JP4936703B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP4936703B2
JP4936703B2 JP2005312909A JP2005312909A JP4936703B2 JP 4936703 B2 JP4936703 B2 JP 4936703B2 JP 2005312909 A JP2005312909 A JP 2005312909A JP 2005312909 A JP2005312909 A JP 2005312909A JP 4936703 B2 JP4936703 B2 JP 4936703B2
Authority
JP
Japan
Prior art keywords
coating layer
hard coating
macro particles
cutting edge
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005312909A
Other languages
Japanese (ja)
Other versions
JP2007118126A (en
Inventor
ヨウセン シュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005312909A priority Critical patent/JP4936703B2/en
Publication of JP2007118126A publication Critical patent/JP2007118126A/en
Application granted granted Critical
Publication of JP4936703B2 publication Critical patent/JP4936703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は基体の表面に硬質被覆層を成膜してなる表面被覆切削工具に関する。   The present invention relates to a surface-coated cutting tool formed by forming a hard coating layer on the surface of a substrate.

現在、切削工具は、WC基超硬合金、TiCN基サーメット等の硬質材料の表面に様々な硬質被覆層を成膜して摺動性、耐摩耗性、耐欠損性を向上させる手法が使われており、中でも物理気相合成法にて成膜された硬質被覆層は高硬度で耐摩耗性が高く、種々の用途に広く採用されている。かかる物理気相合成法の中において、特に、硬質被覆層の成膜方法として好適に用いられているアークイオンプレーティング法では、成膜時にドロップレットといわれる粗大溶融粒子が生成し、これが基体の表面に飛来し直径1μm以上もあるマクロ粒子となって硬質被覆層中に分散することが知られている。特に、硬質被覆層の成膜方法として好適に用いられているアークイオンプレーティング法では、ドロップレットと呼ばれる直径1μm以上もあるこのマクロ粒子の発生は切れ刃のチッピングや欠損の要因となったり、切削加工面の平滑性が損なわれて工具の寿命が低下する要因となっている。   Currently, cutting tools are used to improve slidability, wear resistance, and fracture resistance by forming various hard coating layers on the surface of hard materials such as WC-based cemented carbide and TiCN-based cermet. In particular, a hard coating layer formed by a physical vapor synthesis method has high hardness and high wear resistance, and is widely used in various applications. Among such physical vapor phase synthesis methods, particularly in the arc ion plating method suitably used as a method for forming a hard coating layer, coarse molten particles called droplets are generated during film formation, It is known that macro particles flying over the surface and having a diameter of 1 μm or more are dispersed in the hard coating layer. In particular, in the arc ion plating method suitably used as a method for forming a hard coating layer, the generation of macro particles having a diameter of 1 μm or more called droplets may cause chipping or chipping of the cutting edge, As a result, the smoothness of the machined surface is impaired and the tool life is reduced.

そこで、例えば、特許文献1では、アークイオンプレーティング法の成膜条件を制御することによって、成膜された硬質被膜(硬質被覆層)中の粗大粒子(マクロ粒子)を5面積%以下の割合に制御することができ、硬質被膜表面の面粗さをRaで0.1μm以下、Rzで1μm以下と平滑化できて、耐溶着性および耐摩耗性を高めることができることが開示されている。   Therefore, for example, in Patent Document 1, the ratio of coarse particles (macro particles) in the hard coating (hard coating layer) formed to 5 area% or less is controlled by controlling the film forming conditions of the arc ion plating method. It is disclosed that the surface roughness of the hard coating surface can be smoothed to 0.1 μm or less in Ra and 1 μm or less in Rz, and the welding resistance and wear resistance can be increased.

また、特許文献2では、アークイオンプレーティング法にて硬質被覆層を成膜する場合、まず第1層を成膜し、この第1層の表面をブラスト処理等の機械加工にて硬質被覆層の表面に存在するマクロ粒子を除去した後、第2層を成膜することにより、硬質被覆層の表面となる第2層の表面におけるマクロ粒子の発生を低減することができてマクロ粒子の脱落による異常摩耗を抑制できることが開示されている。
特開2002−346812号公報 特開2005−28544号公報
Further, in Patent Document 2, when a hard coating layer is formed by an arc ion plating method, a first layer is first formed, and the surface of the first layer is hardened by machining such as blasting. After removing the macro particles existing on the surface of the film, the second layer is formed to reduce the generation of macro particles on the surface of the second layer, which is the surface of the hard coating layer. It is disclosed that the abnormal wear due to can be suppressed.
JP 2002-346812 A JP 2005-28544 A

しかしながら、特許文献1および特許文献2のように、硬質被覆層の表面に発生するマクロ粒子を全面的になくした場合には、切屑を排出するすくい面においては硬質被覆層と切屑との潤滑性が十分ではなくなって、硬質被覆層の摩擦抵抗が高くなり、擦れ摩耗や切削の熱による化学的な摩耗が促進されてしまったり、被削材が切刃に溶着してしまい、耐摩耗性の低下や溶着物の脱落時の膜剥離等が発生したりしていた。   However, when the macro particles generated on the surface of the hard coating layer are completely eliminated as in Patent Document 1 and Patent Document 2, the lubricity between the hard coating layer and the chips on the rake face where chips are discharged. Will not be enough, the frictional resistance of the hard coating layer will increase, and chemical wear due to rubbing wear and heat of cutting will be promoted, or the work material will weld to the cutting edge and wear resistance will be reduced. Decrease or film peeling at the time of weld dropout occurred.

