JPH07157862A - Wear resistant and welding resistant hard film-coated tool and production thereof - Google Patents

Wear resistant and welding resistant hard film-coated tool and production thereof

Info

Publication number
JPH07157862A
JPH07157862A JP30438793A JP30438793A JPH07157862A JP H07157862 A JPH07157862 A JP H07157862A JP 30438793 A JP30438793 A JP 30438793A JP 30438793 A JP30438793 A JP 30438793A JP H07157862 A JPH07157862 A JP H07157862A
Authority
JP
Japan
Prior art keywords
film
metal
tool
ion plating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30438793A
Other languages
Japanese (ja)
Other versions
JP2901043B2 (en
Inventor
Yusuke Tanaka
裕介 田中
Taiji Onishi
泰司 大西
Yasuyuki Yamada
保之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30438793A priority Critical patent/JP2901043B2/en
Publication of JPH07157862A publication Critical patent/JPH07157862A/en
Application granted granted Critical
Publication of JP2901043B2 publication Critical patent/JP2901043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To impart excellent wear resistance and welding resistance to a tool and prolong its cutting service life by forming a film by an arc discharge type ion plating method and thereafter removing away macrograins projected to the coated surface. CONSTITUTION:On the surface of a tool substrate, the film of multicomponental metal oxide, metal nitride or metal carbon nitride contg. two or more kinds of metals is formed by an arc disharge type ion plating method. After that, macrograins projected to the surface of the formed film are removed away, and a hard film tool having craters of 0.2 to 2mum depth is produced. The removal of macrograins projected to the surface of the film after the ion plating and stuck is executed preferably by barrel polishing, blast polishing, lapping treatment, buff polishing or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性および耐溶着
性に優れた硬質皮膜被覆工具およびその製法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard coating tool having excellent wear resistance and welding resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】高速度工具鋼や超硬合金工具鋼等を製作
する場合は、耐摩耗性等の性能をより優れたものとする
ことを目的として、工具基材の表面にTi等の窒化物や
炭化物よりなる耐摩耗性皮膜を形成することが行なわれ
ている。上記耐摩耗性皮膜を形成する方法としては、従
来よりCVD法(化学的蒸着法)及びPVD法(物理的
蒸着法)が知られている。但し前者の方法では、母材が
高温に曝らされるため母材が熱劣化を起こす恐れがある
ので、母材特性も重要視される工具の場合では後者の方
法が好まれており、中でも比較的低温条件でコーティン
グ処理できるイオンプレーティング法等を利用したTi
N皮膜等が汎用されている。
2. Description of the Related Art When manufacturing high-speed tool steel, cemented carbide tool steel, etc., nitriding Ti, etc. on the surface of the tool base material in order to improve performance such as wear resistance. It has been practiced to form an abrasion resistant film made of a substance or a carbide. Conventionally, the CVD method (chemical vapor deposition method) and the PVD method (physical vapor deposition method) have been known as methods for forming the above abrasion-resistant film. However, in the former method, the base material is exposed to high temperatures, which may cause thermal deterioration of the base material.Therefore, in the case of tools in which the characteristics of the base material are also important, the latter method is preferred. Ti using the ion plating method, etc., which can be coated under relatively low temperature conditions
N film is commonly used.

【0003】該TiN皮膜はTiC皮膜に比べて耐熱性
が良好であり、切削時の加工熱や摩擦熱による工具すく
い面のクレータ摩耗も抑制される。しかしながらTiN
皮膜は、TiC皮膜に比べると硬度が低い為被削材と接
する逃げ面に発生するフランク摩耗に対しては脆弱であ
り、フランク摩耗に対してはむしろTiC皮膜の方が高
い耐久性を示す。
The TiN film has better heat resistance than the TiC film, and crater wear on the tool rake surface due to working heat and frictional heat during cutting is suppressed. However TiN
Since the coating has a lower hardness than the TiC coating, it is vulnerable to flank wear generated on the flank contacting the work material, and the TiC coating exhibits higher durability against flank wear.

【0004】そこで耐熱性と硬度の共に優れた皮膜とし
て、イオンプレーティング法やスパッタリング法等のP
VD法によるTiAlN、TiAlC或はTiAlCN
等の皮膜が提案されている[特開昭62−56565,
特開平2−194159,ジャーナル・バキューム・ソ
サエティ・テクノロジー(J. Vac.Sci.Technol.) A第4
(6)巻,1986年,第2717頁,J. of Solid State Chem
istry,70,1987 年,第318 〜322 頁など]。
Therefore, as a film excellent in both heat resistance and hardness, P such as an ion plating method or a sputtering method is used.
TiAlN, TiAlC or TiAlCN by VD method
And the like have been proposed [JP-A-62-56565,
JP-A-2-194159, Journal Vacuum Society Technology (J. Vac.Sci.Technol.) A 4th
(6), 1986, p. 2717, J. of Solid State Chem.
istry, 70, 1987, pp. 318-322, etc.].

【0005】また本発明者等は、工具の耐摩耗性を更に
高める方法として、基材表面に (Vx Ti1-x)( Ny1-y ) 但し 0.25≦x≦0.75 0.6 ≦y≦1 で示される化学組成からなり、膜厚が0.8 〜10μmの
耐摩耗性皮膜を1×10-3〜5×10-2Torrの真空条件下
で、蒸発源としてカソードを用いるアーク放電方式によ
って形成する方法を開発し、先に特許出願を済ませた
(特開平4−221057)。
As a method for further improving the wear resistance of the tool, the present inventors have found that (V x Ti 1-x ) (N y C 1-y ) on the surface of the substrate, but 0.25 ≦ x ≦ 0.75 0.6 ≦ y A wear-resistant coating having a chemical composition of ≦ 1 and a thickness of 0.8 to 10 μm was formed by an arc discharge method using a cathode as an evaporation source under a vacuum condition of 1 × 10 −3 to 5 × 10 −2 Torr. A method of forming was developed and a patent application was completed (Japanese Patent Laid-Open No. 221057/1992).

