JP4895586B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP4895586B2
JP4895586B2 JP2005342875A JP2005342875A JP4895586B2 JP 4895586 B2 JP4895586 B2 JP 4895586B2 JP 2005342875 A JP2005342875 A JP 2005342875A JP 2005342875 A JP2005342875 A JP 2005342875A JP 4895586 B2 JP4895586 B2 JP 4895586B2
Authority
JP
Japan
Prior art keywords
coating layer
hard coating
cutting edge
cutting
rake face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005342875A
Other languages
Japanese (ja)
Other versions
JP2007144565A (en
Inventor
ヨウセン シュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005342875A priority Critical patent/JP4895586B2/en
Publication of JP2007144565A publication Critical patent/JP2007144565A/en
Application granted granted Critical
Publication of JP4895586B2 publication Critical patent/JP4895586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は基体の表面に硬質被覆層を成膜してなる表面被覆切削工具に関する。   The present invention relates to a surface-coated cutting tool formed by forming a hard coating layer on the surface of a substrate.

現在、切削工具は、WC基超硬合金、TiCN基サーメット等の硬質材料の表面に様々な硬質被覆層を成膜して摺動性、耐摩耗性、耐欠損性を向上させる手法が使われており、中でも物理気相合成法にて成膜された硬質被覆層は高硬度で耐摩耗性が高く、種々の用途に広く採用されている。かかる物理気相合成法の中において、特に、硬質被覆層の成膜方法として好適に用いられているアークイオンプレーティング法では、成膜時にドロップレットといわれる粗大溶融粒子が生成し、これが基体の表面に飛来し直径1μm以上もあるマクロ粒子となって硬質被覆層中に分散することが知られている。このマクロ粒子の発生は切れ刃のチッピングや欠損の要因となったり、切削加工面の平滑性が損なわれて切削工具の寿命が低下する要因となっている。   Currently, cutting tools are used to improve slidability, wear resistance, and fracture resistance by forming various hard coating layers on the surface of hard materials such as WC-based cemented carbide and TiCN-based cermet. In particular, a hard coating layer formed by a physical vapor synthesis method has high hardness and high wear resistance, and is widely used in various applications. Among such physical vapor phase synthesis methods, particularly in the arc ion plating method suitably used as a method for forming a hard coating layer, coarse molten particles called droplets are generated during film formation, It is known that macro particles flying over the surface and having a diameter of 1 μm or more are dispersed in the hard coating layer. Generation | occurrence | production of this macro particle becomes a factor of chipping of a cutting edge, and a defect | deletion, or the smoothness of a cutting surface is impaired and becomes a factor which reduces the lifetime of a cutting tool.

そこで、例えば、特許文献1では、アークイオンプレーティング法によって成膜された硬質膜(硬質被覆層)中のマクロ粒子を化学的または機械的に除去するか、またはレーザービームの照射によって微細孔に変えることによって、この微細孔が加工液(切削液)を保持する機能を有して硬質膜の摩擦・摩耗を低減できることが開示されている。   Therefore, in Patent Document 1, for example, macro particles in a hard film (hard coating layer) formed by an arc ion plating method are chemically or mechanically removed, or are formed into fine holes by laser beam irradiation. It is disclosed that, by changing, the fine holes have a function of holding a machining fluid (cutting fluid), and friction and wear of the hard film can be reduced.

また、特許文献2では、アークイオンプレーティング法にて硬質皮膜(硬質被覆層)を成膜する方法において、ドロップレットをブラスト処理にて除去してポアを存在させたり、成膜時のアセチレンやメタンなどの反応ガスを化学量論比より多く反応させて硬質皮膜中に遊離カーボンを析出させた後でリン酸塩等でこの遊離カーボンを除去してポアを存在させることにより、ポアがミスト加工における切削油剤(切削液)の保持力を高めて硬質皮膜の摩擦・摩耗を抑制できることが開示されている。
特開2002−146515号公報 特開2005−153072号公報
Further, in Patent Document 2, in the method of forming a hard film (hard coating layer) by an arc ion plating method, the droplets are removed by blasting to cause the presence of pores, acetylene at the time of film formation, The reaction of a reaction gas such as methane more than the stoichiometric ratio causes the free carbon to precipitate in the hard film, and then the free carbon is removed with phosphate to make the pores mist. It is disclosed that the holding force of the cutting fluid (cutting fluid) can be increased to suppress the friction and wear of the hard coating.
JP 2002-146515 A JP 2005-153072 A

しかしながら、特許文献1および特許文献2のように、硬質被覆層の表面に全面的にボイドを存在させる方法では、切屑を排出するすくい面においては硬質被覆層と切屑との潤滑性が十分であるが、切刃においてはボイドがチッピングや欠損の要因となりやすくなり、またボイド部分が切削されずに残存してしまい加工面が荒れるという問題があった。   However, as in Patent Document 1 and Patent Document 2, in the method in which voids are present entirely on the surface of the hard coating layer, the lubricity between the hard coating layer and the chips is sufficient on the rake face where chips are discharged. However, in the cutting blade, there is a problem that the void tends to cause chipping and chipping, and the void portion remains without being cut and the processed surface becomes rough.

