると共に、形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、前記のNi(C,N)層形成用カソード電極とアノード電極との間にアーク放電を発生させると、工具基体表面には、Ni(C,N)層が蒸着形成されこと。
In view of the above, the present inventors, from the above viewpoint, have a hard coating layer with excellent lubrication when cutting work materials such as soft steel and stainless steel that are likely to be welded under high-speed cutting conditions that generate high heat. As a result of conducting research while focusing on the above-mentioned conventional coated tools in order to develop coated tools that exhibit high performance and wear resistance,
(B) For example, an arc ion plating (AIP) apparatus having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. 1 (b) in a schematic front view is used. The substrate) is provided with a turntable for mounting, and a Ni carbonitride or nitride (hereinafter referred to as Ni (C, N)) layer forming cathode electrode is provided in the apparatus, and if necessary, for example, Al / Ti composite nitride (hereinafter referred to as (Al, Ti) N) hard coating layer (or Al and Cr composite nitride (hereinafter referred to as (Al, Cr) N) hard coating layer) (Forming) Cathode electrode (hereinafter referred to as an underlayer forming electrode) is provided, and the tool base is mounted in a ring shape on the tool base mounting rotary table. When rotating the rotary table In addition, an arc discharge is generated between the cathode electrode for forming the Ni (C, N) layer and the anode electrode while rotating the tool base itself for the purpose of uniforming the thickness of the hard coating layer to be formed. And a Ni (C, N) layer should be vapor-deposited on the tool base surface.
(ロ)なお、工具基体表面とNi(C,N)層との間に、(Al,Ti)N系硬質被覆層あるいは(Al,Cr)N系硬質被覆層からなる下地層を介在形成する場合には、予め、下地層形成用カソード電極とアノード電極との間にアーク放電を発生させて下地層を蒸着形成した後、Ni(C,N)層形成用カソード電極とアノード電極との間のアーク放電を開始すればよい。 (B) A base layer made of (Al, Ti) N hard coating layer or (Al, Cr) N hard coating layer is interposed between the tool base surface and the Ni (C, N) layer. In some cases, an arc discharge is generated between the cathode electrode for forming the underlayer and the anode electrode to form an underlayer by vapor deposition, and then between the cathode electrode for forming the Ni (C, N) layer and the anode electrode. The arc discharge may be started.
(ハ)蒸着形成された上記Ni(C,N)層は、それ自体が所定の高温硬さを有する硬質被覆層であるため、高速切削加工に用いた場合に、所定の耐摩耗性を示すが、さらに、これに加え、Ni(C,N)層は、切削加工時に発生する高熱によって過熱され、その一部が、ニッケルの酸化物、窒酸化物、炭酸化物、炭窒酸化物(以下、これらを総称して、単に、NiOで示す。)に変化し、そして、このNiOは自己潤滑性を備えるため、溶着性の高い被削材の高速切削加工において、被削材との潤滑性を高め溶着を抑制する作用が有することから、ステンレス鋼などの溶着性の高い被削材を、高熱発生を伴う高速切削条件で切削加工しても、溶着、チッピング、偏摩耗等を生じることなくすぐれた耐摩耗性を長期に亘って発揮するようになる。 (C) The Ni (C, N) layer formed by vapor deposition is a hard coating layer having a predetermined high-temperature hardness, and therefore exhibits a predetermined wear resistance when used for high-speed cutting. However, in addition to this, the Ni (C, N) layer is overheated by high heat generated during cutting, and a part of the Ni (C, N) layer is nickel oxide, nitride oxide, carbonate, carbonitride (hereinafter referred to as “carbonitrate”). These are collectively referred to simply as NiO.) Since this NiO has self-lubricating properties, in high-speed cutting of work materials with high weldability, lubricity with the work materials Because it has the effect of increasing welding and suppressing welding, it does not cause welding, chipping, uneven wear, etc. even when a highly weldable work material such as stainless steel is machined under high-speed cutting conditions that generate high heat. It will provide excellent wear resistance over a long period of time. .
