JP5919784B2 - 設計支援方法、設計支援プログラムおよび設計支援装置 - Google Patents

設計支援方法、設計支援プログラムおよび設計支援装置 Download PDF

Info

Publication number
JP5919784B2
JP5919784B2 JP2011270123A JP2011270123A JP5919784B2 JP 5919784 B2 JP5919784 B2 JP 5919784B2 JP 2011270123 A JP2011270123 A JP 2011270123A JP 2011270123 A JP2011270123 A JP 2011270123A JP 5919784 B2 JP5919784 B2 JP 5919784B2
Authority
JP
Japan
Prior art keywords
particle
mesh
volume
particles
design support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011270123A
Other languages
English (en)
Other versions
JP2013122638A (ja
Inventor
浩幸 古屋
浩幸 古屋
晃弘 大塚
晃弘 大塚
山口 敦
敦 山口
植田 晃
晃 植田
和弘 新夕
和弘 新夕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011270123A priority Critical patent/JP5919784B2/ja
Priority to US13/658,862 priority patent/US9330207B2/en
Publication of JP2013122638A publication Critical patent/JP2013122638A/ja
Application granted granted Critical
Publication of JP5919784B2 publication Critical patent/JP5919784B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Processing Or Creating Images (AREA)

Description

本発明は設計支援方法、設計支援プログラムおよび設計支援装置に関する。
携帯端末装置等のスピーカ、レシーバ、マイク等の音響商品は、設定条件により音響特が変化する。例えばスピーカでは、スピーカ後方の空間(後気室)の容積が大きいほど共鳴周波数が低くなり、低周波側の音量が増加することが知られている。
空間の容積を求める方法としては、構造体の電熱解析、機構解析、電磁場解析等の数値解析を実行する方法が知られている。
数値解析では、例えば、構造体の三次元の形状データを、所定のメッシュで多数の多面体要素に分割して数値解析用のモデルを生成し、生成したモデルを用いて数値解析を実行する。
国際公開第2005/086034号
連続している空間の中で狭い空間があると、音響インピーダンスが高くなる等の影響で、その先に広い空間が存在しても音の伝わりが悪くなり後気室容積としての役割を果たさない場合がある。
1つの側面では、本発明は、所定の断面積以上で連続する空間の容積を容易に把握することを目的とする。
上記目的を達成するために、開示の設計支援方法が提供される。この設計支援方法では、コンピュータが設計対象の三次元モデルの内部空間の指定位置に配置した、指定された径の大きさの粒子を任意方向に移動させ、粒子が移動した軌跡を記録し、記録された軌跡により形成される空間領域の容積を計算する、処理が実行される。
1態様では、所定の断面積以上で連続する空間の容積を容易に把握することができる。
第1の実施の形態の設計支援装置を示す図である。 第2の実施の形態の設計支援装置のハードウェア構成を示す図である。 第2の実施の形態の設計対象の3Dモデルの側面を示す図である。 第2の実施の形態の設計支援装置の機能を示すブロック図である。 初期値記憶部に記憶されている粒子情報を示す図である。 メッシュ管理テーブルを示す図である。 結合関係図の一例を示す図である。 設計支援装置の処理を示すフローチャートである。 設計支援装置の処理を示すフローチャートである。 粒子発生移動処理を示すフローチャートである。 具体例を説明する図である。 具体例を説明する図である。 第3の実施の形態の設計支援装置の機能を示すブロック図である。 分離された空間の検索方法の一例を示す図である。 第3の実施の形態の設計支援装置の処理の具体例を説明する図である。 第3の実施の形態の設計支援装置の処理の具体例を説明する図である。 第3の実施の形態の設計支援装置の処理の具体例を説明する図である。
以下、実施の形態の設計支援装置を、図面を参照して詳細に説明する。
<第1の実施の形態>
図1は、第1の実施の形態の設計支援装置を示す図である。
第1の実施の形態の設計支援装置(コンピュータ)1は、移動部1aと記憶部1bと計算部1cとを有している。
なお、移動部1aと計算部1cは、設計支援装置1が有するCPU(Central Processing Unit)により実現することができる。また、記憶部1bは、設計支援装置1が有するRAM(Random Access Memory)やハードディスクドライブ(HDD:Hard Disk Drive)等が備えるデータ記憶領域により実現することができる。
移動部1aは、設計対象の三次元モデル2を受け付ける。三次元モデル2は、第1の構造体2aと、連結部2bと、第2の構造体2cとを有している。第1の構造体2aと、連結部2bと、第2の構造体2cはいずれも中空であり、第1の構造体2aと第2の構造体2cは、連結部2bを介して接続されている。第1の構造体2a、連結部2b、第2の構造体2cは、いずれも直方体をなし、第1の構造体2aと第2の構造体2cは、連結部2bを介して連続する空間を形成している。第1の構造体2aと、連結部2bと、第2の構造体2cの表面は、三角形のポリゴンにより表現されている。
移動部1aは、第1の構造体2aの内部空間の指定位置に、球形の粒子3を配置する。
粒子3の径は、設計者により設定されたものであり、連続した1つの空間の最小径を規定する大きさに設定されている。本実施の形態では、粒子3の径は、連結部2bの断面積よりも大きく設定されている。なお、粒子3の形状は球形に限定されず、例えば多角形でもよい。
移動部1aは、配置した粒子3を任意方向に移動させ、粒子3が移動した軌跡を記録する。具体的には移動部1aは、所定の大きさのメッシュ(ボクセル、テトラ等の立体)を第1の構造体2aと、連結部2bと、第2の構造体2cの内部空間に発生させることで、内部空間内を多数のメッシュに分割する。そして、移動部1aは、粒子3を任意方向に移動させたときに、分割した各メッシュに粒子3が位置したか否かをメッシュ毎に記録したテーブル1b1を作成し、記憶部1bに記憶する。本実施の形態では、連結部2bは直方体をなしているため、粒子3の径は、第1の構造体2aと連結部2bの接続部2dの断面の径より大きい。このため、配置した粒子3を任意方向に移動させたときの粒子3の軌跡は、第1の構造体2a内にとどまる。仮に、粒子3の径が連結部2bの断面積よりも小さければ、粒子3の軌跡は、第1の構造体2a、連結部2b、および第2の構造体2cの全てにわたる。図1では、分割したメッシュに粒子3が位置した領域を斜線で示している。
テーブル1b1には、メッシュ番号と軌跡と発生の欄が設けられている。メッシュ番号の欄には、メッシュの位置を識別する番号が設定されている。テーブル1b1のメッシュ番号1、2は、第1の構造体2aに形成されたメッシュの一例であり、メッシュ番号59は、連結部2bに形成されたメッシュの一例であり、メッシュ番号222は、第2の構造体2cに形成されたメッシュの一例である。軌跡の欄には、分割した各メッシュに粒子3が位置したか否かを示す値が設定される。具体的には、粒子3の移動により粒子3が位置したメッシュには「1」が設定され、粒子3の移動により粒子3が位置しなかったメッシュには「0」が設定される。なお、発生の欄の説明は、後述する。
