JP2012024854A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2012024854A
JP2012024854A JP2010162598A JP2010162598A JP2012024854A JP 2012024854 A JP2012024854 A JP 2012024854A JP 2010162598 A JP2010162598 A JP 2010162598A JP 2010162598 A JP2010162598 A JP 2010162598A JP 2012024854 A JP2012024854 A JP 2012024854A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
peak intensity
diffraction peak
layer
plane
surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010162598A
Other languages
Japanese (ja)
Inventor
Daisuke Kazami
大介 風見
Original Assignee
Mitsubishi Materials Corp
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool the hard coating layer of which exhibits excellent adhesiveness, lubricity and wear resistance under high-speed heavy cutting conditions of a soft material to be cut such as low-carbon steel and soft steel.SOLUTION: In the surface-coated cutting tool, on the surface of a tool base which comprises a WC-based cemented carbide alloy or TiCN-based cermet, an (Al, Cr)N layer or an (Al, Cr, M)N layer is formed in a lower layer, and a layer which is composed of the mixed structure of NbN having a cubic structure and NbN having a hexagonal structure and has a diffraction peak intensity ratio satisfying 0.1≤Ih/Ic≤0.7, wherein Ic is the diffraction peak intensity from the (200) plane of the NbN having the cubic structure and Ih is the diffraction peak intensity from the (103) plane and the (110) plane of the NbN having the hexagonal structure, when the diffraction peak intensity of the mixed structure is inspected by X-ray diffraction, is formed in an upper layer, as a hard coating layer.

Description

本発明は、低炭素鋼、軟鋼等の軟質被削材を、高熱発生を伴い、かつ、切刃に高負荷が作用する高送り、高切込みの高速重切削条件で加工した場合にも、硬質被覆層がすぐれた密着性と潤滑性と高硬度を有し、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention, low carbon steel, a soft workpiece mild steel or the like, accompanied by high heat generation, and sends high acts high load on the cutting edge, even when processed at high speed heavy cutting conditions of a high cut, hard It has a coating layer excellent adhesion and lubricity and high hardness, long term over superior surface-coated cutting tool which exhibits abrasion resistance (hereinafter, referred to as coated tool) relates.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またスローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 Generally, the coated tool, the various steel and workpiece of turning or planing indexable used in removably attached to the distal end of the byte processing such as cast iron, etc. drilling cutting of the workpiece drill or miniature drill used, further scalping processing and groove processing of the workpiece, include end mills solid type used in such shoulder machining, also similar to the solid type end mill fitted with indexable detachably such as throw-away end mill tool to perform the cutting process is known.

具体的な被覆工具としては、例えば、炭化タングステン基(以下、WC基で示す)超硬合金または炭窒化チタン基(以下、TiCN基で示す)サーメット等で構成された工具基体の表面に硬質皮膜を蒸着形成し、被覆工具の耐摩耗性、工具寿命の改善を図ったものが一般的に知られている。 Specific coated tool, for example, tungsten carbide group (hereinafter, denoted by WC-based) cemented carbide or titanium carbonitride group (hereinafter, shown by TiCN group) hard coating on the surface of the configured tool substrate with cermet was vapor deposited, the wear resistance of the coated tool, which improving the tool life is generally known.
例えば、特許文献1に示すように、工具基体表面に、ZrN、HfN、NbN、TaN、MoN、WNからなる一種以上の固体潤滑膜を形成し、この固体潤滑膜と硬質皮膜との組み合わせにより、耐凝着性を高めた被覆工具が知られている。 For example, as shown in Patent Document 1, a tool substrate surface, ZrN, HfN, NbN, TaN, MoN, to form one or more solid lubricating film consisting of WN, by the combination of the solid lubricating film and hard coating, coated tool with enhanced adhesion resistance are known.
また、特許文献2に示すように、工具基体表面に、h− [(V,Cr,Nb,Ta) (Ti,Zr,Hf,Al,Si) 1−a ](N,C,O,B) で表した場合、0.5≦b≦1.0でかつ六方晶構造を有する硬質被覆層を形成することにより、耐摩耗性を改善した被覆工具が知られている。 Further, as shown in Patent Document 2, a tool substrate surface, h- [(V, Cr, Nb, Ta) a (Ti, Zr, Hf, Al, Si) 1-a] (N, C, O, B) when expressed in b, by forming a hard coating layer having 0.5 ≦ b ≦ 1.0 a and hexagonal structure, coated tool is known having improved abrasion resistance.
また、特許文献3に示されるように、硬質被覆層をX線回折により測定した場合、六方晶構造の窒化ニオブの(103)面からの回折ピーク強度と六方晶構造の窒化ニオブの(110)面からの回折ピーク強度の合計量「Ih」と、立方晶構造の窒化ニオブの(220)面からの回折ピーク強度「Ic」との比の値Ih/Icを2.0以下とすることにより、Ti合金の切削加工に適した被覆工具が提供されることが知られている。 Further, as shown in Patent Document 3, when measuring hard coating layer by X-ray diffraction, hexagonal structure of niobium nitride (103) plane from the diffraction peak intensity and hexagonal structure of niobium nitride (110) the total amount of the diffraction peak intensity from faces and "Ih", by setting the value Ih / Ic of the ratio of the diffraction peak intensity "Ic" from (220) plane of niobium nitride cubic structures 2.0 it is known that coated tool suitable for machining of Ti alloy is provided.

特開2001−179533号公報 JP 2001-179533 JP 特開2006−312235号公報 JP 2006-312235 JP 国際公開パンフレット WO2009/035396 International Publication Pamphlet WO2009 / 035396

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高効率化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを特に、低炭素鋼、軟鋼等の軟質被削材の、高い発熱を伴い、かつ、切刃に高負荷が作用する高送り、高切込みの高速重切削条件で用いた場合には、切削時に発生する高熱によって硬質被覆層が過熱されることにより、高温硬さの低下が生じるとともに、潤滑性が不足し、その結果、耐摩耗性の低下が避けられないことに加えて、硬質被覆層と工具表面との密着性が十分でないため、比較的短時間で使用寿命に至るのが現状である。 FA of recent cutting device is remarkable, whereas labor saving and energy saving for cutting, the stronger the further cost reduction requirements, cutting connection with this it tends to further high efficiency, the in the conventional coated tools, there is no problem when it was used for cutting under normal conditions, which in particular, with low carbon steel, soft workpiece mild steel or the like, a high fever, and switching high feed a high load is applied to the blade, when used in high-speed heavy cutting conditions of a high cut, by a hard coating layer is overheated by high heat generated during cutting, with a decrease in high-temperature hardness occurs, lubricating sex is insufficient, as a result, in addition to lowering of the wear resistance can not be avoided, since adhesion between the hard coating layer and the tool surface is insufficient, the processing leads to a relatively short time service life at present is there.