(ニ)また、工具基体表面に、(Al,Ti)N系硬質被覆層あるいは(Al,Cr)N系硬質被覆層からなる下地層を介して、上記Ni(C,N)層を蒸着形成した場合には、下地層の構成成分であるAlが高温硬さ、耐熱性および耐酸化性を向上させ、同Ti、Crが高温強度を向上させることから、このような下地層と上記Ni(C,N)層からなる硬質被覆層は、耐チッピング性、耐摩耗性等の切削工具特性が一段と向上するばかりか、高温条件下の切削加工においても、すぐれた潤滑性を発揮し、溶着、チッピング、偏摩耗等を生じることなくすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(イ)〜(ニ)に示される知見を得たのである。
(D) Further, the Ni (C, N) layer is vapor-deposited on the surface of the tool base through an underlayer composed of an (Al, Ti) N-based hard coating layer or an (Al, Cr) N-based hard coating layer. In this case, Al, which is a constituent component of the underlayer, improves the high temperature hardness, heat resistance and oxidation resistance, and the Ti and Cr improve the high temperature strength. The hard coating layer composed of the (C, N) layer not only further improves cutting tool properties such as chipping resistance and wear resistance, but also exhibits excellent lubricity even in cutting under high temperature conditions. To exhibit excellent wear resistance over a long period of time without causing chipping or uneven wear.
The findings shown in (a) to (d) above have been obtained.
この発明は、上記の知見に基づいてなされたものであって、
「(1)炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、
硬質被覆層の少なくとも一つの層が、
組成式:Ni(C1−XNX)
で表した場合、0.1≦X≦1.0(但し、Xは原子比)を満足するNiの炭窒化物層、窒化物層(Ni(C,N)層)であることを特徴とする自己潤滑性表面被覆切削工具。
(2)工具基体の表面と、上記Niの炭窒化物層、窒化物層(Ni(C,N)層)との間に、AlとTiの複合窒化物((Al,Ti)N)系硬質被覆層あるいはAlとCrの複合窒化物((Al,Cr)N)系硬質被覆層が介在形成されていることを特徴とする前記(1)記載の自己潤滑性表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool base composed of a tungsten carbide group (WC group) cemented carbide or a titanium carbonitride group (TiCN group) cermet,
At least one layer of the hard coating layer is
Composition formula: Ni (C1 - XNx )
In this case, it is characterized by being a Ni carbonitride layer and a nitride layer (Ni (C, N) layer) satisfying 0.1 ≦ X ≦ 1.0 (where X is an atomic ratio). Self-lubricating surface coated cutting tool.
(2) Al / Ti composite nitride ((Al, Ti) N) system between the surface of the tool base and the Ni carbonitride layer and nitride layer (Ni (C, N) layer) The self-lubricating surface-coated cutting tool according to (1), wherein a hard coating layer or a composite nitride ((Al, Cr) N) hard coating layer of Al and Cr is interposed. "
It has the characteristics.
つぎに、この発明の被覆工具について詳細に説明する。 Next, the coated tool of the present invention will be described in detail.
Ni(C,N)層;
Ni(C,N)層を形成する方法それ自体は、特に限定されるものではないが、例えば、以下の条件で、金属Niをターゲットとし、窒素ガスとメタンガスの混合雰囲気ガス中で、蒸着量を調整しながらアークイオンプレーティングを行うことにより、所定層厚のNi(C,N)層を蒸着形成することができる。
蒸着条件:
反応ガス組成(容積%):CH4 0〜90 %,残部N2、
反応ガス圧力: 1.33〜13.3 Pa、
バイアス電圧:0〜−500V、周期1kHz〜500kHzのパルスバイアス、
そして、蒸着形成された上記Ni(C,N)層は、すぐれた潤滑性と高温硬さを有するが、
組成式:Ni(C1−XNX)
で表した場合、Xの値が0.1未満であると、潤滑性向上効果、耐溶着性向上効果が少なくなることから、0.1≦X≦1.0(但し、Xは原子比)を満足する組成を有することが必要である。
したがって、硬質被覆層としてNi(C,N)層を蒸着形成した被覆工具は、軟鋼、ステンレス鋼等の溶着性の高い被削材を高速条件下で切削加工する場合にも、Ni(C,N)層がすぐれた高温硬さを有すると同時にすぐれた自己潤滑性を備えることによって、高熱による溶着発生を防止し、チッピング、欠損、剥離等をすると同時に、硬質被覆層の有するによって、すぐれた耐摩耗性を長期に亘って維持することができる。
なお、Ni(C,N)層の層厚については、これが薄すぎると長期の使用にわたって十分な潤滑性を発揮することができず、一方、これが厚くなりすぎると、チッピングが発生しやすくなり、また、耐摩耗性も低下傾向を示すようになるため、1.0〜10.0μmであることが望ましい。
Ni (C, N) layer;
The method of forming the Ni (C, N) layer itself is not particularly limited. For example, the deposition amount is set in a mixed atmosphere gas of nitrogen gas and methane gas with metal Ni as a target under the following conditions. By performing arc ion plating while adjusting the thickness, a Ni (C, N) layer having a predetermined thickness can be formed by vapor deposition.