【0006】ところでこれら硬質皮膜の形成には、るつ
ぼ方式のイオンプレーティング法やスパッタリング法、
更には蒸発源としてカソードを用いるアーク放電方式に
よるイオンプレーティング法等が採用されるが、これら
の方法には次の様な問題がある。
In order to form these hard coatings, a crucible type ion plating method or a sputtering method,
Furthermore, although an ion plating method by an arc discharge method using a cathode as an evaporation source is adopted, these methods have the following problems.

【0007】(1)るつぼ方式イオンプレーティング法
の場合 従来のイオンプレーティング法は、蒸着金属をるつぼ内
で溶融し蒸発させる方式であるから、蒸発源の設置位置
に制約があり、複雑な形状の基材に適用する場合の蒸着
効率は非常に低くなる。また、複数の金属を蒸着させて
基材表面で合金化させたい場合も多いにもかかわらず、
個々の金属は蒸気圧に差があるため、合金皮膜組成を安
定にコントロールすることが困難である。
(1) In the case of crucible type ion plating method Since the conventional ion plating method is a method of melting and evaporating vapor-deposited metal in the crucible, there are restrictions on the installation position of the evaporation source and a complicated shape. The vapor deposition efficiency when applied to the substrate is extremely low. In addition, although it is often the case that you want to vaporize multiple metals and alloy them on the substrate surface,
Since each metal has a difference in vapor pressure, it is difficult to stably control the alloy film composition.

【0008】(2)スパッタリング法の場合 この方法で得られる皮膜の密着性は必ずしも良好でな
く、また複雑な形状の基材を被覆する場合の生産性も低
い。さらにターゲットとしてAlX Ti1-X や(AlX
Ti1-X )N,VX1-X や(VX1-X )N等を使用
する場合は、スパッタ率が経時的に変化し易いため、こ
の変化を見込んでターゲットの組成を調整しなければな
らない。またスパッタ粒子のイオン化率が低く基材に突
入するイオン量も少ないため充分な皮膜密着性が得られ
難い。しかも成膜速度が遅く量産化に不向きである。
(2) Sputtering method The adhesion of the film obtained by this method is not always good, and the productivity when coating a substrate having a complicated shape is low. Further, as a target, Al X Ti 1-X or (Al X
When using Ti 1-X ) N, V X T 1-X , (V X T 1-X ) N, etc., the sputter rate is likely to change over time, and this change is taken into account when changing the target composition. I have to adjust. Further, since the ionization rate of sputtered particles is low and the amount of ions entering the substrate is small, it is difficult to obtain sufficient film adhesion. Moreover, the film forming speed is slow and unsuitable for mass production.

【0009】(3)アーク放電方式イオンプレーティン
グ法の場合 この方法では、たとえば図4に示すようにガス導入口9
から反応性ガスを導入すると共に、負電圧を印加した蒸
発源2aと正電圧トリガー3との間にアークを発生さ
せ、マイナスのバイアス電圧を負荷した基材W上に硬質
膜を被覆形成するものであり、該アーク蒸着法を実施す
るに当たっては、基材と硬質膜の密着性を高めるために
硬質膜被覆に先立って金属ボンバードメントによるスパ
ッタクリーニングを行なって基材表面の不純物を除去
し、その後アーク蒸着により硬質皮膜を形成している。
この方法では、金属ボンバードメントによって大きな洗
浄効果を得ることができるので、基材に対する皮膜の付
着量については充分なものが得られる。しかも、この方
法で例えばAlX Ti1-X N膜を形成する場合、蒸発源
であるカソードとしてTiとAlを夫々個別に使用する
こともできるが、目的組成そのものからなるAlX Ti
1-X をターゲットとして使用すれば、皮膜組成のコント
ロールが非常に容易となる。またこの場合の各合金成分
の蒸発は、数十アンペア以上の大電流で行なわれるた
め、カソード物質の組成ずれが殆ど起こらず、しかもイ
オン化効率が高くて反応性に富むため、基材にバイアス
電圧を印加することにより密着性の優れた皮膜が得られ
易いといった多くの利点がある。ところがこの方法に見
られる最大の難点は、固体カソードから直接放電を採用
するため、形成される皮膜表面に1〜5μm程度の大き
なマクロ粒子が付着しており、表面粗さや光沢が劣るば
かりでなく、切削工具等として適用した場合、被削材や
切削条件等によっては被削材料が工具被覆面に溶着し、
加工精度が低下すると共に工具そのものの耐摩耗性も低
下するという点である。
(3) In case of arc discharge type ion plating method In this method, for example, as shown in FIG.
From which a reactive gas is introduced and an arc is generated between the evaporation source 2a to which a negative voltage is applied and the positive voltage trigger 3 to form a hard film on the substrate W loaded with a negative bias voltage. That is, in carrying out the arc evaporation method, in order to enhance the adhesion between the base material and the hard film, sputter cleaning by metal bombardment is performed prior to the hard film coating to remove impurities on the surface of the base material, and thereafter. A hard film is formed by arc evaporation.
In this method, a large cleaning effect can be obtained by the metal bombardment, so that a sufficient amount of the film adhered to the substrate can be obtained. Moreover, when an Al x Ti 1-x N film is formed by this method, Ti and Al can be used individually as cathodes which are evaporation sources, but Al x Ti consisting of the target composition itself can be used.
Using 1-X as a target makes it very easy to control the film composition. Further, in this case, the evaporation of each alloy component is performed with a large current of several tens of amperes or more, so that the composition deviation of the cathode material hardly occurs, and the ionization efficiency is high and the reactivity is high, so that the bias voltage is applied to the base material. There are many advantages in that a film having excellent adhesiveness can be easily obtained by applying. However, the biggest difficulty observed in this method is that direct discharge is adopted from the solid cathode, so that large macro particles of about 1 to 5 μm are attached to the surface of the formed film, and not only the surface roughness and gloss are inferior. When applied as a cutting tool, etc., depending on the work material and cutting conditions, the work material may be welded to the tool coated surface,
The point is that the machining accuracy decreases and the wear resistance of the tool itself also decreases.