本発明は上記問題を解決するためのものであり、その目的は、切屑処理性に優れ、かつ高い耐欠損性と良好な仕上面粗度を有する表面被覆切削工具を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a surface-coated cutting tool that has excellent chip disposal, high fracture resistance, and good finished surface roughness.

本発明は、切削液を用いて切削加工する湿式加工に用いる切削工具としては、すくい面においてはボイドを存在せしめて切削液の保持力を高めた方がよいものの切刃においては耐欠損性が高くしかも切削加工面粗度を平滑化するために硬質被覆層の表面にボイドを極力排除したほうがよいとの知見に基づくものである。   In the present invention, a cutting tool used for wet machining that uses a cutting fluid should have a void on the rake face to increase the retention of the cutting fluid. Further, it is based on the knowledge that it is better to eliminate voids on the surface of the hard coating layer as much as possible in order to smooth the roughness of the machined surface.

すなわち、本発明の表面被覆切削工具は、基体の表面に硬質被覆層を被覆した表面被覆切削工具において、前記硬質被覆層の少なくとも表面にボイドが分散するとともに、前記硬質被覆層の表面の切刃位置に存在する前記ボイドの面積比率が5面積%以下であるとともに、前記硬質被覆層の表面のすくい面位置に存在する前記ボイドの面積比率が8〜30面積%であることを特徴とするものである。
That is, the surface-coated cutting tool of the present invention is a surface-coated cutting tool in which the surface of a base is coated with a hard coating layer, and voids are dispersed on at least the surface of the hard coating layer, and the cutting blade on the surface of the hard coating layer is used. The area ratio of the void existing at the position is 5 area% or less, and the area ratio of the void existing at the rake face position of the surface of the hard coating layer is 8 to 30 area% It is.

ここで、前記硬質被覆層の表面の前記切刃位置に存在する前記ボイドの面積比率が5面積%以下であることが、前記切刃の耐摩耗性および耐欠損性をさらに向上できる点で重要である
Here, it an area ratio of the voids present in the cutting edge position of the surface of the hard coating layer is 5% by area or less, important in that it can further improve the wear resistance and chipping resistance of the cutting edge It is .

また、前記硬質被覆層の表面の前記すくい面位置に存在する前記ボイドの面積比率が〜30面積%であることが、すくい面における切屑処理の際の摩擦抵抗を低減できる点で重要である
Moreover, it is important that the area ratio of the voids existing at the rake face position on the surface of the hard coating layer is 8 to 30 area% in that the frictional resistance during chip treatment on the rake face can be reduced. .

なお、前記硬質被覆層の前記切刃位置における膜厚が前記すくい面位置における膜厚よりも薄いことが、切刃における耐欠損性が高く、かつすくい面において切屑によるこすれ摩耗によっても硬質被覆層が摩滅することなく良好な切屑処理ができる点で望ましい。   Note that the film thickness at the cutting edge position of the hard coating layer is thinner than the film thickness at the rake face position is high in chipping resistance at the cutting edge, and the hard coating layer is also caused by rubbing wear due to chips on the rake face. It is desirable in that a good chip disposal can be achieved without wear.

さらに、前記切刃が曲率半径R=0.005〜0.1mmのRホーニングを有する場合に、上記ボイドの分布が容易に実現できる。   Furthermore, when the cutting edge has an R honing with a radius of curvature R = 0.005 to 0.1 mm, the distribution of the voids can be easily realized.

本発明の表面被覆切削工具によれば、すくい面においては硬質被覆層表面にボイドが存在して切屑を排出する際の硬質被覆層の摩擦係数が低く切屑の排出性が良好であるとともに、切刃においては硬質被覆層表面のボイドの存在比率が低くて耐欠損性が高くかつ加工面が平滑化できるとともに、結果として優れた切削性能を発揮できるものである。   According to the surface-coated cutting tool of the present invention, on the rake face, voids exist on the surface of the hard coating layer, the hard coating layer has a low coefficient of friction when discharging chips, and the chip discharge performance is good. The blade has a low void content ratio on the surface of the hard coating layer, has high fracture resistance, and can smooth the processed surface, and as a result, can exhibit excellent cutting performance.

ここで、前記硬質被覆層の表面の切刃位置に存在するボイドの面積比率が5面積%以下であることによって、前記ボイドが原因でチッピングや欠損が発生することを低減できて前記切刃の耐欠損性をさらに向上させることができる。   Here, when the area ratio of the voids existing at the cutting edge position on the surface of the hard coating layer is 5% by area or less, the occurrence of chipping or chipping due to the voids can be reduced, and the cutting blade The fracture resistance can be further improved.