本発明は上記問題を解決するためのものであり、その目的は、切屑処理性に優れ、かつ高い耐欠損性と耐摩耗性を有する表面被覆切削工具を提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a surface-coated cutting tool that is excellent in chip disposal and has high fracture resistance and wear resistance.

本発明は、切刃においては耐欠損性および加工面粗度を高めるために硬質被覆層の表面に発生したマクロ粒子を極力排除したほうがよいものの、すくい面においては切屑を排出する際の硬質被覆層の摩擦係数を低めるために、むしろ硬質被覆層の表面にマクロ粒子を存在させたほうがよいとの知見に基づくものである。   In the present invention, it is better to eliminate macro particles generated on the surface of the hard coating layer as much as possible in order to increase the fracture resistance and the roughness of the machined surface in the cutting edge, but the hard coating when discharging chips on the rake surface. This is based on the knowledge that it is better to have macro particles on the surface of the hard coating layer in order to lower the friction coefficient of the layer.

すなわち、本発明の表面被覆切削工具は、基体の表面に硬質被覆層を被覆した切削工具において、前記硬質被覆層の少なくとも表面にマクロ粒子が分散するとともに、前記硬質被覆層の表面を機械加工することなく、前記硬質被覆層の表面の切刃位置に存在する前記マクロ粒子の面積比率が5面積%以下であり、前記硬質被覆層の表面のすくい面位置に存在する前記マクロ粒子の面積比率5〜30面積%に比べて少ない構成からなることを特徴とするものである。
That is, the surface-coated cutting tool of the present invention is a cutting tool in which a hard coating layer is coated on the surface of a substrate, and macro particles are dispersed on at least the surface of the hard coating layer, and the surface of the hard coating layer is machined. it not, the area ratio of the macro-particles present in the cutting edge position of the surface of the hard coating layer is not more than 5 area% or less, the area ratio 5 of the macro-particles present in the rake face position of the surface of the hard coating layer It is characterized in that it is composed less than ˜30 area% .

ここで、前記硬質被覆層の表面の前記切刃位置に存在する前記マクロ粒子の面積比率が5面積%以下であることが、前記切刃の耐摩耗性および耐欠損性をさらに向上できる点で重要である
Here, the area ratio of the macro particles present at the cutting edge position on the surface of the hard coating layer is 5% by area or less in that the wear resistance and fracture resistance of the cutting edge can be further improved. Is important .

また、前記硬質被覆層の表面の前記すくい面位置に存在する前記マクロ粒子の面積比率が5〜30面積%であることが、すくい面における切屑処理の際の摩擦抵抗を低減できる点で重要である
Moreover, it is important that the area ratio of the macro particles existing at the rake face position on the surface of the hard coating layer is 5 to 30 area% in that the frictional resistance during chip treatment on the rake face can be reduced. There is .

なお、前記硬質被覆層の前記切刃位置における膜厚が前記すくい面位置における膜厚よりも薄いことが、切刃における耐欠損性が高く、かつすくい面において切屑によるこすれ摩耗によっても硬質被覆層が摩滅することなく良好な切屑処理ができる点で望ましい。   Note that the film thickness at the cutting edge position of the hard coating layer is thinner than the film thickness at the rake face position is high in chipping resistance at the cutting edge, and the hard coating layer is also caused by rubbing wear due to chips on the rake face. It is desirable in that a good chip disposal can be achieved without wear.

さらに、前記切刃が曲率半径R=0.005〜0.1mmのRホーニングを有する場合に、上記マクロ粒子の分布が容易に実現できる。   Further, when the cutting edge has an R honing with a radius of curvature R = 0.005 to 0.1 mm, the distribution of the macro particles can be easily realized.

さらには、前記マクロ粒子は、表面が窒化された金属または合金からなることが、すくい面におけるマクロ粒子の機能を持続できて、長期間にわたって切屑処理の摩擦抵抗の低減効果を発揮する点で望ましい。   Furthermore, it is desirable that the macro particles are made of a metal or alloy whose surface is nitrided, because the function of the macro particles on the rake face can be maintained and the effect of reducing the frictional resistance of chip treatment can be exhibited over a long period of time. .

本発明によれば、切刃においては硬質被覆層表面のマクロ粒子の存在比率が低くて耐欠損性および加工面粗度が高いとともに、すくい面においては硬質被覆層表面にマクロ粒子が存在して切屑を排出する際の硬質被覆層の摩擦係数が低く、結果として優れた切削性能を発揮できるものである。   According to the present invention, the cutting blade has a low presence ratio of macro particles on the surface of the hard coating layer and high fracture resistance and processed surface roughness, and the rake face has macro particles on the surface of the hard coating layer. The friction coefficient of the hard coating layer when discharging chips is low, and as a result, excellent cutting performance can be exhibited.

