JP5905631B1 - 動翼、これを備えているガスタービン、及び動翼の製造方法 - Google Patents

動翼、これを備えているガスタービン、及び動翼の製造方法 Download PDF

Info

Publication number
JP5905631B1
JP5905631B1 JP2015181691A JP2015181691A JP5905631B1 JP 5905631 B1 JP5905631 B1 JP 5905631B1 JP 2015181691 A JP2015181691 A JP 2015181691A JP 2015181691 A JP2015181691 A JP 2015181691A JP 5905631 B1 JP5905631 B1 JP 5905631B1
Authority
JP
Japan
Prior art keywords
blade
passage
platform
shaft
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015181691A
Other languages
English (en)
Other versions
JP2017057750A (ja
Inventor
啓太 ▲高▼村
啓太 ▲高▼村
羽田 哲
哲 羽田
秀勝 渥美
秀勝 渥美
智史 新谷
智史 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015181691A priority Critical patent/JP5905631B1/ja
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Publication of JP5905631B1 publication Critical patent/JP5905631B1/ja
Application granted granted Critical
Priority to CN201680050376.0A priority patent/CN107923250B/zh
Priority to KR1020187005726A priority patent/KR102018011B1/ko
Priority to EP16846373.5A priority patent/EP3351728B1/en
Priority to PCT/JP2016/076496 priority patent/WO2017047502A1/ja
Priority to US15/743,909 priority patent/US10376950B2/en
Priority to TW105129341A priority patent/TWI641752B/zh
Publication of JP2017057750A publication Critical patent/JP2017057750A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/04Handling or stripping castings or ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

【課題】強度及び冷却効果の低下を抑えることができる動翼を提供する。【解決手段】翼体51、プラットフォーム60及び軸取付部90内には、翼高さ方向Dwhの延びる翼通路71が形成されている。プラットフォーム60内には、プラットフォーム通路81が形成されている。プラットフォーム60の軸側面62と軸取付部90の外面93とのうち、少なくとも一方の面から、プラットフォーム通路81を経て翼通路71につながる連通路75が形成されている。プラットフォーム通路81の流入通路部82を形成する内面は、軸側面62の側を向くガスパス側内面87と、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がってガスパス側内面87に少なくとも一部が対向する軸側内面88と、を含む。連通路75を形成する内面は、流入通路部82内の軸側内面88につながっている。【選択図】図5