また、前記硬質被覆層の表面のすくい面位置に存在するボイドの面積比率が〜30面積%であることによって、すくい面における耐摩耗性と切削液の保持力とを両立させて切屑処理の際の摩擦抵抗を低減できる。
Further, since the area ratio of voids existing at the rake face position on the surface of the hard coating layer is 8 to 30% by area, the wear resistance on the rake face and the holding power of the cutting fluid can be achieved at the same time. Frictional resistance can be reduced.

なお、前記硬質被覆層の前記切刃位置における膜厚を前記すくい面位置における膜厚よりも薄くすることによって、切刃における耐欠損性が高く、かつすくい面において切屑によるこすれ摩耗によっても硬質被覆層が摩滅することなく良好な切屑処理ができる。   In addition, by making the film thickness at the cutting edge position of the hard coating layer thinner than the film thickness at the rake face position, the chipping edge has high chipping resistance, and the rake face is hard coated even by rubbing wear caused by chips. Good chip disposal without erosion of the layer.

さらに、前記切刃が曲率半径R=0.005〜0.1mmのRホーニングを有する場合に、理由は不明であるが上記ボイドの分布が容易に実現できる傾向にある。   Further, when the cutting edge has an R honing with a radius of curvature R = 0.005 to 0.1 mm, the reason is unknown, but the void distribution tends to be easily realized.

本発明の表面被覆切削工具の一例について、本発明の表面被覆切削工具の(a)概略斜視図、(b)概略断面図である図1、および本発明の表面被覆切削工具の一例を示す顕微鏡写真である図2を用いて説明する。   As for an example of the surface-coated cutting tool of the present invention, (a) a schematic perspective view of the surface-coated cutting tool of the present invention, (b) FIG. 1 which is a schematic sectional view, and a microscope showing an example of the surface-coated cutting tool of the present invention This will be described with reference to FIG.

図1、図2によれば、本発明の表面被覆切削工具(以下、単に工具と略す)1は、主面にすくい面3を、側面に逃げ面4を、すくい面3と逃げ面4との交差稜線に切刃5を有し、基体2の表面に硬質被覆層6を成膜した構成となっている。   1 and 2, a surface-coated cutting tool (hereinafter simply referred to as a tool) 1 according to the present invention includes a rake face 3 on a main surface, a flank face 4 on a side face, a rake face 3 and a flank face 4. A cutting edge 5 is provided at the crossing ridge line, and a hard coating layer 6 is formed on the surface of the substrate 2.

硬質被覆層6は、周期律表第4、5、6族元素、AlおよびSiから選ばれる1種以上の金属元素と、窒素、炭素、硼素および酸素から選ばれる1種以上の非金属元素との化合物の少なくとも1層にて構成されている。   The hard coating layer 6 includes one or more metal elements selected from Group 4, 5 and 6 elements of the periodic table, Al and Si, and one or more non-metal elements selected from nitrogen, carbon, boron and oxygen. It is comprised by the at least 1 layer of these compounds.

本発明によれば、硬質被覆層6の少なくとも表面にボイド8が分散するとともに、硬質被覆層6の切刃5の表面に存在するボイド8の面積比率が、硬質被覆層6の表面のすくい面3位置に存在するボイド8の面積比率に比べて小さいことを特徴とするものである。   According to the present invention, the voids 8 are dispersed on at least the surface of the hard coating layer 6, and the area ratio of the voids 8 existing on the surface of the cutting edge 5 of the hard coating layer 6 is the rake face of the surface of the hard coating layer 6. It is characterized in that it is smaller than the area ratio of the voids 8 existing at the three positions.

これによって、切刃5においては耐欠損性が高くおよび加工面粗度が小さくできるとともに、すくい面3においてはボイド8の存在によって切屑を排出する際の硬質被覆層6の摩擦係数が低く、結果として優れた切削性能を発揮できる。   As a result, the cutting edge 5 has a high chipping resistance and a low machined surface roughness, and the rake face 3 has a low friction coefficient of the hard coating layer 6 when discharging chips due to the presence of the void 8. As an excellent cutting performance.

つまり、硬質被覆層6の表面全体にボイド8が存在する場合には、ボイド8がクラックの起点となりやすくて切刃5における耐欠損性が低下する。逆に、硬質被覆層6の表面全体にボイド8が存在しない場合には、すくい面3における切屑の摩擦抵抗が大きくなり、摩耗が進行したり、切屑がすくい面3に溶着してしまうことがある。すなわち、いずれの場合にも切削性能を高めることができない。   That is, when the void 8 exists in the whole surface of the hard coating layer 6, the void 8 tends to become a starting point of a crack and the fracture resistance in the cutting blade 5 falls. On the contrary, when the void 8 does not exist on the entire surface of the hard coating layer 6, the frictional resistance of the chips on the rake face 3 is increased, and wear progresses or the chips are welded to the rake face 3. is there. That is, in any case, cutting performance cannot be improved.