ここで、前記硬質被覆層の表面の切刃位置に存在するマクロ粒子の面積比率が5面積%以下であることによって、前記切刃の耐欠損性をさらに向上できる。   Here, when the area ratio of the macro particles present at the cutting edge position on the surface of the hard coating layer is 5 area% or less, the chipping resistance of the cutting edge can be further improved.

また、前記硬質被覆層の表面のすくい面位置に存在するマクロ粒子の面積比率が5〜30面積%であることによって、すくい面における切屑処理の際の摩擦抵抗を低減できる。   Moreover, the frictional resistance at the time of the chip processing in a rake face can be reduced because the area ratio of the macro particle which exists in the rake face position of the surface of the said hard coating layer is 5-30 area%.

なお、前記硬質被覆層の前記切刃位置における膜厚を前記すくい面位置における膜厚よりも薄くすることによって、切刃における耐欠損性が高く、かつすくい面において切屑によるこすれ摩耗によっても硬質被覆層が摩滅することなく良好な切屑処理ができる。   In addition, by making the film thickness at the cutting edge position of the hard coating layer thinner than the film thickness at the rake face position, the chipping edge has high chipping resistance, and the rake face is hard coated even by rubbing wear caused by chips. Good chip disposal without erosion of the layer.

さらに、前記切刃が曲率半径R=0.005〜0.1mmのRホーニングを有する場合に、上記マクロ粒子の分布が容易に実現できる傾向にある。   Furthermore, when the cutting edge has an R honing with a radius of curvature R = 0.005 to 0.1 mm, the macro particle distribution tends to be easily realized.

さらには、前記マクロ粒子は、表面が窒化された金属または合金からなることによって、マクロ粒子表面での耐摩耗性が高くかつマクロ粒子全体としては切屑の流れに沿った形状に変形できることから、すくい面におけるマクロ粒子の機能を持続できて、長期間にわたって切屑処理の摩擦抵抗の低減効果を発揮する。   Furthermore, since the macro particles are made of a metal or alloy whose surface is nitrided, the wear resistance on the surface of the macro particles is high, and the macro particles as a whole can be deformed into a shape along the flow of chips. The function of the macro particles in the surface can be maintained, and the effect of reducing the frictional resistance of the chip treatment is exhibited over a long period of time.

本発明の表面被覆切削工具の一例について、本発明の表面被覆切削工具の(a)概略斜視図、(b)概略断面図である図1、および本発明の表面被覆切削工具の一例を示す顕微鏡写真である図2を用いて説明する。   As for an example of the surface-coated cutting tool of the present invention, (a) a schematic perspective view of the surface-coated cutting tool of the present invention, (b) FIG. 1 which is a schematic sectional view, and a microscope showing an example of the surface-coated cutting tool of the present invention This will be described with reference to FIG.

図1、図2によれば、本発明の表面被覆切削工具(以下、単に工具と略す)1は、主面にすくい面3を、側面に逃げ面4を、すくい面3と逃げ面4との交差稜線に切刃5を有し、基体2の表面に硬質被覆層6を成膜した構成となっている。   1 and 2, a surface-coated cutting tool (hereinafter simply referred to as a tool) 1 according to the present invention includes a rake face 3 on a main surface, a flank face 4 on a side face, a rake face 3 and a flank face 4. A cutting edge 5 is provided at the crossing ridge line, and a hard coating layer 6 is formed on the surface of the substrate 2.

硬質被覆層6は、周期律表第4、5、6族元素、AlおよびSiから選ばれる1種以上の金属元素と、窒素、炭素、硼素および酸素から選ばれる1種以上の非金属元素との化合物の少なくとも1層にて構成されている。   The hard coating layer 6 includes one or more metal elements selected from Group 4, 5 and 6 elements of the periodic table, Al and Si, and one or more non-metal elements selected from nitrogen, carbon, boron and oxygen. It is comprised by the at least 1 layer of these compounds.

本発明によれば、硬質被覆層6の少なくとも表面にマクロ粒子8が分散するとともに、硬質被覆層6の切刃5の表面に存在するマクロ粒子8の面積比率が、硬質被覆層6の表面のすくい面3位置に存在するマクロ粒子8の面積比率に比べて少ないことを特徴とするものである。   According to the present invention, the macro particles 8 are dispersed on at least the surface of the hard coating layer 6, and the area ratio of the macro particles 8 existing on the surface of the cutting blade 5 of the hard coating layer 6 is the surface ratio of the hard coating layer 6. The area ratio of the macro particles 8 existing at the rake face 3 position is small.

これによって、切刃5においては耐欠損性および加工面粗度が高いとともに、すくい面3においてはマクロ粒子8の存在によって切屑を排出する際の硬質被覆層6の摩擦係数が低く、結果として優れた切削性能を発揮できる。   As a result, the cutting edge 5 has a high chipping resistance and a high surface roughness, and the rake face 3 has a low friction coefficient of the hard coating layer 6 when chips are discharged due to the presence of the macro particles 8, resulting in excellent results. Cutting performance can be demonstrated.

