JP5906153B2 - 充電装置 - Google Patents

充電装置 Download PDF

Info

Publication number
JP5906153B2
JP5906153B2 JP2012160411A JP2012160411A JP5906153B2 JP 5906153 B2 JP5906153 B2 JP 5906153B2 JP 2012160411 A JP2012160411 A JP 2012160411A JP 2012160411 A JP2012160411 A JP 2012160411A JP 5906153 B2 JP5906153 B2 JP 5906153B2
Authority
JP
Japan
Prior art keywords
voltage
charging
output
battery
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012160411A
Other languages
English (en)
Other versions
JP2014023305A (ja
Inventor
慶 神谷
慶 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2012160411A priority Critical patent/JP5906153B2/ja
Publication of JP2014023305A publication Critical patent/JP2014023305A/ja
Application granted granted Critical
Publication of JP5906153B2 publication Critical patent/JP5906153B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、太陽光発電装置の出力電圧を変換して第1バッテリを充電する第1充電回路と、太陽光発電装置の出力電圧を変換して第2バッテリを充電する第2充電回路とを備えた充電装置に関する。
従来、太陽光発電装置の出力電圧を変換して第1バッテリを充電する第1充電回路と、太陽光発電装置の出力電圧を変換して第2バッテリを充電する第2充電回路とを備えた充電装置として、例えば以下に示す特許文献1に開示されている電気自動車の制御装置がある。
この電気自動車の制御装置は、非接触充電装置と、第1DC/DCコンバータと、第2DC/DCコンバータとを備えている。第1DC/DCコンバータの入力端子は非接触充電装置に、出力端子は高圧メインバッテリにそれぞれ接続されている。第2DC/DCコンバータの入力端子は非接触充電装置に、出力端子は高圧メインバッテリより低電圧である第2低圧サブバッテリにそれぞれ接続されている。非接触充電装置は、太陽光パネルであってもよいと記載されている。非接触充電装置が太陽光パネルであった場合、第1DC/DCコンバータによって、太陽光パネルの出力電圧を昇圧して高圧メインバッテリを充電することができる。また、第2DC/DCコンバータによって、太陽光パネルの出力電圧を降圧して第2低圧サブバッテリを充電することができる。
特開2012−075241号公報
ところで、太陽光パネルの出力電圧を変換してバッテリを充電する場合、一般的に、太陽光パネルの出力電力が最大となるように、DC/DCコンバータが制御される。つまり、DC/DCコンバータが、MPPT(Maximum Power Point Tracking)制御される。前述した電気自動車の制御装置において、第1DC/DCコンバータと第2DC/DCコンバータがともにMPPT制御された場合、第1DC/DCコンバータと第2DC/DCコンバータが、それぞれ別々に太陽光パネルの出力電力を最大にしようとする。その結果、太陽光パネルの出力電力が発振してしまう可能性がある。
本発明はこのような事情に鑑みてなされたものであり、太陽光発電装置の出力電力の発振を抑えることができる充電装置を提供することを目的とする。
本発明は、太陽光によって発電する太陽光発電装置と、入力端子が太陽光発電装置に、出力端子が第1バッテリにそれぞれ接続され、太陽光発電装置の出力電圧を変換して第1バッテリを充電する第1充電回路と、入力端子が太陽光発電装置に、出力端子が第1バッテリより高電圧である第2バッテリにそれぞれ接続され、太陽光発電装置の出力電圧を変換して第2バッテリを充電する第2充電回路と、第1充電回路及び第2充電回路を制御する制御回路と、を備えた充電装置において、制御回路は、第1充電回路の出力電圧が目標電圧となるように第1充電回路を定電圧制御するとともに、太陽光発電装置の出力電力が最大となるように第2充電回路をMPPT制御することを特徴とする。
この構成によれば、第1充電回路が定電圧制御され、第2充電回路がMPPT制御される。従来のように、第1充電回路と第2充電回路がともにMPPT制御されることはない。そのため、太陽光発電装置の出力電力の発振を抑えることができる。
第1実施形態における充電装置の回路図である。 図1の充電装置の動作を説明するためのフローチャートである。 図1の充電装置の動作を説明するためのタイミングチャートである。
次に、実施形態を挙げ、本発明をより詳しく説明する。本実施形態では、本発明に係る充電装置を、ハイブリッド車に搭載された補機バッテリ及びメインバッテリを充電する充電装置に適用した例を示す。
(第1実施形態)
まず、図1を参照して第1実施形態の充電装置の構成について説明する。
図1に示す充電装置1は、太陽光によって発電し、その発電電圧を変換して、車両に搭載された補機バッテリBL(第1バッテリ)及びメインバッテリ(第2バッテリ)を充電する装置である。また、メインバッテリBHの出力電圧を降圧して補機バッテリBLを充電する装置でもある。ここで、補機バッテリBLは、車両に搭載された補機類及び充電装置1に電力を供給する充放電可能な電源である。メインバッテリBHは、車両走行用モータを駆動するためのパワーコントロールユニットPCUに電力を供給する、補機バッテリBLより高電圧である充放電可能な電源である。メインバッテリBHの正極端子はスイッチSMR1を介してパワーコントロールユニットPCUの正極入力端子に、負極端子はスイッチSMR2を介してパワーコントロールユニットPCUの負極入力端子にそれぞれ接続されている。充電装置1は、太陽光パネル10(太陽光発電装置)と、ソーラー制御装置11と、降圧コンバータ12と、車両制御装置13と、スイッチ140、141とを備えている。
太陽光パネル10は、車両に搭載され、太陽光によって発電する装置である。太陽光パネル10は、補機バッテリBLの電圧より高く、メインバッテリBHの電圧より低い電圧を出力する。太陽光パネル10の正極出力端子及び負極出力端子は、ソーラー制御装置11に接続されている。
ソーラー制御装置11は、車両に搭載され、太陽光パネル10の出力電圧を変換して補機バッテリBL及びメインバッテリBHを充電する装置である。ソーラー制御装置11は、降圧コンバータ110(第1充電回路)と、昇圧コンバータ111(第2充電回路)と、制御CPU112(制御回路)とを備えている。
降圧コンバータ110は、制御CPU112によって制御され、太陽光パネル10の出力電圧を降圧して補機バッテリBLを充電する回路である。降圧コンバータ11の正極入力端子は太陽光パネル10の正極出力端子に、負極入力端子は太陽光パネル10の負極出力端子にそれぞれ接続されている。また、正極出力端子は補機バッテリBLの正極端子に、負極出力端子は補機バッテリBLの負極端子にそれぞれ接続されている。さらに、制御端子は、制御CPU112に接続されている。
昇圧コンバータ111は、制御CPU112によって制御され、太陽光パネル10の出力電圧を昇圧してメインバッテリBHを充電する回路である。具体的には、スイッチ140、141を介してメインバッテリBHに接続され、太陽光パネル10の出力電圧を昇圧してメインバッテリBHを充電する回路である。昇圧コンバータ111の正極入力端子は太陽光パネル10の正極出力端子に、負極入力端子は太陽光パネル10の負極出力端子にそれぞれ接続されている。また、正極出力端子はスイッチ140に、負極出力端子はスイッチ141にそれぞれ接続されている。さらに、制御端子は、制御CPU112に接続されている。
制御CPU112は、太陽光パネル10の出力電圧及び出力電力に基づいて、降圧コンバータ110及び昇圧コンバータ111を制御する素子である。制御CPU112は、降圧コンバータ110の出力電圧に基づいて太陽光パネル10の出力電力を判定する。制御CPU112は、太陽光パネル10及び降圧コンバータ110の正極出力端子にそれぞれ接続されている。また、降圧コンバータ110及び昇圧コンバータ111の制御端子にそれぞれ接続されている。さらに、スイッチ140、141にそれぞれ接続されている。
降圧コンバータ12は、車両に搭載され、車両制御装置13によって制御され、メインバッテリBHの出力電圧を降圧して補機バッテリBLを充電する回路である。具体的には、スイッチSMR1、SMR2を介してメインバッテリBHに接続され、メインバッテリBHの出力電圧を降圧して補機バッテリBLを充電する回路である。降圧コンバータ12の正極入力端子はスイッチSMR1に、負極入力端子はスイッチSMR2にそれぞれ接続されている。また、正極出力端子は補機バッテリBLの正極端子に、負極出力端子は補機バッテリBLの負極端子にそれぞれ接続されている。さらに、制御端子は、車両制御装置13に接続されている。
車両制御装置13は、上位の制御装置(図略)から入力される走行信号に基づいて降圧コンバータ12を制御する装置である。また、車両に搭載された他の補機類を制御する装置でもある。ここで、走行信号は、車両が走行状態にあること示す信号であり、上位の制御装置から出力される。車両制御装置13は、走行信号を出力する上位の制御装置に接続されている。また、降圧コンバータ12の制御端子に接続されている。
スイッチ140、141は、制御CPU112によって制御され、昇圧コンバータ111の正極出力端子及び負極出力端子をメインバッテリBHの正極端子及び負極端子にそれぞれ接続する素子である。スイッチ140、141の一端は昇圧コンバータ111の正極出力端子及び負極出力端子に、他端はメインバッテリBHの正極端子及び負極端子にそれぞれ接続されている。また、制御端子は、制御CPU112に接続されている。
次に、図1及び図2参照して充電装置の動作について説明する。
図2に示すように、制御CPU112は、太陽光パネル10の出力電圧が第1基準電圧αより大きいか否かを判定する(S100)。ここで、第1基準電圧αは、降圧コンバータ110を介して補機バッテリBLを充電することが可能であると想定される太陽光パネル10の出力電圧を示すものである。第1基準電圧αは、降圧コンバータ110を介して補機バッテリBLを充電するのに充分な電力を太陽光パネル10が出力している状態における、太陽光パネル10の出力電圧に設定されている。
ステップS100において、太陽光パネル10の出力電圧が第1基準電圧α以下であると判定した場合、制御CPU112は、スイッチ140、141をオフし、降圧コンバータ110及び昇圧コンバータ111を停止する(S101)。
一方、ステップS100において、太陽光パネル10の出力電圧が第1基準電圧αより大きいと判定した場合、制御CPU112は、降圧コンバータ110の出力電力が目標電圧となるように、降圧コンバータ110を定電圧制御する(S102)。ここで、目標電圧は、補機バッテリBLの満充電時における開放電圧に所定電圧を加算した電圧に設定されている。これにより、降圧コンバータ110によって太陽光パネル10の出力電圧が降圧され、補機バッテリBLが定電圧充電される。
その後、制御CPU112は、降圧コンバータ110の出力電圧に基づいて太陽光パネル10の出力電力を判定する。制御CPU112は、降圧コンバータ110の出力電圧が第2基準電圧β以上であるか否かを判定する(S103)。ここで、第2基準電圧βは、太陽光パネル10が補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力を出力しているか否かを判定するためのものである。第2基準電圧βは、補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力を太陽光パネル10が出力している状態における、降圧コンバータ110の出力電圧に設定されている。具体的には、補機バッテリBLの満充電時における開放電圧に所定電圧を加算した電圧に設定されている。
ステップS103において、降圧コンバータ110の出力電圧が第2基準電圧β以上であると判定した場合、つまり、太陽光パネル10の出力電力が補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力以上であると判定した場合、制御CPU112は、スイッチ140、141をオンし、太陽光パネル10の出力電力が最大となるように昇圧コンバータ111をMPPT制御するとともに、降圧コンバータ110の出力電圧が目標電圧となるように降圧コンバータ110を定電圧制御し(S104)、ステップS103に戻る。これにより、昇圧コンバータ111によって、太陽光パネル10の出力電力が最大となるような状態で出力電圧が昇圧され、メインバッテリBHが充電される。また、降圧コンバータ110によって太陽光パネル10の出力電圧が降圧され、補機バッテリBLが定電圧充電される。
一方、ステップS103において、降圧コンバータ110の出力電圧が第2基準電圧βより小さいと判定した場合、つまり、太陽光パネル10の出力電力が補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力より小さいと判定した場合、制御CPU112は、スイッチ140、141をオフし、昇圧コンバータ111を停止するとともに、太陽光パネル10の出力電力が最大となるように降圧コンバータ110をMPPT制御する(S105)。これにより、メインバッテリBHの充電が停止する。また、降圧コンバータ110によって、太陽光パネル10の出力電力が最大となるような状態で出力電圧が降圧され、補機バッテリBLが充電される。
その後、制御CPU112は、降圧コンバータ110の出力電圧が第3基準電圧γより小さいか否かを判定する(S106)。ここで、第3基準電圧γは、太陽光パネル10が補機バッテリBLから電力供給される装置の消費電力を出力しているか否かを判定するためのものである。第3基準電圧γは、補機バッテリBLから電力供給される装置の消費電力を太陽光パネル10が出力している状態における、降圧コンバータ110の出力電圧に設定されている。具体的には、補機バッテリBLの満充電時における開放電圧より大きく、第2基準電圧βより小さい電圧に設定されている。
ステップS106において、降圧コンバータ110の出力電圧が第3基準電圧γ以上であると判定した場合、制御CPU112は、直前の制御状態を維持しステップS103に戻る。
一方、ステップS106において、降圧コンバータ110の出力電圧が第3基準電圧γより小さいと判定した場合、制御CPU112は、降圧コンバータ110を停止するとともに、スイッチ140、141をオフし、昇圧コンバータ111を停止する(S107)。これにより、メインバッテリBH及び補機バッテリBLの充電が停止する。
車両走行中には、図1に示すSMR1、SMR2がオンし、メインバッテリBHがパワーコントロールユニットPCUに接続される。走行信号が入力されると、車両制御装置13は、降圧コンバータ12を制御する。降圧コンバータ12は、メインバッテリBHの出力電圧を降圧して補機バッテリBLを充電する。
次に、図3を参照して、ソーラー制御装置の動作を説明する。
図3に示すように、太陽光パネル10の出力電力が増加し、補機バッテリBLから電力供給される装置の消費電力に達すると、降圧コンバータ110の出力電圧が第3基準電圧γに達する。降圧コンバータ110の出力電圧が第3基準電圧γより大きくなると、制御CPU112は、昇圧コンバータ111を停止するとともに、降圧コンバータ110をMPPT制御する(時刻t0〜t1)。
太陽光パネル10の出力電力がさらに増加し、補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力に達すると、降圧コンバータ110の出力電圧が第2基準電圧βに達する。降圧コンバータ110の出力電圧が第2基準電圧以上になると、制御CPU112は、スイッチ140、141をオンし、昇圧コンバータ111をMPPT制御するとともに、降圧コンバータ110を定電圧制御する(時刻t1〜t2)。
その後、太陽光パネル10の出力電力が減少し、補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力に達すると、降圧コンバータ110の出力電圧が第2基準電圧βに達する。降圧コンバータ110の出力電圧が第2基準電圧βより小さくなると、制御CPU112は、スイッチ140、141をオフし、昇圧コンバータ111を停止するとともに、降圧コンバータ110をMPPT制御する(時刻t2〜t3)。
太陽光パネル10の出力電力がさらに減少し、補機バッテリBLから電力供給される装置の消費電力に達すると、降圧コンバータ110の出力電圧が第3基準電圧γに達する。降圧コンバータ110の出力電圧が第3基準電圧以下になると、制御CPU112は、降圧コンバータ110を停止するとともに、スイッチ140、141をオフし、昇圧コンバータ111を停止する(時刻t3〜)。
次に、効果について説明する。
第1実施形態によれば、制御CPU112は、降圧コンバータ110の出力電圧が目標電圧となるように降圧コンバータ110を制御するとともに、太陽光パネル10の出力電力が最大となるように昇圧コンバータ111を制御する。つまり、降圧コンバータ110が定電圧制御され、昇圧コンバータ111がMPPT制御される。従来のように、降圧コンバータ110と昇圧コンバータ112がともにMPPT制御されることはない。そのため、太陽光パネル10の出力電力の発振を抑えることができる。
第1実施形態によれば、制御CPU112は、降圧コンバータ110の出力電圧が目標電圧となるように、降圧コンバータ110を定電圧制御する。目標電圧は、補機バッテリBLの満充電時における開放電圧に所定電圧を加算した電圧に設定されている。そのため、補機バッテリBLを確実に定電圧充電することができる。
昇圧コンバータ111を動作させる場合、補機バッテリBLから昇圧コンバータ111に新たに電力を供給しなければならない。太陽光パネル10の出力電力が補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力以上である場合、補機バッテリBLから電力供給される装置の消費電力と、昇圧コンバータ111の消費電力を太陽光パネル10から供給することができる。そのため、補機バッテリBLの出力電圧の低下を抑えることができる。ところが、太陽光パネル10の出力電力が補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力より小さい場合、補機バッテリBLから電力供給される装置の消費電力と、昇圧コンバータ111の消費電力を太陽光パネル10から供給することができない。そのため、補機バッテリBLから電力供給されることになり、補機バッテリBLの出力電圧が低下してしまう。しかし、第1実施形態では、太陽光パネル10の出力電力が補機バッテリBLから電力供給される装置の消費電力に所定電力を加算した電力より小さいとき、昇圧コンバータ111を停止する。そのため、補機バッテリBLの出力電圧の低下を抑えることができる。
第1実施形態によれば、制御CPU112は、昇圧コンバータ111を停止したとき、太陽光パネル10の出力電力が最大となるように降圧コンバータ110をMPPT制御する。昇圧コンバータ111が停止しているため、降圧コンバータ110をMPPT制御しても太陽光パネル10の出力電力が発振してしまうことはない。従って、太陽光パネル10の出力電力の発振を抑え、降圧コンバータ110のMPPT制御により、補機バッテリBLを効率よく充電することができる。
太陽光パネル10の出力電力を判定する場合、一般的には、太陽光パネル10の出力電圧と出力電流を検出して出力電力を求めなければならない。しかし、第1実施形態によれば、制御CPU112は、降圧コンバータ110の出力電圧に基づいて太陽光パネル10の出力電力を判定する。太陽光パネル10の出力電圧を降圧して出力する降圧コンバータ110の出力電圧は、太陽光パネル10の出力電力に応じて変化する。そのため、降圧コンバータ110の出力電圧に基づいて太陽光パネル10の出力電力を判定することができる。従って、太陽光パネル10の出力電圧と出力電流を検出する必要がなく、構成を簡素化することができる。
第1実施形態によれば、制御CPU112は、降圧コンバータ110の出力電圧と、補機バッテリBLの満充電時における開放電圧に所定電圧を加算した電圧の比較結果に基づいて太陽光パネル10の出力電力を判定する。太陽光パネル10の出力電力が充分であると、降圧コンバータ110は、補機バッテリBLの満充電時における開放電圧に所定電圧を加算した電圧を出力できる。しかし、太陽光パネル10の出力電力が低下してくると、降圧コンバータ110は、補機バッテリBLの満充電時における開放電圧に所定電圧を加算した電圧を出力できなくなる。そのため、太陽光パネル10の出力電力を確実に判定することができる。
降圧コンバータ110を動作させる場合、補機バッテリBLから降圧コンバータ110に電力を供給しなければならない。降圧コンバータ110の出力電圧が補機バッテリBLの満充電時における開放電圧に所定電圧を加算した電圧以下である場合、補機バッテリBLを充電することはできない。この状態で降圧コンバータ110の動作させておくと、無駄な電力消費によって、補機バッテリBLの出力電圧が低下してしまう。しかし、第1実施形態によれば、制御CPU112は、降圧コンバータ110の出力電圧が補機バッテリBLの満充電時における開放電圧に所定電圧を加算した電圧以下であるとき、降圧コンバータ110を停止する。そのため、補機バッテリBLの電圧が低下を抑えることができる。
なお、第1実施形態では、降圧コンバータ110の出力電圧が補機バッテリBLの満充電時における開放電圧に所定のマージンを加算した電圧以下のとき、制御CPU112が、降圧コンバータ110を停止する例を挙げているが、これに限られるものではない。補機バッテリBLの残存容量が減少したとき、制御CPU112が、降圧コンバータ110を停止するようにしてもよい。また、降圧コンバータ110の出力電圧が充電装置の起動時における補機バッテリBLの出力電圧以下のとき、制御CPU112が、降圧コンバータ110を停止するようにしてもよい。いずれの場合も、補機バッテリBLを充電できていない。そのため、降圧コンバータ110を停止することで、無駄な電力消費による補機バッテリBLの出力電圧の低下を抑えることができる。
また、第1実施形態では、太陽光パネル10の電圧が、補機バッテリBLの電圧より高く、メインバッテリBHの電圧より低く、降圧コンバータ110によって降圧して補機バッテリBLを充電する例を挙げているが、これに限られるものではない。太陽光パネル10の電圧は、メインバッテリBHの電圧や補機バッテリBLの電圧より低くてもよい。この場合、図1に示す降圧コンバータ110を、昇圧コンバータ(第1充電回路)に変更することにより、太陽光パネル10の出力電圧を昇圧して補機バッテリBLを充電することができ、同様の効果を得ることができる。
1・・・充電装置、10・・・太陽光パネル(太陽光発電装置)、11・・・ソーラー制御装置、110・・・降圧コンバータ(第1充電回路)、111・・・昇圧コンバータ(第2充電回路)、112・・・制御CPU(制御回路)、12・・・降圧コンバータ、13・・・車両制御装置、140、141・・・スイッチ、PCU・・・パワーコントロールユニット、SMR1、SMR2・・・スイッチ、BH・・・メインバッテリ(第2バッテリ)、BL・・・補機バッテリ(第1バッテリ)


























Claims (9)

  1. 太陽光によって発電する太陽光発電装置(10)と、
    入力端子が前記太陽光発電装置に、出力端子が第1バッテリ(BL)にそれぞれ接続され、前記太陽光発電装置の出力電圧を変換して前記第1バッテリを充電する第1充電回路(110)と、
    入力端子が前記太陽光発電装置に、出力端子が前記第1バッテリより高電圧である第2バッテリ(BH)にそれぞれ接続され、前記太陽光発電装置の出力電圧を変換して前記第2バッテリを充電する第2充電回路(111)と、
    前記第1充電回路及び前記第2充電回路を制御する制御回路(112)と、
    を備えた充電装置において、
    前記制御回路は、前記第1充電回路の出力電圧が目標電圧となるように前記第1充電回路を定電圧制御するとともに、前記太陽光発電装置の出力電力が最大となるように前記第2充電回路をMPPT制御することを特徴とする充電装置。
  2. 前記目標電圧は、前記第1バッテリの満充電時における開放電圧に所定電圧を加算した電圧であることを特徴とする請求項1に記載の充電装置。
  3. 前記制御回路は、前記太陽光発電装置の出力電力が前記第1バッテリから電力供給される装置の消費電力に所定電力を加算した電力より小さいとき、前記第2充電回路を停止することを特徴とする請求項1又は2に記載の充電装置。
  4. 前記制御回路は、前記第2充電回路を停止したとき、前記太陽光発電装置の出力電力が最大となるように前記第1充電回路をMPPT制御することを特徴とする請求項3に記載の充電装置。
  5. 前記制御回路は、前記第1充電回路の出力電圧に基づいて前記太陽光発電装置の出力電力を判定することを特徴とする請求項3に記載の充電装置。
  6. 前記制御回路は、前記第1充電回路の出力電圧と、前記第1バッテリの満充電時における開放電圧に所定電圧を加算した電圧の比較結果に基づいて前記太陽光発電装置の出力電力を判定することを特徴とする請求項5に記載の充電装置。
  7. 前記制御回路は、前記第1充電回路の出力電圧が前記第1バッテリの満充電時における開放電圧に所定電圧を加算した電圧より小さいとき、前記第1充電回路を停止することを特徴とする請求項1〜6のいずれか1項に記載の充電装置。
  8. 前記制御回路は、前記第1バッテリの残存容量が減少したとき、前記第1充電回路を停止することを特徴とする請求項1〜6のいずれか1項に記載の充電装置。
  9. 前記制御回路は、前記第1充電回路の出力電圧が充電装置の起動時における前記第1バッテリの出力電圧以下のとき、前記第1充電回路を停止することを特徴とする請求項1〜6のいずれか1項に記載の充電装置。
JP2012160411A 2012-07-19 2012-07-19 充電装置 Active JP5906153B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160411A JP5906153B2 (ja) 2012-07-19 2012-07-19 充電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160411A JP5906153B2 (ja) 2012-07-19 2012-07-19 充電装置