なお、硬質被覆層6の表面に存在するボイド8の面積比率は、硬質被覆層6の表面についての走査型顕微鏡写真等の組織写真5μm以上×10μm以上の領域にて観察されるボイド8の面積比率を、ルーゼックス画像解析法によって測定することによって求めることができる。なお、面積比率の算出については任意領域の3箇所以上について測定し、その平均値から算出する。   In addition, the area ratio of the void 8 existing on the surface of the hard coating layer 6 is the area of the void 8 observed in the region of the structure photograph 5 μm or more × 10 μm or more such as a scanning micrograph on the surface of the hard coating layer 6. The ratio can be determined by measuring by the Luzex image analysis method. In addition, about calculation of an area ratio, it measures about three or more places of arbitrary areas, and calculates from the average value.

また、ボイド8のサイズは、平均直径が0.2〜10μm、平均深さが0.1〜2μmであることが、切削液の保持性が高くかつ硬質被覆層の耐摩耗性がさほど低下しない点で望ましい。   In addition, the void 8 has an average diameter of 0.2 to 10 μm and an average depth of 0.1 to 2 μm. The retention of the cutting fluid is high and the wear resistance of the hard coating layer does not deteriorate so much. Desirable in terms.

ここで、硬質被覆層6の表面の切刃5の位置に存在するボイド8の面積比率が5面積%以下であることが、衝撃が最もかかる切刃5においてクラックの起点となるボイド8の影響が低減できて切刃5の耐欠損性をさらに向上できる点で望ましい。さらに、硬質被覆層6の切刃5の位置における算術平均粗さ(Ra)は0.12μm以下であることが切刃5の耐欠損性が高く、かつ切削加工時の切削抵抗を低減できるために望ましい。なお、硬質被覆層6の切刃5の位置における算術平均粗さ(Ra)は、JIS B0601’01に準拠して触針式表面粗さ測定器を用いて、カットオフ値:0.25mm、基準長さ:0.8mm、走査速度:0.1mm/秒にて測定することができる。   Here, if the area ratio of the void 8 existing at the position of the cutting edge 5 on the surface of the hard coating layer 6 is 5% by area or less, the influence of the void 8 serving as the starting point of the crack in the cutting edge 5 to which the impact is the greatest. This is desirable in that it can be reduced and the fracture resistance of the cutting blade 5 can be further improved. Furthermore, since the arithmetic average roughness (Ra) at the position of the cutting edge 5 of the hard coating layer 6 is 0.12 μm or less, the cutting edge 5 has high chipping resistance, and the cutting resistance during cutting can be reduced. Is desirable. In addition, arithmetic mean roughness (Ra) in the position of the cutting edge 5 of the hard coating layer 6 is based on JIS B0601'01 using a stylus type surface roughness measuring device, cut-off value: 0.25 mm, It can be measured at a reference length of 0.8 mm and a scanning speed of 0.1 mm / second.

また、硬質被覆層6の表面の切刃5位置に存在するボイド8の面積比率5面積%以下とすることにより、ボイド8が原因でチッピングや欠損が発生することを低減できて切刃5の耐欠損性をさらに向上できる。硬質被覆層6の表面の切刃5位置に存在するボイド8の面積比率の好ましい範囲は4面積%以下である。さらに、硬質被覆層6の表面のすくい面3の位置に存在するボイド8の面積比率が〜30面積%であることが、すくい面における耐摩耗性と切削液の保持力とを両立させて、すくい面3における切屑処理の際の摩擦抵抗を低減できる点で重要である。硬質被覆層6の表面のすくい面3の位置に存在するボイド8の面積比率の好ましい範囲は8〜20面積%である。
In addition, by setting the area ratio of the void 8 existing at the position of the cutting edge 5 on the surface of the hard coating layer 5 to 5 area% or less , the occurrence of chipping or chipping due to the void 8 can be reduced, and the cutting edge 5 can be reduced. It is possible to further improve the fracture resistance. A preferable range of the area ratio of the void 8 existing at the position of the cutting edge 5 on the surface of the hard coating layer 6 is 4 area% or less. Further, the area ratio of the voids 8 existing at the position of the rake face 3 on the surface of the hard coating layer 6 is 8 to 30 area%, which achieves both wear resistance on the rake face and holding power of the cutting fluid. It is important in that the frictional resistance at the time of chip treatment on the rake face 3 can be reduced. A preferable range of the area ratio of the void 8 existing at the position of the rake face 3 on the surface of the hard coating layer 6 is 8 to 20 area%.

ここで、切刃5は曲率半径Rが0.005mm未満のシャープエッジであってもよいが、切刃5が曲率半径R=0.005〜0.1mmのRホーニングを有する場合のほうが、理由は不明であるが上記特定のボイド8の分布が容易に実現できる傾向にある。切刃5のRホーニングの好ましい範囲は、曲率半径R=0.02〜0.05mmである。   Here, the cutting edge 5 may be a sharp edge with a curvature radius R of less than 0.005 mm, but the reason is that the cutting edge 5 has an R honing with a curvature radius R = 0.005 to 0.1 mm. Is unknown, but the distribution of the specific void 8 tends to be easily realized. A preferable range of R honing of the cutting edge 5 is a curvature radius R = 0.02 to 0.05 mm.