つまり、硬質被覆層6の表面全体にマクロ粒子8が存在する場合には、マクロ粒子8がクラックの起点となりやすくて切刃5における耐欠損性が低下する。逆に、硬質被覆層6の表面全体にマクロ粒子6が存在しない場合には、すくい面3における切屑の摩擦抵抗が大きくなり、摩耗が進行したり、切屑がすくい面3に溶着してしまうことがある。すなわち、いずれの場合にも切削性能を高めることができない。   That is, when the macro particles 8 are present on the entire surface of the hard coating layer 6, the macro particles 8 are likely to be the starting point of cracks, and the fracture resistance of the cutting blade 5 is reduced. On the contrary, when the macro particles 6 are not present on the entire surface of the hard coating layer 6, the frictional resistance of the chips on the rake face 3 increases, and wear progresses or the chips are welded to the rake face 3. There is. That is, in any case, cutting performance cannot be improved.

なお、硬質被覆層6の表面に存在するマクロ粒子8の面積比率は、硬質被覆層6の表面についての走査型顕微鏡写真等の組織写真5μm以上×10μm以上の領域にて観察されるマクロ粒子8の面積比率を、ルーゼックス画像解析法によって測定することによって求めることができる。なお、面積比率の算出については任意領域の3箇所以上について測定し、その平均値から算出する。   In addition, the area ratio of the macro particles 8 existing on the surface of the hard coating layer 6 is a macro particle 8 observed in a region of 5 μm or more × 10 μm or more of a tissue photograph such as a scanning micrograph on the surface of the hard coating layer 6. The area ratio can be determined by measuring by the Luzex image analysis method. In addition, about calculation of an area ratio, it measures about three or more places of arbitrary areas, and calculates from the average value.

マクロ粒子8は、硬質被覆層6を構成する金属元素の金属、硬質被覆層6を構成する2種以上の金属元素の合金、または硬質被覆層6を構成する金属元素と非金属元素との化合物、およびそれらの混合物からなり、例えば、周期律表第4、5、6族元素、AlおよびSiから選ばれる1種以上の(1)金属、(2)これら2種以上の金属の合金、(3)窒素、炭素、硼素および酸素から選ばれる1種以上の非金属元素との化合物、または(1)〜(3)の混合物にて構成されている。   The macro particle 8 includes a metal of a metal element constituting the hard coating layer 6, an alloy of two or more metal elements constituting the hard coating layer 6, or a compound of a metal element and a nonmetallic element constituting the hard coating layer 6. And a mixture thereof, for example, one or more (1) metals selected from Group 4, 5, 6 elements of the periodic table, Al and Si, (2) alloys of these two or more metals, ( 3) It is comprised with the compound with 1 or more types of nonmetallic elements chosen from nitrogen, carbon, boron, and oxygen, or the mixture of (1)-(3).

ここで、硬質被覆層6の表面の切刃5の位置に存在するマクロ粒子8の面積比率が5面積%以下であることが、衝撃が最もかかる切刃5においてクラックの起点となるマクロ粒子8の影響が低減できて切刃5の耐欠損性をさらに向上できる点で望ましい。さらに、硬質被覆層6の切刃5の位置における算術平均粗さ(Ra)は0.12μm以下であることが切刃5の耐欠損性が高く、かつ切削加工時の切削抵抗を低減できるために望ましい。なお、硬質被覆層6の切刃5の位置における算術平均粗さ(Ra)は、JIS B0601’01に準拠して触針式表面粗さ測定器を用いて、カットオフ値:0.25mm、基準長さ:0.8mm、走査速度:0.1mm/秒にて測定することができる。   Here, when the area ratio of the macro particles 8 existing at the position of the cutting edge 5 on the surface of the hard coating layer 6 is 5% by area or less, the macro particles 8 serving as the starting point of the crack in the cutting edge 5 to which the impact is most applied. This is desirable in that the influence of the above can be reduced and the fracture resistance of the cutting blade 5 can be further improved. Furthermore, since the arithmetic average roughness (Ra) at the position of the cutting edge 5 of the hard coating layer 6 is 0.12 μm or less, the cutting edge 5 has high chipping resistance, and the cutting resistance during cutting can be reduced. Is desirable. In addition, arithmetic mean roughness (Ra) in the position of the cutting edge 5 of the hard coating layer 6 is based on JIS B0601'01 using a stylus type surface roughness measuring device, cut-off value: 0.25 mm, It can be measured at a reference length of 0.8 mm and a scanning speed of 0.1 mm / second.

また、硬質被覆層6の表面のすくい面3の位置に存在するマクロ粒子8の面積比率が5〜30面積%であることが、すくい面3における切屑処理の際の摩擦抵抗を低減できる点で重要である
In addition, the fact that the area ratio of the macro particles 8 existing at the position of the rake face 3 on the surface of the hard coating layer 6 is 5 to 30% by area can reduce the frictional resistance during chip treatment on the rake face 3. Is important .