Publications (2)

Publication Number Publication Date
JP2014023305A JP2014023305A (ja) 2014-02-03
JP5906153B2 true JP5906153B2 (ja) 2016-04-20

Family

ID=50197628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160411A Active JP5906153B2 (ja) 2012-07-19 2012-07-19 充電装置

Country Status (1)

Country Link
JP (1) JP5906153B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887667B2 (ja) * 2017-03-28 2021-06-16 国立研究開発法人宇宙航空研究開発機構 電力制御システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145425B2 (ja) * 1991-05-14 2001-03-12 本田技研工業株式会社 ソーラーセルを備えた電気走行車
JP2012515526A (ja) * 2009-01-15 2012-07-05 フィスカー オートモーティブ インク. 車両用ソーラーパワー管理
US8710699B2 (en) * 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
JP5541982B2 (ja) * 2010-06-28 2014-07-09 シャープ株式会社 直流配電システム

Also Published As

Publication number Publication date
JP2014023305A (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
JP6085544B2 (ja) 電気自動車用急速充電設備、充電設備のエネルギーマネジメント方法および充電設備システム
JP5614085B2 (ja) 電源装置
JP5290349B2 (ja) 直流給電システムおよびその制御方法
US20140062183A1 (en) Power supply device for vehicle
JP2011120447A (ja) エネルギー貯蔵システム
WO2013129231A1 (ja) 電源装置
JP2012175801A (ja) 蓄電システム
JP2020010517A (ja) 充電制御装置及び充電制御システム
JP5582173B2 (ja) 充電装置
JP2015115982A (ja) 電力出力装置
JP5879226B2 (ja) 充電装置
JP5609226B2 (ja) 電源装置
JP5661075B2 (ja) 充放電装置
JP2011155737A (ja) バッテリの充電システム
JP2014204541A (ja) 制御装置
CN105471014A (zh) 充电系统
JP2014023211A (ja) 充電装置
JP6001364B2 (ja) 充電装置
JP5906153B2 (ja) 充電装置
JP2011229275A (ja) 電動車両の充電システム
JP2011211797A (ja) 昇圧型dc−dcコンバータ
JP6018560B2 (ja) 電力システム
JP6378549B2 (ja) 充放電装置
JP5687431B2 (ja) 電源回路及び電源システム
JP6016719B2 (ja) 充電制御システム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160318

R150 Certificate of patent or registration of utility model

Ref document number: 5906153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250