さらに、硬質被覆層6の膜厚が0.2〜5.0μmであることが、硬質被覆層6の耐欠損性が高くて膜剥離を防止できるとともに、硬質被覆層6が十分な潤滑性と耐摩耗性を有するため望ましい。なお、硬質被覆層6の切刃5の位置における膜厚をすくい面3の位置における膜厚よりも薄くすることによって、被削材の衝撃が最も大きい切刃5における耐欠損性が高く、かつすくい面3において切屑によるこすれ摩耗によっても硬質被覆層6が摩滅することなく良好な切屑処理ができる。硬質被覆層6の切刃5の位置における膜厚の好ましい範囲は0.5〜2μm、硬質被覆層6のすくい面3の位置における膜厚の好ましい範囲は1.5〜2.5μmである。   Furthermore, when the film thickness of the hard coating layer 6 is 0.2 to 5.0 μm, the hard coating layer 6 has high fracture resistance and can prevent film peeling, and the hard coating layer 6 has sufficient lubricity. Desirable because it has wear resistance. In addition, by making the film thickness at the position of the cutting edge 5 of the hard coating layer 6 smaller than the film thickness at the position of the rake face 3, the chipping resistance at the cutting edge 5 with the greatest impact of the work material is high, and Even on the rake face 3, even with rubbing wear caused by chips, the hard coating layer 6 is not worn away and good chip treatment can be performed. A preferable range of the film thickness at the position of the cutting edge 5 of the hard coating layer 6 is 0.5 to 2 μm, and a preferable range of the film thickness at the position of the rake face 3 of the hard coating layer 6 is 1.5 to 2.5 μm.

なお、基体2としては、炭化タングステンや、炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金、サーメット、窒化ケイ素や酸化アルミニウムを主成分とするセラミックス、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相とセラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   In addition, as the substrate 2, cemented carbide, cermet, silicon nitride, and oxide composed of a hard phase mainly composed of tungsten carbide or titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt or nickel. Hard materials such as ceramics mainly composed of aluminum, a hard phase made of polycrystalline diamond or cubic boron nitride and a binder phase such as ceramics or iron group metal are fired under an ultra-high pressure, etc. used.

(製造方法)
次に、本発明の表面被覆切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the surface coating cutting tool of this invention is demonstrated.

まず、工具形状の基体を従来公知の方法を用いて作製する。   First, a tool-shaped substrate is produced using a conventionally known method.

次に、この基体表面に、周期律表第4、5、6族元素、AlおよびSiから選ばれる1種以上の金属元素と、窒素、炭素および酸素から選ばれる1種以上の非金属元素との化合物からなる硬質被覆層を成膜する。   Next, on the surface of the substrate, one or more metal elements selected from Group 4, 5, 6 elements of the periodic table, Al and Si, and one or more non-metal elements selected from nitrogen, carbon, and oxygen, A hard coating layer made of the above compound is formed.

なお、成膜方法として、イオンプレーティング法やスパッタリング法等の物理気相合成(PVD)法を用いる。成膜方法の数例の詳細について説明すると、チタン(Ti)とアルミニウム(Al)とを含む複合硬質層をイオンプレーティング法で作製する場合には、金属チタンおよび金属アルミの2種類の金属ターゲットを独立として用いるか、またはチタンアルミ(TiAl)合金をターゲットに用い、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させて成膜する。このとき、硬質被覆層の緻密度や基体との密着力を高めるため、および硬質被覆層6中に所定のマクロ粒子10を分散させるために、30〜200Vのバイアス電圧を印加しながら成膜することが望ましい。 Note that a physical vapor phase synthesis (PVD) method such as an ion plating method or a sputtering method is used as a film forming method. The details of several examples of the film formation method will be described. When a composite hard layer containing titanium (Ti) and aluminum (Al) is produced by an ion plating method, two types of metal targets, namely metal titanium and metal aluminum, are used. Are used independently, or a titanium aluminum (TiAl) alloy is used as a target, and a metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH as a carbon source) 4 ) Reacted with acetylene (C 2 H 2 ) gas to form a film. At this time, in order to increase the density of the hard coating layer and the adhesion to the substrate, and to disperse the predetermined macroparticles 10 in the hard coating layer 6, the film is formed while applying a bias voltage of 30 to 200V. It is desirable.