計算部1cは、移動部1aが記録した軌跡により形成される空間の容積を計算する。具体的には、計算部1cは、テーブル1b1の軌跡の欄が「1」に設定されているメッシュの数に、メッシュ1個分の容積(単位容積)を乗じることで容積を計算する。図1では、粒子3の軌跡は、第1の構造体2a内にとどまっている。このため計算部1cが計算した容積は、第1の構造体2aの容積に等しい。
このように、設計者が連続した1つの空間として把握したい大きさを示す粒子3の径を変えることにより、設計者は、指定された径以上の空間の範囲を容易に把握することができる。
ところで、設計支援装置1は、第1の構造体2aと、連結部2bと、第2の構造体2cとの結合関係図4を作成する機能を有している。以下、説明する。
移動部1aは、テーブル1b1のメッシュ番号の中から軌跡の欄の値が「0」に設定されたメッシュ番号を取得する。本実施の形態では、連結部2bおよび第2の構造体2cに位置するメッシュ番号が取得される。そして、移動部1aは、取得した各メッシュ番号のメッシュ上に粒子3を発生したときに連結部2bおよび第2の構造体2cの内周に干渉するか否かを判断する。そして、移動部1aは、メッシュ上に粒子3を発生したときに内周に干渉したメッシュ番号に対応する発生の欄には「0」を設定し、メッシュ上に粒子3を発生したときに内周に干渉しなかったメッシュ番号に対応する発生の欄には「1」を設定する。
移動部1aが、軌跡の欄の値が「0」に設定された全てのメッシュ番号について干渉するか否かの判断を終了すると、計算部1cは、テーブル1b1を参照し、発生の欄が「0」に設定されているメッシュの数に、メッシュの単位容積を乗じる。これにより、連結部2bの容積が求まる。また、計算部1cは、テーブル1b1を参照し、発生の欄が「1」に設定されているメッシュの数に、メッシュの単位容積を乗じる。これにより、第2の構造体2cの容積が求まる。
計算部1cは、求めた第1の構造体2a、連結部2bおよび第2の構造体2cの容積および結合関係を示す結合関係図4を作成する。
結合関係図4の領域4a、4b、4cの大きさは、それぞれ第1の構造体2a、連結部2b、および第2の構造体2cの容積の比を示している。領域4a、4b、4c内の数字は、それぞれ第1の構造体2a、連結部2b、および第2の構造体2cの容積を示している。
設計支援装置1によれば、所定の断面積以上で連続する空間の範囲を容易に把握することができる。また、所定の断面積以上で連続する空間の容積を容易に算出することができる。また、例えば、三次元モデル2の断面図毎の空間部分の面積を求めて結合関係図4を作成する方法等に比べ、結合関係図4を容易に作成することができる。
以下、第2の実施の形態では、携帯端末装置のスピーカに隣接して配置される後気室の連結状態を算出する場合を例に開示の設計支援装置をより具体的に説明する。
<第2の実施の形態>
図2は、第2の実施の形態の設計支援装置のハードウェア構成を示す図である。
設計支援装置10は、CPU101によって装置全体が制御されている。CPU101には、バス108を介してRAM102と複数の周辺機器が接続されている。
RAM102は、設計支援装置10の主記憶装置として使用される。RAM102には、CPU101に実行させるOS(Operating System)のプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。また、RAM102には、CPU101による処理に使用する各種データが格納される。
バス108には、ハードディスクドライブ103、グラフィック処理装置104、入力インタフェース105、ドライブ装置106、および通信インタフェース107が接続されている。
ハードディスクドライブ103は、内蔵したディスクに対して、磁気的にデータの書き込みおよび読み出しを行う。ハードディスクドライブ103は、設計支援装置10の二次記憶装置として使用される。ハードディスクドライブ103には、OSのプログラム、アプリケーションプログラム、および各種データが格納される。なお、二次記憶装置としては、フラッシュメモリ等の半導体記憶装置を使用することもできる。
グラフィック処理装置104には、モニタ104aが接続されている。グラフィック処理装置104は、CPU101からの命令に従って、画像をモニタ104aの画面に表示させる。モニタ104aとしては、CRT(Cathode Ray Tube)を用いた表示装置や、液晶表示装置等が挙げられる。
入力インタフェース105には、キーボード105aとマウス105bとが接続されている。入力インタフェース105は、キーボード105aやマウス105bから送られてくる信号をCPU101に送信する。なお、マウス105bは、ポインティングデバイスの一例であり、他のポインティングデバイスを使用することもできる。他のポインティングデバイスとしては、例えばタッチパネル、タブレット、タッチパッド、トラックボール等が挙げられる。
ドライブ装置106は、例えば、光の反射によって読み取り可能なようにデータが記録された光ディスクや、USB(Universal Serial Bus)メモリ等の持ち運び可能な記録媒体に記録されたデータの読み取りを行う。例えば、ドライブ装置106が光学ドライブ装置である場合、レーザ光等を利用して、光ディスク300に記録されたデータの読み取りを行う。光ディスク300には、Blu−ray(登録商標)、DVD(Digital Versatile Disc)、DVD−RAM、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等が挙げられる。
通信インタフェース107は、ネットワーク50に接続されている。通信インタフェース107は、ネットワーク50を介して、他のコンピュータまたは通信機器との間でデータを送受信する。
以上のようなハードウェア構成によって、本実施の形態の処理機能を実現することができる。図2に示すようなハードウェア構成の設計支援装置10内には、以下のような機能が設けられる。
設計支援装置10は、設計対象の3Dモデルの空間容積の連結状態を算出する機能を有している。
図3は、第2の実施の形態の設計対象の3Dモデルの側面を示す図である。
図3に示す3Dモデル20は、スピーカ21の音声出力部とは反対側に中空の構造体22が形成されている。構造体22は、後気室としての役割を果たすために設けられている。また、構造体22には、中空の構造体23を介して中空の構造体24が連結されている。構造体22、23、24はいずれも直方体をなし、構造体22と構造体24は、構造体23を介して連続する空間を形成している。構造体22、23、24の表面は、三角形のポリゴンにより表現されている。
図4は、第2の実施の形態の設計支援装置の機能を示すブロック図である。
設計支援装置10は、初期値受付部110と、初期値記憶部120と、管理テーブル記憶部130と、メッシュ生成部140と、空間分類処理部150と、粒子発生部160と、粒子移動処理部170と、マーク識別処理部180と、容積計算部190と、容積記憶部200とを有している。
初期値受付部110は、構造体22、23、24の容積を計算する際に用いる粒子に関する粒子情報の初期値を受け付ける。入力される粒子情報としては、粒子のサイズ、発生させる粒子の数、粒子の移動時間、粒子を発生させる位置、粒子の移動速度、粒子の形状等が挙げられる。粒子情報の各パラメータは、設計者が任意に決定することができる。初期値受付部110は、受け付けた粒子情報の初期値を初期値記憶部120に記憶する。
図5は、初期値記憶部に記憶されている粒子情報を示す図である。
本実施の形態では、粒子情報はテーブル化されて記憶されている。粒子管理テーブル121には、粒子名、粒子サイズ、粒子数、発生位置、移動時間および移動速度の欄が設定されている。横方向に並べられた情報同士が互いに関連づけられている。
粒子名の欄には、粒子発生部160に発生させる粒子を識別する名前が設定されている。
粒子サイズの欄には、粒子発生部160に発生させる粒子のサイズが設定されている。
