JP2002160107A - Surface coating tool - Google Patents

Surface coating tool

Info

Publication number
JP2002160107A
JP2002160107A JP2000360138A JP2000360138A JP2002160107A JP 2002160107 A JP2002160107 A JP 2002160107A JP 2000360138 A JP2000360138 A JP 2000360138A JP 2000360138 A JP2000360138 A JP 2000360138A JP 2002160107 A JP2002160107 A JP 2002160107A
Authority
JP
Japan
Prior art keywords
coating layer
cutting
cemented carbide
tool
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000360138A
Other languages
Japanese (ja)
Inventor
Hiroshi Ohata
浩志 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000360138A priority Critical patent/JP2002160107A/en
Publication of JP2002160107A publication Critical patent/JP2002160107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coating tool having improved chipping resistance and a stable cutting performance without reducing abrasion resistance in precise cutting operation, and stably hold surface accuracy of a workpiece in the precise cutting operation. SOLUTION: This surface coating tool has a coating layer comprising nitride, carbonitride, nitrogen oxide of Al, one or more of 4a, 5a, and 6a group metals in a periodic table, and Ti on the surface of a cemented carbide member in an arc ion plating method. One hundred or less bulky metal particles with a diameter of 1 μm or more lie in area of 50 μm2 on the coating layer surface, and an arithmetic mean roughness Ra of the cemented carbide member before forming the coating layer and an arithmetic mean roughness Ra' of the coating layer after forming the coating layer have a relation Ra'/Ra<1.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は表面被覆工具に関
し、特に精密加工に適した表面被覆工具に関する。
The present invention relates to a surface-coated tool, and more particularly to a surface-coated tool suitable for precision machining.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】切込
み量と送り量が数μm〜数十μmオーダーの精密加工用
工具としては、超硬合金部材の表面に硬質被覆層を形成
した表面被覆工具が用いられる。
2. Description of the Related Art As a precision machining tool having a cutting amount and a feeding amount on the order of several μm to several tens μm, a surface coating tool having a hard coating layer formed on the surface of a cemented carbide member is known. Is used.

【0003】この被覆層としては、通常2種類以上の金
属元素を含む複合組成の被覆層が用いられる。2種類以
上の金属元素を含む複合組成の被覆層を作製するのに適
したコーティング手法のひとつとしてアークイオンプレ
ーティング方式があり、工業的に広く利用されている。
As the coating layer, a coating layer of a composite composition containing two or more metal elements is usually used. One of the coating techniques suitable for producing a coating layer having a composite composition containing two or more metal elements is an arc ion plating method, which is widely used industrially.

【0004】このアークイオンプレーティング法は、陰
極に蒸発源となる金属物質をとりつけ、アーク放電によ
り金属物質の蒸気を発生させる方法である。この金属物
質の蒸気と装置内に導入した窒素ガスや炭素含有ガス
(メタンやアセチレンなど)とを反応させることで、金
属窒化物、金属炭化物、金属炭窒化物などの薄膜を基体
の表面に成膜する。
The arc ion plating method is a method in which a metal material serving as an evaporation source is attached to a cathode, and a vapor of the metal material is generated by arc discharge. By reacting the vapor of the metal substance with a nitrogen gas or a carbon-containing gas (such as methane or acetylene) introduced into the apparatus, a thin film of metal nitride, metal carbide, or metal carbonitride is formed on the surface of the substrate. Film.

【0005】この方法の利点は、蒸発源になる金属物質
の組成を変えることで複合金属組成の成膜が可能である
こと、蒸発源は全体として固体状態を保持するので立体
的に配置できるため、処理空間の効率的な利用が可能と
なり、かつ成膜時間が短縮できることなどである。
The advantages of this method are that a composite metal composition can be formed by changing the composition of the metal material serving as the evaporation source, and that the evaporation source can be three-dimensionally arranged since it maintains a solid state as a whole. That is, the processing space can be efficiently used, and the film formation time can be shortened.