ここで、本発明における硬質被覆層6中のボイド8の分布状態を実現する方法の一例としては、成膜した硬質被覆層6中のマクロ粒子10の分布を変えることにより実現が可能となり、具体的には、成膜の途中または終了時にガスボンバード処理を行なう方法が好適である。この方法によれば、ガスボンバード処理ではエッジ部が選択的に研磨されることから、成膜された硬質被覆層6の切刃5表面におけるマクロ粒子10を選択的に除去することができ、成膜終了後において、硬質被覆層6の切刃5の表面に存在するマクロ粒子10の面積比率を、硬質被覆層6の表面のすくい面3位置に存在するマクロ粒子10の面積比率に比べて少ない構成とすることができる。 Here, as an example of a method for realizing the distribution state of the voids 8 in the hard coating layer 6 in the present invention, it can be realized by changing the distribution of the macro particles 10 in the formed hard coating layer 6. Specifically, a method of performing gas bombardment treatment during or at the end of film formation is preferable. According to this method, since the edge portion is selectively polished in the gas bombardment process, the macro particles 10 on the surface of the cutting edge 5 of the formed hard coating layer 6 can be selectively removed. After completion of the film, the area ratio of the macro particles 10 existing on the surface of the cutting edge 5 of the hard coating layer 6 is smaller than the area ratio of the macro particles 10 existing at the rake face 3 position on the surface of the hard coating layer 6. It can be configured.

その後、成膜した硬質被覆層6に対して、ブラスト処理、ブラシと研磨剤を用いた研磨加工等の機械研磨加工によって硬質被覆層6の表面に存在するマクロ粒子10を除去する。この時、マクロ粒子10は硬質被覆層6のマクロ粒子10以外の正常部に埋め込まれた部分ごと除去されることから、マクロ粒子10が除去された部分にはボイド8が形成される。そして、研磨加工された硬質被覆層6におけるボイド8の分布は研磨加工する前の硬質被覆層6のマクロ粒子10の分布を反映するために、研磨加工された硬質被覆層6におけるボイド8の分布は、硬質被覆層6の切刃5の表面に存在するボイド8の面積比率を、硬質被覆層6の表面のすくい面3位置に存在するボイド8の面積比率に比べて少ない構成とすることができる。   Thereafter, the macro particles 10 present on the surface of the hard coating layer 6 are removed from the hard coating layer 6 formed by mechanical polishing such as blasting or polishing using a brush and an abrasive. At this time, since the macro particles 10 are removed together with the portions embedded in the normal portions other than the macro particles 10 of the hard coating layer 6, voids 8 are formed in the portions where the macro particles 10 are removed. The distribution of voids 8 in the hard coating layer 6 that has been subjected to polishing reflects the distribution of macro particles 10 in the hard coating layer 6 that has not been subjected to polishing processing in order to reflect the distribution of the voids 8 in the hard coating layer 6 that has been subjected to polishing. Is configured such that the area ratio of the void 8 existing on the surface of the cutting edge 5 of the hard coating layer 6 is smaller than the area ratio of the void 8 existing at the position of the rake face 3 on the surface of the hard coating layer 6. it can.

平均粒径0.8μmの炭化タングステン(WC)粉末を主成分として、平均粒径1.2μmの金属コバルト(Co)粉末を10質量%、平均粒径1.0μmの炭化バナジウム(VC)粉末を0.2質量%、平均粒径1.0μmの炭化クロム(Cr)粉末を0.6質量%の割合で添加し混合して、プレス成形により溝入切削工具形状(GBA43R300NY)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニング)を施した。 Mainly composed of tungsten carbide (WC) powder having an average particle diameter of 0.8 μm, 10% by mass of metallic cobalt (Co) powder having an average particle diameter of 1.2 μm, and vanadium carbide (VC) powder having an average particle diameter of 1.0 μm. Add 0.2% by mass of chromium carbide (Cr 3 C 2 ) powder with an average particle size of 1.0 μm at a ratio of 0.6% by mass and mix it into a grooved cutting tool shape (GBA43R300NY) by press molding. After that, a binder removal treatment was performed, and firing was performed at 1500 ° C. for 1 hour in a vacuum of 0.01 Pa to produce a cemented carbide. Further, the prepared cemented carbide was subjected to blade edge processing (honing) by brushing.

このようにして作製した基体に対してアークイオンプレーティング法により表1に示す種々の組成にて硬質被覆層を成膜した。また、一部の試料については、成膜の途中または終了時に窒素ガスおよびアルゴンガスの混合ガスを用いたボンバード処理を表1の条件で行なって、成膜された硬質被覆層の切刃表面におけるマクロ粒子を除去した。   Hard coating layers having various compositions shown in Table 1 were formed on the substrate thus prepared by arc ion plating. Further, for some samples, bombardment using a mixed gas of nitrogen gas and argon gas was performed in the middle or at the end of film formation under the conditions shown in Table 1, and on the surface of the cutting edge of the formed hard coating layer Macro particles were removed.

その後、成膜された硬質被覆層の表面を平均粒径5μmのアルミナ砥粒を使った湿式マイクロブラスト法を用いて表1の条件にてブラスト処理した。   Thereafter, the surface of the formed hard coating layer was blasted under the conditions shown in Table 1 using a wet microblast method using alumina abrasive grains having an average particle diameter of 5 μm.