Description

本発明は、動翼、これを備えているガスタービン、及び動翼の製造方法に関する。
ガスタービンは、軸線を中心として回転するロータと、このロータを覆う車室と、を備える。ロータは、ロータ軸と、このロータ軸に取り付けられている複数の動翼とを有する。動翼は、翼形を成す翼体と、翼体の翼高さ方向の端部から翼高さ方向に対してほぼ垂直な方向に広がるプラットフォームと、プラットフォームから翼体と反対側に延びる軸取付部と、を有する。
ガスタービンの動翼は、高温の燃焼ガスに晒される。このため、動翼は、一般的に、空気等で冷却される。
例えば、以下の特許文献1に記載の動翼には、冷却空気が通る各種冷却通路が形成されている。具体的に、翼体、プラットフォーム及び軸取付部には、内部を翼高さ方向に延びて、冷却空気が流れる翼通路が形成されている。プラットフォームには、翼高さ方向を向いて燃焼ガスに接するガスパス面と、ガスパス面と背合わせの関係にある軸側面と、が形成されている。さらに、このプラットフォームには、ガスパス面と軸側面との間を翼厚さ方向に延びて冷却空気が流れるプラットフォーム通路と、プラットフォーム通路の翼通路側の端からガスパス面から遠ざかる側に延びるターンダウン延長部と、が形成されている。プラットフォーム及び軸取付部には、プラットフォームの軸側面と軸取付部の外面との角部における外面から、ターンダウン延長部を経て翼通路につながる連通路が形成されている。この連通路における前記角部の外面での開口は、プラグ等で塞がれている。
この動翼は、基本的に、鋳造で製造される。翼通路、プラットフォーム通路及びターンダウン延長部は、鋳造過程で、それぞれの形状にあった外形状の中子を用いて形成される。鋳造により形成された動翼の中間品では、プラットフォーム通路とターンダウン延長部とはつながっているものの、ターンダウン延長部と翼通路はつながっていない。連通路は、この中間品が形成された後、形成される。具体的に、中間品における前記角度の外面から、ターンダウン延長部を経て、翼通路にぬける貫通孔を機械加工で形成する。この貫通孔、つまり連通路は、ターンダウン延長部をガスパス面側と軸側面とに二分する。
特開2012−132438号公報
上記特許文献1に記載の動翼では、翼通路内の冷却空気が連通路を経て、ターンダウン延長部及びプラットフォーム通路に流入する。この動翼では、冷却空気がターンダウン延長部を流れる過程で、冷却空気の翼厚さ方向の速度成分が小さくなるため、ターンダウン延長部を流れる冷却空気による対流冷却効果が小さくなる。よって、この動翼では、翼体近傍のガスパス面の冷却効果が低下する、という問題点がある。さらに、この動翼では、プラットフォーム内にプラットフォーム通路の他に、ターンダウン延長部を形成しているため、動翼の強度が低下する、という問題点もある。
そこで、本発明は、強度及び冷却効果の低下を抑えることができる動翼、これを備えるガスタービン、動翼の製造方法を提供することを目的とする。
前記目的を達成するための発明に係る一態様としての動翼は、
燃焼ガスが流れる燃焼ガス流路内に配置され、翼形を成す翼体と、前記翼体の翼高さ方向の端部から前記翼高さ方向に対して垂直な成分を有する方向に広がるプラットフォームと、前記プラットフォームから前記翼体と反対側に延びる軸取付部と、を有し、前記翼体、前記プラットフォーム及び前記軸取付部には、前記翼体、前記プラットフォーム及び前記軸取付部の内部を前記翼高さ方向に延びて、冷却空気が流れる翼通路が形成され、前記プラットフォームには、前記翼高さ方向を向いて前記燃焼ガスに接するガスパス面と、前記ガスパス面と背合わせの関係にある軸側面と、前記ガスパス面と前記軸側面との間に形成され冷却空気が流れるプラットフォーム通路と、が形成され、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記プラットフォーム通路を経て前記翼通路につながる連通路が形成され、前記連通路における前記少なくとも一方の面での開口が封止部材で塞がれ、前記プラットフォーム通路は、前記翼通路近傍の位置から当該位置における翼厚さ方向成分を有する方向に延びる流入通路部を有し、前記流入通路部を形成する内面は、前記軸側面の側を向くガスパス側内面と、前記ガスパス側内面に対向する面として前記翼高さ方向成分よりも前記翼厚さ方向成分の多い方向に広がっている軸側内面のみと、を含み、前記連通路を形成する内面が、前記流入通路部の前記軸側内面に交わってつながっている。
当該動翼では、連通路の内面をプラットフォーム通路における流入通路部の内面の一部である軸側内面につなげたことにより、背景技術の欄で説明した動翼のようにターンダウン延長部を形成してなくても、翼通路とプラットフォーム通路とを連通させることができる。このため、当該動翼では、ターンダウン延長部がない。よって、当該動翼では、ターンダウン延長部を形成することによる動翼強度の低下を回避することができる。
また、当該動翼では、ターンダウン延長部が形成されていないため、背景技術の欄で説明した動翼に比べて、翼通路からプラットフォーム通路に至る冷却空気の経路として、プラットフォーム通路に向う直線的な経路が形成される。このため、当該動翼では、翼通路内の冷却空気がプラットフォーム通路に流入する過程での冷却空気の圧力損失を小さくすることができる。さらに、当該動翼では、ターンダウン延長部が形成されていないため、冷却空気が連通路からプラットフォーム通路における流入通路部内に流入する過程で、流入通路部が延びる翼厚さ方向の速度成分が実質的に小さくなることがない。このため、当該動翼では、翼体近傍のガスパス面の冷却効果の低下を抑えることができる。
ここで、前記動翼において、前記流入通路部の前記内面は、前記軸側内面における前記翼通路側の端から前記翼高さ方向成分を有する方向に広がって、前記ガスパス側内面における前記翼通路側の端につながる端内面を含み、前記連通路の前記内面が、前記流入通路部の前記端内面に交わってつながっていてもよい。
当該動翼では、連通路が流入通路部の軸側内面のみならず、翼通路の内面と対向する端内面につながっているので、翼通路からプラットフォーム通路に至る冷却空気の経路として、プラットフォーム通路に向うより直線的な経路が形成される。従って、当該動翼では、冷却空気の圧力損失をより小さくできる上に、翼体近傍のガスパス面の冷却効果の低下をより抑えることができる。
また、以上のいずれかの前記動翼において、前記連通路の前記内面が、前記流入通路部の前記ガスパス側内面に交わってつながっていてもよい。
また、以上のいずれかの前記動翼において、前記翼通路には、前記翼厚さ方向であって前記流入通路部に近づく側に膨らんだ膨らみ部が形成され、前記連通路は、前記翼通路の前記膨らみ部に交わってつながっていてもよい。
当該動翼では、翼通路に膨らみ部を形成することで、翼通路と流入通路部との間の翼厚さ方向における距離を短くすることができる。このため、当該動翼では、翼通路内の冷却空気がプラットフォーム通路に流入する過程での冷却空気の圧力損失をより抑えることができる。
また、以上のいずれかの前記動翼において、前記プラットフォーム通路は、前記プラットフォーム内で蛇行している蛇行通路部を有してよい。
当該動翼では、蛇行通路部を有するので、プラットフォーム通路に流入した冷却空気でプラットフォーム内の広い範囲にわって冷却することができる。
また、以上のいずれかの前記動翼において、前記プラットフォームには、前記翼体の翼弦方向及び前記翼高さ方向に垂直な成分を有する幅方向に対して垂直な成分を有する方向に広がり、前記ガスパス面とつながる側端面が形成され、前記プラットフォーム通路は、前記側端面に沿って、前記翼弦方向成分を含む方向に延びる側端通路部を有してもよい。
当該動翼では、プラットフォーム中の側端面近傍を冷却することができる。
前記目的を達成するための発明に係る一態様としてのガスタービンは、
以上のいずれかの複数の前記動翼と、複数の前記動翼が取り付けられているロータ軸と、複数の前記動翼、及び前記ロータ軸を覆う車室と、前記車室内で、複数の前記動翼が配置されている領域に燃焼ガスを送る燃焼器と、を備える。
前記目的を達成するための発明に係る一態様としての動翼の製造方法は、
燃焼ガスが流れる燃焼ガス流路内に配置され、翼形を成す翼体と、前記翼体の翼高さ方向の端部から前記翼高さ方向に対して垂直な成分を有する方向に広がるプラットフォームと、前記プラットフォームから前記翼体と反対側に延びる軸取付部と、を有する動翼の中間品を形成する中間品形成工程と、前記中間品の外面から前記中間品の内部に延びる連通路を形成する連通路形成工程と、前記連通路における前記中間品の外面での開口を塞ぐ封止工程と、を実行し、前記中間品形成工程では、前記翼体、前記プラットフォーム及び前記軸取付部の内部を前記翼高さ方向に延びて、冷却空気が流れる翼通路を形成し、前記プラットフォームに、前記翼高さ方向を向いて前記燃焼ガスに接するガスパス面と、前記ガスパス面と背合わせの関係にある軸側面と、前記ガスパス面と前記軸側面との間に形成され冷却空気が流れるプラットフォーム通路と、を形成し、前記プラットフォーム通路の一部として、前記翼通路近傍の位置から当該位置における翼厚さ方向成分を有する方向に延びる流入通路部を形成し、前記流入通路部を形成する際に、前記流入通路部を形成する内面の一部として、前記軸側面の側を向くガスパス側内面と、前記ガスパス側内面に対向する面として前記翼高さ方向成分よりも前記翼厚さ方向成分の多い方向に広がる軸側内面のみと、を形成し、前記連通路形成工程では、前記連通路として、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記流入通路部の前記軸側内面を経て、前記翼通路に貫通する貫通孔を形成する。
当該製造方法では、連通路として、プラットフォーム通路における流入通路部の内面の一部である軸側内面を経て、翼通路に貫通する貫通孔を形成することにより、背景技術の欄で説明した動翼のようにターンダウン延長部を形成してなくても、翼通路とプラットフォーム通路とを連通させることができる。このため、当該製造方法で製造された動翼では、ターンダウン延長部がない。よって、この動翼では、ターンダウン延長部を形成することによる動翼強度の低下を回避することができる。