なお、粒子Aのサイズは、粒子Aが通り抜けることができる空間は連続した1つの空間として設計者が把握したい大きさに設定されている。例えば、粒子Aが通り抜けることができず、粒子Bが通り抜けることができる空間は、断面積が所定値以下の空間(例えば連結部)とみなすことができる。
なお、粒子Bは、例えばこれ以上小さい粒子が通り抜けても後気室として使えない最低ラインを設定する。これにより、粒子A、粒子Bのいずれも通り抜けることができなかった空間が存在したとしても、処理結果への影響を最小限にすることができる。
粒子数の欄には、粒子発生部160に発生させる粒子の数が設定されている。
発生位置の欄には、粒子発生部160に発生させる粒子の位置が設定されている。
移動時間の欄には、粒子移動処理部170に粒子を移動させる時間が設定されている。
移動速度の欄には、粒子移動処理部170に粒子を移動させる速度が設定されている。
再び図4に戻って説明する。
管理テーブル記憶部130には、空間容積の連結状態を算出する際に使用するデータを管理するメッシュ管理テーブル131が記憶される。メッシュ管理テーブル131には、メッシュ生成部140、空間分類処理部150、粒子発生部160、および粒子移動処理部170の処理結果が格納される。
メッシュ生成部140は、入力される設計対象の3Dモデル20から、3Dモデル20のメッシュを生成する。設計者は、メッシュの分割方法(ボクセル、テトラ等)と、メッシュのサイズを指定する。メッシュを作成する方法は、従来公知の方法を用いることができる。メッシュ生成部140は、作成したメッシュそれぞれに識別番号(メッシュ識別番号)を設定する。そして、メッシュ識別番号を、各メッシュの位置座標とともにメッシュ管理テーブル131に記憶する。
空間分類処理部150は、メッシュ生成部140が生成したメッシュ内の容積に占める部品の比率が設定値以上であれば、そのメッシュを部品に分類する。また、空間分類処理部150は、メッシュ管理テーブル131に記憶されているメッシュ内の容積に占める部品の比率が設定値未満であれば、そのメッシュを空間に分類する。なお、分類方法については、従来公知の方法を用いることができる。空間分類処理部150は、分類結果をメッシュ管理テーブル131に記憶する。
粒子発生部160は、メッシュ管理テーブル131に記憶されているメッシュの位置座標と、粒子管理テーブル121に設定されている粒子発生位置および粒子サイズを用いて粒子発生位置に粒子を発生させる。そして、粒子発生部160は、粒子発生時に粒子が部品のメッシュに干渉するか否かを判断する。そして、発生させた粒子の指定サイズ毎に干渉の有無をメッシュ管理テーブル131に記憶する。
粒子移動処理部170は、発生させた粒子を初期値記憶部120に記憶されている粒子移動時間の間、移動させる。部品のメッシュに干渉した場合は移動方向を変える。同じ場所で移動し続けるのを抑制するため、移動方向は時刻を入力とするランダム関数で変化させる。干渉した際に移動方向を変える方法として反射を行わせる方法がある。入射角と反射角を同じにするのでなく、反射角をランダム関数により入射角から僅かに変化させる等の方法がある。
粒子移動処理部170は、メッシュ管理テーブル131の移動経路上のメッシュに粒子サイズ毎のマークを設定する。
図6は、メッシュ管理テーブルを示す図である。
メッシュ管理テーブル131には、メッシュ識別番号、メッシュ座標、部品空間識別フラグ、マーク用フラグ、および粒子生成可否の欄が設けられている。横方向に並べられた情報同士が互いに関連づけられている。
メッシュ識別番号の欄には、メッシュ生成部140が生成したメッシュを識別するメッシュ識別番号が設定される。
メッシュ座標の欄には、メッシュの位置を識別する座標が設定される。
部品空間識別フラグの欄には、当該メッシュを部品として認識させるか空間として認識させるかを識別するフラグが設定される。具体的には、空間分類処理部150が当該メッシュを部品として分類した場合「0」が設定される。空間分類処理部150が当該メッシュを空間として分類した場合「1」が設定される。
マーク用フラグの欄には、複数のマーク種類毎に粒子が移動した軌跡の領域を識別する情報が設定される。「1」は、粒子が移動することにより当該マークに粒子が位置したことを示している。「0」は、粒子が移動することにより当該マークに粒子が位置しなかったことを示している。
粒子生成可否の欄には、粒子の生成ができたか否かを示す情報が設定される。具体的には、粒子発生部160が粒子を発生したときに、発生した粒子が部品のメッシュに干渉するか否かを判断し、干渉した粒子について「1」を設定する。干渉しなかった粒子について「0」を設定する。
再び図4に戻って説明する。
マーク識別処理部180は、メッシュ管理テーブル131のマーク用フラグの欄に設定されたフラグを用いてマークB1がついた3Dモデルを識別する。
容積計算部190は、メッシュ管理テーブル131を用いて構造体22、23、24の容積の結合関係図を作成する。容積計算部190は、作成した結合関係図を容積記憶部200に記憶する。
図7は、結合関係図の一例を示す図である。
結合関係図30の領域31、32、33の大きさは、それぞれ構造体22、23、24の容積の比を示している。領域31、32、33内の数字は、それぞれ構造体22、23、24の容積を示している。
次に、設計支援装置10の処理を、フローチャートを用いて説明する。
図8および図9は、設計支援装置の処理を示すフローチャートである。
[ステップS1] 初期値受付部110は、受け付けた粒子情報の初期値を初期値記憶部120に記憶する。その後、ステップS2に遷移する。
[ステップS2] メッシュ生成部140は、入力された3Dモデル20のメッシュを生成する。その後、ステップS3に遷移する。
[ステップS3] メッシュ生成部140は、生成したメッシュの座標をメッシュ管理テーブル131に記憶する。その後、ステップS4に遷移する。
[ステップS4] 空間分類処理部150は、メッシュ管理テーブル131から1つのレコードを選択する。その後、ステップS5に遷移する。
[ステップS5] 空間分類処理部150は、ステップS4にて選択されたレコードのメッシュ識別番号のメッシュにおいて、部品が占める比率が予め定めた設定値以上か否かを判断する。部品が占める比率が予め定めた設定値以上である場合(ステップS5のYes)、ステップS6に遷移する。部品が占める比率が予め定めた設定値未満である場合(ステップS5のNo)、ステップS7に遷移する。
[ステップS6] 空間分類処理部150は、空間識別フラグの欄に「0」(部品)を設定する。その後、ステップS8に遷移する。
[ステップS7] 空間分類処理部150は、空間識別フラグの欄に「1」(空間)を設定する。その後、ステップS8に遷移する。
[ステップS8] 空間分類処理部150は、メッシュ管理テーブル131の全てのレコードについてステップS5〜S7の処理を実行したか否かを判断する。メッシュ管理テーブル131の全てのレコードについてステップS5〜S7の処理を実行した場合(ステップS8のYes)、ステップS9に遷移する。メッシュ管理テーブル131の全てのレコードについてステップS5〜S7の処理を実行していない場合(ステップS8のNo)、ステップS4に遷移し、ステップS4以降の処理を引き続き実行する。
[ステップS9] 粒子発生部160は、メッシュ管理テーブル131のマークAを処理対象マークに選択する。その後、ステップS10に遷移する。
[ステップS10] 粒子発生部160は、粒子管理テーブル121を参照し、粒子Aを選択する。その後、ステップS11に遷移する。
[ステップS11] 粒子移動処理部170は、ステップS10にて選択した粒子Aを粒子移動時間の間移動させる粒子発生移動処理を実行する。なお、粒子発生移動処理については後に詳述する。その後、ステップS12に遷移する。
[ステップS12] 粒子発生部160は、メッシュ管理テーブル131のマークBを処理対象マークに選択する。その後、ステップS13に遷移する。
[ステップS13] 粒子発生部160は、粒子管理テーブル121を参照し、粒子Bを選択する。その後、ステップS14に遷移する。