【0010】[0010]

【発明が解決しようとする課題】上記の様に、アーク放
電方式によるイオンプレーティング法では、TiAlC
N等の多成分系硬質皮膜を効率よく且つ密着性良く形成
することができるが、固体カソードからの直接アーク放
電を採用するため皮膜表面に1〜5μm程度のマクロ粒
子が付着し、表面粗度や光沢が良好とは言えず、これを
研摩工具や切削工具等として使用すると、使用条件によ
っては、工具表面に突出したマクロ粒子に被削材料が溶
着して加工精度を悪化させるばかりでなく、満足な耐摩
耗性が得られなくなることもある。また、るつぼ方式イ
オンプレーティング法やスパッタリング法では、平滑な
表面の硬質皮膜は得られるものの、前述の如く皮膜形成
効率が非常に低い。
As described above, in the ion plating method by the arc discharge method, TiAlC is used.
A multi-component hard coating such as N can be formed efficiently and with good adhesion, but since direct arc discharge from a solid cathode is adopted, macro particles of about 1 to 5 μm adhere to the coating surface, resulting in surface roughness. It can not be said that the gloss is not good, and when it is used as an abrasive tool or a cutting tool, not only does the work material deteriorate on the macro particles protruding on the tool surface depending on the use conditions, but also the processing accuracy deteriorates, Satisfactory wear resistance may not be obtained. Further, although a crucible type ion plating method or a sputtering method can obtain a hard coating having a smooth surface, the coating forming efficiency is very low as described above.

【0011】本発明はこの様な事情に着目してなされた
ものであって、その目的は、表面粗度や光沢が良好で優
れた耐摩耗性を発揮すると共に、耐溶着性が良好で被削
材料の溶着が起こらず、しかも工業的にも効率良く製造
し得る様な硬質皮膜被覆工具およびその製法を提供しよ
うとするものである。
The present invention has been made in view of such circumstances, and an object thereof is to provide good surface roughness and gloss, exhibit excellent wear resistance, and have good welding resistance and It is an object of the present invention to provide a hard coat tool and a method for producing the same, which does not cause welding of a cutting material and can be efficiently manufactured industrially.

【0012】[0012]

【課題を解決するための手段】上記目的を達成した本発
明に係る耐摩耗性・耐溶着性硬質皮膜被覆工具の構成
は、2種以上の金属元素を含む多成分系の金属炭化物、
金属窒化物または金属炭・窒化物皮膜からなり、表面に
マクロ粒子が実質的に突出しておらず、0.2〜2μm
の深さのクレーターを有する硬質皮膜が表面に形成され
たものであるところに要旨を有するものであり、この様
な工具は、工具基材の表面に、アーク放電式イオンプレ
ーティング法によって2種以上の金属元素を含む多成分
系の金属炭化物、金属窒化物または金属炭・窒化物皮膜
を形成した後、該皮膜表面に突出したマクロ粒子を除去
することによって得ることができる。
A wear-resistant / welding-resistant hard coating-coated tool according to the present invention, which has achieved the above object, has a multi-component metal carbide containing two or more metal elements,
It consists of metal nitride or metal charcoal / nitride coating, and macro particles do not substantially project on the surface, and it is 0.2-2 μm.
The main point is that a hard coating having a crater of the depth of 10 is formed on the surface, and such a tool has two types on the surface of the tool base material by the arc discharge type ion plating method. It can be obtained by forming a multi-component metal carbide, metal nitride or metal carbon / nitride coating containing the above metal elements and then removing macroparticles protruding on the coating surface.

【0013】[0013]

【作用】上記の様に本発明では、工具基材表面に耐摩耗
性向上の為の硬質皮膜として、2種以上の金属元素を含
む多成分系の金属炭化物、金属窒化物または金属炭・窒
化物(以下、単に炭・窒化物ということがある)からな
り、表面にマクロ粒子が実質的に突出しておらず且つ
0.2〜2μmの深さのクレーターを有する硬質皮膜が
形成されたものであり、特にアーク放電方式イオンプレ
ーティング法を採用したときに見られる皮膜表面に突出
したマクロ粒子を除去することにより、当該突出マクロ
粒子に起因するワーク材の溶着を防止し、切削精度を高
めると共に、切削もしくは研摩寿命を延長することに成
功したものである。
As described above, according to the present invention, a multi-component metal carbide, metal nitride or metal carbon / nitride containing two or more metal elements is used as a hard coating for improving wear resistance on the surface of a tool substrate. (Hereinafter sometimes referred to simply as carbon / nitride), in which macro particles are not substantially projected on the surface and a hard coating having craters with a depth of 0.2 to 2 μm is formed. Yes, in particular, by removing the macro particles protruding on the surface of the film, which is seen when the arc discharge method ion plating method is adopted, the welding of the work material due to the protruding macro particles is prevented and the cutting accuracy is improved. It has succeeded in extending the cutting or polishing life.