また、当該製造方法で製造された動翼では、ターンダウン延長部が形成されていないため、背景技術の欄で説明した動翼に比べて、翼通路からプラットフォーム通路に至る冷却空気の経路として、プラットフォーム通路に向う直線的な経路が形成される。このため、当該製造方法で形成された動翼では、翼通路内の冷却空気がプラットフォーム通路に流入する過程での冷却空気の圧力損失を小さくすることができる。さらに、当該製造方法で製造された動翼では、ターンダウン延長部が形成されていないため、冷却空気が連通路からプラットフォーム通路における流入通路部内に流入する過程で、流入通路部が延びる翼厚さ方向の速度成分が実質的に小さくなることがない。このため、当該製造方法で形成された動翼では、翼体近傍のガスパス面の冷却効果の低下を抑えることができる。
ここで、前記製造方法において、前記中間品形成工程では、前記流入通路部を形成する内面の一部として、前記軸側内面における前記翼通路側の端から前記翼高さ方向成分を有する方向に広がって、前記ガスパス側内面における前記翼通路側の端につながる端内面を形成し、前記連通路形成工程では、前記連通路として、前記流入通路部の前記端内面を経て、前記翼通路に貫通する貫通孔を形成してもよい。
また、以上のいずれかの前記製造方法において、前記連通路形成工程では、前記連通路として、前記流入通路部の前記軸側内面と前記端内面との角部を経て、前記翼通路に貫通する貫通孔を形成してもよい。
また、以上のいずれかの前記製造方法において、前記連通路形成工程では、前記連通路として、前記流入通路部の前記ガスパス側内面を経て、前記翼通路に貫通する貫通孔を形成してもよい。
また、以上のいずれかの前記製造方法において、前記連通路形成工程では、前記連通路として、前記流入通路部の前記ガスパス側内面と前記端内面との角部を経て、前記翼通路に貫通する貫通孔を形成してもよい。
また、以上のいずれかの前記製造方法において、前記中間品形成工程は、前記動翼の外形状に合った内部空間が形成されている鋳型を形成する鋳型形成工程と、前記翼通路の形状にあった外形状の翼通路中子、及び、前記プラットフォーム通路の形状にあった外形状のプラットフォーム通路中子を形成する中子形成工程と、前記鋳型内に前記翼通路中子及び前記プラットフォーム通路中子を配置して、前記鋳型内に溶融金属を流し込む鋳込み工程と、前記溶融金属が硬化した後に、前記翼通路中子及び前記プラットフォーム通路中子を溶解させる中子溶解工程と、を含んでもよい。
また、以上のいずれかの前記製造方法において、前記中間品形成工程では、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記流入通路部の前記軸側内面へ向けて凹む下穴を形成し、前記連通路形成工程では、前記中間品形成工程で形成された前記中間品の前記下穴の底面から、前記流入通路部の前記軸側内面を経て、前記翼通路に貫通する貫通孔を形成してもよい。
当該製造方法では、連通路形成工程における、貫通孔を形成するための中間品に対する加工量を減らすことができる。また、当該製造方法では、中間品形成工程で形成した下穴をガイドとして、貫通孔を形成できるので、連通孔の貫通方向の正確性を高めることできる。
前記中間品形成工程で前記下穴を形成する前記製造方法において、前記中子形成工程では、前記下穴の形状にあった外形状の下穴中子を形成し、前記鋳込み工程では、前記鋳型内に前記下穴中子を配置して、前記鋳型内に溶融金属を流し込み、前記中子溶解工程では、前記溶融金属が硬化した後に、前記下穴中子を溶解させてもよい。
また、以上のいずれかの前記製造方法において、前記連通路形成工程では、放電加工又は電解加工で前記貫通孔を形成してもよい。
本発明の一態様によれば、動翼の強度及び冷却効果の低下を抑えることができる。
本発明に係る一実施形態におけるガスタービンの模式的な断面図である。 本発明に係る一実施形態における動翼の斜視図である。 本発明に係る一実施形態における動翼のキャンバーラインに沿った面での断面を示す断面図である。 本発明に係る一実施形態におけるプラットフォームの翼高さ方向に垂直な面での断面を示す断面図である。 本発明に係る一実施形態における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る一実施形態における動翼の製造手順を示すフローチャートである。 本発明に係る一実施形態における動翼中間品の翼厚さ方向に広がる面での断面を示す要部断面図である。 比較例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る第一変形例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る第二変形例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る第三変形例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る第四変形例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る一変形例における動翼の製造過程で製造される動翼中間品の要部断面図である。 本発明に係る一変形例における動翼の製造過程で用いられる各種中子を示す説明図である。
以下、本発明の実施形態及び各種変形例について、図面を参照して詳細に説明する。
「実施形態」
図1に示すように、本発明に係る一実施形態としてのガスタービン10は、空気Aを圧縮する圧縮機20と、圧縮機20で圧縮された空気A中で燃料Fを燃焼させて燃焼ガスGを生成する燃焼器30と、燃焼ガスGにより駆動するタービン40と、を備えている。
圧縮機20は、軸線Arを中心として回転する圧縮機ロータ21と、圧縮機ロータ21を覆う圧縮機車室25と、複数の静翼列26と、を有する。タービン40は、軸線Arを中心として回転するタービンロータ41と、タービンロータ41を覆うタービン車室45と、複数の静翼列46と、を有する。
圧縮機ロータ21とタービンロータ41とは、同一軸線Ar上に位置し、互いに接続されてガスタービンロータ11を成す。このガスタービンロータ11には、例えば、発電機GENのロータが接続されている。ガスタービン10は、さらに、圧縮機車室25とタービン車室45との間に配置されている中間車室14を備えている。燃焼器30は、この中間車室14に取り付けられている。圧縮機車室25と中間車室14とタービン車室45とは、互いに接続されてガスタービン車室15を成す。なお、以下では、軸線Arが延びる方向を軸方向Da、この軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。また、軸方向Daでタービン40を基準にして圧縮機20側を上流側Dau、その反対側を下流側Dadとする。また、径方向Drで軸線Arに近づく側を径方向内側Dri、その反対側を径方向外側Droとする。
タービンロータ41は、軸線Arを中心として軸方向Daに延びるロータ軸42と、このロータ軸42に取り付けられている複数の動翼列43と、を有する。複数の動翼列43は、軸方向Daに並んでいる。各動翼列43は、いずれも、周方向Dcに並んでいる複数の動翼50で構成されている。複数の動翼列43の各上流側Dauには、静翼列46が配置されている。各静翼列46は、タービン車室45の内側に設けられている。各静翼列46は、いずれも、周方向Dcに並んでいる複数の静翼46aで構成されている。
ロータ軸42の外周側とタービン車室45の内周側との間であって、軸方向Daで静翼46a及び動翼50が配置されている環状の空間は、燃焼器30からの燃焼ガスGが流れる燃焼ガス流路49を成す。この燃焼ガス流路49は、軸線Arを中心として環状を成し、軸方向Daに長い。
動翼50は、図2に示すように、翼形を成す翼体51と、翼体51の翼高さ方向Dwhの端部に設けられているプラットフォーム60と、プラットフォーム60から翼体51と反対側に延びる軸取付部90と、を有する。なお、以下では、翼高さ方向Dwhで、プラットフォーム60を基準にして翼体51が存在する側を先端側Dwht、翼取付部90が存在する側を基端側Dwhsとする。この動翼50がロータ軸42に取り付けられた状態では、翼高さ方向Dwhが実質的に径方向Drと同じ方向になる。よって、この状態では、先端側Dwhtが径方向外側Droとなり、基端側Dwhsが径方向内側Driになる。また、この状態では、プラットフォーム60を基準にして、径方向外側Droに翼体51が存在し、径方向内側Driに軸取付部90が存在する。
翼体51は、燃焼ガス流路49内に配置される。この翼体51には、凸状の面である背側面(負圧面)54と、凹状の面である腹側面(正圧面)55とが形成されている。背側面54と腹側面55とは、翼体51の前縁52と後縁53とでつながっている。動翼50がロータ軸42に取り付けられた状態では、前縁52は、後縁53に対して、軸方向Daの上流側Dauに位置する。また、この状態では、背側面54及び腹側面55は、いずれも周方向Dcの成分を有する方向を向いている。
プラットフォーム60は、翼体51の翼高さ方向Dwhの端部から翼高さ方向Dwhに対して垂直な成分を有する方向に広がる板状の部材である。このプラットフォーム60には、翼高さ方向Dwhの先端側Dwhtを向き燃焼ガスGに接するガスパス面61と、ガスパス面61と背合わせの関係にあり基端側Dwhsを向く軸側面62と、翼高さ方向Dwh及び翼弦方向Dwcに垂直な成分を有する幅方向Dwpで互いに相反する側を向く一対の側端面63と、翼弦方向Dwcで互いに相反する側を向く一対の前後端面64と、が形成されている。なお、翼弦方向Dwcとは、翼弦Lcoと平行な方向である。動翼50がロータ軸42に取り付けられた状態では、軸方向Daの成分を含む方向が翼弦方向Dwcになり、周方向Dcの成分を含む方向が幅方向Dwpになる。
プラットフォーム60のガスパス面61は、翼高さ方向Dwhに対して垂直な成分を有する方向に広がる面である。一対の側端面63は、いずれも、幅方向Dwpに対して垂直な成分を有する方向に広がり、ガスパス面61につながっている。また、一対の前後端面64は、いずれも、翼弦方向Dwcに対して垂直な成分を有する方向に広がり、ガスパス面61につながっている。一対の側端面63のうち、一方の側端面63は背側端面63nを成し、他方の側端面63は腹側端面63pを成す。また、一対の前後端面64のうち、一方の前後端面64は前端面64fを成し、他方の前後端面64は後端面64bを成す。背側端面63nと腹側端面63pとは平行である。また、前端面64fと後端面64bとは平行である。このため、プラットフォーム60を翼高さ方向Dwhから見ると、平行四辺形を成している。動翼50がロータ軸42に取り付けられた状態では、前端面64f及び後端面64bは、軸方向Daに垂直な面になる。また、この状態では、前端面64fは、後端面64bに対して、軸方向Daの上流側Dauに位置する。なお、以下では、翼弦方向Dwcで後端面64bに対して前端面64fの側を翼弦前側Dwcfとし、翼弦前側Dwcfと反対側を翼弦後側Dwcbとする。また、幅方向Dwpで腹側端面63pに対し背側端面63nの側を単に背側Dpnとし、この背側Dpnと反対側を単に腹側Dppとする。