Deposition conditions:
Reaction gas composition (volume%): CH 4 0-90%, balance N 2
Reaction gas pressure: 1.33-13.3 Pa,
Bias voltage: 0--500V, period 1 kHz-500 kHz pulse bias,
The deposited Ni (C, N) layer has excellent lubricity and high temperature hardness.
Composition formula: Ni (C1 - XNx )
When the value of X is less than 0.1, the effect of improving lubricity and the effect of improving welding resistance are reduced, so 0.1 ≦ X ≦ 1.0 (where X is an atomic ratio) It is necessary to have a composition that satisfies
Therefore, a coated tool in which a Ni (C, N) layer is vapor-deposited as a hard coating layer can be used even when a work material with high weldability such as mild steel or stainless steel is cut under high-speed conditions. N) The layer has excellent high-temperature hardness and at the same time has excellent self-lubricity, thereby preventing the occurrence of welding due to high heat, chipping, chipping, peeling, etc., and at the same time having a hard coating layer Abrasion resistance can be maintained over a long period of time.
As for the layer thickness of the Ni (C, N) layer, if it is too thin, sufficient lubricity cannot be exhibited over a long period of use. On the other hand, if it is too thick, chipping tends to occur. Moreover, since abrasion resistance also comes to show a decreasing tendency, it is desirable that it is 1.0-10.0 micrometers.
(Al,Ti)N系硬質被覆層あるいは(Al,Cr)N系硬質被覆層からなる下地層;
工具基体の表面と、上記Ni(C,N)層との間に、(Al,Ti)N系硬質被覆層あるいは(Al,Cr)N系硬質被覆層からなる下地層を介在形成することにより、被覆工具の耐摩耗性をさらに向上せしめることができる。特に、上記硬質被覆層において、その成分であるAlが、高温硬さ、耐熱性および耐酸化性を向上させ、同Ti成分、Cr成分が高温強度を向上させることは良く知られているところである。
具体的な(Al,Ti)N系硬質被覆層あるいは(Al,Cr)N系硬質被覆層としては、既に知られている各種の硬質膜を用いることができるが、例えば、(Al,Ti)N層、(Al,Cr)N層、さらにこれらの層への添加成分Mとして、周期律表IVa族、Va族、VIa族元素、Si、B等の成分を含有する硬質膜を挙げることができる。
An underlayer comprising an (Al, Ti) N-based hard coating layer or an (Al, Cr) N-based hard coating layer;
By interposing and forming a base layer made of an (Al, Ti) N-based hard coating layer or an (Al, Cr) N-based hard coating layer between the surface of the tool base and the Ni (C, N) layer. Further, the wear resistance of the coated tool can be further improved. In particular, in the hard coating layer, it is well known that Al as its component improves high temperature hardness, heat resistance and oxidation resistance, and the Ti component and Cr component improve high temperature strength. .
As a specific (Al, Ti) N-based hard coating layer or (Al, Cr) N-based hard coating layer, various known hard films can be used. For example, (Al, Ti) Examples of the N layer, the (Al, Cr) N layer, and a hard film containing components such as IVa group, Va group, VIa group element, Si, B, etc. as the additive component M to these layers. it can.