[ステップS14] 粒子移動処理部170は、ステップS13にて選択した粒子Bを粒子移動時間の間移動させる粒子発生移動処理を実行する。その後、ステップS15に遷移する。
[ステップS15] マーク識別処理部180は、マークAの欄にマークされた値のパターンと、マークBの欄にマークされた値のパターンが一致するか否かを判断する。マークAの欄にマークされた値のパターンと、マークBの欄にマークされた値のパターンが一致する場合(ステップS15のYes)、ステップS22に遷移する。マークAの欄にマークされた値のパターンと、マークBの欄にマークされた値のパターンが一致しない場合(ステップS15のNo)、ステップS16に遷移する。
[ステップS16] マーク識別処理部180は、マークBとマークAの差分をマークB1に設定する。その後、ステップS17に遷移する。
[ステップS17] マーク識別処理部180は、マークB1が「1」のメッシュを粒子発生位置に設定する。その後、ステップS18に遷移する。
[ステップS18] 粒子発生部160は、マークCを処理対象マークに選択する。その後、ステップS19に遷移する。
[ステップS19] 粒子発生部160は、粒子管理テーブル121を参照し、粒子Cを選択する。その後、ステップS20に遷移する。
[ステップS20] 粒子移動処理部170は、ステップS19にて選択した粒子CをマークB1が「1」のメッシュにおいて発生させる粒子発生処理を実行する。その後、ステップS21に遷移する。なお、粒子発生処理については後述する。
[ステップS21] マーク識別処理部180は、マークBとマークAの差分をマークB2の欄に設定する。その後、ステップS22に遷移する。
[ステップS22] 容積計算部190は、メッシュ管理テーブル131を用いて各構造体の容積を計算する。
以上で、図8および図9の処理の説明を終了する。
次に、ステップS11およびステップS14の粒子発生移動処理を説明する。
図10は、粒子発生移動処理を示すフローチャートである。
[ステップS31] 粒子発生部160は、ステップS10またはステップS13にて選択された粒子を、初期値記憶部120に記憶された粒子発生位置に最も近いメッシュの中心座標に合わせて発生させる。その後、ステップS32に遷移する。
[ステップS32] 粒子発生部160は、メッシュ管理テーブル131のステップS31にて発生させた粒子が位置するメッシュの部品空間識別フラグの欄を参照し、部品空間識別フラグの値が「1」か否かを判断する。部品空間識別フラグの値が「1」である場合(ステップS32のYes)、ステップS33に遷移する。部品空間識別フラグの値が「0」である場合(ステップS32のNo)、ステップS37に遷移する。
[ステップS33] 粒子発生部160は、ステップS31にて発生させた粒子が構造体の内周面に干渉するか否かを判断する。粒子が構造体の内周面に干渉するか否かは、例えば、粒子が構造体の表面を表現しているポリゴンと位置座標を比較することにより判定することができる。ポリゴンが粒子に比べ非常に小さい場合には、粒子の中心座標と粒子の半径から求まる粒子のX,Y,Z座標毎の最大、最小となる座標と、ポリゴンの中心座標とをX,Y,Z座標毎に比較することにより判定することができる。
ステップS31にて発生させた粒子が構造体の内周面に干渉する場合(ステップS33のYes)、ステップS34に遷移する。ステップS31にて発生させた粒子が構造体の内周面に干渉しない場合(ステップS33のNo)、ステップS35に遷移する。
[ステップS34] 粒子発生部160は、ステップS31にて発生させた粒子に対応するメッシュ管理テーブル131の粒子生成可否フラグの欄に「0」を設定する。その後、ステップS37に遷移する。
[ステップS35] 粒子発生部160は、ステップS11にて発生させた粒子に対応するメッシュ管理テーブル131の粒子生成可否フラグの欄に「1」を設定する。その後、ステップS36に遷移する。
[ステップS36] 粒子移動処理部170は、ステップS31にて発生させた粒子を移動させ、粒子が位置するメッシュ識別番号の処理対象マークの欄に「1」を設定する。その後、ステップS37に遷移する。
[ステップS37] 粒子移動処理部170は、メッシュ管理テーブル131の全てのレコードについてステップS31〜S36の処理を実行したか否かを判断する。メッシュ管理テーブル131の全てのレコードについてステップS31〜S36の処理を実行した場合(ステップS37のYes)、図10の処理を終了する。メッシュ管理テーブル131の全てのレコードについてステップS31〜S36の処理を実行していない場合(ステップS37のNo)、ステップS38に遷移する。
[ステップS38] 粒子発生部160は、粒子発生位置を変更する。その後、ステップS31に遷移し、ステップS31以降の処理を引き続き実行する。
次に、図9のステップS20の粒子発生処理を説明する。
粒子発生処理は、図10に示す粒子発生移動処理のうち、ステップS36の処理を除いたものとなる。すなわち、粒子発生処理では、ステップS35の処理を実行した後に、ステップS37に遷移する。また、粒子発生処理における粒子発生位置は、マーク用フラグのマークB1の欄が「1」に設定されたメッシュ識別番号のメッシュとなる。
次に、3Dモデル20を用いて設計支援装置10の処理の具体例を説明する。
<具体例>
図11および図12は、具体例を説明する図である。
粒子発生部160は、粒子管理テーブル121を参照し、粒子Aである粒子Aを選択する。そして、粒子発生部160は、図11(a)に示すように、初期値記憶部120に記憶されている粒子発生位置(x,y,z=0.0,0.1,0.1)に該当するメッシュ管理テーブル131のメッシュ識別番号2のメッシュに粒子Aを発生させる。粒子Aは、部品空間識別フラグ=0により識別される部品のメッシュ(例えばメッシュ識別番号1のメッシュ)に干渉しないので、メッシュ識別番号2の発生可否フラグの粒子Aの欄に発生可否フラグ=1を設定する。次に、粒子移動処理部170は、粒子Aを移動させ、粒子Aが位置するマークAの欄に「1」を設定する。図11(b)は、マークAの欄に「1」が設定されたメッシュの領域41を示している。マークAの欄に「1」が設定されたメッシュの領域は、構造体22内に存在し、構造体23、24には存在しない。
次に、粒子発生部160は、粒子管理テーブル121を参照し、粒子Bである粒子Bを選択する。そして、粒子発生部160は、図11(c)に示すように、初期値記憶部120に記憶されている粒子発生位置(x,y,z=0.0,0.1,0.1)に該当するメッシュ識別番号2のメッシュに粒子Bを発生させる。粒子Bは、部品空間識別フラグ=0により識別される部品のメッシュ(例えばメッシュ識別番号1のメッシュ)に干渉しないので、メッシュ管理テーブル131のメッシュ識別番号2の発生可否フラグの粒子Bの欄に「1」を設定する。次に、粒子移動処理部170は、粒子Bを移動させ、メッシュ管理テーブル131の粒子Bが位置するマークBの欄に「1」を設定する。図11(d)は、マークBの欄に「1」が設定されたメッシュの領域42を示している。マークAの欄に「1」が設定されたメッシュの領域42は、構造体22、23、24のいずれにも存在する。
次に、マーク識別処理部180は、マークAの欄の値とマークBの欄の値の全てが一致するか否かを判断する。本具体例では一致しないため、マーク識別処理部180は、マークB1の欄の、マークAの欄に「0」が設定され、マークBの欄に「1」が設定された箇所を「1」に設定する。図12(a)は、マークB1の欄に「1」が設定されたメッシュの領域43を示している。マークB1の欄に「1」が設定されたメッシュの領域43は、構造体23、および構造体24に存在する。
次に、粒子発生部160は、マークB1の欄の値が「1」に設定されたメッシュを粒子発生位置に設定する。