軸取付部90は、プラットフォーム60から、翼高さ方向Dwhで翼体51と反対側に延びるシャンク91と、シャンク91から翼高さ方向Dwhで翼体51とは反対側に延びる翼根92と、を有する。翼根92は、翼弦Lcoに対して垂直な断面形状がクリスマスツリー形状を成している。この翼根92は、ロータ軸42(図1参照)の翼根溝(不図示)に嵌り込む。
動翼50には、図2〜図4に示すように、翼高さ方向Dwhに延びる複数の翼通路71が形成されている。各翼通路71は、いずれも、翼体51、プラットフォーム60、軸取付部90にかけて連なって形成されている。複数の翼通路71は、翼体51のキャンバーラインLca(図4参照)に沿って並んでいる。隣接する翼通路71は、翼高さ方向Dwhの端の部分で互いに連通している。また、複数の翼通路71のうち、少なくとも一の翼通路71は、翼根92の翼高さ方向Dwhの端で開口している。この翼通路71には、ロータ軸42に形成されている冷却空気通路からの冷却空気Acがこの開口から流入する。
本実施形態の動翼50は、例えば、三つの翼通路71が形成されている。これらの三つの翼通路71のうち、最も翼弦前側Dwcfの翼通路71を第一翼通路71a、この第一翼通路71aの翼弦後側Dwcbに隣接する翼通路71を第二翼通路71b、この第二翼通路71bの翼弦後側Dwcbに隣接する翼通路71を第三翼通路71cとする。第三翼通路71cは、翼根92の翼高さ方向Dwhの端で開口している。第三翼通路71cと第二翼通路71bとは、翼高さ方向Dwhの先端側Dwhtの部分で連通している。また、第二翼通路71bと第一翼通路71aとは、翼高さ方向Dwhの基端側Dwhsの部分で連通している。翼通路71には、翼体51の外面で開口する複数の翼面噴出通路72が形成されている。例えば、第三翼通路71cには、この第三翼通路71cから翼弦後側Dwcbに延びて、翼体51の外面で開口する複数の翼面噴出通路72が形成されている。また、第一翼通路71aには、この第一翼通路71aからの翼弦前側Dwcfに延びて、翼体51の外面で開口する複数の翼面噴出通路72が形成されている。
翼体51は、翼通路71内を冷却空気Acが流れる過程で対流冷却される。また、翼通路71に流入した冷却空気Acは、翼面噴出通路72に流入し、この翼面噴出通路72から燃焼ガス流路49内に流出する。このため、翼体51の前縁52及び後縁53等は、冷却空気Acが翼面噴出通路72を流れる過程で冷却される。さらに、翼面噴出通路72から燃焼ガス流路49に流出した冷却空気Acの一部は、翼体51の表面を部分的に覆ってフィルム空気としての役目も果たす。
プラットフォーム60には、このプラットフォーム60内をガスパス面61に沿った方向に延びるプラットフォーム通路81が形成されている。プラットフォーム通路81としては、図4に示すように、翼体51を基準にして背側Dpnに形成されている背側プラットフォーム通路81nと、翼体51を基準にして腹側Dppに形成されている腹側プラットフォーム通路81pと、がある。
背側プラットフォーム通路81nは、翼厚さ方向Dwt成分を有する方向に延びる流入通路部82nと、プラットフォーム60の背側端面63nに沿って延びる側端通路部83nと、を有する。流入通路部82nは、第一翼通路71aの内面のうちで背側Dpnの内面の近傍位置から、この位置での翼厚さ方向Dwt成分を有する方向に背側端面63nの近傍位置まで延びる。側端通路部83nは、流入通路部82nの背側Dpnの端から背側端面63nに沿って翼弦後側Dwcbに延び、プラットフォーム60の後端面64bで開口している。なお、翼厚さ方向Dwtとは、翼高さ方向Dwhに対して垂直で且つ翼弦方向Dwcに対して垂直な方向とする場合があるが、ここでは、翼高さ方向Dwhに対して垂直で且つキャンバーラインLcaに垂直な方向である。このキャンバーラインLcaは、一般的に湾曲した曲線である。このため、翼厚さ方向Dwtは、キャンバーラインLca上の位置に応じて変化する。
腹側プラットフォーム通路81pは、翼厚さ方向Dwt成分を有する方向に延びる流入通路部82pと、プラットフォーム60内を蛇行する蛇行通路部83pと、を有する。流入通路部82pは、第一翼通路71aの内面のうちで腹側Dppの内面の近傍位置から、この位置での翼厚さ方向Dwt成分を有する方向に腹側端面63pの近傍位置まで延びる。蛇行通路部83pは、流入通路部82pの腹側Dppの端から幅方向Dwpに蛇行しつつ翼弦後側Dwcbに延び、プラットフォーム60の後端面64bで開口している。
動翼50には、さらに、翼通路71とプラットフォーム通路81とを連通させる連通路75が形成されている。連通路75としては、第一翼通路71aと背側プラットフォーム通路81nとを連通させる背側連通路75nと、第一翼通路71aと腹側プラットフォーム通路81pとを連通させる腹側連通路75pとがある。
図5に示すように、背側連通路75nは、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から背側プラットフォーム通路81nの流入通路部82nを経て第一翼通路71aにつながる。背側連通路75nは、前記角部を形成する面から、翼高さ方向Dwhに延びつつ翼厚さ方向Dwtで第一翼通路71aに近づく側に直線的に延びている。前記角部を形成する面における背側連通路75nの開口は、封止部材76で塞がれている。
背側プラットフォーム通路81nを形成する内面は、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がって軸側面62の側を向くガスパス側内面87と、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がってガスパス側内面87に少なくとも一部が対向する軸側内面88と、を含む。背側プラットフォーム通路81nの流入通路部82nを形成する内面は、以上で説明したガスパス側内面87及び軸側内面88の他、軸側内面88における第一翼通路71a側の端から翼高さ方向Dwh成分を有する方向に広がって、ガスパス側内面87における第一翼通路71a側の端につながる端内面89を含む。
背側連通路75nは、流入通路部82nの軸側内面88と端内面89との角部を経て、第一翼通路71aに貫通する貫通孔で形成されている。よって、この背側連通路75nの内面78は、流入通路部82nの軸側内面88及び端内面89につながっている。
腹側連通路75pは、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から腹側プラットフォーム通路81pの流入通路部82pを経て第一翼通路71aにつながる。腹側連通路75pは、前記角部を形成する面から、翼高さ方向Dwhに延びつつ翼厚さ方向Dwtで第一翼通路71aに近づく側に直線的に延びている。前記角部を形成する面における腹側連通路75pの開口は、封止部材76で塞がれている。
腹側プラットフォーム通路81pを形成する内面も、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がって軸側面62の側を向くガスパス側内面87と、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がってガスパス側内面87に少なくとも一部が対向する軸側内面88と、を含む。腹側プラットフォーム通路81pの流入通路部82pを形成する内面も、以上で説明したガスパス側内面87及び軸側内面88の他、軸側内面88における第一翼通路71a側の端から翼高さ方向Dwh成分を有する方向に広がって、ガスパス側内面87における第一翼通路71a側の端につながる端内面89を含む。
腹側連通路75pは、流入通路部82pの軸側内面88と端内面89との角部を経て、第一翼通路71aに貫通する貫通孔で形成されている。よって、この腹側連通路75pの内面78は、流入通路部82pの軸側内面88及び端内面89につながっている。以上のように、背側連通路75nの構成と腹側連通路75pの構成とは、基本的に同じである。
第一翼通路71aを流れる冷却空気Acの一部は、背側連通路75nを経て、背側プラットフォーム通路81nの流入通路部82n内に流入する。冷却空気Acは、この流入通路部82nを流れる過程で、この流入通路部82n近傍のプラットフォーム60を対流冷却する。このため、この流入通路部82n近傍のガスパス面61が冷却される。冷却空気Acは、流入通路部82nから側端通路部83n内に流入する。冷却空気Acは、この側端通路部83nを流れる過程で、この側端通路部83n近傍のプラットフォーム60を対流冷却する。このため、この側端通路部83n近傍のガスパス面61及び背側端面63nが冷却される。冷却空気Acは、プラットフォーム60の後端面64bに形成されている側端通路部83nの開口から外部に噴出する。このため、プラットフォーム60の後端面64bは、この冷却空気Acにより冷却される。
第一翼通路71aを流れる冷却空気Acの他の一部は、腹側連通路75pを経て、腹側プラットフォーム通路81pの流入通路部82p内に流入する。冷却空気Acは、この流入通路部82pを流れる過程で、この流入通路部82p近傍のプラットフォーム60を対流冷却する。冷却空気Acは、流入通路部82pから蛇行通路部83p内に流入する。冷却空気Acは、この蛇行通路部83pを流れる過程で、この蛇行通路部83p近傍のプラットフォーム60を対流冷却する。冷却空気Acは、プラットフォーム60の後端面64bに形成されている蛇行通路部83pの開口から外部に噴出する。このため、プラットフォーム60の後端面64bは、この冷却空気Acにより冷却される。
次に、以上で説明した動翼50の製造方法について、図6に示すフローチャートに従って説明する。
まず、鋳造により動翼50の中間品を形成する(S1:中間品形成工程)。この中間品形成工程(S1)では、鋳型形成工程(S2)、中子形成工程(S3)、鋳込み工程(S4)、及び中子溶解工程(S5)を実行する。
鋳型形成工程(S2)では、動翼50の外形状にあった内部空間が形成されている鋳型を形成する。この鋳型形成工程(S2)では、例えば、ロストワックス法で鋳型を形成する。ロストワックス法では、まず、動翼50の外形状を再現したワックス模型を形成する。次に、耐火粉末等を含むスラリー中にワックス模型を入れてから、このスラリーを乾燥させる。そして、乾燥後のスラリーからワックス模型を取り除いて、これを鋳型とする。