【0006】ところが、アークイオンプレーティング方
式の被覆層形成装置を用いた場合、成膜された被覆層の
表面にマクロパーティクルやドロップレットと呼ばれる
金属元素の粗大粒子が付着することが知られている。こ
の粗大粒子は蒸発源表面のある部分にアーク放電が集中
して粗大溶融粒子が生成し、それが被覆層の表面に付着
して残存したものである。このような溶融粒子の大きさ
は数ミクロンから数十ミクロンに達することがある。
However, when an arc ion plating type coating layer forming apparatus is used, it is known that coarse particles of metal elements called macro particles and droplets adhere to the surface of the formed coating layer. . These coarse particles are particles in which arc discharge is concentrated on a certain portion of the evaporation source surface to generate coarse molten particles, which adhere to the surface of the coating layer and remain. The size of such molten particles can range from a few microns to tens of microns.

【0007】この粒子サイズは通常の切削加工では問題
にならないが、切削時の切込み量や工具送り量がミクロ
ンオーダーの超精密切削加工では十分大きいものとな
る。この結果、超精密切削加工ではこのような溶融粒子
が加工精度の劣化の原因になったり、硬質被覆層の破壊
の起点になるなど、切削性能の低下の要因になるという
問題があった。
Although this particle size does not cause a problem in ordinary cutting, it becomes sufficiently large in ultra-precision cutting in which the cutting depth and the tool feed amount in cutting are on the order of microns. As a result, in the ultra-precision cutting, there is a problem that such molten particles cause a deterioration of the processing accuracy and a starting point of destruction of the hard coating layer, thereby causing a problem of a decrease in cutting performance.

【0008】また、切削加工とは切削工具の表面形状を
加工物に転写していく加工法であるため、金属元素の付
着による切削工具の表面の精度低下は、そのまま被加工
物の表面精度の低下につながる。
[0008] Further, since cutting is a processing method in which the surface shape of a cutting tool is transferred to a workpiece, a decrease in the precision of the surface of the cutting tool due to the attachment of a metal element is directly affected by the surface accuracy of the workpiece. Leads to a decline.

【0009】本発明者は、上記の問題点について検討を
重ねた結果、超硬合金基体の表面に被覆層を形成する際
に、表面に付着する粗大金属粒子数が50μm四方に1
00個以下しか残留しないように抑制することにより、
精密切削加工において耐摩耗性を低下させることなく耐
欠損性を向上させ、安定した切削性能を有する表面被覆
工具が得られることを知見し、本発明に至った。
As a result of repeated investigations on the above problems, the present inventor has found that when a coating layer is formed on the surface of a cemented carbide substrate, the number of coarse metal particles adhering to the surface is 1 μm square.
By suppressing not more than 00 remaining,
The present inventors have found that a surface-coated tool having improved cutting resistance without deteriorating wear resistance in precision cutting and having stable cutting performance can be obtained, and the present invention has been accomplished.

【0010】また、超硬合金の表面に被覆層を形成する
前の母材の算術平均粗さをRa、被覆層を形成した後の
被覆層の算術平均粗さをRa’とした場合、被覆層を形
成する前後の算術平均粗さの比率Ra’/Raを、R
a’/Ra<1.0の範囲にすることにより、精密切削
加工において重要な因子となる加工物の表面精度を安定
して保持できることを知見し、本発明に至った。
When the arithmetic average roughness of the base material before forming the coating layer on the surface of the cemented carbide is Ra and the arithmetic average roughness of the coating layer after forming the coating layer is Ra ', The ratio Ra ′ / Ra of the arithmetic average roughness before and after forming the layer is represented by R
It has been found that by setting a '/ Ra <1.0, it is possible to stably maintain the surface accuracy of a workpiece, which is an important factor in precision cutting, leading to the present invention.

【0011】[0011]

【課題を解決するための手段】本発明はこのような知見
に基づいてなされたものであり、請求項1に係る表面被
覆工具は、超硬合金部材の表面に、Alまたは周期律表
4a、5a、6a族金属のうちのいずれか一種以上とT
iとの窒化物、炭窒化物、または窒酸化物から成る被覆
層を設けた表面被覆工具において、前記被覆層表面に直
径1μm以上の粗大金属粒子が50μm四方に100個
以下で残存することを特徴とする。
Means for Solving the Problems The present invention has been made based on such findings, and a surface-coated tool according to claim 1 is characterized in that Al or periodic table 4a, Any one or more of metals from group 5a and 6a and T
In a surface-coated tool provided with a coating layer comprising a nitride, a carbonitride, or a nitride oxide with i, it is determined that 100 or less coarse metal particles having a diameter of 1 μm or more remain on the surface of the coating layer in 50 μm squares. Features.

【0012】また、請求項2に係る表面被覆工具は、超
硬合金部材の表面に、Alまたは周期律表4a、5a、
6a族金属のうちのいずれか一種以上とTiとの窒化
物、炭窒化物、または窒酸化物から成る被覆層を設けた
表面被覆工具において、前記被覆層を形成する前の前記
超硬合金部材の算術平均粗さをRaとし、前記被覆層を
形成した後のこの被覆層の算術平均粗さをRa’とする
とき、このRaとRa’がRa’/Ra<1.0の関係
にあることを特徴とする。
The surface-coated tool according to claim 2 is characterized in that Al or periodic table 4a, 5a,
In a surface-coated tool provided with a coating layer made of a nitride, carbonitride, or nitride oxide of at least one of Group 6a metals and Ti, the cemented carbide member before forming the coating layer Where Ra is the arithmetic average roughness of the coating layer and Ra ′ is the arithmetic average roughness of the coating layer after the coating layer is formed, the Ra and Ra ′ have a relationship of Ra ′ / Ra <1.0. It is characterized by the following.

【0013】上記請求項1及び請求項2に係る表面被覆
工具では、被覆層厚さを0.5〜10μmとすることが
望ましい。
In the surface-coated tool according to the first and second aspects, it is desirable that the thickness of the coating layer is 0.5 to 10 μm.

【0014】[0014]

【発明の実施の形態】以下、各請求項に係る発明を詳述
する。請求項1に係る表面被覆工具の被膜は、Alまた
は周期律表4a、5a、6a族金属のうちのいずれか一
種以上とTiとの窒化物、炭化物、炭窒化物、または窒
酸化物からなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the invention according to each claim will be described in detail. The coating of the surface-coated tool according to claim 1 is made of a nitride, carbide, carbonitride, or nitride oxide of Ti or any one or more of the metals in the group 4a, 5a, and 6a of the periodic table. .

【0015】この被覆層は、Tiを必須成分とし、Al
またはCr、Zr、V等の周期律表4a、5a、6a族
金属から選ばれた1種または2種以上の金属元素と、窒
素、炭素、酸素のうちの1種または2種以上の非金属元
素で構成される。全金属元素に占めるTi元素の比率は
50〜75原子%が望ましい。さらに望ましくは55〜
65%が望ましい。Ti元素の比率が75%より多い
と、被覆層の硬度が低下して切削工具として使用した場
合に耐摩耗性が不十分となる。また、Ti元素が50%
より少ないと不安定相であるAlNが部分的に析出し、
切削加工時に切れ刃が剥離したり異常摩耗する原因とな
る。
This coating layer contains Ti as an essential component and Al
Alternatively, one or two or more metal elements selected from Group 4a, 5a, and 6a metals of the periodic table such as Cr, Zr, and V, and one or more nonmetals of nitrogen, carbon, and oxygen It is composed of elements. It is desirable that the ratio of the Ti element to all the metal elements is 50 to 75 atomic%. More preferably 55 to
65% is desirable. When the ratio of the Ti element is more than 75%, the hardness of the coating layer decreases, and the wear resistance becomes insufficient when used as a cutting tool. Also, the Ti element is 50%
If less, AlN which is an unstable phase partially precipitates,
During cutting, the cutting edge may peel off or become abnormally worn.

【0016】基体は、超硬合金で構成される。超硬合金
はK種超硬合金(WC−Co系)あるいはP種超硬合金
(WC−β−Co系)のいずれでもよい。精密加工用と
して鋭い切刃状が要求されるため、硬質相粒子径が1.
0μm以下の微粒もしくは超微粒超硬合金が望ましい。
硬質相粒子が1.0μmより大きいと切れ刃の微小な脱
落や塑性変形が発生しやすくなる。
The substrate is made of a cemented carbide. The cemented carbide may be either a K-class cemented carbide (WC-Co-based) or a P-class cemented carbide (WC-β-Co-based). Since sharp cutting edges are required for precision machining, the hard phase particle diameter is 1.
Fine or ultra-fine cemented carbide of 0 μm or less is desirable.
If the hard phase particles are larger than 1.0 μm, minute falling off of the cutting edge and plastic deformation tend to occur.

【0017】粗大金属粒子の大きさや付着数は、被覆後
の工具表面の電子顕微鏡像を撮影してカウントする。画
像処理ソフトウェアを利用して自動的にカウントするこ
とも可能である。電子顕微鏡像は倍率1000〜500
0倍程度が適当である。50μm四方が見渡せる倍率と
視野に調整し、視野内に存在する直径1μm以上の粗大
金属粒子数をカウントする。直径1μm未満の付着粒子
については、切削工具としての性能に影響しないので付
着粒子数から除外する。
The size and the number of adhered coarse metal particles are counted by taking an electron microscope image of the coated tool surface. It is also possible to automatically count using image processing software. Electron microscope images are at magnifications of 1000 to 500
About 0 times is appropriate. The magnification is adjusted to a field of view and a field of view of 50 μm square, and the number of coarse metal particles having a diameter of 1 μm or more existing in the field of view is counted. Adhered particles having a diameter of less than 1 μm are excluded from the number of adhered particles because they do not affect the performance as a cutting tool.

【0018】直径1μm以上の粗大金属粒子の付着数
は、50μm四方に100個以下であり、さらには20
個以下であることが望ましい。粗大金属粒子数が50μ
m四方に100個より多く存在すると、この粗大金属粒
子が切削加工時に被削材や切りくずと衝突して脱落した
り、被覆層や直下の基体の一部を伴って脱落し、切れ刃
損傷、欠損、異常摩耗などを引き起こす。
The number of coarse metal particles having a diameter of 1 μm or more is 100 or less in a square of 50 μm, and 20 or less.
It is desirable that the number is not more than the number. 50μ of coarse metal particles
If more than 100 particles are present in each square, the coarse metal particles collide with the work material or chips during the cutting process and fall off, or fall off with the coating layer or a part of the base immediately below, resulting in damage to the cutting edge. , Loss, abnormal wear, etc.

【0019】また、被覆層を形成する前後の切削工具の
算術平均粗さは、触針式表面粗さ計、非接触式レーザー
表面粗さ計などを使用して測定する。表面粗さの代表値
としてはJIS B 0601に規定される算術平均粗
さ(Ra)を利用する。被覆層を形成する前後の算術平
均粗さの比率Ra’/Raは、Ra’/Ra<1.0で
ある。
The arithmetic average roughness of the cutting tool before and after forming the coating layer is measured using a stylus type surface roughness meter, a non-contact type laser surface roughness meter, or the like. As a representative value of the surface roughness, an arithmetic average roughness (Ra) specified in JIS B0601 is used. The arithmetic average roughness ratio Ra ′ / Ra before and after forming the coating layer is Ra ′ / Ra <1.0.

【0020】Ra’/Raが1.0以上では、被覆層に
よる耐摩耗性の向上効果よりも、成膜時の粗大金属粒子
の付着などの理由で算術平均粗さが劣化し、切れ刃の損
傷、加工物の精度劣化などを引き起こし、切削工具とし
ての性能が劣化する。Ra’/Raの値は0に近いほど
平坦で滑らかな被覆層となるが、基体の加工精度の限界
等の理由から、現時点では0.3が下限値である。
When Ra ′ / Ra is 1.0 or more, the arithmetic average roughness is deteriorated due to the attachment of coarse metal particles during film formation and the like, and the effect of the coating layer is deteriorated rather than the effect of improving the wear resistance by the coating layer. It causes damage, deterioration of the precision of the work, etc., and the performance as a cutting tool deteriorates. The closer to 0 the value of Ra '/ Ra is, the smoother and smoother the coating layer is. However, at the present time, the lower limit is 0.3 for reasons such as limitations on the processing accuracy of the substrate.

【0021】直径1μm以上の粗大金属粒子の付着数を
50μm四方に100個以下しか存在しないように抑制
するために、また被覆層を形成する前後の切削工具の算
術平均粗さRa’/Raを1.0未満にするためには、
蒸発金属におけるアーク放電の挙動を精密に制御して、
粗大粒子の生成要因であるアークスポットの異常成長を
抑制し、均一な金属の蒸発を維持することが必要であ
る。具体的にはアークスポットの発生時間を短くし、素
早く均等に発生させることで均一な蒸発が可能となる。
In order to suppress the number of coarse metal particles having a diameter of 1 μm or more from adhering to only 100 or less in a 50 μm square, the arithmetic average roughness Ra ′ / Ra of the cutting tool before and after forming the coating layer is determined. To make it less than 1.0,
By precisely controlling the behavior of the arc discharge in the evaporated metal,
It is necessary to suppress abnormal growth of the arc spot, which is a factor for generating coarse particles, and to maintain uniform evaporation of metal. Specifically, uniform evaporation can be achieved by shortening the arc spot generation time and quickly and uniformly generating the arc spot.

【0022】(実施例1)基体としてWC90wt%、
Co8wt%、β2wt%の組成の超硬合金を使用し
た。WC粒径は0.6μm、β粒径は1.0μmとし
た。焼結体の上面、側面、底面をダイヤモンドホイール
で研削加工して目的の形状、寸法とした。加工後は酸、
アルカリ、純水、有機溶剤で洗浄し、表面の油、錆、し
みなどの汚れを除去する。
(Example 1) WC 90 wt% as a substrate,
A cemented carbide having a composition of Co 8 wt% and β 2 wt% was used. The WC particle size was 0.6 μm, and the β particle size was 1.0 μm. The top, side, and bottom surfaces of the sintered body were ground with a diamond wheel to obtain the desired shape and dimensions. Acid after processing,
Wash with alkali, pure water and organic solvent to remove oil, rust, stains and other stains on the surface.

【0023】被覆層の成膜にはアークイオンプレーティ
ング装置を、蒸発金属にはTi−Al合金を、原料ガス
には窒素を使用して複合窒化物を作製した。ここでTi
−Al合金の組成で50:50(原子比)、窒素ガスは
圧力4Pa(流量1000ml/min)、バイアス電
圧は30Vとした。
An arc ion plating apparatus was used to form the coating layer, a Ti-Al alloy was used as the evaporated metal, and nitrogen was used as the raw material gas to produce a composite nitride. Where Ti
The composition of the Al alloy was 50:50 (atomic ratio), the pressure of nitrogen gas was 4 Pa (flow rate 1000 ml / min), and the bias voltage was 30 V.

【0024】粗大金属粒子数を所定値以下にしたり、R
a’/Ra<1.0にするために、上述したようなアー
ク挙動の精密制御を実施した。コーティングの前工程と
してアルゴンイオンによるボンバード処理を行ない、コ
ーティング母材の清浄度を更に向上させた。ボンバード
時間は合計20分とした。成膜は15分行ない、膜厚
2.5μmとした。(サンプル1)
When the number of coarse metal particles is reduced to a predetermined value or less, R
In order to satisfy a '/ Ra <1.0, the above-described precise control of the arc behavior was performed. As a pre-coating step, bombardment treatment with argon ions was performed to further improve the cleanliness of the coating base material. The bombard time was 20 minutes in total. The film was formed for 15 minutes to a thickness of 2.5 μm. (Sample 1)

【0025】(実施例2)基体としてWC87wt%、
Co13wt%の組成の超硬合金を使用した。WC粒径
は0.3μmとした。焼結体の上面、側面、底面をダイ
ヤモンドホイールで研削加工して目的の形状、寸法とし
た。加工後は酸、アルカリ、純水、有機溶剤で洗浄し、
表面の油、錆、しみなどの汚れを除去する。
(Example 2) WC 87 wt% as a substrate,
A cemented carbide having a composition of 13% by weight of Co was used. The WC particle size was 0.3 μm. The top, side, and bottom surfaces of the sintered body were ground with a diamond wheel to obtain the desired shape and dimensions. After processing, wash with acid, alkali, pure water, organic solvent,
Removes dirt such as oil, rust, and stains on the surface.

【0026】被覆層の成膜にはアークイオンプレーティ
ング装置を、蒸発金属にはTi−Al合金を、原料ガス
には窒素を使用して複合窒化物を作製した。ここでTi
−Al合金の組成で50:50(原子比)、窒素ガスは
圧力4Pa(流量1000ml/min)、バイアス電
圧は30Vとした。
An arc ion plating apparatus was used to form the coating layer, a Ti-Al alloy was used as the evaporated metal, and nitrogen was used as the raw material gas to produce a composite nitride. Where Ti
The composition of the Al alloy was 50:50 (atomic ratio), the pressure of nitrogen gas was 4 Pa (flow rate 1000 ml / min), and the bias voltage was 30 V.

【0027】粗大金属粒子数を所定値以下にするため、
かつRa’/Ra<1.0にするために、アーク挙動の
精密制御を実施した。コーティングの前工程としてアル
ゴンイオンによるボンバード処理を行ない、コーティン
グ母材の清浄度を更に向上させた。ボンバード時間は合
計20分とした。成膜は18分行ない、膜厚3.0μm
とした。(サンプル2) 実施例1、2をベースに蒸発金属、膜厚をかえたサンプ
ルを作製した。いずれも所望の範囲に被覆層が形成でき
た。(サンプル3〜8) 比較のために、アーク挙動の精密制御を行なわずに表面
の粗大金属粒子数を増加させたサンプルを作製した。各
々のサンプルについて次の条件で切削テストを行なっ
た。(サンプル9〜12)
In order to reduce the number of coarse metal particles to a predetermined value or less,
In addition, precise control of the arc behavior was performed in order to satisfy Ra ′ / Ra <1.0. As a pre-coating step, bombardment treatment with argon ions was performed to further improve the cleanliness of the coating base material. The bombard time was 20 minutes in total. The film was formed for 18 minutes, and the film thickness was 3.0 μm.
And (Sample 2) Samples were prepared based on Examples 1 and 2 in which the evaporated metal and film thickness were changed. In each case, a coating layer was formed in a desired range. (Samples 3 to 8) For comparison, samples in which the number of coarse metal particles on the surface was increased without performing precise control of the arc behavior were produced. A cutting test was performed on each sample under the following conditions. (Samples 9 to 12)

【0028】(切削条件1) 被削材: 快削性ステンレス SUS430F 工具形状: DCGT070202 切削速度: 200〜470m/min 可変 (主軸回転数 5000rpm一定) 送り速度: 0.03mm/rev 切込み: 0.03mm 切削時間: 45分 切削液: 湿式(油系) 最大45分までの切削加工を行ない、工具摩耗、切れ刃
損傷について検証した。その結果を表1に示す。
(Cutting condition 1) Work material: Free-cutting stainless steel SUS430F Tool shape: DCGT070202 Cutting speed: 200 to 470 m / min Variable (spindle speed 5000 rpm constant) Feed speed: 0.03 mm / rev Cutting depth: 0.03 mm Cutting time: 45 minutes Cutting fluid: Wet (oil) Cutting was performed up to a maximum of 45 minutes to verify tool wear and cutting edge damage. Table 1 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】表1によれば、アーク挙動の制御を行なわ
ずに直径1μm以上の粗大金属粒子数が50μm四方に
100個以上存在するサンプル9〜12はいずれも摩耗
量が大きく、工具摩耗量はサンプル1、2に対して1.
5倍から2倍以上となった。そのうち、サンプル9は突
発的な損傷に起因すると予測される異常摩耗が発生し、
サンプル12は切れ刃の欠損が発生した。これらの加工
物表面は早い段階から白濁し、製品として使用できない
状態であった。
According to Table 1, all of the samples 9 to 12 in which the number of coarse metal particles having a diameter of 1 μm or more is 100 or more in a square of 50 μm without controlling the arc behavior have a large wear amount, and the tool wear amount is large. 1. For samples 1 and 2,
From 5 times to more than 2 times. Above all, Sample 9 experienced abnormal wear, which was predicted to be caused by catastrophic damage.
Sample 12 had a cutting edge defect. The surfaces of these workpieces became cloudy from an early stage and could not be used as products.

【0031】これに対して、サンプル1〜8は、いずれ
も安定した切削性能を発揮することが確認できた。ま
た、サンプル1〜4については、特に優れた切削性能、
耐摩耗性を示した。
On the other hand, it was confirmed that Samples 1 to 8 all exhibited stable cutting performance. For samples 1 to 4, particularly excellent cutting performance,
It exhibited abrasion resistance.

【0032】[0032]

【発明の効果】以上詳述したように、請求項1に係る表
面被覆工具は、被覆層表面に直径1μm以上の粗大金属
粒子が50μm四方に100個以下しか残存しないよう
にすることから、切削工具表面に被覆層破壊の起点とな
る粗大金属粒子数が減少し、もってこれに起因する工具
切れ刃の損傷、異常摩耗の発生確率が大幅に減少し、安
定した切削性能を得ることができる。
As described above in detail, the surface-coated tool according to the first aspect of the present invention is capable of cutting only 100 or less coarse metal particles having a diameter of 1 μm or more on the surface of the coating layer in 50 μm squares. The number of coarse metal particles, which are the starting points of the coating layer destruction on the tool surface, is reduced, whereby the probability of damage to the tool cutting edge and the occurrence of abnormal wear are significantly reduced, and stable cutting performance can be obtained.

【0033】また、請求項2に係る表面被覆工具は、被
覆層を形成する前の超硬合金部材の算術平均粗さをRa
とし、被覆層を形成した後のこの被覆層の算術平均粗さ
をRa’とするとき、このRaとRa’がRa’/Ra
<1.0となることから、特に精密切削加工において重
要な因子となる加工物の表面精度を安定化できる。
In the surface-coated tool according to the second aspect, the arithmetic average roughness of the cemented carbide member before forming the coating layer is Ra.
When the arithmetic average roughness of the coating layer after forming the coating layer is defined as Ra ', Ra and Ra' are Ra '/ Ra.
Since <1.0, it is possible to stabilize the surface accuracy of the workpiece, which is an important factor particularly in precision cutting.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金部材の表面に、Alまたは周期
律表4a、5a、6a族金属のうちのいずれか一種以上
とTiとの窒化物、炭窒化物、または窒酸化物から成る
被覆層を設けた表面被覆工具において、前記被覆層表面
に直径1μm以上の粗大金属粒子が50μm四方に10
0個以下で残存することを特徴とする表面被覆工具。
1. A coating made of a nitride, carbonitride, or oxynitride of Ti or Ti with one or more of Al or any one of metals of the periodic table 4a, 5a, and 6a on the surface of a cemented carbide member. In a surface-coated tool provided with a layer, coarse metal particles having a diameter of 1 μm or more
A surface-coated tool, wherein no more than zero remains.
【請求項2】 超硬合金部材の表面に、Alまたは周期
律表4a、5a、6a族金属のうちのいずれか一種以上
とTiとの窒化物、炭窒化物、または窒酸化物から成る
被覆層を設けた表面被覆工具において、前記被覆層を形
成する前の前記超硬合金部材の算術平均粗さをRaと
し、前記被覆層を形成した後のこの被覆層の算術平均粗
さをRa’とするとき、このRaとRa’がRa’/R
a<1.0の関係にあることを特徴とする表面被覆工
具。
2. A coating made of a nitride, carbonitride, or oxynitride of Ti or Ti with Al or one or more of the metals in the periodic table 4a, 5a, or 6a on the surface of the cemented carbide member. In the surface-coated tool provided with the layer, the arithmetic average roughness of the cemented carbide member before forming the coating layer is Ra, and the arithmetic average roughness of the coating layer after forming the coating layer is Ra ′. Where Ra and Ra ′ are Ra ′ / R
A surface-coated tool, wherein a <1.0.
JP2000360138A 2000-11-27 2000-11-27 Surface coating tool Pending JP2002160107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360138A JP2002160107A (en) 2000-11-27 2000-11-27 Surface coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360138A JP2002160107A (en) 2000-11-27 2000-11-27 Surface coating tool

Publications (1)

Publication Number Publication Date
JP2002160107A true JP2002160107A (en) 2002-06-04

Family

ID=18831785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360138A Pending JP2002160107A (en) 2000-11-27 2000-11-27 Surface coating tool

Country Status (1)

Country Link
JP (1) JP2002160107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118126A (en) * 2005-10-27 2007-05-17 Kyocera Corp Surface coated cutting tool
JP2008284639A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP5962846B2 (en) * 2013-03-04 2016-08-03 株式会社タンガロイ Coated cutting tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118126A (en) * 2005-10-27 2007-05-17 Kyocera Corp Surface coated cutting tool
JP2008284639A (en) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd Coated cutting tool
JP5962846B2 (en) * 2013-03-04 2016-08-03 株式会社タンガロイ Coated cutting tool

Similar Documents

Publication Publication Date Title
US5656383A (en) Coated member having excellent hardness and, adhesive properties
JP4018480B2 (en) Coated hard tool
KR102336097B1 (en) clad cutting tool
JPH111766A (en) Spattering target and its manufacture
WO2018216256A1 (en) Coating and cutting tool
JP2015123530A (en) Cutting tool
JP4991244B2 (en) Surface coated cutting tool
JP2008075178A (en) Thick coating film-coated member and thick coating film-coated member production method
JP2012157915A (en) Surface coating cutting tool and its manufacturing method
JP2004345078A (en) Pvd-coated cutting tool
JP2002018606A (en) Coated cutting tool
JP2009061540A (en) Amorphous carbon film coating tool
JP4936703B2 (en) Surface coated cutting tool
JP2002160107A (en) Surface coating tool
JP2007119810A (en) Coated member
JP2005022064A (en) Coating drilling tool
JP2006021257A (en) Surface-coated cemented carbide cutting tool having lubrication-coated layer exhibiting superior abrasion resistance
JP2002337006A (en) Coated cutting tool
JP6794604B1 (en) Cutting tools
JP2007224374A (en) Coated member
JP2014155984A (en) Surface coated cutting tool with excellent adherence strength and chipping resistance
WO2014200005A1 (en) Coated cutting tool
JP7321412B2 (en) surface coated cutting tools
JP2002160108A (en) Cutting tool for precise machining and its manufacturing method
JP6510771B2 (en) Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040716

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060417

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Effective date: 20060623

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20061024

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070309