そこで、本発明者らは、前述のような観点から、高熱を発生し、かつ、切刃に対して高負荷が作用する高速重切削条件で用いた場合にも、硬質被覆層がすぐれた潤滑性、耐摩耗性および密着性を発揮する被覆工具を開発すべく、前記従来被覆工具に着目し研究を行った結果、以下の知見を得た。 Therefore, the lubricating inventors, from the viewpoint as described above, to generate a high heat, and even when a high load is used at a high speed heavy cutting conditions acting on the cutting edge, the hard coating layer has excellent gender, in order to develop a coated tool that exhibits wear resistance and adhesion, the conventionally coated tool focusing result of studies, the following findings were obtained.

(イ)被覆工具の硬質被覆層を窒化ニオブで構成した場合、窒化ニオブからなる硬質被覆層は、高硬度および高靭性を備え、かつ、化学的安定性にも優れることが一般的に知られているが、高硬度被削材を、高熱発生を伴うとともに切刃に高負荷が作用する高速重切削条件で使用した場合には、その硬度、靭性は十分であるとはいえない。 (B) if the hard coating layer of the coated tool was composed of niobium nitride, hard layer of niobium nitride, with high hardness and high toughness, and it is generally known that excellent in chemical stability and has but a high hardness workpiece, when a high load on the cutting edge with associated with high heat generation is used in high-speed heavy cutting conditions acts, its hardness, toughness can not be said to be sufficient.
そこで、本発明者らは、窒化ニオブが有する複数の化合物形態、複数の結晶構造について詳細に検討したところ、特定の結晶構造からなる窒化ニオブが、特定の割合で混合した混合組織からなる窒化ニオブ層は、一段と優れた高温硬さと高靭性を備え、かつ、高温条件下での高硬度被削材との潤滑性に優れることを見出したのである。 Accordingly, the present inventors have found that a plurality of compound form comprising niobium nitride, was examined in detail for a plurality of crystal structures, the niobium nitride comprising a specific crystal structure, niobium nitride comprising a mixed structure of a mixture in a specific ratio layer has a more excellent high-temperature hardness and high toughness, and is was found that excellent lubricity and high hardness workpiece under high temperature conditions.

(ロ)即ち、窒化ニオブには、その化合物形態、結晶構造として、β−Nb2N(六方晶),γ−Nb4N3(正方晶),δ−NbN(立方晶),δ'−NbN(六方晶),ε−NbN(六方晶),η−NbN(六方晶)などがあるが、アークイオンプレーティングにより窒化ニオブを成膜するにあたり、例えば、窒素圧力を9.3Paとした条件でバイアス電圧を付加し成膜したところ、図2に示すように、バイアス電圧が0〜−60Vでは、立方晶構造の窒化ニオブ(以下、これをc−NbNで示す)が優先的に成膜されるが、バイアス電圧を高くし、−70V以上のバイアス電圧範囲で成膜したところ、六方晶構造の窒化ニオブ(以下、これをh−NbNで示す)が優先的に成膜されるようになり、硬質被覆層としては、c−NbNとh−N (B) In other words, the niobium nitride, the compound form, as the crystal structure, β-Nb2N (hexagonal), γ-Nb4N3 (tetragonal), [delta]-NbN (cubic), δ'-NbN (hexagonal) , epsilon-NbN (hexagonal), there are such eta-NbN (hexagonal), when depositing the niobium nitride by arc ion plating, for example, adding a bias voltage and nitrogen pressure conditions and 9.3Pa was deposited, as shown in FIG. 2, the bias voltage is 0 to-60V, cubic structure of niobium nitride (hereinafter indicated by c-NbN) but is preferentially deposited, the bias by increasing the voltage, was deposited by the above bias voltage range -70V, niobium nitride hexagonal structure (hereinafter, this is indicated by h-NbN) is to be preferentially deposited, hard layer as a, c-NbN and h-N bNの混合組織からなる窒化ニオブが成膜された。 NbN consisting mixed structure of bN is deposited.
なお、前記成膜したc−NbNとh−NbNについての結晶構造は、例えば、Kα照射によるX線回折を行い、その回折ピーク強度位置によって確認することができる。 The crystal structure of c-NbN and h-NbN was the film forming, for example, subjected to X-ray diffraction by Kα irradiation can be confirmed by the diffraction peak intensity positions.

(ハ)さらに、本発明者らは、バイアス電圧を適正範囲に維持してアークイオンプレーティングで窒化ニオブ層を成膜した場合に、硬質被覆層は所定比率のc−NbNとh−NbNが存在する混合組織となり、そして、所定比率の混合組織からなる窒化ニオブによって硬質被覆層を構成した場合には、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切込みの高速重切削条件において、硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮することを見出したのである。 (C) Further, the present inventors have found that when depositing the niobium nitride layer by arc ion plating to maintain a bias voltage within a proper range, the hard coating layer is c-NbN and h-NbN in a predetermined ratio becomes mixed structure present, and, in the case where the hard layer by nitriding the niobium consisting of mixed structure of a predetermined ratio, with a high heat generation, and sends high acts high load on the cutting edge, high cut in the high-speed heavy cutting conditions, it was found to exhibit lubricity and abrasion resistance hard coating layer has excellent.

(ニ)そして、本発明者らは、工具基体の表面に、(Al,Cr)N層あるいは(Al,Cr,M)N層を下部層として0.3〜5μmの平均層厚で形成し、これの上に、窒化ニオブ層を上部層として形成すると、下部層である(Al,Cr)N層あるいは(Al,Cr,M)N層は、すぐれた高温硬さ、高温強度、耐熱性を示し、また、上部層であるNbN層はすぐれた高硬度および高靭性を示すが、特に、上部層のNbN層中に含有されるNb成分によって、下部層の密着性が向上することから、高熱発生を伴う切削加工においても、NbN層のすぐれた高硬度および高靭性は維持され、したがって、軟質被削材の高速高送り切削加工において、切刃部が高温になったとしても被削材との潤滑性にすぐれ、その結果、切刃部におけるチッ (D) Then, the present inventors have found that the surface of the tool substrate to form (Al, Cr) N layer or a (Al, Cr, M) N layer with an average layer thickness of 0.3~5μm as a lower layer , on the other hand, if niobium nitride layer as an upper layer, a lower layer (Al, Cr) N layer or (Al, Cr, M) N layer, excellent high-temperature hardness, high-temperature strength, heat resistance are shown, also, although NbN layer is a top layer exhibit excellent high hardness and high toughness, especially by Nb component contained in the NbN layers in the upper layer, since it improves the adhesion of the lower layer, also in cutting associated with high heat generation, excellent high hardness and high toughness of the NbN layers are maintained, therefore, in the high-speed and high feed cutting of soft workpiece, the workpiece as the cutting portion is heated to a high temperature excellent lubricity and, as a result, chip at the cutting edge ング(微少欠け)の発生が抑制され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得て、かかる知見に基づき、本発明を完成するに至ったものである。 Ing the generation of (small chipping) is suppressed, with the novel finding that excellent wear resistance over a long term is exerted, based on these findings, and have reached to complete the present invention.