この発明の被覆工具は、Ni(C,N)層が、すぐれた高温硬さを有し、さらに、切削加工時にすぐれた自己潤滑性を有するNiOを形成し、潤滑性を高めるため、軟鋼、ステンレス鋼等の溶着性の高い被削材を、特に大きな発熱を伴う高速切削条件で加工した場合であっても、すぐれた耐チッピング性、耐溶着性を示し、すぐれた耐摩耗性を発揮する。
また、工具基体表面と上記Ni(C,N)層との間に、(Al,Ti)N系硬質被覆層あるいは(Al,Cr)N系硬質被覆層を下地層として介在形成した被覆工具においては、Ni(C,N)層が、すぐれた高温硬さ、潤滑性を発揮すると共に、下地層が、すぐれた高温硬さ、高温強度、耐熱性、耐酸化性等を有するため、硬質被覆層全体として、より一段とすぐれた高温硬さ、高温強度、耐熱性、耐酸化性および潤滑性を発揮し、軟鋼、ステンレス鋼等の溶着性の高い被削材を、特に大きな発熱を伴う高速切削条件で加工した場合であっても、すぐれた耐チッピング性、耐溶着性を示すとともに、偏摩耗を生じることもなく、長期に亘ってより一段とすぐれた耐摩耗性を発揮するものである。
In the coated tool of the present invention, the Ni (C, N) layer has excellent high-temperature hardness, and further forms NiO having excellent self-lubricating property at the time of cutting, thereby improving lubricity. Even when work materials with high weldability such as stainless steel are processed under high-speed cutting conditions with particularly large heat generation, they exhibit excellent chipping resistance and welding resistance, and exhibit excellent wear resistance. .
Further, in a coated tool in which an (Al, Ti) N-based hard coating layer or an (Al, Cr) N-based hard coating layer is interposed between the tool base surface and the Ni (C, N) layer as an underlayer. The Ni (C, N) layer exhibits excellent high-temperature hardness and lubricity, and the underlayer has excellent high-temperature hardness, high-temperature strength, heat resistance, oxidation resistance, etc. As a whole layer, it exhibits superior high-temperature hardness, high-temperature strength, heat resistance, oxidation resistance, and lubricity, and it is possible to cut work materials with high weldability such as mild steel and stainless steel, especially at high speeds with large heat generation. Even when processed under the conditions, it exhibits excellent chipping resistance and welding resistance, exhibits no uneven wear, and exhibits even better wear resistance over a long period of time.
つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A1〜A10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A1 to A10 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B1〜B6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B1 to B6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.
ついで、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置の回転テーブル上に装着し、アークイオンプレーティング装置の下地層形成用電極として、表3に示される種々の成分組成の合金1〜10(カソード1〜10という)を装着し、Ni(C,N)層形成用電極として金属Niを装着し、さらに、ボンバード洗浄用カソード電極として金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、ボンバード洗浄用カソード電極の金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
(b)ついで、下地層を形成する場合には、装置内に反応ガスとして、窒素ガスあるいは窒素ガスとメタンガスの混合ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、下地層形成用電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、表4、5に示される所定成分組成、所定目標層厚の下地層を蒸着形成し、
(c)ついで、装置内雰囲気として、窒素ガスとメタンガスの混合ガスを導入して3Paの反応雰囲気を維持し、前記回転テーブル上で自転しながら回転する工具基体に、周期20kHz、0〜−100Vの直流パルスバイアス電圧を印加して、Ni(C,N)層形成用電極である金属Niとアノード電極との間に90Aの電流を流してアーク放電を発生させ、表4、5に示される所定組成のNi(C,N)層を蒸着形成することにより、
工具基体表面に、((Al,Ti)N系硬質被覆層あるいは(Al,Cr)N系硬質被覆層を介して、あるいは介さずに直接)Ni(C,N)層を有するISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜16(以下、本発明被覆チップ1〜16という)をそれぞれ製造した。
Next, each of the tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and mounted on the rotary table of the arc ion plating apparatus shown in FIG. As an electrode for forming a base layer of a plating apparatus, alloys 1 to 10 (referred to as cathodes 1 to 10) having various compositions shown in Table 3 are mounted, and metal Ni is used as an electrode for forming a Ni (C, N) layer. Furthermore, metal Ti is also attached as a cathode electrode for bombard cleaning, and the inside of the apparatus is first heated to 500 ° C. with a heater while maintaining a vacuum of 0.5 Pa or less. A DC bias voltage of −1000 V is applied to the rotating tool base while rotating above, and the metal electrode Ti between the bombard cleaning cathode electrode and the anode electrode is applied. By flowing a 100A current to generate arc discharge, a tool substrate surface was washed Ti bombardment with,
(B) Next, when forming the base layer, nitrogen gas or a mixed gas of nitrogen gas and methane gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa and rotate on the rotary table. While applying a DC bias voltage of −100 V to the rotating tool base and causing a current of 100 A to flow between the base layer forming electrode and the anode electrode, arc discharge is generated, and predetermined components shown in Tables 4 and 5 Composition, undercoat layer with a predetermined target layer thickness is formed by vapor deposition,
(C) Next, a mixed gas of nitrogen gas and methane gas is introduced as an atmosphere in the apparatus to maintain a reaction atmosphere of 3 Pa, and a tool base that rotates while rotating on the rotary table has a period of 20 kHz, 0 to −100 V. The DC pulse bias voltage is applied to cause a 90 A current to flow between the metal Ni as the Ni (C, N) layer forming electrode and the anode electrode to generate an arc discharge. By vapor-depositing a Ni (C, N) layer having a predetermined composition,
To ISO / CNMG120408 having a Ni (C, N) layer (directly through or without (Al, Cr) N-based hard coating layer or (Al, Cr) N-based hard coating layer) on the tool base surface. The present invention coated tools 1 to 16 (hereinafter referred to as the present coated chips 1 to 16) each having a defined throwaway tip shape were manufactured.