得られた試料に対して、切刃およびすくい面のランド位置における硬質被覆層の表面を走査型電子顕微鏡(SEM)にて観察し、ボイドの面積比率を測定した。なお、表1中のボイドの面積比率は、顕微鏡写真について、切刃の稜線に対して平行な方向に100μm×切刃の稜線に対して垂直な方向に5μmの領域内におけるボイドの面積比率をルーゼックス画像解析法にて求め、任意3箇所における平均値をボイドの面積比率として表1に示した。また、硬質被覆層の膜厚は、切削工具の断面SEM写真より求めた。さらに、硬質被覆層の表面の切刃位置における算術平均粗さRaを接触式の表面粗さ計で任意3箇所について測定し、その平均値から求めた。具体的な測定方法は、JIS B0601’01に準拠して触針式表面粗さ測定器を用いて、カットオフ値:0.25mm、基準長さ:0.8mm、走査速度:0.1mm/秒にて測定した。   With respect to the obtained sample, the surface of the hard coating layer at the land position of the cutting edge and the rake face was observed with a scanning electron microscope (SEM), and the void area ratio was measured. In addition, the area ratio of the void in Table 1 is the area ratio of the void in the region of 5 μm in the direction perpendicular to the ridgeline of the cutting edge 100 μm × the cutting edge in the direction parallel to the ridgeline of the cutting edge. Table 1 shows an average value at three arbitrary locations as a void area ratio. Moreover, the film thickness of the hard coating layer was calculated | required from the cross-sectional SEM photograph of the cutting tool. Further, the arithmetic average roughness Ra at the cutting edge position on the surface of the hard coating layer was measured at three arbitrary positions with a contact-type surface roughness meter, and obtained from the average value. A specific measuring method is based on JIS B0601'01 using a stylus type surface roughness measuring device, cut-off value: 0.25 mm, reference length: 0.8 mm, scanning speed: 0.1 mm / Measured in seconds.

次に、得られた溝入切削工具形状のスローアウェイチップ(切削工具)を用いて以下の切削条件にて切削試験を行った。結果は表2に示した。   Next, a cutting test was performed under the following cutting conditions using the obtained grooved cutting tool-shaped throw-away tip (cutting tool). The results are shown in Table 2.

切削方法:断続旋削
被削材 :SCM440、4本の5mm幅溝入り
切削速度:100m/min
送り :0.2mm/rev
切り込み:2mm
切削状態:湿式
評価方法:2000回の衝撃を与えた段階での切刃およびすくい面の状態および欠損に至るまでの衝撃回数

Figure 0004895586
Cutting method: Intermittent turning work material: SCM440, four 5 mm wide grooved cutting speed: 100 m / min
Feeding: 0.2mm / rev
Cutting depth: 2mm
Cutting state: Wet evaluation method: State of cutting edge and rake face at the stage where 2000 impacts were applied, and the number of impacts until failure
Figure 0004895586

Figure 0004895586
Figure 0004895586

表1、表2より、成膜の途中または終了時にボンバード処理をせず、硬質被覆層の表面全体にボイドが多く発生した試料No.9は、早期にチッピングが発生して工具寿命が短いものであった。また、スパッタ法にて成膜して成膜の途中または終了時にボンバード処理をせず、硬質被覆層の表面全体にボイドが一様な試料No.10でも、早期にチッピングが発生して工具寿命が短いものであった。さらに、成膜の途中または終了時にボンバード処理することに代えて成膜後にブラスト処理を行い、硬質被覆層の表面全体のボイドを一様に低減した試料No.11でも、すくい面において切屑の溶着が発生して工具寿命が短いものであった。   From Table 1 and Table 2, sample No. 1 in which a lot of voids were generated on the entire surface of the hard coating layer without performing the bombarding process during or at the end of film formation. In No. 9, chipping occurred early and the tool life was short. In addition, sample No. 1 with a uniform void on the entire surface of the hard coating layer without performing bombarding during or after the film formation was formed by sputtering. Even with the tool No. 10, chipping occurred early and the tool life was short. Further, in place of the bombarding process during or at the end of the film formation, a blasting process was performed after the film formation to uniformly reduce the voids on the entire surface of the hard coating layer. No. 11, chip welding occurred on the rake face and the tool life was short.

これに対して、本発明の範囲内である硬質被覆層の表面のすくい面位置におけるボイドの面積比率が切刃位置におけるそれよりも多い試料No.1〜8では、いずれも摩擦抵抗が低く切屑処理性が良好であり、かつ切刃における耐欠損性にも優れた良好な切削性能を発揮した。中でも、硬質被覆層の表面の切刃位置に存在するボイドの面積比率が5面積%以下で、かつ硬質被覆層の表面のすくい面位置に存在するボイドの面積比率が10〜30面積%の試料No.1〜3、7では特に衝撃回数を延ばすことができて工具寿命が長いものであった。   On the other hand, the sample area No. in which the void area ratio at the rake face position on the surface of the hard coating layer within the scope of the present invention is larger than that at the cutting edge position. Nos. 1 to 8 exhibited good cutting performance with low frictional resistance and good chip disposal and excellent chipping resistance at the cutting edge. Among them, a sample in which the area ratio of voids existing at the cutting edge position on the surface of the hard coating layer is 5 area% or less and the area ratio of voids existing at the rake face position on the surface of the hard coating layer is 10 to 30 area%. No. 1 to 3 and 7 can extend the number of impacts in particular and have a long tool life.