本発明は、前記知見に基づいてなされたものであって、 The present invention was made based on the findings,
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、 To "(1) tungsten carbide based cemented carbide or surface of the constructed tool substrate with titanium carbonitride-based cermet, a surface-coated cutting tool hard coating layer is vapor deposited,
前記硬質被覆層が、 The hard coating layer,
(a)0.3〜5μmの平均層厚を有し、かつ、 (A) has an average layer thickness of 0.3 to 5 m, and,
組成式:(Al 1−α Cr α )N(ここで、αはCrの含有割合を示し、原子比で、0.25≦α≦0.55である)を満足するAlとCrの複合窒化物層からなる下部層と、 Composition formula: (Al 1-α Cr α ) N ( where, alpha denotes the content of Cr, in atomic ratio, a is 0.25 ≦ α ≦ 0.55) composite nitride of Al and Cr satisfying a a lower layer formed from the object layer,
(b)0.3〜5.0μmの平均層厚を有し、かつ、 (B) it has an average layer thickness of 0.3 to 5.0 .mu.m, and,
立方晶構造の窒化ニオブと六方晶構造の窒化ニオブの混合組織として構成され該混合組織についてX線回折による回折ピーク強度を測定したとき、 When measuring the diffraction peak intensity by X-ray diffraction is configured as a mixed structure of niobium nitride cubic niobium nitride and hexagonal structure structures the mixed structure,
立方晶構造の窒化ニオブの(200)面からの回折ピーク強度をIc、 The diffraction peak intensity from the (200) plane of niobium nitride cubic structures Ic,
六方晶構造の窒化ニオブの(103)面と(110)面からの回折ピーク強度をIh、 The diffraction peak intensity of the hexagonal structure of the niobium nitride (103) plane and (110) plane Ih,
とした場合、 If you have a,
0.1≦Ih/Ic≦0.7 0.1 ≦ Ih / Ic ≦ 0.7
を満足する回折ピーク強度比を有する上部層とからなることを特徴とする表面被覆切削工具。 Surface-coated cutting tool, characterized by comprising an upper layer having a diffraction peak intensity ratio satisfying.
(2)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、 (2) In the surface-coated cutting tool obtained by forming a hard coating layer on a tungsten carbide based cemented carbide or surface of the constructed tool substrate with titanium carbonitride based cermet,
前記硬質被覆層が、 The hard coating layer,
(a)0.3〜5μmの平均層厚を有し、かつ、 (A) has an average layer thickness of 0.3 to 5 m, and,
組成式:(Al 1−α−β Cr αβ )N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはCrの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.25≦α≦0.55、0.01≦β≦0.25である)を満足するAlとCrの複合窒化物層からなる下部層と、 Composition formula: (Al 1-α-β Cr α M β) N ( where, M is chosen Periodic Table 4a except Cr, 5a, elements of Group 6a, Si, B, from among Y 1 indicates species or two or more additive components, also, alpha content ratio of Cr, beta denotes respectively the content ratio of M, with an atomic ratio, 0.25 ≦ α ≦ 0.55,0.01 ≦ β ≦ a lower layer formed of a composite nitride layer of Al and Cr satisfying a a a) 0.25,
(b)0.3〜5.0μmの平均層厚を有し、かつ、 (B) it has an average layer thickness of 0.3 to 5.0 .mu.m, and,
立方晶構造の窒化ニオブと六方晶構造の窒化ニオブの混合組織として構成され該混合組織についてX線回折による回折ピーク強度を測定したとき、 When measuring the diffraction peak intensity by X-ray diffraction is configured as a mixed structure of niobium nitride cubic niobium nitride and hexagonal structure structures the mixed structure,
立方晶構造の窒化ニオブの(200)面からの回折ピーク強度をIc、 The diffraction peak intensity from the (200) plane of niobium nitride cubic structures Ic,
六方晶構造の窒化ニオブの(103)面と(110)面からの回折ピーク強度をIh、 The diffraction peak intensity of the hexagonal structure of the niobium nitride (103) plane and (110) plane Ih,
とした場合、 If you have a,
0.1≦Ih/Ic≦0.7 0.1 ≦ Ih / Ic ≦ 0.7
を満足する回折ピーク強度比を有する上部層とからなることを特徴とする表面被覆切削工具。 Surface-coated cutting tool, characterized by comprising an upper layer having a diffraction peak intensity ratio satisfying. "
に特徴を有するものである。 Those having features to.

つぎに、本発明の被覆工具の硬質被覆層について説明する。 Next, a description will be given a hard coating layer of the coated tool of the present invention.