比較の目的で、これら工具基体A1〜A10およびB1〜B6のうち、工具基体A1〜A5およびB1〜B3については、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、表3に示されるカソード1〜10を装着し、Ni酸化膜形成用カソード電極(蒸発源)として金属Niを装着し、さらに、ボンバート洗浄用金属Tiカソード電極も装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加して、ボンバード洗浄用カソード電極の金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記本発明カソード1〜5とアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって前記工具基体A1〜A5およびB1〜B3のそれぞれの表面に、表6、7に示される目標組成および目標層厚をもった硬質層(本発明でいう下地層に対応する)を形成し、
その後、装置内に反応ガスとして、酸素からなる雰囲気ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、Ni酸化膜形成用カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、表6、7に示される所定層厚のNi酸化膜層を前記硬質層の上に蒸着形成することにより、
同じくスローアウエイチップ形状の従来被覆工具1〜5、11〜13(以下、従来被覆チップ1〜5、11〜13という)をそれぞれ製造した。
For the purpose of comparison, among these tool bases A1 to A10 and B1 to B6, the tool bases A1 to A5 and B1 to B3 are ultrasonically cleaned in acetone and dried, respectively, in the arc shown in FIG. The ion plating apparatus was charged, cathodes 1 to 10 shown in Table 3 were attached as cathode electrodes (evaporation source), metal Ni was attached as a cathode electrode for Ni oxide film formation (evaporation source), A metallic Ti cathode electrode for bombard cleaning is also mounted, and the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then a DC bias voltage of −1000 V is applied to the tool base. Is applied, and a current of 100 A is caused to flow between the metal Ti of the cathode electrode for bombard cleaning and the anode electrode to generate an arc discharge, thereby providing a tool base. The surface was washed Ti bombardment,
Next, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and the bias voltage applied to the tool base is lowered to −100 V, so that the cathodes 1 to 5 of the present invention and the anode electrode are interposed. A hard layer having a target composition and a target layer thickness shown in Tables 6 and 7 is formed on the surface of each of the tool bases A1 to A5 and B1 to B3 by causing an electric current of 90 A to flow. Corresponding to the underlying layer)
Thereafter, an atmosphere gas composed of oxygen is introduced as a reaction gas into the apparatus to obtain a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, An arc discharge is generated by passing a current of 90 A between the cathode electrode and the anode electrode for forming the Ni oxide film, and a Ni oxide film layer having a predetermined thickness shown in Tables 6 and 7 is formed on the hard layer by vapor deposition. By doing
Similarly, conventional coated tools 1 to 5 and 11 to 13 (hereinafter referred to as conventional coated chips 1 to 5 and 11 to 13) each having a throwaway tip shape were manufactured.