本発明の表面被覆切削工具の好適例を示す(a)概略斜視図、(b)要部拡大断面図である。It is (a) schematic perspective view which shows the suitable example of the surface covering cutting tool of this invention, (b) principal part expanded sectional drawing. 本発明の表面被覆切削工具の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the surface coating cutting tool of this invention.

符号の説明Explanation of symbols

1 表面被覆切削工具
2 基体
3 すくい面
4 逃げ面
5 切刃
6 硬質被覆層
8 ボイド
10 マクロ粒子
DESCRIPTION OF SYMBOLS 1 Surface coating cutting tool 2 Base | substrate 3 Rake face 4 Flank 5 Cutting edge 6 Hard coating layer 8 Void 10 Macro particle

Claims (3)

基体の表面に硬質被覆層を被覆した表面被覆切削工具において、前記硬質被覆層の少なくとも表面にボイドが分散するとともに、前記硬質被覆層の表面の切刃位置に存在する前記ボイドの面積比率が5面積%以下であるとともに、前記硬質被覆層の表面のすくい面位置に存在する前記ボイドの面積比率が8〜30面積%であることを特徴とする表面被覆切削工具。 In the surface-coated cutting tool in which the surface of the base is coated with the hard coating layer, voids are dispersed on at least the surface of the hard coating layer, and the area ratio of the voids existing at the cutting edge position on the surface of the hard coating layer is 5 with at most area%, the surface-coated cutting tool, wherein the area ratio of the voids present in the rake face position of the surface of the hard layer is 8 to 30 area%. 前記硬質被覆層の前記切刃位置における膜厚が前記すくい面位置における膜厚よりも薄いことを特徴とする請求項に記載の表面被覆切削工具。 2. The surface-coated cutting tool according to claim 1 , wherein a film thickness at the cutting edge position of the hard coating layer is thinner than a film thickness at the rake face position. 前記切刃が曲率半径R=0.005〜0.1mmのRホーニングを有することを特徴とする請求項1または2に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1 or 2 wherein the cutting edge and having a R honing radius of curvature R = 0.005~0.1mm.
JP2005342875A 2005-11-28 2005-11-28 Surface coated cutting tool Active JP4895586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342875A JP4895586B2 (en) 2005-11-28 2005-11-28 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342875A JP4895586B2 (en) 2005-11-28 2005-11-28 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2007144565A JP2007144565A (en) 2007-06-14
JP4895586B2 true JP4895586B2 (en) 2012-03-14

Family

ID=38206576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342875A Active JP4895586B2 (en) 2005-11-28 2005-11-28 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP4895586B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020000947T5 (en) * 2019-02-26 2021-11-18 Kyocera Corporation INSERT AND CUTTING TOOL WHICH HAS THIS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254241A (en) * 1998-03-09 1999-09-21 Sumitomo Metal Mining Co Ltd Tool coated with oxidation and abrasion resistant film
JP2002146515A (en) * 2000-11-14 2002-05-22 Toshiba Tungaloy Co Ltd Hard film superior in slidableness and its coating tool
JP2005001088A (en) * 2003-06-13 2005-01-06 Osg Corp Member coated with hard coating film and its manufacturing method

Also Published As

Publication number Publication date
JP2007144565A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4975194B2 (en) Cutting tools
US6838151B2 (en) Cutting tool and tool with holder
JP2007001007A (en) Composite coating film for finishing hardened steel
KR20150064092A (en) Tool with tialcrsin pvd coating
WO2007049785A1 (en) Surface-coated member, method for manufacture thereof, and cutting tool
KR20130006667A (en) Cutting tool
JP2007260851A (en) Surface coated cutting tool
WO2014104111A1 (en) Cutting tool
JP5404232B2 (en) Cutting tools
JP4991244B2 (en) Surface coated cutting tool
JP5286625B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP2006263857A (en) Surface coated cutting tool and manufacturing method for it
JP4936703B2 (en) Surface coated cutting tool
JP5517577B2 (en) Cutting tool for grooving
JP5036470B2 (en) Surface coating tool
JP2005262389A (en) Surface-coated cutting tool for processing titanium alloy
JP4445815B2 (en) Surface coated cutting tool
JP4895586B2 (en) Surface coated cutting tool
JP2008155328A (en) Surface-coated tool
JP4880976B2 (en) Method for manufacturing surface-coated cutting tool
JP2005262355A (en) Surface-coated cutting tool
JP5495735B2 (en) Cutting tools
JP5094293B2 (en) Cutting tools
JP5239059B2 (en) Coated cBN sintered tool for high precision cutting
JP6743349B2 (en) Cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3