(a)下部層の組成および平均層厚 下部層を構成する(Al,Cr,M)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Cr成分には高温強度を向上させる作用があり、さらに、M成分のうちの、Crを除く周期律表4a,5a,6a族の元素、Si、Bには硬質被覆層の耐摩耗性を向上させる作用があり、また、Yには硬質被覆層の高温耐酸化性を向上させる作用があるが、Crの割合を示すα値がAlとの合量あるいはAlとMの合量に占める割合(原子比、以下同じ)で0.25未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方、Crの割合を示すα値が同0.55を越えると、相対的にAlの含有割合が減少し、高速高送り切削加工で必要とされる高 (A) constituting the composition and average layer thickness lower layer of the lower layer (Al, Cr, M) is an Al component which is a component of the N layer to improve the high-temperature hardness in the hard coating layer, the same Cr component has the effect of improving the high temperature strength, furthermore, of the M component, periodic table 4a except Cr, 5a, elements of group 6a, Si, the B has the effect of improving the wear resistance of the hard coating layer Further, although the Y has an effect of improving the high temperature oxidation resistance of the hard coating layer, the ratio of α value indicating the proportion of Cr is accounted for the total amount of the total amount or Al and M of Al (atomic ratio following When the same) is less than 0.25, it is impossible to secure a predetermined high-temperature hardness, which cause abrasion resistance decrease, whereas, when the α value indicating the proportion of Cr exceeds the 0.55, content of relatively Al is reduced, the high is required at high speed and high feed cutting 硬さを確保することができず、耐摩耗性が低下し、さらに、M成分の含有割合を示すβ値がAlとの合量に占める割合(原子比、以下同じ)で0.01未満では、M成分を含有させたことによる耐摩耗性、高温耐酸化性等の特性向上が期待できず、一方、同β値が0.25を超えると、高温強度に低下傾向が現れるようになることから、α値を0.25〜0.55、β値を0.01〜0.25と定めた。 Can not be ensured the hardness, the wear resistance is reduced, further, the ratio of β value indicating the content of the M component occupying the total amount of the Al (atomic ratio, hereinafter the same) is less than 0.01 wear resistance by it contained M component, it can not be expected characteristics improvement, such as high-temperature oxidation resistance, while when the β value exceeds 0.25, it becomes appears decline in high temperature strength from, the α value of 0.25 to 0.55, was defined as the β value of 0.01 to 0.25.

また、その平均層厚が0.3μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、前記高速高送り切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.3〜5μmと定めた。 Also, the average layer thickness is less than 0.3 [mu] m, is insufficient to exert over the wear resistance excellent with its own long-term, whereas, when the average layer thickness exceeds 5 [mu] m, the high-speed high the feed cutting from becoming easily chipping occurs in the cutting edge, defining the average layer thickness and 0.3 to 5 m.
このような硬質被覆層の下部層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のAl−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記基体には、例えば、−100Vのバイアス電圧を印加した条件で蒸着することに形成することができる。 Lower layer of such a hard coating layer, for example, charged with base to arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown in schematic illustration in FIG. 1, in the apparatus with a heater, for example, while heating to a temperature of 500 ° C., to place the cathode electrode (vapor source) made of Al-Cr alloy or Al-Cr-M alloy having a predetermined composition within the device, the anode electrode and the cathode electrode (vapor source) and during, for example, current: 90A condition to generate arc discharge of by introducing nitrogen gas as a reaction gas at the same time in the apparatus, for example, a reaction atmosphere of 2 Pa, whereas, on the substrate, for example, -100 V bias voltage can be formed by depositing at the applied conditions.
(b)上部層の組成および平均膜厚 その後、c−NbN(立方晶構造の窒化ニオブ)とh−NbN(六方晶構造の窒化ニオブ)の混合組織からなる上部層を構成するが、このような混合組織からなる上部層は、例えば、以下の条件のアークイオンプレーティングによって形成することができる。 (B) the composition and average thickness subsequent upper layers, and constitute an upper layer comprising a mixed structure of c-NbN (cubic niobium nitride crystal structure) and h-NbN (niobium nitride hexagonal structure), such upper layer consisting Do mixed structure, for example, can be formed by arc ion plating under the following conditions.

成膜条件: Film forming conditions:
カソード電極: 金属Nb Cathode electrode: metal Nb
反応ガス: N Reaction gas: N 2,
反応ガス圧力: 1.0〜30Pa、 Reaction gas pressure: 1.0~30Pa,
バイアス電圧: −20〜−60V、 Bias voltage: -20~-60V,
そして、蒸着形成された前記c−NbNとh−NbNの混合組織からなる窒化ニオブ層について、Kα照射によるX線回折を行い、c−NbNの(200)面からの回折ピーク強度をIc、また、h−NbNの(103)面と(110)面からの回折ピーク強度をIhとして、回折ピーク強度比Ih/Icの値を求めると、Ih/Icは0.1〜0.7となる。 Then, the niobium nitride layer comprising a mixed structure of the vapor deposited the c-NbN and h-NbN, subjected to X-ray diffraction by Kα radiation, the diffraction peak intensity from the (200) plane of c-NbN Ic addition, the diffraction peak intensity from the (103) plane and (110) plane of the h-NbN as Ih, when determining the value of the diffraction peak intensity ratio Ih / Ic, Ih / Ic becomes 0.1 to 0.7.
図3から明らかなように、この回折ピーク強度Ic,Ihの値は、前記アークプレーティング法における成膜条件の内のバイアス電圧によって変化し、その結果、回折ピーク強度比Ih/Icの値(即ち、c−NbNとh−NbNとの混合比率)も、前記アークプレーティング法におけるバイアス電圧によって大きく影響される。 As apparent from FIG. 3, the diffraction peak intensity Ic, a value of Ih, the change by the bias voltage of the film forming conditions in the arc plating method, the resulting values, the diffraction peak intensity ratio Ih / Ic ( That is, the mixing ratio of c-NbN and h-NbN) is also greatly influenced by the bias voltage in the arc plating method.
そして、バイアス電圧が−20V未満の場合には、c−NbNの形成割合が高くh−NbNの形成が少ないため、回折ピーク強度比Ih/Ic<0.1となるが、c−NbNの混合比率が増加すると硬質被覆層の硬さを低下させ、耐摩耗性が劣化傾向を示すようになる。 When the bias voltage is less than -20V, since the formation of the higher h-NbN is formed ratio of c-NbN is small, although the diffraction peak intensity ratio Ih / Ic <0.1, mixing of the c-NbN When the ratio is increased to reduce the hardness of the hard coating layer, abrasion resistance exhibits a degradation tendency.
一方、バイアス電圧が−60Vを超えると、優先的にh−NbNが形成され、c−NbNの形成割合が低下するため、回折ピーク強度比が0.7<Ih/Icとなるが、h−NbNの混合比率の増加によって硬質被覆層の硬さ、被削材に対する潤滑性は大となるものの、半面、硬質被覆層の靭性の低下が生じるため、重切削加工においてチッピングが発生しやすくなる。 On the other hand, when the bias voltage exceeds -60 V, preferentially h-NbN is formed, since the formation ratio of the c-NbN is reduced, although the diffraction peak intensity ratio is 0.7 <Ih / Ic, h- hardness of the hard coating layer by increasing the mixing ratio of NbN, although the lubricity large with respect to the work material, half, since the decrease in the toughness of the hard coating layer occurs, chipping is likely to occur in the heavy cutting.
したがって、本発明では、c−NbNとh−NbNとの混合比率を表す回折ピーク強度比Ih/Icの値を0.1〜0.7と定めた。 Therefore, in the present invention, the values ​​of the diffraction peak intensity ratio Ih / Ic representing the mixing ratio of the c-NbN and h-NbN was defined as 0.1 to 0.7.