さらに比較の目的で、これら工具基体A1〜A10およびB1〜B6のうち、工具基体A6〜A10およびB4〜B6については、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、表3に示されるカソード1〜10を装着し、さらに、ボンバート洗浄用金属Tiカソード電極も装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加して、ボンバード洗浄用カソード電極の金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記本発明カソード1〜5とアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって前記工具基体A6〜A10およびB4〜B6のそれぞれの表面に、表6、7に示される目標組成および目標層厚をもった硬質層(本発明でいう下地層に対応する)を蒸着形成することにより、
同じくスローアウエイチップ形状の従来被覆工具6〜10、14〜16(以下、従来被覆チップ6〜10、14〜16という)をそれぞれ製造した。
For comparison purposes, among these tool bases A1 to A10 and B1 to B6, the tool bases A6 to A10 and B4 to B6 are ultrasonically cleaned in acetone and dried, as shown in FIG. Installed in the arc ion plating apparatus, mounted with cathodes 1-10 shown in Table 3, and also mounted with a metallic Ti cathode electrode for bombard cleaning, and evacuated the apparatus and kept at a vacuum of 0.5 Pa or less. However, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and a current of 100 A was passed between the metal Ti and the anode electrode of the cathode electrode for bombard cleaning. Arc discharge is generated, and the tool substrate surface is cleaned with Ti bombardment,
Next, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and the bias voltage applied to the tool base is lowered to −100 V, so that the cathodes 1 to 5 of the present invention and the anode electrode are interposed. A hard layer having a target composition and a target layer thickness shown in Tables 6 and 7 is formed on the surface of each of the tool bases A6 to A10 and B4 to B6. By vapor deposition)
Similarly, conventional coated tools 6 to 10 and 14 to 16 having a throwaway tip shape (hereinafter referred to as conventional coated chips 6 to 10 and 14 to 16) were produced.
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS347の丸棒、
切削速度: 160 m/min.、
切り込み: 2.0 mm、
送り: 0.5 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのオーステナイト系ステンレス鋼の乾式高速切削加工試験(通常の切削速度は、100m/min.)、
被削材:JIS・S22Cの丸棒、
切削速度: 280 m/min.、
切り込み: 2.0 mm、
送り: 0.5 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)での軟鋼の乾式高速切削加工試験(通常の切削速度は、250m/min.)、
被削材:JIS・SNCM220の丸棒、
切削速度: 190 m/min.、
切り込み: 3.0 mm、
送り: 0.5 mm/rev.、
切削時間: 4 分、
の条件(切削条件B)での合金鋼の乾式高速切削加工試験(通常の切削速度は、130m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: JIS / SUS347 round bar,
Cutting speed: 160 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 5 minutes,
Austenitic stainless steel dry high-speed cutting test under normal conditions (cutting condition A) (normal cutting speed is 100 m / min.),
Work material: JIS / S22C round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed cutting test of mild steel under the conditions (cutting condition B) (normal cutting speed is 250 m / min.),
Work material: JIS / SNCM220 round bar,
Cutting speed: 190 m / min. ,
Cutting depth: 3.0 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 4 minutes,
Dry high-speed cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed is 130 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 8.
この結果得られた本発明被覆工具としての本発明被覆チップ1〜16の硬質被覆層を構成する(Al,Ti)N系硬質被覆層、(Al,Cr)N系硬質被覆層、Ni(C,N)層の各成分の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、従来被覆工具としての従来被覆チップ1〜16の硬質被覆層を構成する各層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
As a result, the (Al, Ti) N-based hard coating layer, (Al, Cr) N-based hard coating layer, and Ni (C) constituting the hard coating layers of the present coated chips 1 to 16 as the present coated tool are obtained. , N) The composition of each component of the layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, and showed substantially the same composition as the target composition.
Moreover, when the composition of each layer constituting the hard coating layer of the conventional coated chips 1 to 16 as the conventional coated tool was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, the target composition and each of the layers were substantially equal to each other. Showed the same composition.
表4〜8に示される結果から、本発明被覆工具は、軟鋼、ステンレス鋼のような溶着性の高い被削材を、高熱発生を伴う高速条件下での切削加工に用いた場合であっても、硬質被覆層の少なくとも一つの層がすぐれた高温硬さと潤滑性を備えたNi(C,N)層からなることにより、溶着、チッピング、偏摩耗の発生がなく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、従来被覆工具においては、高速切削加工で高熱発生を伴った場合、特に潤滑性が不足することにより、溶着・偏摩耗やチッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
なお、被覆チップばかりでなく、被覆エンドミル、被覆ドリルを作成し、同様な切削試験を行ったところ、被覆エンドミル、被覆ドリルについても、被覆チップの場合と同様な結果が得られた。
From the results shown in Tables 4 to 8, the coated tool of the present invention is a case where a work material having high weldability such as mild steel and stainless steel is used for cutting under high-speed conditions accompanied by high heat generation. However, since at least one layer of the hard coating layer is made of a Ni (C, N) layer having excellent high temperature hardness and lubricity, there is no occurrence of welding, chipping and uneven wear, and it has been excellent over a long period of time. In contrast to the wear resistance, the conventional coated tools have high heat generation during high-speed cutting, especially due to insufficient lubricity, resulting in welding, uneven wear, and chipping. It is clear that the service life is reached in a relatively short time.