【0014】本発明において炭・窒化物を構成する金属
の種類は特に限定されず、炭化物・窒化物または炭・窒
化物として高硬度で高耐摩耗性の皮膜を形成し得るもの
であればTi,Al,V,Cr,Zr,Hf等からなる
2種以上の金属が使用可能であるが、性能上格別に優れ
た効果が得られるのはTi,Al,Vから選ばれる2種
の金属の組合せであり、中でも[TiX Al(1-X)
(0.25≦χ≦0.75)]および[Vy Ti
(1-y) :(0.25≦y≦0.75)]は、炭化物、窒
化物または炭・窒化物として優れた耐摩耗性の皮膜を与
えるものとして償用される。
In the present invention, the kind of metal constituting the charcoal / nitride is not particularly limited, and as long as it is a carbide / nitride or a charcoal / nitride that can form a film with high hardness and high wear resistance. , Al, V, Cr, Zr, Hf, etc., can be used, but it is possible to use two kinds of metals selected from Ti, Al, and V that have a particularly excellent effect on performance. A combination, among which [Ti X Al (1-X) :
(0.25 ≦ χ ≦ 0.75)] and [V y Ti
(1-y) : (0.25 ≦ y ≦ 0.75)] is used as a carbide, a nitride, or a charcoal-nitride that gives an excellent wear-resistant coating.

【0015】また、これらの金属は炭化物もしくは窒化
物として夫々優れた耐摩耗性の皮膜を与えるが、中でも
N:C=0.6〜1:0.4〜0[NZ1-Z :(0.
6≦z≦1)]の比率の炭・窒化物は、工具基材に対し
優れた密着性の高硬度皮膜を与えるので好ましい。
[0015] These metals give each excellent wear resistance of the coating as a carbide or nitride, among others N: C = 0.6~1: 0.4~0 [ N Z C 1-Z: (0.
6 ≦ z ≦ 1)] is preferable because it gives a high hardness coating with excellent adhesion to the tool substrate.

【0016】この様な金属炭・窒化物皮膜は、たとえば
カソードを蒸発源とするアーク放電方式イオンプレーテ
ィング法によって形成することができ、より具体的に
は、カソードを蒸発源とするアーク放電によりイオン化
させた2種以上の金属成分を、N2 雰囲気および/また
はCH4 雰囲気等の窒化および/もしくは炭化雰囲気中
でイオンプレーティングすることによって得ることがで
き、この場合、目的とする皮膜組成と同一組成のターゲ
ットを使用すれば、カソード物質の組成ずれを生じるこ
とがないので、安定した組成の皮膜が得られ易い。この
とき、基材にバイアス電圧を印加すると、皮膜の密着性
を一段と高めることができるので好ましい。
Such a metallic carbon / nitride coating can be formed by, for example, an arc discharge type ion plating method using a cathode as an evaporation source, and more specifically, by an arc discharge using a cathode as an evaporation source. It can be obtained by ion plating two or more ionized metal components in a nitriding and / or carbonizing atmosphere such as an N 2 atmosphere and / or a CH 4 atmosphere. When the targets having the same composition are used, the composition of the cathode material does not deviate, so that a film having a stable composition is easily obtained. At this time, it is preferable to apply a bias voltage to the base material because the adhesion of the coating can be further enhanced.

【0017】尚、イオンプレーティング時のガス分圧も
特に限定されないが、好ましいのは1×10-3〜5×1
-2Torr程度であり、この条件では結晶質で耐摩耗
性の一段と優れた硬質皮膜が得られ易い。
The gas partial pressure at the time of ion plating is not particularly limited, but preferably 1 × 10 −3 to 5 × 1.
It is about 0 -2 Torr, and under these conditions, a hard coating that is crystalline and more excellent in wear resistance is easily obtained.

【0018】ところで、上記アーク放電方式イオンプレ
ーティング法によって形成される金属炭・炭化物皮膜は
硬質で優れた耐摩耗性を有しているが、その表面には、
たとえば後記実施例の図2(A)や図3(A)にも示す
如く1〜5μm程度の粗大なマクロ粒子が多数突出して
おり、これが切削もしくは研摩時にワーク材の溶着を生
じさせ、切削・研摩工具としての加工精度を阻害する。
The metal charcoal / carbide coating formed by the arc discharge type ion plating method is hard and has excellent wear resistance.
For example, as shown in FIGS. 2 (A) and 3 (A) of the embodiment described later, a large number of coarse macroparticles of about 1 to 5 μm are projected, which causes welding of the work material during cutting or polishing, and It hinders the processing accuracy as an abrasive tool.

【0019】そこで本発明では、該マクロ粒子の実質的
に全てを研摩除去して表面を平滑化する。このとき、皮
膜表面には上記マクロ粒子の除去跡が0.2〜2.0μ
m程度の浅いクレーターとして残る(後記図2(B)お
よび図3(B)参照)が、このクレーターは、ワーク材
の溶着を生じることなく、使用時の耐溶着性を著しく高
めることができ、それに伴なった加工精度が高められ
る。従って本発明の表面被覆工具は、前記公知の表面被
覆工具との対比において、その表面に深さ0.2〜2.
0μmのクレーターが多数存在することによって特徴付
けられるものであり、こうした表面性状の複合金属炭・
窒化物皮膜が形成された本発明の被覆工具は、硬質で優
れた耐摩耗性と耐溶着性を兼備したものとなる。尚、イ
オンプレーティング後の皮膜表面に突出したマクロ粒子
の除去法は特に限定されないが、好ましいのはバレル研
摩、ガラスビーズ等を用いたブラスト研摩、ラッピング
処理、バフ研摩等であり、これらの方法であれば表面に
突出したマクロ粒子に集中的に研摩力が作用し、皮膜を
殆んど摩耗させることなくマクロ粒子のみを除去するこ
とができるので好ましい。
Therefore, in the present invention, substantially all of the macro particles are removed by polishing to smooth the surface. At this time, traces of removal of the above-mentioned macroparticles on the coating surface are 0.2 to 2.0 μm.
Although it remains as a shallow crater of about m (see FIGS. 2 (B) and 3 (B) below), this crater can significantly enhance the welding resistance during use without causing welding of the work material, As a result, the processing accuracy is increased. Therefore, the surface-coated tool of the present invention has a depth of 0.2 to 2.
It is characterized by the presence of many craters of 0 μm.
The coated tool of the present invention having a nitride film formed thereon is hard and has both excellent wear resistance and welding resistance. The method for removing macroparticles protruding on the coating surface after ion plating is not particularly limited, but preferred are barrel polishing, blast polishing using glass beads, lapping treatment, buff polishing, and the like. In this case, the polishing force is concentrated on the macroparticles protruding on the surface, and only the macroparticles can be removed without almost abrading the coating, which is preferable.

【0020】マクロ粒子除去後(実際は除去前とあまり
変わらない)の好ましい皮膜厚さも特に制限されない
が、薄過ぎる場合は耐摩耗性が不足気味となり、一方厚
過ぎる場合は衝撃力によって皮膜にクラックが入り易く
なる傾向が生じてくるので、通常は0.8〜10μm程
にするのがよい。
The preferred coating thickness after removal of macroparticles (actually not much different from that before removal) is not particularly limited, but if it is too thin, the abrasion resistance tends to be insufficient, while if it is too thick, the coating may crack due to impact force. Since it tends to enter easily, it is usually preferable to set the thickness to about 0.8 to 10 μm.

【0021】ところでたとえば表面皮膜の形成されたソ
リッドボブ等として実用化する場合、通常はすくい面の
刃立て研磨工程で該すくい面の硬質皮膜は大部分が除去
されるが、本発明の工具を得る場合、硬質皮膜形成後の
マクロ粒子除去処理を5〜10分程度の短時間で完了す
る様にすれば、ボブの切刃エッジ部はRが10μm以下
のシャープな状態に保つことができる。そのため、従来
例の様な刃立て加工が不要であり、その結果すくい面に
も硬質皮膜を残したままで実用化できるので、刃部の耐
摩耗性は一段と高められる。
By the way, when it is put into practical use as a solid bob having a surface coating, for example, most of the hard coating on the rake face is usually removed by the step of polishing the rake face. If it is obtained, if the macro particle removal treatment after formation of the hard coating is completed in a short time of about 5 to 10 minutes, the cutting edge portion of the bob can be kept in a sharp state with R of 10 μm or less. Therefore, unlike the conventional example, it is not necessary to perform the cutting process, and as a result, it can be put to practical use with the hard coating left on the rake face, so that the wear resistance of the cutting portion is further enhanced.

【0022】[0022]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited by the following examples, and may be carried out with appropriate modifications within a range compatible with the gist of the preceding and following description. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0023】実施例1 JIS規格SKH55相当の高速度鋼を基材として使用
し、モジュール2.5PA20°、外径80mm×長さ
80mmのソリッドボブ(表面粗さは約1μm)を作製
し、このボブ表面に夫々下記の方法で硬質皮膜を形成し
た。
Example 1 Using a high speed steel equivalent to JIS SKH55 as a substrate, a solid bob (having a surface roughness of about 1 μm) of module 2.5PA 20 °, outer diameter 80 mm × length 80 mm was prepared. Hard coatings were formed on the bob surfaces by the following methods.

【0024】(1)るつぼ方式イオンプレーティングに
よるTiCN皮膜(5μm) (成膜条件) 基板温度 :400℃ バイアス電圧:−150V 反応ガス圧 :7×10-3Torr (2)アーク放電方式イオンプレーティング法による
(Ti,Al)N 皮膜(5μm) (成膜条件) 基板温度 :400℃ バイアス電圧:−150V 反応ガス圧 :7×10-3Torr (3)上記(2)により形成した皮膜形成物のバレル研
磨 (バレル研磨条件)直径2mmのアルミナバレルチップ
と#800WA研磨材を使用、研磨時間10分。
(1) TiCN film by crucible type ion plating (5 μm) (deposition conditions) Substrate temperature: 400 ° C. Bias voltage: −150 V Reaction gas pressure: 7 × 10 −3 Torr (2) Arc discharge type ion plating (Ti, Al) N film (5 μm) by the coating method (film forming condition) Substrate temperature: 400 ° C. Bias voltage: −150 V Reaction gas pressure: 7 × 10 −3 Torr (3) Film formation formed by the above (2) Barrel polishing of objects (barrel polishing conditions) Alumina barrel chips with a diameter of 2 mm and # 800WA abrasive are used, and polishing time is 10 minutes.

【0025】尚、上記(2)で得たソリッドボブの逃げ
面の面粗さ(触針式粗さ計による)は図2(A)および
図3(A)(表面顕微鏡写真)に示す通りであり、表面
に粗大なマクロ粒子が多数突出しており、該マクロ粒子
に由来する最大2.4μm程度の突起が多数存在してい
る。これに対し、該(2)で得た皮膜をバレル研磨した
上記(3)の皮膜表面には、図2(B)および図3
(B)(表面顕微鏡写真)に示す如く、表面のマクロ粒
子が殆んど除去されて該マクロ粒子に由来する突起が殆
んど消失すると共に、その除去跡が深さ0.2〜2.0
μm程度のクレーターとなって表われている。またバレ
ル研磨前後の皮膜厚さはいずれも約5μmで殆んど変化
がなく、該バレル研磨処理では皮膜表面に突出したマク
ロ粒子の除去のみが行なわれていることが確認された。
The surface roughness of the flank surface of the solid bob obtained in (2) above (by a stylus type roughness meter) is as shown in FIG. 2 (A) and FIG. 3 (A) (surface micrograph). That is, a large number of coarse macroparticles are projected on the surface, and a large number of protrusions of maximum 2.4 μm due to the macroparticles are present. On the other hand, the film surface obtained in (3) obtained by barrel-polishing the film obtained in (2) above has a surface as shown in FIG.
As shown in (B) (surface micrograph), most of the macroparticles on the surface are removed and most of the projections derived from the macroparticles disappear, and the removal traces have a depth of 0.2-2. 0
It appears as a crater of about μm. Further, the coating thickness before and after barrel polishing was about 5 μm, which showed almost no change, and it was confirmed that only the macroparticles protruding on the coating surface were removed by the barrel polishing treatment.