中子形成工程(S3)では、翼通路71の形状にあった外形状の翼通路中子、及び、プラットフォーム通路81の形状にあった外形状のプラットフォーム通路中子を形成する。翼通路中子及びプラットフォーム通路中子は、いずれも、アルミナ等のセラミックスで形成する。この中子形成工程(S3)は、鋳型形成工程(S2)と並行して実行してもよいし、鋳型形成工程(S2)に対して前後して実行してもよい。また、翼通路中子の形成とプラットフォーム通路中子の形成とを併行して実行してもよいし、異なるタイミングで実行してもよい。
鋳込み工程(S4)では、鋳型内に翼通路中子及びプラットフォーム通路中子を配置して、鋳型内に溶融金属を流し込む。溶融金属は、例えば、耐熱性の高いニッケル基合金等の溶融物である。
鋳型内に流し込んだ溶融金属が硬化すると、中子溶解工程(S5)を実行する。この中子溶解工程(S5)では、アルカリ水溶液でセラミックス製の翼通路中子及びプラットフォーム通路中子を溶解する。
以上で、中間品形成工程(S1)が終了し、動翼50の中間品が出来上がる。図7に示すように、この中間品50xは、翼体51、プラットフォーム60と、軸取付部90を有している。この中間品50xには、翼通路71及びプラットフォーム通路81が形成されている。但し、この中間品50xには、連通路75が形成されていない。
次に、中間品50xの外面から中間品50x内の翼通路71に延びる連通路75を形成する(S6:連通路形成工程)。この連通路形成工程(S6)では、電解加工又は放電加工等で、図7に示すように、中間品50xに連通路75としての貫通孔を形成する。この貫通孔は、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から、プラットフォーム通路81の流入通路部82を経て第一翼通路71aに抜ける直線的な孔である。このため、この連通路75の内面78は、前述したように、流入通路部82の軸側内面88及び端内面89につながっている。なお、連通路形成工程(S6)では、まず、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から、プラットフォーム通路81の流入通路部82の軸側内面88に貫通する貫通孔を形成する。その後、流入通路部82を形成する内面から第一翼通路71aに貫通する貫通孔を形成することで、連通路75としての貫通孔を形成する。
ところで、翼通路71、プラットフォーム通路81及び連通路75が形成されている中間品を鋳造で形成することは可能である。この場合、翼通路中子、プラットフォーム通路中子、及び連通路中子を一体にした中子を準備し、この中子を鋳型内に配置して、中間品を形成することになる。翼通路71は、翼高さ方向Dwhに広がった平面に沿って形成される通路である。また、プラットフォーム通路81は、翼高さ方向Dwhに対して垂直な方向に広がった平面に沿って形成される通路である。このため、翼通路中子は、翼高さ方向Dwhに広がった平面に沿った形状を成し、プラットフォーム通路中子は、翼高さ方向Dwhに対して垂直な方向に広がった平面に沿った形状を成す。従って、仮に、前述の一体中子を形成した場合、この一体中子を不用意に扱うと、翼通路71とプラットフォーム通路81とを連通させる連通路75を形成する連通路中子が破損する可能性が極めて高い。
このため、本実施形態では、翼通路71及びプラットフォーム通路81が形成されている中間品50xを形成した後、この中間品50xに機械加工等で連通路75を形成する。
次に、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面における連通路75の開口を封止部材76で塞ぐ(S7:封止工程)。この封止工程(S7)では、封止部材76を連通路75の開口から連通路75内に入れて、この封止部材76を中間品の外面から中間品に溶接する。
次に、連通路75が形成された中間品に対して仕上げ処理を施して、動翼50を完成させる(S8:仕上工程)。仕上工程(S8)では、例えば、中間品の外面を研磨する。また、必要に応じて、中間品の外面に耐熱コーティングを施す。
次に、本実施形態の動翼50の効果について説明する。まず、比較例の動翼50zについて説明する。
比較例の動翼50zも、図8に示すように、翼体51とプラットフォーム60と軸取付部90とを有する。翼体51、プラットフォーム60及び軸取付部90には、内部を翼高さ方向Dwhに延びて、冷却空気Acが流れる翼通路71が形成されている。プラットフォーム60には、翼高さ方向Dwhを向いて燃焼ガスに接するガスパス面61と、ガスパス面61と背合わせの関係にある軸側面62と、が形成されている。さらに、このプラットフォーム60には、ガスパス面61と軸側面62との間を翼厚さ方向Dwtに延びて冷却空気Acが流れるプラットフォーム通路81zと、プラットフォーム通路81zの翼通路71側の端からガスパス面61から遠ざかる側に延びるターンダウン延長部89zと、が形成されている。プラットフォーム60及び軸取付部90には、プラットフォーム60の軸側面62と軸取付部90の外面93との角部における外面から、ターンダウン延長部89zを経て翼通路71につながる連通路75zが形成されている。この連通路75zにおける前記角部の外面での開口は、プラグ76z等で塞がれている。
この比較例の動翼50zも、基本的に、鋳造で製造される。翼通路71、プラットフォーム通路81z及びターンダウン延長部89zは、鋳造過程で、それぞれの形状にあった外形状の中子を用いて形成される。鋳造により形成された動翼50zの中間品では、プラットフォーム通路81zとターンダウン延長部89zとはつながっているものの、ターンダウン延長部89zと翼通路71はつながっていない。連通路75zは、この中間品が形成された後に形成される。具体的に、中間品における前記角度の外面から、ターンダウン延長部89zを経て、翼通路71にぬける貫通孔を機械加工で形成する。この貫通孔は、前記角部を形成する面から、翼高さ方向Dwhに延びつつ翼厚さ方向Dwtで翼通路71に近づく側に直線的に延びている。すなわち、この貫通孔は、翼高さ方向Dwh及び翼厚さ方向Dwtに対して傾斜した孔である。この貫通孔、つまり連通路75zは、ターンダウン延長部89zをガスパス面61側と軸側面62とに二分する。また、この貫通孔は、ターンダウン延長部89zを形成する内面のうち、翼高さ方向Dwh方向に広がり且つ翼厚さ方向Dwtで互いに対向する一対の内面を貫通する。
この比較例の動翼50zでは、翼通路71とプラットフォーム通路81zとを連通させるために、連通路75zの他に、ターンダウン延長部89zを形成している。このため、比較例の動翼50zでは、ターンダウン延長部89zの存在により、軸取付部90とプラットフォーム60とのつなぎ目付近の強度が低下する。
この比較例の動翼50zでは、翼通路71内を基端側Dwhsから先端側Dwhtに流れる冷却空気Acが、連通路75z内に流入した際、先端側Dwhtから基端側Dwhsに向かう流れに変わる。冷却空気Acは、連通路75zからターンダウン延長部89z内に流入すると、このターンダウン延長部89z内を基端側Dwhsから先端側Dwhtに流れる。冷却空気Acは、ターンダウン延長部89zからプラットフォーム通路81z内に流入すると、このプラットフォーム通路81z内を翼厚さ方向Dwtに流れる。よって、この比較例の動翼50zでは、翼通路71内の冷却空気Acがプラットフォーム通路81zに流入する過程で、この冷却空気Acが翼高さ方向Dwhに蛇行して流れる。このため、この比較例の動翼50zでは、翼通路71内の冷却空気Acがプラットフォーム通路81zに流入する過程での冷却空気Acの圧力損失が大きくなる。
また、この比較例の動翼50zでは、冷却空気Acがターンダウン延長部89zからプラットフォーム通路81zに流入する過程で、冷却空気Acの翼厚さ方向Dwtの速度成分が小さくなるため、ターンダウン延長部89z寄りのプラットフォーム通路81zを流れる冷却空気Acによる対流冷却効果が小さくなる。よって、比較例の動翼50zでは、ターンダウン延長部89z近傍のガスパス面61、つまり翼体51近傍のガスパス面61の冷却効果が低下する。
一方、本実施形態の動翼50では、図5に示すように、連通路75の内面78をプラットフォーム通路81の内面の一部である軸側内面88につなげたことにより、比較例のようにターンダウン延長部89zを形成してなくても、翼通路71とプラットフォーム通路81とを連通させることができる。このため、本実施形態の動翼50では、ターンダウン延長部89zがない。よって、本実施形態の動翼50では、ターンダウン延長部89zを形成することによる動翼強度の低下を回避することができる。
また、本実施形態の動翼50では、ターンダウン延長部89zが形成されていないため、比較例の動翼50zに比べて、翼通路71からプラットフォーム通路81に至る冷却空気Acの経路として、プラットフォーム通路81に向う直線的な経路が形成される。このため、本実施形態の動翼50では、翼通路71内の冷却空気Acがプラットフォーム通路81に流入する過程での冷却空気Acの圧力損失を小さくすることができる。
さらに、本実施形態の動翼50では、ターンダウン延長部89zが形成されていないため、連通路75からの冷却空気Acは、プラットフォーム通路81が延びる翼厚さ方向Dwtの速度成分が小さくなることなく、このプラットフォーム通路81内を流れる。このため、本実施形態の動翼50では、翼体51近傍のガスパス面61の冷却効果の低下を抑えることができる。
特に、本実施形態では、連通路75を成す貫通孔がプラットフォーム通路81における流入通路部82の軸側内面88のみならず、翼通路71の内面と対向する端内面89を貫通しているので、翼通路71からプラットフォーム通路81に至る冷却空気Acの経路として、プラットフォーム通路81に向うより直線的な経路が形成される。従って、本実施形態では、冷却空気Acの圧力損失をより小さくできる上に、翼体51近傍のガスパス面61の冷却効果の低下をより抑えることができる。さらに、本実施形態では、より直線的な経路が形成されるため、ボアスコープ等の点検機器を用いたプラットフォーム通路内の点検が容易になる。
なお、本実施形態における連通路75は、第一翼通路71aとプラットフォーム通路81とを連通させるものである。しかしながら、連通路75は、第一翼通路71aを除く他の翼通路71とプラットフォーム通路81とを連通させるものであってもよい。例えば、連通路75は、第二翼通路71bまたは第三翼通路71cと、プラットフォーム通路81とを連通させるものであってもよい。