さらに、切刃5は曲率半径Rが0.005mm未満のシャープエッジであってもよいが、切刃5が曲率半径R=0.005〜0.1mmのRホーニングを有する場合のほうが、上記特定のマクロ粒子8の分布が容易に実現できる傾向にある。   Further, the cutting edge 5 may be a sharp edge with a radius of curvature R of less than 0.005 mm, but the above specification is more effective when the cutting edge 5 has an R honing with a radius of curvature R = 0.005 to 0.1 mm. The distribution of the macro particles 8 tends to be easily realized.

さらには、マクロ粒子8は、表面が窒化された金属または合金からなることが、マクロ粒子8の表面は硬度が高い窒化物が形成されて耐摩耗性が高く、かつマクロ粒子8の内部は変形しやすい金属または合金であることからマクロ粒子8の全体形状は切屑の流れに沿った形状に変形できる結果、すくい面3におけるマクロ粒子8の機能を持続できて、長期間にわたって切屑処理の摩擦抵抗の低減効果を発揮する点で望ましい。   Further, the macro particles 8 are made of a metal or alloy whose surface is nitrided, the surface of the macro particles 8 is formed with a nitride having high hardness and high wear resistance, and the inside of the macro particles 8 is deformed. As a result of being a metal or alloy that is easy to wear, the overall shape of the macro particles 8 can be deformed into a shape along the flow of chips, so that the function of the macro particles 8 on the rake face 3 can be maintained, and the frictional resistance of chip treatment over a long period of time. It is desirable in that it exhibits a reduction effect.

さらに、硬質被覆層6の膜厚が0.2〜5.0μmであることが、硬質被覆層6の耐欠損性が高くて膜剥離を防止できるとともに、硬質被覆層6が十分な潤滑性と耐摩耗性を有するため望ましい。なお、硬質被覆層6の切刃5の位置における膜厚をすくい面3の位置における膜厚よりも薄くすることによって、被削材の衝撃が最も大きい切刃5における耐欠損性が高く、かつすくい面3において切屑によるこすれ摩耗によっても硬質被覆層6が摩滅することなく良好な切屑処理ができる。硬質被覆層6の切刃5の位置における膜厚の好ましい範囲は0.5〜2μm、硬質被覆層6のすくい面3の位置における膜厚の好ましい範囲は1〜2.5μmである。   Furthermore, when the film thickness of the hard coating layer 6 is 0.2 to 5.0 μm, the hard coating layer 6 has high fracture resistance and can prevent film peeling, and the hard coating layer 6 has sufficient lubricity. Desirable because it has wear resistance. In addition, by making the film thickness at the position of the cutting edge 5 of the hard coating layer 6 smaller than the film thickness at the position of the rake face 3, the chipping resistance at the cutting edge 5 with the greatest impact of the work material is high, and Even on the rake face 3, even with rubbing wear caused by chips, the hard coating layer 6 is not worn away and good chip treatment can be performed. A preferable range of the film thickness at the position of the cutting edge 5 of the hard coating layer 6 is 0.5 to 2 μm, and a preferable range of the film thickness at the position of the rake face 3 of the hard coating layer 6 is 1 to 2.5 μm.

なお、基体2としては、炭化タングステンや、炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金、サーメット、窒化ケイ素や酸化アルミニウムを主成分とするセラミックス、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相とセラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   In addition, as the substrate 2, cemented carbide, cermet, silicon nitride, and oxide composed of a hard phase mainly composed of tungsten carbide or titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt or nickel. Hard materials such as ceramics mainly composed of aluminum, a hard phase made of polycrystalline diamond or cubic boron nitride and a binder phase such as ceramics or iron group metal are fired under an ultra-high pressure, etc. used.

(製造方法)
次に、本発明の表面被覆切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the surface coating cutting tool of this invention is demonstrated.

まず、工具形状の基体を従来公知の方法を用いて作製する。   First, a tool-shaped substrate is produced using a conventionally known method.

次に、この基体表面に、周期律表第4、5、6族元素、AlおよびSiから選ばれる1種以上の金属元素と、窒素、炭素および酸素から選ばれる1種以上の非金属元素との化合物からなる硬質被覆層を成膜する。   Next, on the surface of the substrate, one or more metal elements selected from Group 4, 5, 6 elements of the periodic table, Al and Si, and one or more non-metal elements selected from nitrogen, carbon, and oxygen, A hard coating layer made of the above compound is formed.