In addition, not only the coated chip but also a coated end mill and a coated drill were prepared and the same cutting test was performed. As a result, the same results as the coated chip were obtained for the coated end mill and the coated drill.
上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、軟鋼、ステンレス鋼等のような溶着性の高い被削材の高い発熱を伴う高速切削加工に用いた場合でも、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention can be used not only for cutting of general steel and ordinary cast iron, but also for high-speed cutting with high heat generation of work materials with high weldability such as mild steel and stainless steel. Even when it is used, it exhibits excellent chipping resistance and wear resistance over a long period of time and exhibits excellent cutting performance. Therefore, FA of the cutting device, labor saving and energy saving of cutting processing, Furthermore, it can cope with cost reduction sufficiently satisfactorily.
Claims (2)
硬質被覆層の少なくとも一つの層が、
組成式:Ni(C1−XNX)
で表した場合、0.1≦X≦1.0(但し、Xは原子比)を満足するNiの炭窒化物層、窒化物層であることを特徴とする自己潤滑性表面被覆切削工具。 In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
At least one layer of the hard coating layer is
Composition formula: Ni (C1 - XNx )
A self-lubricating surface-coated cutting tool characterized by being a Ni carbonitride layer and a nitride layer satisfying 0.1 ≦ X ≦ 1.0 (where X is an atomic ratio).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008183375A JP2010023118A (en) | 2008-07-15 | 2008-07-15 | Surface-coated cutting tool exhibiting excellent self-lubricity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008183375A JP2010023118A (en) | 2008-07-15 | 2008-07-15 | Surface-coated cutting tool exhibiting excellent self-lubricity |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010023118A true JP2010023118A (en) | 2010-02-04 |
Family
ID=41729443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008183375A Withdrawn JP2010023118A (en) | 2008-07-15 | 2008-07-15 | Surface-coated cutting tool exhibiting excellent self-lubricity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010023118A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011096548A1 (en) | 2010-02-04 | 2011-08-11 | 矢崎総業株式会社 | Connector housing with mat seal |
CN103124608A (en) * | 2011-06-22 | 2013-05-29 | 三菱综合材料株式会社 | Surface coating cutting tool with excellent defect resistance and abrasion resistance |
-
2008
- 2008-07-15 JP JP2008183375A patent/JP2010023118A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011096548A1 (en) | 2010-02-04 | 2011-08-11 | 矢崎総業株式会社 | Connector housing with mat seal |
CN103124608A (en) * | 2011-06-22 | 2013-05-29 | 三菱综合材料株式会社 | Surface coating cutting tool with excellent defect resistance and abrasion resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5838769B2 (en) | Surface coated cutting tool | |
JP2009101491A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP2009061520A (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting | |
JP3873276B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP2012024854A (en) | Surface-coated cutting tool | |
JP5041222B2 (en) | Surface coated cutting tool | |
JP2009012139A (en) | Surface coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high speed cutting | |
JP2009119551A (en) | Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work | |
JP2009125832A (en) | Surface-coated cutting tool | |
JP5196122B2 (en) | Surface coated cutting tool | |
JP5088480B2 (en) | Surface coated cutting tool | |
JP2010023118A (en) | Surface-coated cutting tool exhibiting excellent self-lubricity | |
JP5035527B2 (en) | Surface coated cutting tool | |
JP2011240438A (en) | Surface coated cutting tool excellent in heat resistance and fusion resistance | |
JP2009285758A (en) | Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed high-feed cutting work | |
JP4771199B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP5099495B2 (en) | Surface coated cutting tool | |
JP2009119550A (en) | Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance | |
JP5077743B2 (en) | Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer | |
JP2011240436A (en) | Surface coated cutting tool excellent in heat resistance and fusion resistance | |
JP2009095916A (en) | Surface-coated cutting tool | |
JP5239950B2 (en) | Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work | |
JP2008188737A (en) | Surface coated cutting tool having hard coating layer showing excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP2009285757A (en) | Surface coated cutting tool exhibiting superior self lubricity | |
JP2007307690A (en) | Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20111004 |