次に、粒子発生部160は、図12(b)に示すように、マークB1の欄に「1」が設定された任意のメッシュを粒子発生位置とする位置に粒子Aと同じ大きさの粒子Cを発生させる。例えば、メッシュ識別番号59のメッシュに粒子Cを発生させた場合、粒子Cは、部品空間識別フラグの欄の値が「1」であるが、構造体23の内周面と干渉するので、粒子生成可否フラグの欄を「0」に設定する。また、他の例として、メッシュ識別番号223のメッシュに粒子Cを発生させた場合、粒子Cは、部品空間識別フラグの欄の値が「1」であり、構造体24の内周面に干渉しないので、粒子生成可否フラグCの欄を「1」に設定する。
マーク識別処理部180は、マークB1の欄の値が「1」に設定されたメッシュの全てにおいて、粒子生成可否フラグCの設定を行う。設定が終了すると、マーク識別処理部180は、マークB1の欄に1が設定され、かつ、粒子生成可否フラグCが「0」に設定された領域のマークB2の欄に「1」を設定する。
次に容積計算部190は、メッシュ管理テーブル131のマーク用フラグの欄に設定された値を用いて各領域の容積を計算する。
まず、容積計算部190は、マークAの欄が「1」に設定されている数を計数する。そして、計数した数にメッシュの単位容積を乗じた結果を構造体22の容積とする。次に、容積計算部190は、マークB2の欄が「1」に設定されている数を計数する。そして、計数した数にメッシュの単位容積を乗じた結果を構造体23の容積とする。次に、容積計算部190は、マークCの欄が「1」に設定されている数を計数する。そして、計数した数にメッシュの単位容積を乗じた結果を構造体24の容積とする。図12(c)は、異なる領域として計算された構造体22、23、24を模様を付して図示している。
そして、容積計算部190は、構造体22、23、24の容積の結合関係図30を作成する。
以上述べたように、設計支援装置10によれば、連結部分を備える3Dモデル20において、指定した大きさ以上の断面積を備える構造体22の容積を求めることができる。従って、設計者は、構造体22がスピーカ21の後気質として機能することを設計時に把握することができる。このため、設計者は例えば構造体22の容積を広げるように設計をやり直したりすることが可能となり、設計段階で、より精密な音響設計が可能となる。
また、設計支援装置10によれば、結合関係図30を容易に作成することができる。このため、設計者は例えば構造体23の断面積を広げるよう設計をやり直したりすることが可能となり、設計段階で、より精密な音響設計が可能となる。
<第3の実施の形態>
次に、第3の実施の形態の設計支援装置について説明する。
以下、第3の実施の形態の設計支援装置について、前述した第2の実施の形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図13は、第3の実施の形態の設計支援装置の機能を示すブロック図である。
第3の実施の形態の設計支援装置10aは、容積計算部190に一部の機能を加えた容積計算部190aを有している。
容積計算部190aは、結合関係図を作成する際に、マークB2が「1」に設定された領域が分離された空間であるか否かを検索する。分離された空間であるか否かは例えば以下の方法により検索することができる。
図14は、分離された空間の検索方法の一例を示す図である。
図14に示す構造体51、52は、設計対象の3Dモデルの一例を示している。構造体51、52の表面は、三角形のポリゴンで表現されている。
容積計算部190aは、管理テーブル191を有している。管理テーブル191には、ポリゴン番号および分離フラグの欄が設けられている。
ポリゴン番号の欄には、構造体51、52のポリゴンの位置を識別する番号が設定されている。ポリゴン番号は、構造体51、52を作成する際に予め割り振られたものを用いることができる。
分離フラグの欄は、分離された空間の検索を開始する時点では、全て「0」に設定されている。
容積計算部190aは、管理テーブル191のポリゴン番号の欄の任意の番号のポリゴンを選択する。図14では、構造体51の表面を構成する任意の1つのポリゴン51aが選択された場合を示している。容積計算部190aは、ポリゴン51aに隣接する3つのポリゴン51b、51c、51dを検索する。容積計算部190aは、ポリゴン51b、51c、51dにさらに隣接する3つのポリゴンを検索する。
容積計算部190aは、構造体51において、隣接するポリゴンの検索を繰り返し、見つかったポリゴンのポリゴン番号に対応する分離フラグの欄に構造体51を識別する「A」を設定する。
隣接するポリゴンが存在しなくなったときに容積計算部190aは、構造体51について、ポリゴンの検索を終了する。ポリゴンの検索を終了した時点で、管理テーブル191には、構造体51の表面を表現するポリゴンの全てのポリゴン番号に対応する分離フラグの欄に「A」が設定される。
容積計算部190aは、構造体51について処理が完了すると、管理テーブル191の分離フラグの欄に「0」が設定されているポリゴン番号が存在するか否かを判断する。図14に示す例では、構造体52の表面を表現するポリゴンのポリゴン番号に対応する分離フラグの欄に「0」が設定されている。容積計算部190aは、管理テーブル191の分離フラグの欄に「0」が設定されているポリゴン番号の欄の任意の番号のポリゴンを選択する。そして、構造体52において、隣接するポリゴンの検索を繰り返し、見つかったポリゴンのポリゴン番号に対応する分離フラグの欄に構造体52を識別する「B」を設定する。
隣接するポリゴンが存在しなくなったときに容積計算部190aは、構造体52について、ポリゴンの検索を終了する。ポリゴンの検索を終了した時点で、管理テーブル191には、構造体52の表面を表現するポリゴンの全てのポリゴン番号に対応する分離フラグの欄に「B」が設定される。
容積計算部190aは、構造体52について処理が完了すると、管理テーブル191の分離フラグの欄に「0」が設定されているポリゴン番号が存在するか否かを判断する。分離フラグの欄に「0」が設定されているポリゴン番号が存在しないので、容積計算部190aは、分離された空間の検索を終了する。
次に、第3の実施の形態の設計支援装置10aの処理の具体例を説明する。
図15、図16、および図17は、第3の実施の形態の設計支援装置の処理の具体例を説明する図である。
本具体例では、3Dモデル20aを用いる。3Dモデル20aは、構造体24の図15中右側に、中空の構造体25を介して中空の構造体26が連結されている。構造体25、26はいずれも直方体をなし、構造体24と構造体26は、構造体25を介して連続する空間を形成している。
以下、第3の実施の形態の具体例を説明するが、第2の実施の形態の具体例と同様の事項については説明を簡略化する。
第3の実施の形態の具体例においても第2の実施の形態の具体例と同様に、図15(a)に示すように、粒子Aを発生させて移動させ、粒子Aが位置するメッシュ管理テーブル131のマークAの欄に「1」を設定する。図15(b)は、マークAの欄に「1」が設定されたメッシュの領域61を示している。また、図15(c)に示すように、粒子Bを発生させて移動させ、メッシュ管理テーブル131の粒子Bが位置するマークBの欄に「1」を設定する。図15(d)は、マークBの欄に「1」が設定されたメッシュの領域62を示している。そして、マーク識別処理部180は、マークB1の欄の、マークAの欄に「0」が設定され、マークBの欄に「1」が設定された箇所を「1」に設定する。図16(a)は、マークB1の欄に「1」が設定されたメッシュの領域63を示している。
次に、粒子発生部160は、図16(b)に示すように、マークB1の欄の値が「1」に設定されたメッシュを粒子発生位置に設定する。マーク識別処理部180は、マークB1の欄の値が「1」に設定されたメッシュの全てにおいて、粒子生成可否フラグCの設定を行う。図16(c)は、マークCの欄に「1」が設定されたメッシュの領域64を示している。設定が終了すると、マーク識別処理部180は、マークB1の欄に1が設定され、かつ、粒子生成可否フラグCの欄の値が「0」に設定された領域のマークB2の欄に「1」を設定する。図16(d)は、マークB2の欄に「1」が設定されたメッシュの領域65を示している。
次に容積計算部190は、メッシュ管理テーブル131のマーク用フラグの欄に設定された値を用いて各領域の容積を計算する。