なお、成膜方法として、イオンプレーティング法やスパッタリング法等の物理気相合成(PVD)法を用いる。成膜方法の数例の詳細について説明すると、チタン(Ti)とアルミニウム(Al)とを含む複合硬質層をイオンプレーティング法で作製する場合には、金属チタンおよび金属アルミの2種類の金属ターゲットを独立として用いるか、またはチタンアルミ(TiAl)合金をターゲットに用い、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させて成膜する。このとき、硬質被覆層の緻密度や基体との密着力を高めるため、および硬質被覆層6中に所定のマクロ粒子8を分散させるために、30〜200Vのバイアス電圧を印加しながら成膜することが望ましい。 Note that a physical vapor phase synthesis (PVD) method such as an ion plating method or a sputtering method is used as a film forming method. The details of several examples of the film formation method will be described. When a composite hard layer containing titanium (Ti) and aluminum (Al) is produced by an ion plating method, two types of metal targets, namely metal titanium and metal aluminum, are used. Are used independently, or a titanium aluminum (TiAl) alloy is used as a target, and a metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH as a carbon source) 4 ) Reacted with acetylene (C 2 H 2 ) gas to form a film. At this time, in order to increase the density of the hard coating layer and the adhesion to the substrate, and to disperse the predetermined macro particles 8 in the hard coating layer 6, the film is formed while applying a bias voltage of 30 to 200V. It is desirable.

ここで、本発明における硬質被覆層6中のマクロ粒子8の分布状態を実現する方法の一例としては、成膜の途中または終了時にガスボンバード処理を行なう方法が好適であり、ガスボンバード処理ではエッジ部が選択的に研磨されることから、成膜された硬質被覆層6の切刃5表面におけるマクロ粒子8を選択的に除去することができ、成膜終了後において、硬質被覆層6の切刃5の表面に存在するマクロ粒子8の面積比率を、硬質被覆層6の表面のすくい面3位置に存在するマクロ粒子8の面積比率に比べて少ない構成とすることができる。 Here, as an example of a method of implementing the distribution of macroparticles 8 hard in the coating layer 6 in the present invention is suitable method of performing the gas bombarded during or at the end of film formation, the edges in gas bombarded Since the portion is selectively polished, the macro particles 8 on the surface of the cutting edge 5 of the hard coating layer 6 that has been formed can be selectively removed. The area ratio of the macro particles 8 existing on the surface of the blade 5 can be made smaller than the area ratio of the macro particles 8 existing at the position of the rake face 3 on the surface of the hard coating layer 6.

平均粒径0.8μmの炭化タングステン(WC)粉末を主成分として、平均粒径1.2μmの金属コバルト(Co)粉末を10質量%、平均粒径1.0μmの炭化バナジウム(VC)粉末を0.2質量%、平均粒径1.0μmの炭化クロム(Cr)粉末を0.6質量%の割合で添加し混合して、プレス成形により溝入切削工具形状(GBA43R300NY)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニング)を施した。 Mainly composed of tungsten carbide (WC) powder having an average particle diameter of 0.8 μm, 10% by mass of metallic cobalt (Co) powder having an average particle diameter of 1.2 μm, and vanadium carbide (VC) powder having an average particle diameter of 1.0 μm. Add 0.2% by mass of chromium carbide (Cr 3 C 2 ) powder with an average particle size of 1.0 μm at a ratio of 0.6% by mass and mix it into a grooved cutting tool shape (GBA43R300NY) by press molding. After that, a binder removal treatment was performed, and firing was performed at 1500 ° C. for 1 hour in a vacuum of 0.01 Pa to produce a cemented carbide. Further, the prepared cemented carbide was subjected to blade edge processing (honing) by brushing.

このようにして作製した基体に対してアークイオンプレーティング法により表1に示す種々の組成にて硬質被覆層を成膜した。また、一部の試料については、成膜の途中または終了時に窒素ガスおよびアルゴンガスの混合ガスを用いたボンバード処理を表1の条件で行なって、成膜された硬質被覆層の切刃表面におけるマクロ粒子を除去した。   Hard coating layers having various compositions shown in Table 1 were formed on the substrate thus prepared by arc ion plating. Further, for some samples, bombardment using a mixed gas of nitrogen gas and argon gas was performed in the middle or at the end of film formation under the conditions shown in Table 1, and on the surface of the cutting edge of the formed hard coating layer Macro particles were removed.

得られた試料に対して、切刃およびすくい面のランド位置における硬質被覆層の表面を走査型電子顕微鏡(SEM)にて観察し、マクロ粒子の面積比率を測定した。なお、表1中のマクロ粒子の面積比率は、顕微鏡写真について、切刃の稜線に対して平行な方向に100μm×切刃の稜線に対して垂直な方向に5μmの領域内におけるマクロ粒子の面積比率をルーゼックス画像解析法にて求め、任意3箇所における平均値をマクロ粒子の面積比率として表1に示した。また、硬質被覆層の膜厚は、切削工具の断面SEM写真より求めた。さらに、硬質被覆層の表面の切刃位置における算術平均粗さRaを接触式の表面粗さ計で任意3箇所について測定し、その平均値から求めた。具体的な測定方法は、JIS B0601’01に準拠して触針式表面粗さ測定器を用いて、カットオフ値:0.25mm、基準長さ:0.8mm、走査速度:0.1mm/秒にて測定した。   With respect to the obtained sample, the surface of the hard coating layer at the land position of the cutting edge and the rake face was observed with a scanning electron microscope (SEM), and the area ratio of the macro particles was measured. In addition, the area ratio of the macro particles in Table 1 is the area of the macro particles in a region of 100 μm in the direction parallel to the ridge line of the cutting edge × 5 μm in the direction perpendicular to the ridge line of the cutting edge. The ratio was determined by a Luzex image analysis method, and the average value at three arbitrary locations was shown in Table 1 as the area ratio of macro particles. Moreover, the film thickness of the hard coating layer was calculated | required from the cross-sectional SEM photograph of the cutting tool. Further, the arithmetic average roughness Ra at the cutting edge position on the surface of the hard coating layer was measured at three arbitrary positions with a contact-type surface roughness meter, and obtained from the average value. A specific measuring method is based on JIS B0601'01 using a stylus type surface roughness measuring device, cut-off value: 0.25 mm, reference length: 0.8 mm, scanning speed: 0.1 mm / Measured in seconds.