【0026】上記(1)〜(3)で得た各表面被覆ソリ
ッドボブのすくい面を刃立て研磨した後、下記の条件で
歯車の切削加工を行ない、逃げ面摩耗量の変化と刃先面
へのワークの溶着の有無を調べたところ、図1および表
1に示す結果を得た。 (切削条件) 被削材:SRC420(HB:140〜160)、M
2.5、PA20°、歯数31、ねじれ角30°34’
RH、歯幅25mm、 切削条件:切削速度・100m/min、送り3.1m
m/rev.ノンシフト
After rake-polishing the rake face of each surface-coated solid bob obtained in (1) to (3) above, the gear is cut under the following conditions to change the amount of flank wear and the edge face. When the presence or absence of welding of the workpiece was examined, the results shown in FIG. 1 and Table 1 were obtained. (Cutting conditions) Work material: SRC420 (HB: 140 to 160), M
2.5, PA 20 °, number of teeth 31, twist angle 30 ° 34 '
RH, tooth width 25 mm, cutting conditions: cutting speed / 100 m / min, feed 3.1 m
m / rev. Non-shift

【0027】[0027]

【表1】 [Table 1]

【0028】上記図1からも明らかである様に、(2)
(比較例)および(3)(実施例)は(1)(比較例)
に比べて2.5倍以上の耐摩耗性を示している。一方、
表1からも明らかである様に、(2)では刃立て部にワ
ーク材の溶着が認められるのに対し、(3)ではこの様
な溶着も全く認められない。
As is clear from FIG. 1, (2)
(Comparative example) and (3) (Example) are (1) (Comparative example)
The wear resistance is 2.5 times or more as compared with. on the other hand,
As is clear from Table 1, in (2), welding of the work material was observed at the blade stand, whereas in (3), no such welding was observed at all.

【0029】これは、(2),(3)ではアーク放電方
式イオンプレーティングにより(1)のTiCNに較べ
て高耐摩耗性の(Ti,Al)N膜が形成されているた
めであり、また(3)の実施例では、皮膜形成後の表面
研磨処理によって皮膜表面に突出した粗大なミクロ粒子
が除去され(前記図2(B)参照)、表面平滑性も高め
られたことによるものと考えられる。尚、(1)の比較
例では、(3)の実施例と同程度の表面粗さが得られて
おり、ワーク材の溶着は認められないが、皮膜そのもの
の耐摩耗性が劣り、本発明で意図する様な高レベルの切
削性能が得られない。
This is because, in (2) and (3), a (Ti, Al) N film having higher wear resistance than that of TiCN in (1) is formed by arc discharge type ion plating. Further, in the example of (3), coarse microparticles protruding on the surface of the coating were removed by the surface polishing treatment after the coating was formed (see FIG. 2B), and the surface smoothness was also enhanced. Conceivable. In the comparative example of (1), the same degree of surface roughness as in the example of (3) was obtained, and no welding of the work material was observed, but the abrasion resistance of the coating itself was poor, and The desired high level cutting performance cannot be obtained.

【0030】実施例2 JIS規格SKH51相当の高速度鋼を基材として用い
て、外径11mmのJIS規格ドリルを製作し、夫々の
ドリル刃部表面に下記の方法で硬質皮膜を形成した。
Example 2 A JIS standard drill having an outer diameter of 11 mm was manufactured using high speed steel equivalent to JIS standard SKH51 as a base material, and a hard coating was formed on the surface of each drill blade by the following method.

【0031】(1a)るつぼ方式イオンプレーティング
TiCN皮膜(4μm) (成膜条件) 基板温度 :400℃ バイアス電圧:−150V 反応ガス圧 :7×10-3Torr (2a)アーク放電方式イオンプレーティング法による
TiN皮膜(4μm) (成膜条件) 基板温度 :400℃ バイアス電圧:−150V 反応ガス圧 :7×10-3Torr (3a)アーク放電方式イオンプレーティング法による
(Ti0.5 ,V0.5 ) N皮膜(4μm) (成膜条件) 基板温度 :400℃ バイアス電圧:−150V 反応ガス圧 :7×10-3Torr (4a)上記(3a)により形成した皮膜形成物のバレ
ル研磨 (研磨後厚さ:約4μm) (バレル研磨条件)直径2mmのアルミナバレルチップ
と#800WA研磨材を使用し、10分間研磨。
(1a) Crucible type ion plating TiCN film (4 μm) (deposition conditions) Substrate temperature: 400 ° C. Bias voltage: −150 V Reaction gas pressure: 7 × 10 −3 Torr (2a) Arc discharge type ion plating TiN film (4 μm) by method (deposition conditions) Substrate temperature: 400 ° C. Bias voltage: −150 V Reaction gas pressure: 7 × 10 −3 Torr (3a) By arc discharge type ion plating method (Ti 0.5 , V 0.5 ). N film (4 μm) (film forming condition) Substrate temperature: 400 ° C. Bias voltage: −150 V Reaction gas pressure: 7 × 10 −3 Torr (4a) Barrel polishing of the film formed by the above (3a) (thickness after polishing) (Approximately 4 μm) (Barrel polishing conditions) Polishing for 10 minutes using an alumina barrel tip with a diameter of 2 mm and # 800WA abrasive.