まず、容積計算部190は、マークAの欄が「1」に設定されている数を計数する。そして、計数した数にメッシュの単位容積を乗じた結果を構造体22の容積とする。
次に、容積計算部190は、管理テーブル191を参照し、マークB2について分離された空間が存在するか否かを検索する。マークB2について分離された空間が存在するため、容積計算部190aは、分離された空間毎にマークに追番を付ける。図17は、マークB2についてマークB21を付けた領域65aと、マークB22を付けた領域65bを示している。
容積計算部190aは、マークB21の欄が「1」に設定されている数と、マークB22の欄が「1」に設定されている数を個別に計数する。そして、計数した数にメッシュの単位容積を乗じた結果を構造体23、25それぞれの容積とする。
次に、容積計算部190は、管理テーブル191を参照し、マークCについて分離された空間が存在するか否かを検索する。マークCについて分離された空間が存在するため、容積計算部190aは、分離された空間毎にマークに追番を付ける。図17は、マークCについてマークC1を付けた領域64aと、マークC2を付けた領域64bを示している。マークC1の欄が「1」に設定されている数と、マークC2の欄が「1」に設定されている数を個別に計数する。そして、計数した数にメッシュの単位容積を乗じた結果を構造体24、26それぞれの容積とする。
そして、容積計算部190は、構造体22〜26の容積の結合関係図70を作成する。
結合関係図70の領域71、72、73、74、75の大きさは、それぞれ構造体22、23、24、25、26の容積の比を示している。領域71、72、73、74、75内の数字は、それぞれ構造体22、23、24、25、26の容積を示している。
第3の実施の形態の設計支援装置10aによれば、第2の実施の形態の設計支援装置10と同様の効果が得られる。
そして、第3の実施の形態の設計支援装置10aによれば、さらに、分離された空間を把握することができる。
なお、設計支援装置10、10aが行った処理が、複数の装置によって分散処理されるようにしてもよい。例えば、1つの装置が、メッシュ管理テーブル131の各欄に値を設定し、他の装置が、そのメッシュ管理テーブル131を用いて3Dモデルを構成する構造体の容積を計算するようにしてもよい。
以上、本発明の設計支援方法、設計支援プログラムおよび設計支援装置を、図示の実施の形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物や工程が付加されていてもよい。
また、本発明は、前述した各実施の形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
なお、上記の処理機能は、コンピュータによって実現することができる。その場合、設計支援装置1、10が有する機能の処理内容を記述したプログラムが提供される。そのプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、磁気記憶装置、光ディスク、光磁気記録媒体、半導体メモリ等が挙げられる。磁気記憶装置には、ハードディスクドライブ、フレキシブルディスク(FD)、磁気テープ等が挙げられる。光ディスクには、DVD、DVD−RAM、CD−ROM/RW等が挙げられる。光磁気記録媒体には、MO(Magneto-Optical disk)等が挙げられる。
プログラムを流通させる場合には、例えば、そのプログラムが記録されたDVD、CD−ROM等の可搬型記録媒体が販売される。また、プログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することもできる。
プログラムを実行するコンピュータは、例えば、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、自己の記憶装置に格納する。そして、コンピュータは、自己の記憶装置からプログラムを読み取り、プログラムに従った処理を実行する。なお、コンピュータは、可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することもできる。また、コンピュータは、ネットワークを介して接続されたサーバコンピュータからプログラムが転送される毎に、逐次、受け取ったプログラムに従った処理を実行することもできる。
また、上記の処理機能の少なくとも一部を、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)等の電子回路で実現することもできる。
以上の第1〜第3の実施の形態に関し、さらに以下の付記を開示する。
(付記1) コンピュータが、
設計対象の三次元モデルの内部空間の指定位置に配置した、指定された径の大きさの粒子を任意方向に移動させ、
前記粒子が移動した軌跡を記録し、
記録された前記軌跡により形成される空間領域の容積を計算する、
ことを特徴とする設計支援方法。
(付記2) 前記三次元モデルは、第1の構造体と前記第1の構造体に連結部を介して連続する空間を形成する第2の構造体とを備え、
前記粒子は、前記第1の構造体の指定位置に配置され、
前記三次元モデルが形成する空間領域から、記録された前記軌跡により形成される空間領域を除外した空間領域を計算し、
計算された前記空間領域の内部の指定位置に配置した前記粒子と計算された前記空間領域を形成する内周との干渉の有無を記録し、
記録された干渉が有る領域を用いて前記連結部の容積を計算することを特徴とする付記1記載の設計支援方法。
(付記3) 記録された干渉が無い領域を用いて前記第2の構造体の容積を計算することを特徴とする付記2記載の設計支援方法。
(付記4) 前記第2の構造体の表面を構成するポリゴンの位置情報を用いて、前記第2の構造体が複数の構造体で形成されているか否かを判断し、前記第2の構造体が複数の構造体で形成されている場合、前記複数の構造体毎に容積を計算することを特徴とする付記3記載の設計支援方法。
(付記5) 記録された前記軌跡により形成される空間領域の容積が、前記三次元モデルの容積に一致するか否かを判断し、記録された前記軌跡により形成される空間領域の容積が、前記三次元モデルの容積に一致しない場合、前記三次元モデルが形成する空間領域から、記録された前記軌跡により形成される空間領域を除外した空間領域を計算することを特徴とする付記2記載の設計支援方法。
(付記6) 前記連結部の断面の径以下の粒子を任意方向に移動させ、前記粒子が移動した軌跡を記録し、
記録された前記連結部の断面の径以下の粒子が移動した軌跡により形成される第1の領域から前記連結部の断面の径より大きい粒子が移動した軌跡により形成される第2の領域を除外して前記空間領域を計算することを特徴とする付記2記載の設計支援方法。
(付記7) 前記三次元モデルを複数のメッシュに区切り、メッシュ単位で粒子を発生させることを特徴とする付記1記載の設計支援方法。
(付記8) コンピュータに、
設計対象の三次元モデルの内部空間の指定位置に配置した、指定された径の大きさの粒子を任意方向に移動させ、
前記粒子が移動した軌跡を記録し、
記録された前記軌跡により形成される空間領域の容積を計算する、
処理を実行させることを特徴とする設計支援プログラム。
(付記9) 設計対象の三次元モデルの内部空間の指定位置に配置した、指定された径の大きさの粒子を任意方向に移動させる移動部と、
前記粒子が移動した軌跡を記憶する記憶部と、
前記記憶部に記憶された前記軌跡により形成される空間領域の容積を計算する計算部と、
を有することを特徴とする設計支援装置。
1、10、10a 設計支援装置
1a 移動部
1b 記憶部
1b1 テーブル
1c 計算部
2 三次元モデル
2a 第1の構造体
2b 連結部
2c 第2の構造体
2d 接続部
3 粒子
4、30、70 結合関係図
20 3Dモデル
110 初期値受付部
120 初期値記憶部
121 粒子管理テーブル
130 管理テーブル記憶部
131 メッシュ管理テーブル
140 メッシュ生成部
150 空間分類処理部
160 粒子発生部
170 粒子移動処理部
180 マーク識別処理部
190 容積計算部
200 容積記憶部