なお、本発明でいう「h−NbNの(103)面と(110)面からの回折ピーク強度Ih」は、図2からも分かるように、2θ≒61.9°に出現する(103)面からのX線回折強度と、2θ≒62.6°に出現する(110)面からのX線回折強度との合計に相当する値である。 Incidentally, in the present invention, "h-NbN the (103) diffraction peak intensity from faces and (110) plane Ih", as can be seen from Figure 2, appears in the 2 [Theta] ≒ 61.9 ° (103) plane and X-ray diffraction intensity from a value corresponding to the sum of the X-ray diffraction intensity from appearing in 2θ ≒ 62.6 ° (110) plane.

本発明では、回折ピーク強度比Ih/Icの値を0.1〜0.7の範囲に維持することによって、低炭素鋼、軟鋼等の軟質被削材を、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切込みの高速重切削条件において切削加工する場合でも、硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮することによって、長期の使用に亘ってすぐれた切削性能を維持することができる。 In the present invention, by maintaining the value of the diffraction peak intensity ratio Ih / Ic in the range of 0.1 to 0.7, low carbon steel, a soft workpiece mild steel or the like, accompanied by high heat generation, and switching high feed high load acts on the blades, even when cutting at high speed heavy cutting conditions of a high cut, by exerting the lubricity and wear resistance of the hard coating layer has excellent, over a long period of use it is possible to maintain the excellent cutting performance.
なお、c−NbNとh−NbNとの混合組織からなる本発明の硬質被覆層は、その平均層厚が0.3μm未満では、長期に亘ってすぐれた潤滑性、耐摩耗性を発揮することができず、工具寿命が短命化し、一方、その平均層厚が5.0μmを超えるとチッピングを発生しやすくなることから、平均層厚は0.3〜5.0μmとすることが望ましい。 Incidentally, the hard coating layer of the present invention comprising a mixed structure of c-NbN and h-NbN, in its less than the average layer thickness of 0.3 [mu] m, to exert excellent lubricity, wear resistance for a long time can not, tool life is short life, whereas, since the average layer thickness thereof is likely to occur chipping exceeds 5.0 .mu.m, the average layer thickness is preferably set to 0.3 to 5.0 .mu.m.

本発明の被覆工具は、硬質被覆層を、下部層として(Al,Cr)N層あるいは(Al,Cr,M)層を形成し、上部層として立方晶構造の窒化ニオブ(c−NbN)と六方晶構造の窒化ニオブ(h−NbN)の混合組織を有し、かつ、X線回折により該混合組織について回折ピーク強度を測定したとき、六方晶構造の窒化ニオブ(h−NbN)の(103)面と(110)面からの回折ピーク強度Ihと、立方晶構造の窒化ニオブ(c−NbN)の(200)面からの回折ピーク強度Icとの回折ピーク強度比Ih/Icが、0.1〜0.7となるような層を形成したことにより、低炭素鋼、軟鋼等の軟質被削材を、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切込みの高速重切削条件において用いた場合でも、硬質 Coated tool of the present invention, the hard coating layer, as a lower layer (Al, Cr) N layer or a (Al, Cr, M) to form a layer, and niobium nitride cubic structures as the upper layer (c-NbN) It has a mixed structure of niobium nitride of the hexagonal structure (h-NbN), and, when measuring the diffraction peak intensity of the mixed structure by X-ray diffraction, the hexagonal structure of niobium nitride (h-NbN) (103 ) and the diffraction peak intensity Ih from the surface and (110) plane, the diffraction peak intensity ratio Ih / Ic of the diffraction peak intensity Ic from (200) plane of niobium nitride cubic structures (c-NbN), 0. by forming the layer such that 1 to 0.7, low carbon steel, a soft workpiece mild steel or the like, accompanied by high heat generation, and sends high acts high load on the cutting edge, high even in the case of using in high-speed heavy cutting conditions of the cuts, hard 覆層がすぐれた密着性と潤滑性と耐摩耗性を発揮することによって、長期の使用に亘ってすぐれた切削性能を維持するものである。 By exerting adhesiveness and lubricity and abrasion resistance covering layer is excellent, it is to maintain a good cutting performance over a long period of use.

被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置の概略正面図である。 It is a schematic front view of an arc ion plating apparatus used to form the hard coating layer forming the coating tool. アークイオンプレーティングにおいて、バイアス電圧とX線回折ピーク強度の関係を示す。 In an arc ion plating, showing the relationship between the bias voltage and the X-ray diffraction peak intensity.

つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, specifically described by the coated tool of the present invention embodiment.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder both having an average particle size of 1 to 3 [mu] m, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, prepared TaN powder and Co powder, and, these raw material powders were blended in blending composition shown in Table 1, 72 hour wet mixing in a ball mill, dried, and pressed into a green compact under a pressure of 100 MPa, vacuum 6Pa this green compact in a temperature 1400 sintered under the conditions of 1 hour hold time at ° C., after sintering, R the cutting edge portion: WC groups carbide having a tip shape of ISO standard · CNMG120408 subjected to honing 0.03 the formation of the alloy of the tool substrate A1~A10.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B1〜B6を形成した。 Further, as the raw material powder, both (in mass ratio, TiC / TiN = 50/50 ) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, prepared Co powder and Ni powder, and these raw material powders were blended in the formulation composition shown in Table 2, 24 hours wet mixed in a ball mill, dried, pressed into a green compact at a pressure of 100MPa and, in a nitrogen atmosphere at 2kPa the green compact, temperature: 1500 to sintering under the conditions of 1 hour hold time at ° C., after sintering, R the cutting edge portion: ISO standards and subjected to honing 0.03 TiCN-based cermet made of tool substrate B1~B6 having a tip shape of CNMG120408 was formed.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方には、カソード電極(蒸発源)として上部層形成用の金属Nbを配置し、その他方には、カソード電極(蒸発源)として所定組成の下部層形成用のAl−Cr合金あるいはAl−Cr−M合金を配置し、 (A) Then, each of the tool substrate A-1 to A-10 and B-1 to B-6, was subjected to ultrasonic cleaning in acetone, in a dry state, arc ion plating apparatus shown in FIG. 1 from the central axis of the rotary table of the inner along the outer peripheral portion at a predetermined distance in the radial direction and attached, placing the cathode (evaporation source) on both sides opposed across the rotary table, on one is a metal Nb for the upper layer formed was placed as a cathode electrode (vapor source), the other of, Al-Cr alloy or Al-Cr-M for the lower layer formed of a predetermined composition as a cathode electrode (vapor source) place the alloy,
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、 (B) First, while holding by evacuating the apparatus to a vacuum below 0.1 Pa, after heating the inside of the apparatus to 500 ° C. by the heater, the -1000V the tool substrate that rotates while rotating on the turntable DC bias voltage is applied to, and by flowing 100A of current between the cathode and anode electrodes to generate arc discharge, and bombardment cleaning the tool substrate surface with,
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極のAl−Cr合金あるいはAl−Cr−M合金のいずれかとアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3に示される目標組成、目標層厚の単層としての下部層としての(Al,Cr)N層あるいは(Al,Cr,M)N層を0.3〜5μmの平均層厚で蒸着形成した後、前記カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、 (C) Next, while the reaction atmosphere of 4Pa by introducing nitrogen gas as a reaction gas into the apparatus, by applying a DC bias voltage of -100V to the tool substrate that rotates while rotating on the turntable, and by flowing a 120A current to generate arc discharge between the one of Al-Cr alloy or Al-Cr-M alloy of the cathode electrode and the anode electrode, the surface of the tool substrate, the target composition shown in Table 3, (Al, Cr) as a lower layer as a single layer of the target layer thickness N layer or (Al, Cr, M) after the N layer was vapor deposited with an average layer thickness of 0.3 to 5 m, the cathode electrode (evaporation the arc discharge between the source) and the anode electrode is stopped,
(d)ついで、装置内に反応ガスとして、窒素ガスを導入して表3に示される反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に表3に示される直流バイアス電圧を印加して、カソード電極の金属Nbとアノード電極との間に100Aの電流を流してアーク放電を発生させ、表3に示される目標層厚の窒化ニオブ層を蒸着形成することにより、 (D) Next, as a reaction gas into the apparatus, by introducing nitrogen gas while the reaction atmosphere shown in Table 3, the DC bias voltage shown in Table 3 in the tool base body that rotates while rotating on the turntable by applying, by flowing 100A of current between the metal Nb and the anode electrode of the cathode electrode to generate arc discharge, by depositing form a niobium nitride layer of the target layer thicknesses shown in Table 3,
ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜16(以下、本発明チップ1〜16という)をそれぞれ製造した。 Indexable present invention coated tool shape 1-16 as defined in ISO · CNMG120408 (hereinafter, the present invention that the chip 1 to 16) were prepared, respectively.

比較の目的で、前記工具基体A1〜A10およびB1〜B6のそれぞれを、本発明と同様な方法でTiボンバード洗浄し、 For purposes of comparison, each of the tool substrate A1~A10 and B1-B6, washed Ti bombarded with the present invention a similar manner,
ついで、装置内に反応ガスとして、窒素ガスを導入して表4に示される反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に表4に示される直流バイアス電圧を印加して、カソード電極の金属Nbとアノード電極との間に100Aの電流を流してアーク放電を発生させ、表4に示される目標層厚の窒化ニオブ層を蒸着形成することにより、 Then, as a reaction gas into the apparatus, by introducing nitrogen gas while the reaction atmosphere shown in Table 4, the DC bias voltage is applied as shown in Table 4 in the tool body to rotate while rotating on the turntable Te, by flowing a 100A current between the metal Nb and the anode electrode of the cathode electrode to generate arc discharge, by depositing form a niobium nitride layer of the target layer thicknesses shown in Table 4,
ISO・CNMG120408に規定するスローアウエイチップ形状の比較例被覆工具1〜16(以下、比較例チップ1〜16という)をそれぞれ製造した。 Comparative Example coated tools 1 to 16 of indexable shape prescribed in ISO · CNMG120408 (hereinafter, referred to as Comparative Example chip 1 to 16) were prepared, respectively.

つぎに、本発明チップ1〜16および比較例チップ1〜16のそれぞれの硬質被覆層について、Kα照射によるX線回折を行い、c−NbNの(200)面からの回折ピーク強度Ic、また、h−NbNの(103)面からの回折ピーク強度Ihを求め、回折ピーク強度比Ih/Icの値を算出した。 Next, for each of the hard coating layer of the present invention the chip 1 to 16 and Comparative Examples chips 1-16, subjected to X-ray diffraction by Kα radiation, the diffraction peak intensity from the (200) plane of c-NbN Ic also, seeking a diffraction peak intensity Ih from (103) plane of the h-NbN, and calculates the value of the diffraction peak intensity ratio Ih / Ic.
この算出値を表3、表4に示す。 It shows the calculated values ​​in Table 3, Table 4.
なお、図2には、本発明チップ1(バイアス電圧−50V)、比較例チップ6(バイアス電圧−100V)、比較例チップ7(バイアス電圧−200V)、比較例チップ15(バイアス電圧−300V)について測定したX線回折チャートを示す。 In FIG. 2, the present invention chip 1 (bias voltage -50 V), Comparative Example chip 6 (bias voltage -100 V), Comparative Example chip 7 (bias voltage -200 V), Comparative Example chip 15 (bias voltage -300 V) It shows the X-ray diffraction chart measured for.
表3、表4から、本発明チップ1〜16の回折ピーク強度比Ih/Icの値は、いずれも0.1〜0.7の範囲内であるのに対して、比較例チップ1〜5、11〜13の回折ピーク強度比Ih/Icの値は、0.1〜0.7の範囲内であり、比較例6〜10、14〜16の回折ピーク強度比Ih/Icの値は、0.1〜0.7の範囲を外れたものであることが分かる。 Table 3, Table 4, while the value of the diffraction peak intensity ratio Ih / Ic of the present invention the chip 1 to 16 are within the scope of any 0.1-0.7, Comparative Example chip 1-5 , the value of the diffraction peak intensity ratio Ih / Ic of 11-13, in the range of 0.1 to 0.7, the values ​​of the diffraction peak intensity ratio Ih / Ic of Comparative example 6~10,14~16 is it can be seen is obtained outside the range of 0.1 to 0.7.