次に、得られた溝入切削工具形状のスローアウェイチップ(切削工具)を用いて以下の切削条件にて切削試験を行った。結果は表2に示した。   Next, a cutting test was performed under the following cutting conditions using the obtained grooved cutting tool-shaped throw-away tip (cutting tool). The results are shown in Table 2.

切削方法:断続旋削
被削材 :SCM440、4本の5mm幅溝入り
切削速度:120m/min
送り :0.2mm/rev
切り込み:2mm
切削状態:乾式
評価方法:2000回の衝撃を与えた段階での切刃およびすくい面の状態および欠損に至るまでの衝撃回数

Figure 0004936703
Cutting method: Intermittent turning work material: SCM440, four 5mm wide grooved cutting speed: 120m / min
Feeding: 0.2mm / rev
Cutting depth: 2mm
Cutting state: Dry evaluation method: State of cutting edge and rake face at the stage where 2000 impacts were applied, and the number of impacts until failure
Figure 0004936703

Figure 0004936703
Figure 0004936703

表1、表2より、成膜の途中または終了時にボンバード処理をせず、硬質被覆層の表面全体にマクロ粒子が多く発生した試料No.11は、早期にチッピングが発生して工具寿命が短いものであった。また、スパッタ法にて成膜して成膜の途中または終了時にボンバード処理をせず、硬質被覆層の表面全体にマクロ粒子が一様な試料No.12でも、早期にチッピングが発生して工具寿命が短いものであった。さらに、成膜の途中または終了時にボンバード処理することに代えて成膜後にブラスト処理を行い、硬質被覆層の表面全体のマクロ粒子を一様に低減した試料No.13でも、すくい面において切屑の溶着が発生して工具寿命が短いものであった。   From Tables 1 and 2, Sample No. in which a large amount of macro particles were generated on the entire surface of the hard coating layer without performing bombardment during or during the film formation. No. 11 had a short tool life due to early chipping. In addition, sample No. 1 in which macro particles are uniformly formed on the entire surface of the hard coating layer without performing bombarding during or after the film formation is formed by sputtering. No. 12, chipping occurred early and the tool life was short. Further, in place of the bombarding process during or at the end of the film formation, a blasting process was performed after the film formation to uniformly reduce the macro particles on the entire surface of the hard coating layer. No. 13, chip welding occurred on the rake face and the tool life was short.

これに対して、本発明の範囲内である硬質被覆層の表面のすくい面位置におけるマクロ粒子の面積比率が切刃位置におけるそれよりも多い試料No.1〜10では、いずれも摩擦抵抗が低く切屑処理性が良好であり、かつ切刃における耐欠損性にも優れた良好な切削性能を発揮した。中でも、硬質被覆層の表面の切刃位置に存在するマクロ粒子の面積比率が5面積%以下で、かつ硬質被覆層の表面のすくい面位置に存在するマクロ粒子の面積比率が10〜30面積%の試料No.1〜3、6、7、9、10では特に衝撃回数を延ばすことができて工具寿命が長いものであった。   On the other hand, Sample No. in which the area ratio of macro particles at the rake face position on the surface of the hard coating layer within the scope of the present invention is larger than that at the cutting edge position. Nos. 1 to 10 exhibited good cutting performance with low frictional resistance and good chip disposal and excellent chipping resistance at the cutting edge. Among them, the area ratio of the macro particles existing at the cutting edge position on the surface of the hard coating layer is 5 area% or less, and the area ratio of the macro particles existing at the rake face position on the surface of the hard coating layer is 10 to 30 area%. Sample No. 1 to 3, 6, 7, 9, and 10, particularly, the number of impacts could be extended and the tool life was long.

本発明の表面被覆切削工具の概略斜視図である。It is a schematic perspective view of the surface coating cutting tool of this invention. 本発明の表面被覆切削工具の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the surface coating cutting tool of this invention.