【0032】得られた各表面被覆ドリルを使用し、下記
の条件で切削試験を行なって切削寿命およびワーク材の
溶着状況を調べたところ、表2に示す結果を得た。 (切削条件) ワーク材:S50C(穴明け加工)、各5本切削 切削速度:30m/min 送り :0.22mm/rev 切削長さ:20mm(貫通) 切削油 :水性エマルジョン型切削油
Using each of the obtained surface-coated drills, a cutting test was conducted under the following conditions to examine the cutting life and the welding condition of the work material, and the results shown in Table 2 were obtained. (Cutting conditions) Work material: S50C (drilling), 5 cuttings each Cutting speed: 30 m / min Feed: 0.22 mm / rev Cutting length: 20 mm (penetration) Cutting oil: Water-based emulsion cutting oil

【0033】[0033]

【表2】 [Table 2]

【0034】表2からも明らかである様に、(1a),
(2a)の比較例は切削寿命が乏しく、また(3a)の
比較材はワーク材の溶着が著しく、いずれも本発明の目
的を達成できない。これらに対し(4a)の実施例で
は、ワーク材の溶着が殆んど認められず且つ非常に優れ
た切削寿命が得られている。
As is clear from Table 2, (1a),
The comparative example of (2a) has a short cutting life, and the comparative material of (3a) shows remarkable welding of the work material, and neither of them can achieve the object of the present invention. On the other hand, in the example of (4a), almost no welding of the work material was observed and a very excellent cutting life was obtained.

【0035】[0035]

【発明の効果】本発明は以上の様に構成されており、ワ
ーク材の溶着やそれに伴なう加工精度の低下といった問
題を生じることなく非常に優れた摩耗寿命を発揮する表
面被覆工具を提供し得ることになった。
The present invention is constituted as described above, and provides a surface-coated tool which exhibits a very excellent wear life without causing problems such as welding of work materials and accompanying reduction in processing accuracy. I was able to do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】実験例で得た表面被覆工具の逃げ面摩耗量と加
工数の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the flank wear amount and the number of machining of a surface-coated tool obtained in an experimental example.

【図2】実施例および比較例で得た被覆工具の表面粗さ
を示す図である。
FIG. 2 is a diagram showing the surface roughness of coated tools obtained in Examples and Comparative Examples.

【図3】実施例および比較例で得た被覆工具の表面性状
を示す図面代用顕微鏡写真である。
FIG. 3 is a drawing-substituting micrograph showing surface properties of coated tools obtained in Examples and Comparative Examples.

【図4】アーク放電方式によるイオンプレーティング法
を例示する概念説明図である。
FIG. 4 is a conceptual explanatory view illustrating an ion plating method using an arc discharge method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2種以上の金属元素を含む多成分系の金
属炭化物、金属窒化物または金属炭・窒化物皮膜からな
り、表面にマクロ粒子が実質的に突出しておらず、0.
2〜2μmの深さのクレーターを有する硬質皮膜が表面
に形成されたものであることを特徴とする耐摩耗性・耐
溶着性硬質皮膜被覆工具。
1. A multi-component metal carbide, metal nitride or metal charcoal / nitride coating film containing two or more kinds of metal elements, in which macro particles are not substantially projected on the surface,
A hard coating-coated tool having wear resistance and welding resistance, characterized in that a hard coating having a crater with a depth of 2 to 2 μm is formed on the surface.
【請求項2】 工具基材の表面に、アーク放電式イオン
プレーティング法によって2種以上の金属元素を含む多
成分系の金属炭化物、金属窒化物または金属炭・窒化物
皮膜を形成した後、該皮膜表面に突出したマクロ粒子を
除去し、0.2〜2μmの深さのクレーターを有する硬
質皮膜を得ることを特徴とする耐摩耗性・耐溶着性硬質
皮膜被覆工具の製法。
2. A multi-component metal carbide, metal nitride or metal carbon / nitride coating film containing two or more metal elements is formed on the surface of a tool base material by an arc discharge type ion plating method, A method for producing a wear-resistant and welding-resistant hard film-coated tool, characterized in that macro particles protruding on the film surface are removed to obtain a hard film having a crater with a depth of 0.2 to 2 μm.
JP30438793A 1993-12-03 1993-12-03 Abrasion and welding resistant hard film coated tool and its manufacturing method Expired - Lifetime JP2901043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30438793A JP2901043B2 (en) 1993-12-03 1993-12-03 Abrasion and welding resistant hard film coated tool and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30438793A JP2901043B2 (en) 1993-12-03 1993-12-03 Abrasion and welding resistant hard film coated tool and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH07157862A true JPH07157862A (en) 1995-06-20
JP2901043B2 JP2901043B2 (en) 1999-06-02