つぎに、前記各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明チップ1〜16および比較例チップ1〜16について、 Next, the various coating chips, in a state where both the set screw in the tool steel byte tip fixture, the present invention chip 1 to 16 and Comparative Examples chips 1-16,
被削材:JIS・S10Cの丸棒、 Workpiece: JIS · S10C round bar,
切削速度: 260m/min. Cutting speed: 260m / min. ,
切り込み: 2.0mm、 Cut: 2.0mm,
送り: 0.33mm/rev. Feed: 0.33mm / rev. ,
切削時間: 8分、 Cutting time: 8 minutes,
の条件(切削条件A)での炭素鋼の乾式高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、200m/min.、0.25mm/rev.)、 Dry speed and high feed cutting test of carbon steel in the conditions (cutting conditions A) (normal cutting speed and feed, respectively, 200m / min., 0.25mm / rev.),
被削材:JIS・SS400の丸棒、 Workpiece: JIS · SS400 of the round bar,
切削速度: 270m/min. Cutting speed: 270m / min. ,
切り込み: 2.7mm、 Cut: 2.7mm,
送り: 0.25mm/rev. Feed: 0.25mm / rev. ,
切削時間: 8分、 Cutting time: 8 minutes,
の条件(切削条件B)での軟鋼の乾式高速高切込み切削加工試験(通常の切削速度および切込みは、それぞれ、200m/min.、2.0mm)、 Mild dry high-speed and high-cut machining test at the condition (Cutting condition B) of (normal cutting speed and cut, respectively, 200m / min., 2.0mm),
被削材:JIS・SCM415の丸棒、 Workpiece: JIS · SCM415 round bar,
切削速度: 260m/min. Cutting speed: 260m / min. ,
切り込み: 2.7mm、 Cut: 2.7mm,
送り: 0.38mm/rev. Feed: 0.38mm / rev. ,
切削時間: 6分、 Cutting time: 6 minutes,
の条件(切削条件B)での合金鋼の乾式高速高送り・高切込み切削加工試験(通常の切削速度、送りおよび切込みは、それぞれ、190m/min.、0.3mm/rev.、2.0mm)、 Condition (cutting conditions B) dry speed and high feed, high cut machining test of the alloy steel at (normal cutting speed of the feed and cut, respectively, 190m / min., 0.3mm / rev., 2.0mm ),
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。 It was carried out to measure the flank wear width of the cutting edge in any of the cutting test. この測定結果を表5に示した。 The measurement results are shown in Table 5.

表3〜5に示される結果から、本発明の被覆工具は、低炭素鋼、軟鋼等の軟質被削材を、高熱発生を伴い、かつ、切刃に高負荷が作用する高送り、高切込みの高速重切削条件で加工した場合にも、硬質被覆層がすぐれた密着性と潤滑性と高硬度を有し、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、比較例被覆工具においては、軟質被削材を高速重切削条件で加工した場合、硬さ、潤滑性、靭性の不足によって、溶着、チッピング等の発生によって、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3-5, coated tool of the present invention, low carbon steel, a soft workpiece mild steel or the like, accompanied by high heat generation, and sends high high load on the cutting edge acts, high cut when processed at the high speed heavy cutting conditions also has adhesiveness and lubricity and high hardness hard coat layer is excellent, whereas exhibit excellent wear resistance for a long time, Comparative example coating in the tool, when processed soft workpiece at a high speed heavy cutting conditions, hardness, lubricity, by the lack of toughness, welding, by the occurrence of chipping or the like, obviously it can lead to a relatively short time using life is there.
なお、被覆チップばかりでなく、被覆エンドミル、被覆ドリルを作成し、同様な切削試験を行ったところ、被覆エンドミル、被覆ドリルについても、被覆チップの場合と同様な結果が得られた。 Incidentally, coated chip as well, coated end mill, to create a coated drill, was subjected to the same cutting test, coated end mill, for the coating drill, similar results as in the case of coated chips were obtained.

前述のように、本発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、軸受鋼、合金工具鋼、浸炭焼入れ鋼等の高硬度被削材の高い発熱を伴うとともに、切刃に高負荷が作用する高速重切削加工に用いた場合でも、長期に亘ってすぐれた耐摩耗性、耐チッピング性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, coated tool of the present invention, cutting and general steel and ordinary cast iron, of course, bearing steel, tool steel, together with a high heat generation high-hardness work materials such as carburized hardened steel, even if the operating conditions in the cutting edge is used for high-speed heavy cutting acting, excellent wear resistance for a long time, exhibits chipping resistance, because it shows excellent cutting performance, the cutting device FA reduction, as well as labor saving and energy saving of the cutting, in which can further correspond to satisfactory cost reduction.

Claims (2)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、 Tungsten carbide based cemented carbide or surface of the constructed tool substrate with titanium carbonitride-based cermet, a surface-coated cutting tool hard coating layer is vapor deposited,
    前記硬質被覆層が、 The hard coating layer,
    (a)0.3〜5μmの平均層厚を有し、かつ、 (A) has an average layer thickness of 0.3 to 5 m, and,
    組成式:(Al 1−α Cr α )N(ここで、αはCrの含有割合を示し、原子比で、0.25≦α≦0.55である)を満足するAlとCrの複合窒化物層からなる下部層と、 Composition formula: (Al 1-α Cr α ) N ( where, alpha denotes the content of Cr, in atomic ratio, a is 0.25 ≦ α ≦ 0.55) composite nitride of Al and Cr satisfying a a lower layer formed from the object layer,
    (b)0.3〜5.0μmの平均層厚を有し、かつ、 (B) it has an average layer thickness of 0.3 to 5.0 .mu.m, and,
    立方晶構造の窒化ニオブと六方晶構造の窒化ニオブの混合組織として構成され該混合組織についてX線回折による回折ピーク強度を測定したとき、 When measuring the diffraction peak intensity by X-ray diffraction is configured as a mixed structure of niobium nitride cubic niobium nitride and hexagonal structure structures the mixed structure,
    立方晶構造の窒化ニオブの(200)面からの回折ピーク強度をIc、 The diffraction peak intensity from the (200) plane of niobium nitride cubic structures Ic,
    六方晶構造の窒化ニオブの(103)面と(110)面からの回折ピーク強度をIh、 The diffraction peak intensity of the hexagonal structure of the niobium nitride (103) plane and (110) plane Ih,
    とした場合、 If you have a,
    0.1≦Ih/Ic≦0.7 0.1 ≦ Ih / Ic ≦ 0.7
    を満足する回折ピーク強度比を有する上部層とからなることを特徴とする表面被覆切削工具。 Surface-coated cutting tool, characterized by comprising an upper layer having a diffraction peak intensity ratio satisfying.
  2. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、 In the surface-coated cutting tool obtained by forming a hard coating layer on a tungsten carbide based cemented carbide or surface of the constructed tool substrate with titanium carbonitride based cermet,
    前記硬質被覆層が、 The hard coating layer,
    (a)0.3〜5μmの平均層厚を有し、かつ、 (A) has an average layer thickness of 0.3 to 5 m, and,
    組成式:(Al 1−α−β Cr αβ )N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはCrの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.25≦α≦0.55、0.01≦β≦0.25である)を満足するAlとCrの複合窒化物層からなる下部層と、 Composition formula: (Al 1-α-β Cr α M β) N ( where, M is chosen Periodic Table 4a except Cr, 5a, elements of Group 6a, Si, B, from among Y 1 indicates species or two or more additive components, also, alpha content ratio of Cr, beta denotes respectively the content ratio of M, with an atomic ratio, 0.25 ≦ α ≦ 0.55,0.01 ≦ β ≦ a lower layer formed of a composite nitride layer of Al and Cr satisfying a a a) 0.25,
    (b)0.3〜5.0μmの平均層厚を有し、かつ、 (B) it has an average layer thickness of 0.3 to 5.0 .mu.m, and,
    立方晶構造の窒化ニオブと六方晶構造の窒化ニオブの混合組織として構成され該混合組織についてX線回折による回折ピーク強度を測定したとき、 When measuring the diffraction peak intensity by X-ray diffraction is configured as a mixed structure of niobium nitride cubic niobium nitride and hexagonal structure structures the mixed structure,
    立方晶構造の窒化ニオブの(200)面からの回折ピーク強度をIc、 The diffraction peak intensity from the (200) plane of niobium nitride cubic structures Ic,
    六方晶構造の窒化ニオブの(103)面と(110)面からの回折ピーク強度をIh、 The diffraction peak intensity of the hexagonal structure of the niobium nitride (103) plane and (110) plane Ih,
    とした場合、 If you have a,
    0.1≦Ih/Ic≦0.7 0.1 ≦ Ih / Ic ≦ 0.7
    を満足する回折ピーク強度比を有する上部層とからなることを特徴とする表面被覆切削工具。 Surface-coated cutting tool, characterized by comprising an upper layer having a diffraction peak intensity ratio satisfying.
JP2010162598A 2010-07-20 2010-07-20 Surface-coated cutting tool Pending JP2012024854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162598A JP2012024854A (en) 2010-07-20 2010-07-20 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162598A JP2012024854A (en) 2010-07-20 2010-07-20 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2012024854A true true JP2012024854A (en) 2012-02-09

Family

ID=45778430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162598A Pending JP2012024854A (en) 2010-07-20 2010-07-20 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2012024854A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133251A1 (en) * 2012-03-05 2013-09-12 三菱マテリアル株式会社 Surface coating cutting tool
CN103962816A (en) * 2013-01-31 2014-08-06 三菱综合材料株式会社 Surface coated cutting tool and method for manufacturing same
CN103962590A (en) * 2013-01-31 2014-08-06 三菱综合材料株式会社 Surface coated cutting tool and method for manufacturing same
CN104249184A (en) * 2013-06-28 2014-12-31 三菱综合材料株式会社 Surface-coated cutting tool
US20160265098A1 (en) * 2013-10-31 2016-09-15 Sumitomo Electric Hardmetal Corp. Surface-coated boron nitride sintered body tool
US9903014B2 (en) 2013-03-22 2018-02-27 Mitsubishi Materials Corporation Surface-coated cutting tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133251A1 (en) * 2012-03-05 2013-09-12 三菱マテリアル株式会社 Surface coating cutting tool
JP2013212574A (en) * 2012-03-05 2013-10-17 Mitsubishi Materials Corp Surface-clad cutting tool
CN104169030A (en) * 2012-03-05 2014-11-26 三菱综合材料株式会社 Surface-coated cutting tool
US9440293B2 (en) 2012-03-05 2016-09-13 Mitsubishi Materials Corporation Surface coating cutting tool
CN103962816A (en) * 2013-01-31 2014-08-06 三菱综合材料株式会社 Surface coated cutting tool and method for manufacturing same
CN103962590A (en) * 2013-01-31 2014-08-06 三菱综合材料株式会社 Surface coated cutting tool and method for manufacturing same
US9903014B2 (en) 2013-03-22 2018-02-27 Mitsubishi Materials Corporation Surface-coated cutting tool
CN104249184A (en) * 2013-06-28 2014-12-31 三菱综合材料株式会社 Surface-coated cutting tool
CN104249184B (en) * 2013-06-28 2018-05-18 三菱综合材料株式会社 Surface-coated cutting tool
US20160265098A1 (en) * 2013-10-31 2016-09-15 Sumitomo Electric Hardmetal Corp. Surface-coated boron nitride sintered body tool
US10030299B2 (en) * 2013-10-31 2018-07-24 Sumitomo Electric Hardmetal Corp. Surface-coated boron nitride sintered body tool

Similar Documents

Publication Publication Date Title
JP2011224715A (en) Surface-coated cutting tool with hard coating layer for exhibiting excellent abrasion resistance
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP2003260603A (en) Surface-covered cemented carbide cutting tool in which hard covered layer demonstrates excellent wear resistance in high-speed cutting
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP2003340608A (en) Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent abrasion resistance in high speed heavy cutting condition
JP2004225065A (en) Method for forming hard coating layer exhibiting superior resistance to chipping and wearing under high-speed deep cutting condition, on cutting tool surface
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2005230926A (en) Surface-coated cermet-made cutting tool with hard coating layer exerting excellent chipping resistance under high-speed deep cutting condition
JP2003340606A (en) Surface-covered cemented carbide made cutting tool having hard coated layer to exhibit excellent abrasion resistance in high-speed cutting work
JP2005246597A (en) Surface coated cubic boron nitride sintered material-made cutting tool having excellent chipping resistance in hard coated layer
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP2007007764A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2003127003A (en) Cemented carbide-made cutting tool with surface clad whose rigid clad layer exerts excellent wear resistance in high velocity cutting machining
JP2006181654A (en) Surface coated cubic boron nitride-base sintered material-made cutting tool having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting for high-hardness steel
JP2011152627A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP2007152544A (en) Surface coated cutting tool which is made of cubic boron nitride base ultra high pressure sintered material and has hard coated layer showing excellent wear resistance in high speed cutting of high hardness steel
JP2006198731A (en) Cutting tool made of surface coated cermet with hard coating layer displaying excellent chipping resistance in high speed cutting
JP2002239810A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP2003291005A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance in high-speed heavy cutting condition
JP2006289538A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2012076156A (en) Cemented carbide, and method of manufacturing the same