また、一のプラットフォーム通路81と翼通路71とを連通させる連通路の数は一つに限定されず、複数であってもよい。この場合、例えば、本実施形態の背側連通路75nに加え、プラットフォーム通路81の一部である側端通路部83nと第三翼通路71cとを連通させる背側連通路を設けてもよい。また、プラットフォーム通路81における翼通路71との連通位置は、設計条件等に応じて適宜選択することができる。例えば、蛇行通路部83pの途中に連通位置を設けてもよい。
「動翼の第一変形例」
上記実施形態における動翼の第一変形例について、図9を参照して説明する。
本変形例の動翼50bでは、上記実施形態と同様に、連通路75bを成す貫通孔がプラットフォーム通路81における流入通路部82の軸側内面88、及び翼通路71の内面と対向する端内面89を貫通している。従って、本変形例の連通路75bの内面78も、以上の各実施形態の連通路と同様、流入通路部82の軸側内面88及び端内面89につながっている。但し、本変形例の貫通孔は、以上の実施形態の貫通孔と異なり、流入通路部82の軸側内面88と端内面89との角部を貫通していない。さらに、本実施形態の貫通孔は、流入通路部82のガスパス側内面87と端内面89との角部も貫通していない。
このように、貫通孔は、流入通路部82の軸側内面88を貫通していれば、軸側内面88と端内面89との角部、及びのガスパス側内面87と端内面89との角部を貫通していなくてもよい。
また、本変形例の連通路75bを形成する貫通孔は、プラットフォーム60の軸側面62のみから翼通路71に貫通している。従って、本変形例の貫通孔は、上記実施形態の貫通孔と異なり、この軸側面62及び軸取付部90の外面93を跨いて翼通路71に貫通していない。このように、貫通孔は、プラットフォーム60の軸側面62のみから翼通路71に貫通してもよい。また、貫通孔は、軸取付部90の外面93のみから翼通路71に貫通してもよい。
「動翼の第二変形例」
上記実施形態における動翼の第二変形例について、図10を参照して説明する。
本変形例の動翼50cでは、上記実施形態と同様に、連通路75cを成す貫通孔がプラットフォーム通路81における流入通路部82の軸側内面88、及び翼通路71の内面と対向する端内面89を貫通している。従って、本変形例の連通路75cの内面78も、以上の各実施形態の連通路と同様、流入通路部82の軸側内面88及び端内面89につながっている。但し、本変形例の貫通孔は、以上の実施形態の貫通孔と異なり、流入通路部82の軸側内面88と端内面89との角部を貫通していると共に、流入通路部82のガスパス側内面87と端内面89との角部も貫通している。このため、本変形例の連通路75cの内面78は、流入通路部82のガスパス側内面87ともつながっている。
よって、本変形例では、翼通路71内の冷却空気Acがプラットフォーム通路81に流入する通路がより直線的になる上に、この通路の断面積が大きくなる。このため、本変形例の動翼50cでは、翼通路71内の冷却空気Acがプラットフォーム通路81に流入する過程での冷却空気Acの圧力損失をより抑えることができる。
「動翼の第三変形例」
上記実施形態における動翼の第三変形例について、図11を参照して説明する。
本変形例の動翼50dでは、上記実施形態と同様に、連通路75dを成す貫通孔がプラットフォーム通路81における流入通路部82の軸側内面88、及び翼通路71の内面と対向する端内面89を貫通している。従って、本変形例の連通路75dの内面78も、以上の各実施形態の連通路と同様、流入通路部82の軸側内面88及び端内面89につながっている。但し、本変形例の貫通孔は、上記実施形態の貫通孔と異なり、流入通路部82の軸側内面88と端内面89との角部を貫通せず、流入通路部82のガスパス側内面87と端内面89との角部を貫通している。このため、本変形例の連通路75dの内面78は、流入通路部82のガスパス側内面87ともつながっている。
このように、連通路75dを形成する貫通孔は、流入通路部82のガスパス側内面87を貫通してもよい。
「動翼の第四変形例」
上記実施形態における動翼の第四変形例について、図12を参照して説明する。
本変形例の動翼50eにおける連通路75eを形成する貫通孔は、上記実施形態と同様である。すなわち、貫通孔は、プラットフォーム60の軸側面62と軸取付部90の外面93との角部から、流入通路部82における軸側内面88と端内面89との角部を経て、翼通路71に貫通している。但し、本変形例では、プラットフォーム60内における翼通路71には、翼厚さ方向Dwtであって流入通路部82に近づく側に膨らんだ膨らみ部77が形成されている。本変形例の貫通孔は、この膨らみ部77を含む領域を貫通している。
このように、翼通路71に膨らみ部77を形成することで、翼通路71と流入通路部82との間の翼厚さ方向Dwtにおける距離を短くすることができる。このため、翼通路71内の冷却空気Acがプラットフォーム通路81に流入する過程での冷却空気Acの圧力損失をより抑えることができる。
なお、本変形例は、上記実施形態における動翼の変形例であるが、第一〜第三変形例の動翼を本変形例と同様に変形してもよい。
「動翼の製造方法の変形例」
上記実施形態における動翼の製造方法の変形例について、図13及び図14を参照して説明する。
本変形例では、図6に示す中間品形成工程(S1)で連通孔75の一部を形成する。具体的に、この中間品形成工程(S1)では、図13に示すように、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から、プラットフォーム通路81の流入通路部82と第一翼通路71aとに向かって凹む下穴79を形成する。
中間品形成工程(S1)では、この下穴79を形成するため、中間品形成工程(S1)中の中子形成工程(S3)で、図14に示すように、下穴79の形状に合った外形状の下穴中子103を形成する。この下穴中子103は、翼通路中子101及びプラットフォーム通路中子102と同様に、アルミナ等のセラミックスで形成する。次に、中間品形成工程(S1)中の鋳込み工程(S4)で、鋳型100内に、翼通路中子101及びプラットフォーム通路中子102と共に、下穴中子103を配置して、この鋳型100内に溶融金属を流し込む。鋳型100内に流し込んだ溶融金属が硬化すると、中子溶解工程(S5)で、アルカリ水溶液でセラミックス製の翼通路中子101、プラットフォーム通路中子102及び下穴中子103を溶解する。
以上で、本変形例における中間品形成工程(S1)が終了し、図13に示す中間品50yが出来上がる。この中間品50yは、翼体51、プラットフォーム60と、軸取付部90を有している。この中間品50yには、翼通路71、プラットフォーム通路81、及び連通孔75の一部を成す下穴79が形成されている。
本変形例における連通路形成工程(S6)では、下穴79の底面80から、流入通路部82の軸側内面88を経て、翼通路71に貫通する貫通孔を電解加工又は放電加工等で形成する。本変形例では、中間品形成工程(S1)で形成する下穴79と、連通路形成工程で電解加工又は放電加工等で形成する貫通孔とで、図5に示す連通孔75が形成される。
連通路形成工程(S6)が終了すると、上記実施形態と同様に、封止工程(S7)及び仕上工程(S8)を経て、動翼を完成させる。
本変形例では、連通路形成工程(S6)における、貫通孔を形成するための電解加工又は放電加工等による加工量を減らすことができる。また、本変形例では、中間品形成工程(S1)で形成した下穴79をガイドとして、電解加工又は放電加工を行うことができるので、連通孔75の貫通方向の正確性を高めることできる。
なお、本変形例は、上記実施形態における動翼の製造方法の変形例であるが、第一〜第四変形例の動翼も、本変形例と同様に製造してもよい。
「その他の変形例」
上記実施形態及び各変形例において、流入通路部82及び連通路75を形成する貫通孔の断面形状について特に記載していないが、この断面形状は、特に限定されず、例えば、円形、半円形、楕円形、半楕円形、長円形、半長円形、四角形等の多角形、若しくはこれらのうちの二つ以上の形状を組み合わせた形状でもよい。
上記実施形態及び各変形例における連通路は、いずれも直線的である。しかしながら、連通路は、多少曲がっていてもよい。
上記実施形態及び各変形例におけるプラットフォーム通路の流入通路部は、翼厚さ方向に延びている。このため、上記実施形態及び各変形例における流入通路部のガスパス側内面及び軸側内面は、いずれも翼面厚さ方向に広がっている。しかしながら、流入通路は、翼高さ方向成分よりも翼厚さ成分の多い方向に延びていればよい。このため、流入通路部のガスパス側内面及び軸側内面は、翼高さ方向成分よりも翼厚さ成分の多い方向に広がっていればよい。
10:ガスタービン、11:ガスタービンロータ、15:ガスタービン車室、20:圧縮機、21:圧縮機ロータ、25:圧縮機車室、30:燃焼器、40:タービン、41:タービンロータ、42:ロータ軸、43:動翼列、45:タービン車室、46:静翼列、46a:静翼、49:燃焼ガス流路、50,50a,50b,50c,50d,50e,50z:動翼、50x:中間品、51,51a:翼体、52:前縁、53:後縁、54:背側面、55:腹側面、60,60a:プラットフォーム、61:ガスパス面、62:軸側面、63:側端面、63n:背側端面、63p:腹側端面、64:前後端面、64f:前端面、64b:後端面、71:翼通路、71a:第一翼通路、71b:第二翼通路、71c:第三翼通路、75,75a,75b,75c,75d,75e,75z:連通路、75n:背側連通路、75p:腹側連通路、76:封止部材、77:膨らみ部、78:(連通路の)内面、79:下穴、81,81a,81z:プラットフォーム通路、82,82n,82p:流入通路、83n:側端通路部、83p:蛇行通路部、88:軸側内面、90,90a:軸取付部、91:シャンク、92:翼根、100:鋳型、101:翼通路中子、102:プラットフォーム通路中子、103:下穴中子、Ac:冷却空気Ac、G:燃焼ガス、Da:軸方向、Dau:上流側、Dad:下流側、Dc:周方向、Dr:径方向、Dri:径方向内側、Dro:径方向外側、Dwc:翼弦方向、Dwf:翼弦前側、Dwb:翼弦後側、Dwh:翼高さ方向、Dwhs:基端側、Dwht:先端側、Dwp:幅方向、Dpn:背側、Dpp:腹側、Dwt:翼厚さ方向、Lca:キャンバーライン、Lco:翼弦

Claims (16)

  1. 燃焼ガスが流れる燃焼ガス流路内に配置され、翼形を成す翼体と、
    前記翼体の翼高さ方向の端部から前記翼高さ方向に対して垂直な成分を有する方向に広がるプラットフォームと、
    前記プラットフォームから前記翼体と反対側に延びる軸取付部と、
    を有し、
    前記翼体、前記プラットフォーム及び前記軸取付部には、前記翼体、前記プラットフォーム及び前記軸取付部の内部を前記翼高さ方向に延びて、冷却空気が流れる翼通路が形成され、
    前記プラットフォームには、前記翼高さ方向を向いて前記燃焼ガスに接するガスパス面と、前記ガスパス面と背合わせの関係にある軸側面と、前記ガスパス面と前記軸側面との間に形成され冷却空気が流れるプラットフォーム通路と、が形成され、
    前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記プラットフォーム通路を経て前記翼通路につながる連通路が形成され、
    前記連通路における前記少なくとも一方の面での開口が封止部材で塞がれ、
    前記プラットフォーム通路は、前記翼通路近傍の位置から当該位置における翼厚さ方向成分を有する方向に延びる流入通路部を有し、
    前記流入通路部を形成する内面は、前記軸側面の側を向くガスパス側内面と、前記ガスパス側内面に対向する面として前記翼高さ方向成分よりも前記翼厚さ方向成分の多い方向に広がっている軸側内面のみと、を含み、
    前記連通路を形成する内面が、前記流入通路部の前記軸側内面に交わってつながっている、
    動翼。
  2. 請求項1に記載の動翼において、
    前記流入通路部の前記内面は、前記軸側内面における前記翼通路側の端から前記翼高さ方向成分を有する方向に広がって、前記ガスパス側内面における前記翼通路側の端につながる端内面を含み、
    前記連通路の前記内面が、前記流入通路部の前記端内面に交わってつながっている、
    動翼。
  3. 請求項1又は2に記載の動翼において、
    前記連通路の前記内面が、前記流入通路部の前記ガスパス側内面に交わってつながっている、
    動翼。
  4. 請求項1から3のいずれか一項に記載の動翼において、
    前記翼通路には、前記翼厚さ方向であって前記流入通路部に近づく側に膨らんだ膨らみ部が形成され、
    前記連通路は、前記翼通路の前記膨らみ部に交わってつながっている、
    動翼。
  5. 請求項1から4のいずれか一項に記載の動翼において、
    前記プラットフォーム通路は、前記プラットフォーム内で蛇行している蛇行通路部を有する、
    動翼。
  6. 請求項1から5のいずれか一項に記載の動翼において、
    前記プラットフォームには、前記翼体の翼弦方向及び前記翼高さ方向に垂直な成分を有する幅方向に対して垂直な成分を有する方向に広がり、前記ガスパス面とつながる側端面が形成され、
    前記プラットフォーム通路は、前記側端面に沿って、前記翼弦方向成分を含む方向に延びる側端通路部を有する、
    動翼。
  7. 請求項1から6のいずれか一項に記載の複数の動翼と、
    複数の前記動翼が取り付けられているロータ軸と、
    複数の前記動翼、及び前記ロータ軸を覆う車室と、
    前記車室内で、複数の前記動翼が配置されている領域に燃焼ガスを送る燃焼器と、
    を備えるガスタービン。
  8. 燃焼ガスが流れる燃焼ガス流路内に配置され、翼形を成す翼体と、前記翼体の翼高さ方向の端部から前記翼高さ方向に対して垂直な成分を有する方向に広がるプラットフォームと、前記プラットフォームから前記翼体と反対側に延びる軸取付部と、を有する動翼の中間品を形成する中間品形成工程と、
    前記中間品の外面から前記中間品の内部に延びる連通路を形成する連通路形成工程と、
    前記連通路における前記中間品の外面での開口を塞ぐ封止工程と、
    を実行し、
    前記中間品形成工程では、
    前記翼体、前記プラットフォーム及び前記軸取付部の内部を前記翼高さ方向に延びて、冷却空気が流れる翼通路を形成し、
    前記プラットフォームに、前記翼高さ方向を向いて前記燃焼ガスに接するガスパス面と、前記ガスパス面と背合わせの関係にある軸側面と、前記ガスパス面と前記軸側面との間に形成され冷却空気が流れるプラットフォーム通路と、を形成し、
    前記プラットフォーム通路の一部として、前記翼通路近傍の位置から当該位置における翼厚さ方向成分を有する方向に延びる流入通路部を形成し、
    前記流入通路部を形成する際に、前記流入通路部を形成する内面の一部として、前記軸側面の側を向くガスパス側内面と、前記ガスパス側内面に対向する面として前記翼高さ方向成分よりも前記翼厚さ方向成分の多い方向に広がる軸側内面のみと、を形成し、
    前記連通路形成工程では、
    前記連通路として、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記流入通路部の前記軸側内面を経て、前記翼通路に貫通する貫通孔を形成する、
    動翼の製造方法。
  9. 請求項8に記載の動翼の製造方法において、
    前記中間品形成工程では、前記流入通路部を形成する内面の一部として、前記軸側内面における前記翼通路側の端から前記翼高さ方向成分を有する方向に広がって、前記ガスパス側内面における前記翼通路側の端につながる端内面を形成し、
    前記連通路形成工程では、前記連通路として、前記流入通路部の前記端内面を経て、前記翼通路に貫通する貫通孔を形成する、
    動翼の製造方法。
  10. 請求項8又は9に記載の動翼の製造方法において、
    前記連通路形成工程では、前記連通路として、前記流入通路部の前記軸側内面と前記端内面との角部を経て、前記翼通路に貫通する貫通孔を形成する、
    動翼の製造方法。
  11. 請求項8から10のいずれか一項に記載の動翼の製造方法において、
    前記連通路形成工程では、前記連通路として、前記流入通路部の前記ガスパス側内面を経て、前記翼通路に貫通する貫通孔を形成する、
    動翼の製造方法。
  12. 請求項8から11のいずれか一項に記載の動翼の製造方法において、
    前記連通路形成工程では、前記連通路として、前記流入通路部の前記ガスパス側内面と前記端内面との角部を経て、前記翼通路に貫通する貫通孔を形成する、
    動翼の製造方法。
  13. 請求項8から12のいずれか一項に記載の動翼の製造方法において、
    前記中間品形成工程は、
    前記動翼の外形状に合った内部空間が形成されている鋳型を形成する鋳型形成工程と、
    前記翼通路の形状にあった外形状の翼通路中子、及び、前記プラットフォーム通路の形状にあった外形状のプラットフォーム通路中子を形成する中子形成工程と、
    前記鋳型内に前記翼通路中子及び前記プラットフォーム通路中子を配置して、前記鋳型内に溶融金属を流し込む鋳込み工程と、
    前記溶融金属が硬化した後に、前記翼通路中子及び前記プラットフォーム通路中子を溶解させる中子溶解工程と、
    を含む、
    動翼の製造方法。
  14. 請求項8から13のいずれか一項に記載の動翼の製造方法において、
    前記中間品形成工程では、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記流入通路部の前記軸側内面へ向けて凹む下穴を形成し、
    前記連通路形成工程では、前記中間品形成工程で形成された前記中間品の前記下穴の底面から、前記流入通路部の前記軸側内面を経て、前記翼通路に貫通する貫通孔を形成する、
    動翼の製造方法。
  15. 請求項14に記載の動翼の製造方法において、
    前記中子形成工程では、前記下穴の形状にあった外形状の下穴中子を形成し、
    前記鋳込み工程では、前記鋳型内に前記下穴中子を配置して、前記鋳型内に溶融金属を流し込み、
    前記中子溶解工程では、前記溶融金属が硬化した後に、前記下穴中子を溶解させる、
    動翼の製造方法。
  16. 請求項8から15のいずれか一項に記載の動翼の製造方法において、
    前記連通路形成工程では、放電加工又は電解加工で前記貫通孔を形成する、
    動翼の製造方法。
JP2015181691A 2015-09-15 2015-09-15 動翼、これを備えているガスタービン、及び動翼の製造方法 Active JP5905631B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015181691A JP5905631B1 (ja) 2015-09-15 2015-09-15 動翼、これを備えているガスタービン、及び動翼の製造方法
CN201680050376.0A CN107923250B (zh) 2015-09-15 2016-09-08 动叶、具备该动叶的燃气涡轮以及动叶的制造方法
US15/743,909 US10376950B2 (en) 2015-09-15 2016-09-08 Blade, gas turbine including the same, and blade manufacturing method
KR1020187005726A KR102018011B1 (ko) 2015-09-15 2016-09-08 동익, 이것을 구비하고 있는 가스 터빈, 및 동익의 제조 방법
EP16846373.5A EP3351728B1 (en) 2015-09-15 2016-09-08 Rotor blade and rotor blade manufacturing method
PCT/JP2016/076496 WO2017047502A1 (ja) 2015-09-15 2016-09-08 動翼、これを備えているガスタービン、及び動翼の製造方法
TW105129341A TWI641752B (zh) 2015-09-15 2016-09-09 動葉片、具備其之燃氣渦輪機、及動葉片之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181691A JP5905631B1 (ja) 2015-09-15 2015-09-15 動翼、これを備えているガスタービン、及び動翼の製造方法

Publications (2)

Publication Number Publication Date
JP5905631B1 true JP5905631B1 (ja) 2016-04-20
JP2017057750A JP2017057750A (ja) 2017-03-23

Family

ID=55755950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181691A Active JP5905631B1 (ja) 2015-09-15 2015-09-15 動翼、これを備えているガスタービン、及び動翼の製造方法

Country Status (7)

Country Link
US (1) US10376950B2 (ja)
EP (1) EP3351728B1 (ja)
JP (1) JP5905631B1 (ja)
KR (1) KR102018011B1 (ja)
CN (1) CN107923250B (ja)
TW (1) TWI641752B (ja)
WO (1) WO2017047502A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246522B1 (en) * 2016-05-20 2023-11-01 RTX Corporation Internal cooling of stator vanes

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890074B2 (en) * 2018-05-01 2021-01-12 Raytheon Technologies Corporation Coriolis optimized u-channel with platform core
JP7406920B2 (ja) 2019-03-20 2023-12-28 三菱重工業株式会社 タービン翼およびガスタービン
JP6939976B1 (ja) * 2020-05-27 2021-09-22 王子ホールディングス株式会社 ヒートシール紙、包装袋
US11506061B2 (en) 2020-08-14 2022-11-22 Mechanical Dynamics & Analysis Llc Ram air turbine blade platform cooling
JP7205654B2 (ja) * 2021-05-21 2023-01-17 王子ホールディングス株式会社 ヒートシール紙、包装袋
GB202213805D0 (en) * 2022-09-22 2022-11-09 Rolls Royce Plc Platform for stator vane
GB202213804D0 (en) * 2022-09-22 2022-11-09 Rolls Royce Plc Platform for stator vane

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505195A (ja) * 1992-11-24 1996-06-04 ユナイテッド テクノロジーズ コーポレイション 一体式プラットホームおよびフィレット冷却通路を有するロータブレード
US20060024166A1 (en) * 2004-07-28 2006-02-02 Richard Whitton Gas turbine rotor
JP2007100698A (ja) * 2005-10-04 2007-04-19 General Electric Co <Ge> 耐ダスト性プラットフォームブレード
JP2007210032A (ja) * 2006-02-09 2007-08-23 General Electric Co <Ge> ニオブ基部品から中子を除去する方法
JP2008202547A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd ガスタービン動翼のプラットフォーム冷却構造
WO2011108440A1 (ja) * 2010-03-03 2011-09-09 三菱重工業株式会社 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン
JP2012097740A (ja) * 2010-10-29 2012-05-24 General Electric Co <Ge> タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
JP2012132438A (ja) * 2010-12-20 2012-07-12 General Electric Co <Ge> タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
JP2013139772A (ja) * 2011-12-30 2013-07-18 General Electric Co <Ge> タービンロータブレードのプラットフォームを冷却するための装置、システム及び/又は方法
JP2014223620A (ja) * 2013-05-15 2014-12-04 ゼネラル・エレクトリック・カンパニイ コーティングプロセス及びコーティング製品
JP2015123497A (ja) * 2013-12-27 2015-07-06 三菱重工業株式会社 鋳造部品の製造方法及び鋳造部品を製造するための中子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887033B1 (en) 2003-11-10 2005-05-03 General Electric Company Cooling system for nozzle segment platform edges
DE102004002327A1 (de) * 2004-01-16 2005-08-04 Alstom Technology Ltd Gekühlte Schaufel für eine Gasturbine
US7131817B2 (en) * 2004-07-30 2006-11-07 General Electric Company Method and apparatus for cooling gas turbine engine rotor blades
US20060269409A1 (en) * 2005-05-27 2006-11-30 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade having a platform, a method of forming the moving blade, a sealing plate, and a gas turbine having these elements
US7416391B2 (en) * 2006-02-24 2008-08-26 General Electric Company Bucket platform cooling circuit and method
US7927073B2 (en) * 2007-01-04 2011-04-19 Siemens Energy, Inc. Advanced cooling method for combustion turbine airfoil fillets
US8096767B1 (en) * 2009-02-04 2012-01-17 Florida Turbine Technologies, Inc. Turbine blade with serpentine cooling circuit formed within the tip shroud
US8356978B2 (en) * 2009-11-23 2013-01-22 United Technologies Corporation Turbine airfoil platform cooling core
US8444381B2 (en) * 2010-03-26 2013-05-21 General Electric Company Gas turbine bucket with serpentine cooled platform and related method
US8851846B2 (en) 2010-09-30 2014-10-07 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8794921B2 (en) * 2010-09-30 2014-08-05 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US20140064984A1 (en) 2012-08-31 2014-03-06 General Electric Company Cooling arrangement for platform region of turbine rotor blade
US10001013B2 (en) 2014-03-06 2018-06-19 General Electric Company Turbine rotor blades with platform cooling arrangements
US10280762B2 (en) * 2015-11-19 2019-05-07 United Technologies Corporation Multi-chamber platform cooling structures
US10683763B2 (en) * 2016-10-04 2020-06-16 Honeywell International Inc. Turbine blade with integral flow meter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505195A (ja) * 1992-11-24 1996-06-04 ユナイテッド テクノロジーズ コーポレイション 一体式プラットホームおよびフィレット冷却通路を有するロータブレード
US20060024166A1 (en) * 2004-07-28 2006-02-02 Richard Whitton Gas turbine rotor
JP2007100698A (ja) * 2005-10-04 2007-04-19 General Electric Co <Ge> 耐ダスト性プラットフォームブレード
JP2007210032A (ja) * 2006-02-09 2007-08-23 General Electric Co <Ge> ニオブ基部品から中子を除去する方法
JP2008202547A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd ガスタービン動翼のプラットフォーム冷却構造
WO2011108440A1 (ja) * 2010-03-03 2011-09-09 三菱重工業株式会社 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン
JP2012097740A (ja) * 2010-10-29 2012-05-24 General Electric Co <Ge> タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
JP2012132438A (ja) * 2010-12-20 2012-07-12 General Electric Co <Ge> タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
JP2013139772A (ja) * 2011-12-30 2013-07-18 General Electric Co <Ge> タービンロータブレードのプラットフォームを冷却するための装置、システム及び/又は方法
JP2014223620A (ja) * 2013-05-15 2014-12-04 ゼネラル・エレクトリック・カンパニイ コーティングプロセス及びコーティング製品
JP2015123497A (ja) * 2013-12-27 2015-07-06 三菱重工業株式会社 鋳造部品の製造方法及び鋳造部品を製造するための中子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246522B1 (en) * 2016-05-20 2023-11-01 RTX Corporation Internal cooling of stator vanes

Also Published As

Publication number Publication date
KR102018011B1 (ko) 2019-09-03
EP3351728A1 (en) 2018-07-25
TW201723302A (zh) 2017-07-01
EP3351728B1 (en) 2021-06-02
TWI641752B (zh) 2018-11-21
CN107923250B (zh) 2020-01-03
US10376950B2 (en) 2019-08-13
JP2017057750A (ja) 2017-03-23
US20180200783A1 (en) 2018-07-19
KR20180030210A (ko) 2018-03-21
EP3351728A4 (en) 2019-06-12
WO2017047502A1 (ja) 2017-03-23
CN107923250A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP5905631B1 (ja) 動翼、これを備えているガスタービン、及び動翼の製造方法
JP7455074B2 (ja) 多空洞タービン翼用のセラミック中子
JP6613803B2 (ja) 翼、これを備えているガスタービン、及び翼の製造方法
JP6928995B2 (ja) 翼のためのテーパした冷却チャネル
JP2008138675A (ja) タービンエンジンコンポーネントおよびその製造方法
EP1657403B1 (en) Airfoil with large fillet and micro-circuit cooling
JP6452736B2 (ja) 一体的な壁厚制御のためのフィルム孔突出部を用いるタービンブレードインベストメント鋳造
KR20080057133A (ko) 터빈 블레이드 주조용 주조 코어
EP2159375B1 (en) A turbine engine airfoil with convective cooling, the corresponding core and the method for manufacturing this airfoil
JP2008151129A (ja) タービンエンジンコンポーネントおよびその製造方法
JP2007170379A (ja) タービンエンジンブレードおよびその冷却方法
JP6587251B2 (ja) 流路形成板、これを備える流路形成組部材及び静翼、ガスタービン、流路形成板の製造方法、並びに流路形成板の改造方法
EP2385216B1 (en) Turbine airfoil with body microcircuits terminating in platform
CN114127386A (zh) 翼面近壁前缘的冷却通道
US9249917B2 (en) Active sealing member

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160316

R150 Certificate of patent or registration of utility model

Ref document number: 5905631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350