Family

ID=17932411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30438793A Expired - Lifetime JP2901043B2 (en) 1993-12-03 1993-12-03 Abrasion and welding resistant hard film coated tool and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2901043B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059303A (en) * 2000-08-21 2002-02-26 Toshiba Tungaloy Co Ltd Hard film having excellent sliding performance and covering tool thereof
JP2002146515A (en) * 2000-11-14 2002-05-22 Toshiba Tungaloy Co Ltd Hard film superior in slidableness and its coating tool
JP2004255482A (en) * 2003-02-25 2004-09-16 Hitachi Tool Engineering Ltd Coated end mill
JP2004268250A (en) * 2003-02-17 2004-09-30 Hitachi Tool Engineering Ltd Coating end mill and target for coating
JP2004298972A (en) * 2003-03-28 2004-10-28 Hitachi Tool Engineering Ltd Coated insert
JP2004306237A (en) * 2003-04-10 2004-11-04 Hitachi Tool Engineering Ltd Coated end mill and roughing
JP2004306216A (en) * 2003-04-09 2004-11-04 Hitachi Tool Engineering Ltd Coated cemented carbide end mill
JP2004314092A (en) * 2003-04-11 2004-11-11 Hitachi Tool Engineering Ltd Coated die
JP2004337989A (en) * 2003-05-13 2004-12-02 Hitachi Tool Engineering Ltd Coated high-speed steel tool
JP2005205516A (en) * 2004-01-21 2005-08-04 Yunitakku Kk Method of manufacturing cutting tool and cutting tool
JP2007083382A (en) * 2005-08-26 2007-04-05 Sumitomo Electric Hardmetal Corp Hard carbon coating tool
KR100866205B1 (en) * 2001-05-25 2008-10-30 니혼도꾸슈도교 가부시키가이샤 Cutting tool and holder-carrying tool
US7476064B2 (en) 2006-04-27 2009-01-13 Kyocera Corporation Cutting tool and method of cutting workpiece
JP2009233851A (en) * 2009-07-21 2009-10-15 Mitsubishi Materials Corp Grooved tool
US20100135737A1 (en) * 2005-10-28 2010-06-03 Kyocera Corporation Surface Coated Member and Manufacturing Method Thereof, and Cutting Tool
US8304098B2 (en) 2007-10-12 2012-11-06 Hitachi Tool Engineering, Ltd. Hard-coated member, and its production method
US20170036274A1 (en) * 2014-04-25 2017-02-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Cutting tool
CN108118288A (en) * 2017-12-27 2018-06-05 太仓瑞鼎精密机械科技有限公司 A kind of welding reamer coating pretreating process

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059303A (en) * 2000-08-21 2002-02-26 Toshiba Tungaloy Co Ltd Hard film having excellent sliding performance and covering tool thereof
JP2002146515A (en) * 2000-11-14 2002-05-22 Toshiba Tungaloy Co Ltd Hard film superior in slidableness and its coating tool
KR100866205B1 (en) * 2001-05-25 2008-10-30 니혼도꾸슈도교 가부시키가이샤 Cutting tool and holder-carrying tool
JP2004268250A (en) * 2003-02-17 2004-09-30 Hitachi Tool Engineering Ltd Coating end mill and target for coating
JP2004255482A (en) * 2003-02-25 2004-09-16 Hitachi Tool Engineering Ltd Coated end mill
JP2004298972A (en) * 2003-03-28 2004-10-28 Hitachi Tool Engineering Ltd Coated insert
JP2004306216A (en) * 2003-04-09 2004-11-04 Hitachi Tool Engineering Ltd Coated cemented carbide end mill
JP2004306237A (en) * 2003-04-10 2004-11-04 Hitachi Tool Engineering Ltd Coated end mill and roughing
JP2004314092A (en) * 2003-04-11 2004-11-11 Hitachi Tool Engineering Ltd Coated die
JP2004337989A (en) * 2003-05-13 2004-12-02 Hitachi Tool Engineering Ltd Coated high-speed steel tool
JP2005205516A (en) * 2004-01-21 2005-08-04 Yunitakku Kk Method of manufacturing cutting tool and cutting tool
JP2007083382A (en) * 2005-08-26 2007-04-05 Sumitomo Electric Hardmetal Corp Hard carbon coating tool
US20100135737A1 (en) * 2005-10-28 2010-06-03 Kyocera Corporation Surface Coated Member and Manufacturing Method Thereof, and Cutting Tool
US7476064B2 (en) 2006-04-27 2009-01-13 Kyocera Corporation Cutting tool and method of cutting workpiece
US8304098B2 (en) 2007-10-12 2012-11-06 Hitachi Tool Engineering, Ltd. Hard-coated member, and its production method
JP2009233851A (en) * 2009-07-21 2009-10-15 Mitsubishi Materials Corp Grooved tool
US20170036274A1 (en) * 2014-04-25 2017-02-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Cutting tool
US10265776B2 (en) * 2014-04-25 2019-04-23 Kobe Steel, Ltd. Cutting tool
CN108118288A (en) * 2017-12-27 2018-06-05 太仓瑞鼎精密机械科技有限公司 A kind of welding reamer coating pretreating process

Also Published As

Publication number Publication date
JP2901043B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP2901043B2 (en) Abrasion and welding resistant hard film coated tool and its manufacturing method
Randhawa et al. A review of cathodic arc plasma deposition processes and their applications
US5656383A (en) Coated member having excellent hardness and, adhesive properties
JP4018480B2 (en) Coated hard tool
KR20090032016A (en) Method of making a coated cutting tool
JP2004308008A (en) Cutting tool and method for manufacturing the same
JP2007001007A (en) Composite coating film for finishing hardened steel
JP7479782B2 (en) Solid carbide end milling cutter with TiAlN-ZrN coating
US8440327B2 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
JPH07171706A (en) Coating tool and cutting process
JP5286626B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5286625B2 (en) Surface-coated cutting tool and manufacturing method thereof
EP3661685B1 (en) Tap drill with enhanced performance
JP4936703B2 (en) Surface coated cutting tool
JP3950385B2 (en) Surface coated cutting tool
JP2004042149A (en) Coated cutting tool
JP4116382B2 (en) Coated hard tool
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JP3045184B2 (en) Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool
JP4575009B2 (en) Coated cutting tool
JP2005028544A (en) Coated tool and method of manufacturing the same
US4936959A (en) Method of making cutting tool for aluminum work pieces having enhanced crater wear resistance
JP3822655B2 (en) Hard film and hard film coated member with excellent wear resistance
JP2003145309A (en) Diamond-coated machining tool
US5069092A (en) Cutting tool for aluminum workpieces having enhanced crater wear resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990209

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

EXPY Cancellation because of completion of term