Claims (8)

  1. コンピュータが、
    設計対象の三次元モデルの内部空間の指定位置に配置した、指定された径の大きさの粒子を任意方向に移動させ、
    前記粒子が移動した軌跡を記録し、
    記録された前記軌跡により形成される空間領域の容積を計算する、
    ことを特徴とする設計支援方法。
  2. 前記三次元モデルは、第1の構造体と前記第1の構造体に連結部を介して連続する空間を形成する第2の構造体とを備え、
    前記粒子は、前記第1の構造体の指定位置に配置され、前記粒子の指定された径の大きさは、前記連結部の断面の径より大きく、
    前記三次元モデルが形成する空間領域から、記録された前記軌跡により形成される空間領域を除外した空間領域を計算し、
    計算された前記空間領域の内部の指定位置に配置した前記粒子と計算された前記空間領域を形成する内周との干渉の有無を記録し、
    記録された干渉が有る領域を用いて前記連結部の容積を計算することを特徴とする請求項1記載の設計支援方法。
  3. 記録された干渉が無い領域を用いて前記第2の構造体の容積を計算することを特徴とする請求項2記載の設計支援方法。
  4. 前記第2の構造体の表面を構成するポリゴンの位置情報を用いて、前記第2の構造体が複数の構造体で形成されているか否かを判断し、前記第2の構造体が複数の構造体で形成されている場合、前記複数の構造体毎に容積を計算することを特徴とする請求項3記載の設計支援方法。
  5. 記録された前記軌跡により形成される空間領域の容積が、前記三次元モデルの容積に一致するか否かを判断し、記録された前記軌跡により形成される空間領域の容積が、前記三次元モデルの容積に一致しない場合、前記三次元モデルが形成する空間領域から、記録された前記軌跡により形成される空間領域を除外した空間領域を計算することを特徴とする請求項2記載の設計支援方法。
  6. 前記連結部の断面の径以下の粒子を任意方向に移動させ、前記粒子が移動した軌跡を記録し、
    記録された前記連結部の断面の径以下の粒子が移動した軌跡により形成される第1の領域から前記連結部の断面の径より大きい粒子が移動した軌跡により形成される第2の領域を除外して前記空間領域を計算することを特徴とする請求項2記載の設計支援方法。
  7. コンピュータに、
    設計対象の三次元モデルの内部空間の指定位置に配置した、指定された径の大きさの粒子を任意方向に移動させ、
    前記粒子が移動した軌跡を記録し、
    記録された前記軌跡により形成される空間領域の容積を計算する、
    処理を実行させることを特徴とする設計支援プログラム。
  8. 設計対象の三次元モデルの内部空間の指定位置に配置した、指定された径の大きさの粒子を任意方向に移動させる移動部と、
    前記粒子が移動した軌跡を記憶する記憶部と、
    前記記憶部に記憶された前記軌跡により形成される空間領域の容積を計算する計算部と、
    を有することを特徴とする設計支援装置。
JP2011270123A 2011-12-09 2011-12-09 設計支援方法、設計支援プログラムおよび設計支援装置 Expired - Fee Related JP5919784B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011270123A JP5919784B2 (ja) 2011-12-09 2011-12-09 設計支援方法、設計支援プログラムおよび設計支援装置
US13/658,862 US9330207B2 (en) 2011-12-09 2012-10-24 Support method, recording medium, and design support device to calculate a volume of a three-dimensional model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270123A JP5919784B2 (ja) 2011-12-09 2011-12-09 設計支援方法、設計支援プログラムおよび設計支援装置