符号の説明Explanation of symbols

1 表面被覆切削工具
2 基体
3 すくい面
4 逃げ面
5 切刃
6 硬質被覆層
8 マクロ粒子
DESCRIPTION OF SYMBOLS 1 Surface coating cutting tool 2 Base | substrate 3 Rake face 4 Flank 5 Cutting edge 6 Hard coating layer 8 Macro particle

Claims (4)

基体の表面に硬質被覆層を被覆した切削工具において、前記硬質被覆層の少なくとも表面にマクロ粒子が分散するとともに、前記硬質被覆層の表面を機械加工することなく、前記硬質被覆層の表面の切刃位置に存在する前記マクロ粒子の面積比率が5面積%以下であり、前記硬質被覆層の表面のすくい面位置に存在する前記マクロ粒子の面積比率5〜30面積%に比べて少ない構成からなることを特徴とする表面被覆切削工具。 In a cutting tool in which the surface of a base is coated with a hard coating layer, macro particles are dispersed on at least the surface of the hard coating layer, and the surface of the hard coating layer is cut without machining the surface of the hard coating layer. The area ratio of the macro particles existing at the blade position is 5 area% or less, and the structure is smaller than the area ratio of the macro particles existing at the rake face position of the surface of the hard coating layer is 5 to 30 area%. A surface-coated cutting tool characterized by that. 前記硬質被覆層の前記切刃位置における膜厚が前記すくい面位置における膜厚よりも薄いことを特徴とする請求項記載の表面被覆切削工具。 Claim 1 surface-coated cutting tool according to the film thickness at the cutting edge position of the hard coating layer, characterized in that thinner than in the rake face position. 前記切刃が曲率半径R=0.005〜0.1mmのRホーニングを有することを特徴とする請求項1または2記載の表面被覆切削工具。 Claim 1 or 2 surface-coated cutting tool, wherein said cutting edge has a R honing radius of curvature R = 0.005~0.1mm. 前記マクロ粒子は、表面が窒化された金属または合金からなることを特徴とする請求項1乃至のいずれか記載の表面被覆切削工具。 The surface-coated cutting tool according to any one of claims 1 to 3 , wherein the macro particles are made of a metal or alloy whose surface is nitrided.
JP2005312909A 2005-10-27 2005-10-27 Surface coated cutting tool Active JP4936703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312909A JP4936703B2 (en) 2005-10-27 2005-10-27 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312909A JP4936703B2 (en) 2005-10-27 2005-10-27 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2007118126A JP2007118126A (en) 2007-05-17
JP4936703B2 true JP4936703B2 (en) 2012-05-23

Family

ID=38142516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312909A Active JP4936703B2 (en) 2005-10-27 2005-10-27 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP4936703B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794492B (en) * 2011-05-24 2016-03-02 三菱综合材料株式会社 Surface-coated cutting tool
JP5920577B2 (en) * 2011-06-22 2016-05-18 三菱マテリアル株式会社 Surface coated cutting tool with excellent fracture resistance and wear resistance
JP5878086B2 (en) * 2012-06-21 2016-03-08 住友電工ハードメタル株式会社 Cutting tool manufacturing method
JP5991529B2 (en) * 2012-10-29 2016-09-14 三菱マテリアル株式会社 Surface coated cutting tool with excellent fracture resistance and wear resistance
JP7217866B2 (en) * 2019-03-19 2023-02-06 三菱マテリアル株式会社 surface coated cutting tools

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254241A (en) * 1998-03-09 1999-09-21 Sumitomo Metal Mining Co Ltd Tool coated with oxidation and abrasion resistant film
JP2002146515A (en) * 2000-11-14 2002-05-22 Toshiba Tungaloy Co Ltd Hard film superior in slidableness and its coating tool
JP2002160107A (en) * 2000-11-27 2002-06-04 Kyocera Corp Surface coating tool
JP2002346812A (en) * 2001-05-25 2002-12-04 Ngk Spark Plug Co Ltd Cutting tool and tool with holder
JP2004082230A (en) * 2002-08-23 2004-03-18 Hitachi Tool Engineering Ltd Rigid film draping insert for precision lathe working
JP2005001088A (en) * 2003-06-13 2005-01-06 Osg Corp Member coated with hard coating film and its manufacturing method

Also Published As

Publication number Publication date
JP2007118126A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4975194B2 (en) Cutting tools
JP5542925B2 (en) Cutting tools
WO2011122554A1 (en) Cutting tool
JP5383019B2 (en) End mill
JP2008264975A (en) Surface-coated cutting tool
JP2009203489A (en) Coating member
WO2014104111A1 (en) Cutting tool
JP4936703B2 (en) Surface coated cutting tool
JP4991244B2 (en) Surface coated cutting tool
JPH07157862A (en) Wear resistant and welding resistant hard film-coated tool and production thereof
JP5036470B2 (en) Surface coating tool
JP2005262356A (en) Surface-coated cutting tool
JP4445815B2 (en) Surface coated cutting tool
JP2008155328A (en) Surface-coated tool
JP2008155329A (en) Surface-coated tool
JP2005262355A (en) Surface-coated cutting tool
JP4895586B2 (en) Surface coated cutting tool
JP4808972B2 (en) Surface coated cutting tool
WO2020213264A1 (en) Cutting tool
JP4456905B2 (en) Surface coated cutting tool
JP5495735B2 (en) Cutting tools
WO2023162683A1 (en) Coated tool and cutting tool
JP2005271155A (en) Coated cutting tool
JP6743349B2 (en) Cutting tools
JP6861137B2 (en) Hard coating for cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150