Publications (2)

Publication Number Publication Date
JP2013122638A JP2013122638A (ja) 2013-06-20
JP5919784B2 true JP5919784B2 (ja) 2016-05-18

Family

ID=48572815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270123A Expired - Fee Related JP5919784B2 (ja) 2011-12-09 2011-12-09 設計支援方法、設計支援プログラムおよび設計支援装置

Country Status (2)

Country Link
US (1) US9330207B2 (ja)
JP (1) JP5919784B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156726A (ja) * 2012-01-27 2013-08-15 Fujitsu Ltd 予測値算出方法、プログラムおよび設計支援装置
US9359081B2 (en) 2012-06-12 2016-06-07 The Boeing Company Icing condition detection system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412619B1 (en) * 1989-08-11 1995-11-29 Koninklijke Philips Electronics N.V. Method and apparatus for determining potential collisions using a swept bubble data hierarchy
US5604891A (en) * 1994-10-27 1997-02-18 Lucent Technologies Inc. 3-D acoustic infinite element based on a prolate spheroidal multipole expansion
US6263300B1 (en) * 1998-10-19 2001-07-17 Ford Global Technologies, Inc. Particle trajectory analysis system and method for vehicle design
JP4597347B2 (ja) * 2000-11-08 2010-12-15 株式会社富士通長野システムエンジニアリング ボクセル分割処理装置,ボクセル分割処理方法およびボクセル分割処理プログラム記録媒体
WO2004111888A1 (ja) * 2003-06-11 2004-12-23 Fujitsu Limited 立体形状物体を流れる物体の形状表現プログラムプロダクト
WO2005086034A1 (ja) 2004-03-09 2005-09-15 Fujitsu Limited 数値解析モデルデータ生成プログラム、数値解析モデルデータ生成方法、および数値解析モデルデータ生成装置
JP2006059035A (ja) * 2004-08-18 2006-03-02 Fujitsu Ltd モデル生成プログラム、モデル生成装置およびモデル生成方法
US7620532B2 (en) * 2006-01-23 2009-11-17 Itt Manufacturing Enterprises, Inc. Object discretization to particles for computer simulation and analysis
JP4896747B2 (ja) * 2007-01-10 2012-03-14 富士重工業株式会社 空気溜りのシミュレーション方法及びシミュレーションプログラム
JP5268496B2 (ja) * 2008-08-22 2013-08-21 株式会社東芝 流動解析方法、流動解析装置、及び流動解析プログラム
JP5236516B2 (ja) * 2009-01-30 2013-07-17 アイシン・エィ・ダブリュ株式会社 音響特性最適化モデル解析装置、音響特性最適化モデル解析方法及び音響特性最適化モデル解析プログラム

Also Published As

Publication number Publication date
US9330207B2 (en) 2016-05-03
US20130151213A1 (en) 2013-06-13
JP2013122638A (ja) 2013-06-20

Similar Documents

Publication Publication Date Title
CN105103569B (zh) 使用被组织为任意n边形的网格的扬声器呈现音频
EP2332622B1 (en) Sound generation apparatus, sound generation method and sound generation program
US20130197871A1 (en) Predicted value calculation method and design support apparatus
JP4894369B2 (ja) 3次元モデルの画像処理装置
US10045144B2 (en) Redirecting audio output
JP2009230442A (ja) オブジェクト移動制御システム、オブジェクト移動制御方法、サーバ及びコンピュータプログラム
JP3015262B2 (ja) 3次元形状データ加工装置
JP5919784B2 (ja) 設計支援方法、設計支援プログラムおよび設計支援装置
JP2006277166A (ja) 3次元形状比較プログラム及び3次元類似形状検索プログラム
JP2007249965A (ja) ポイント基盤のレンダリング装置及び方法
CN111783186B (zh) 通用cad模型结果轻量可视化查看方法
JP4770360B2 (ja) 投影制御処理を行うcadプログラム、cad装置およびcadシステム
JP5780089B2 (ja) 計算方法、計算プログラムおよび計算装置
JP2012043032A (ja) 設計支援装置、設計支援方法および設計支援プログラム
WO2023276771A1 (ja) 電波伝搬シミュレーションシステム及び電波伝搬モデルの作成方法
WO2015037388A1 (ja) ユーザインタフェース装置、音響制御装置、音響システム、音響制御方法及びプログラム
Gibson et al. A journey in (interpolated) sound: impact of different visualizations in graphical interpolators
JP3739967B2 (ja) 音響ブラウジング装置及び方法
JP3396414B2 (ja) 近接部品検索方法及び検索装置
JP2005301827A (ja) 音響情報処理装置、音響情報提供方法
JP2016126557A (ja) シミュレーションプログラム、シミュレーション装置およびベクトル表示方法
JP2018151872A (ja) 描画プログラム、描画方法および描画装置
JP2019102004A (ja) 構造解析シミュレーションプログラム、構造解析シミュレーション方法及び情報処理装置
JP2012027793A (ja) 画像処理装置及び画像処理装置の制御方法、プログラム
JP5831054B2 (ja) プログラム、情報処理装置、およびメッシュ修正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5919784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees