WO2017047502A1 - 動翼、これを備えているガスタービン、及び動翼の製造方法 - Google Patents

動翼、これを備えているガスタービン、及び動翼の製造方法 Download PDF

Info

Publication number
WO2017047502A1
WO2017047502A1 PCT/JP2016/076496 JP2016076496W WO2017047502A1 WO 2017047502 A1 WO2017047502 A1 WO 2017047502A1 JP 2016076496 W JP2016076496 W JP 2016076496W WO 2017047502 A1 WO2017047502 A1 WO 2017047502A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
passage
platform
path
communication
Prior art date
Application number
PCT/JP2016/076496
Other languages
English (en)
French (fr)
Inventor
啓太 ▲高▼村
羽田 哲
秀勝 渥美
智史 新谷
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020187005726A priority Critical patent/KR102018011B1/ko
Priority to US15/743,909 priority patent/US10376950B2/en
Priority to EP16846373.5A priority patent/EP3351728B1/en
Priority to CN201680050376.0A priority patent/CN107923250B/zh
Publication of WO2017047502A1 publication Critical patent/WO2017047502A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/04Handling or stripping castings or ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Definitions

  • the present invention relates to a moving blade, a gas turbine including the moving blade, and a method for manufacturing the moving blade.
  • This application claims priority based on Japanese Patent Application No. 2015-181691 for which it applied to Japan on September 15, 2015, and uses the content here.
  • the gas turbine includes a rotor that rotates about an axis, and a passenger compartment that covers the rotor.
  • the rotor has a rotor shaft and a plurality of moving blades attached to the rotor shaft.
  • the rotor blades have an airfoil shape, a platform extending in a direction substantially perpendicular to the blade height direction from the blade height direction end of the blade body, and a shaft mounting extending from the platform to the opposite side of the blade body.
  • the moving blades of the gas turbine are exposed to high-temperature combustion gas. For this reason, the moving blade is generally cooled by air or the like.
  • various cooling passages through which cooling air passes are formed in the moving blade described in Patent Document 1 below.
  • the blade body, the platform, and the shaft mounting portion are formed with blade passages that extend in the blade height direction and through which cooling air flows.
  • the platform is formed with a gas path surface that contacts the combustion gas in the blade height direction and an axial side surface that is in a back-to-back relationship with the gas path surface.
  • this platform has a platform passage that extends in the blade thickness direction between the gas path surface and the shaft side surface and through which cooling air flows, and a turn-down extension that extends from the blade passage side end of the platform passage to the side away from the gas path surface. are formed.
  • a communication path is formed from the outer surface at the corner between the shaft side surface of the platform and the outer surface of the shaft mounting portion to the blade path through the turn-down extension.
  • An opening on the outer surface of the corner portion in the communication path is closed with a plug or the like.
  • This blade is basically manufactured by casting.
  • the wing passage, the platform passage, and the turn-down extension are formed by using an outer-shaped core corresponding to each shape in the casting process.
  • the platform passage and the turn-down extension are connected, but the turn-down extension and the blade passage are not connected.
  • the communication path is formed after the intermediate product is formed. Specifically, a through-hole is formed by machining from the outer surface of the intermediate product through the turn-down extension to the blade passage. This through hole, that is, the communication path, bisects the turn-down extension part into the gas path surface side and the shaft side surface.
  • an object of the present invention is to provide a moving blade that can suppress a decrease in strength and cooling effect, a gas turbine including the same, and a method for manufacturing the moving blade.
  • a moving blade as one aspect according to the invention for achieving the above object is as follows: A wing body that is disposed in a combustion gas flow path through which combustion gas flows and forms an airfoil, and a platform that extends in a direction having a component perpendicular to the blade height direction from an end in the blade height direction of the blade body And a shaft mounting portion extending from the platform to the opposite side of the wing body, and the wing body, the platform, and the shaft mounting portion include the interior of the wing body, the platform, and the shaft mounting portion.
  • a blade passage through which cooling air flows is formed extending in the blade height direction, and the platform has a gas path surface facing the combustion gas facing the blade height direction and a back-to-back relationship with the gas path surface.
  • a communication passage connected to the blade passage through the platform passage is formed from at least one surface, and an opening on the at least one surface of the communication passage is closed with a sealing member, and the platform passage Has an inflow passage portion extending from a position near the blade passage in a direction having a blade thickness direction component at the position, and an inner surface defining the inflow passage portion is an inner surface of the gas path facing the shaft side surface side.
  • the inner surface defining the communication path includes, as the surface facing the gas path side inner surface, only the shaft side inner surface extending in a direction in which the blade thickness direction component is larger than the blade height direction component, It crosses and is connected to the inner surface of the inflow passage portion on the shaft side.
  • the inner surface of the communication passage intersects with the inner surface of the shaft side that is a part of the inner surface of the inflow passage portion in the platform passage. For this reason, the blade passage and the platform passage can be communicated with each other even if the turndown extension is not formed like the moving blade described in the background art section. Therefore, the moving blade has no turndown extension. For this reason, in the said moving blade, the fall of a moving blade intensity
  • the moving blade does not have a turn-down extension, it is more linear than the moving blade described in the background art section as a cooling air path from the blade passage to the platform passage. Path is formed. For this reason, in the moving blade, the pressure loss of the cooling air in the process in which the cooling air in the blade passage flows into the platform passage can be reduced. Further, since the turndown extension is not formed in the moving blade, the velocity component in the blade thickness direction in which the inflow passage extends is substantially increased in the process in which the cooling air flows from the communication passage into the inflow passage in the platform passage. Does not become smaller. For this reason, in the said moving blade, the fall of the cooling effect of the gas path surface near a blade body can be suppressed.
  • the inner surface of the inflow passage portion extends in a direction having the blade height direction component from an end of the blade passage side on the shaft side inner surface, and the blade passage on the gas path side inner surface.
  • An end inner surface connected to the end on the side may be included, and the inner surface of the communication passage may be connected to intersect with the end inner surface of the inflow passage portion.
  • the cooling passage from the blade passage to the platform passage serves as a platform passage. A more linear path is formed. Therefore, in the moving blade, the pressure loss of the cooling air can be further reduced, and the decrease in the cooling effect on the gas path surface near the blade body can be further suppressed.
  • the inner surface of the communication passage may be connected to intersect with the gas path side inner surface of the inflow passage portion.
  • the blade passage is formed with a bulge portion that swells in the blade thickness direction and closer to the inflow passage portion, and the communication passage includes the blade passage.
  • the bulge part may be crossed and connected.
  • the distance in the blade thickness direction between the blade passage and the inflow passage portion can be shortened by forming the bulge portion in the blade passage. For this reason, in the said moving blade, the pressure loss of the cooling air in the process in which the cooling air in a blade passage flows in into a platform channel
  • path can be suppressed more.
  • the platform passage may have a meandering passage portion that meanders in the platform.
  • the moving blade Since the moving blade has a meandering passage portion, it can be cooled over a wide range in the platform by the cooling air flowing into the platform passage.
  • the platform spreads in a direction having a component perpendicular to a width direction having a component perpendicular to a chord direction and a blade height direction of the blade body,
  • a side end surface connected to the gas path surface may be formed, and the platform passage may include a side end passage portion extending in a direction including the chord direction component along the side end surface.
  • the moving blade can cool the vicinity of the side end face in the platform.
  • a gas turbine as one aspect according to the invention for achieving the above object is as follows: A plurality of the moving blades of any of the above, a rotor shaft to which the plurality of moving blades are attached, a plurality of the moving blades, a casing covering the rotor shaft, And a combustor that sends combustion gas to a region where the moving blades are disposed.
  • a method of manufacturing a moving blade as one aspect according to the invention for achieving the above object is as follows: A wing body that is disposed in a combustion gas flow path through which combustion gas flows and forms an airfoil, and a platform that extends in a direction having a component perpendicular to the blade height direction from an end in the blade height direction of the blade body An intermediate product forming step of forming an intermediate product of the moving blade having a shaft mounting portion extending from the platform to the opposite side of the blade body, and a communication path extending from the outer surface of the intermediate product to the inside of the intermediate product.
  • a communication path forming step to be formed, and a sealing step for closing an opening on the outer surface of the intermediate product in the communication path, and in the intermediate product forming step, the wing body, the platform, and the shaft mounting portion The blade path extending inside the blade height direction to form a blade passage through which cooling air flows, the gas path surface facing the blade gas in the blade height direction and the gas path surface back to back on the platform
  • a blade thickness at the position from a position near the blade passage Forming an inflow passage portion extending in a direction having a directional component;
  • a through hole penetrating the blade passage is formed as the communication passage through the shaft-side inner surface which is a part of the inner surface of the inflow passage portion in the platform passage.
  • the turn-down extension portion is not formed, compared to the moving blade described in the background art section, as a cooling air path from the blade passage to the platform passage, A straight path towards the platform passage is formed. For this reason, in the moving blade formed by the manufacturing method, the pressure loss of the cooling air in the process in which the cooling air in the blade passage flows into the platform passage can be reduced. Further, in the moving blade manufactured by the manufacturing method, since the turn-down extension is not formed, the blade thickness in which the inflow passage portion extends in the process of cooling air flowing into the inflow passage portion in the platform passage from the communication passage. The velocity component in the direction is not substantially reduced. For this reason, in the moving blade formed with the said manufacturing method, the fall of the cooling effect of the gas path surface near a blade body can be suppressed.
  • the intermediate product forming step as a part of the inner surface that defines the inflow passage portion, a direction having the blade height direction component from an end on the blade passage side on the shaft-side inner surface.
  • An end inner surface that extends and connects to the blade path side end of the gas path side inner surface is formed, and in the communication path forming step, the communication path passes through the end inner surface of the inflow passage section and penetrates the blade path.
  • a through hole may be formed.
  • the communication path is penetrated through the blade path through a corner portion of the axial inner surface and the end inner surface of the inflow path portion.
  • a through hole may be formed.
  • a through hole that penetrates the blade passage through the gas path side inner surface of the inflow passage portion may be formed as the communication passage.
  • the communication passage in the communication passage forming step, is penetrated into the blade passage through a corner portion of the gas path side inner surface and the end inner surface of the inflow passage portion.
  • a through hole may be formed.
  • the intermediate product forming step includes a mold forming step of forming a mold in which an internal space matching the outer shape of the moving blade is formed, and a shape of the blade passage.
  • the shaft side of the inflow passage portion from at least one of the shaft side surface of the platform and the outer surface of the shaft mounting portion.
  • a pilot hole recessed toward the inner surface is formed, and in the communication path forming step, from the bottom surface of the lower hole of the intermediate product formed in the intermediate product forming step, through the shaft side inner surface of the inflow passage portion, A through hole penetrating the blade passage may be formed.
  • the amount of processing for the intermediate product for forming the through hole in the communication path forming step can be reduced.
  • the through-hole can be formed using the pilot hole formed in the intermediate product formation process as a guide, the accuracy in the through-direction of the communication hole can be improved.
  • a pilot hole core having an outer shape that matches the shape of the pilot hole is formed in the core forming step, and in the casting step, the mold is formed.
  • the pilot hole core may be melted by arranging the pilot hole core therein and pouring the molten metal into the mold.
  • the through hole may be formed by electric discharge machining or electrolytic machining in the communication path forming step.
  • a gas turbine 10 As shown in FIG. 1, a gas turbine 10 according to an embodiment of the present invention includes a compressor 20 that compresses air A, and a combustion gas by burning fuel F in the air A compressed by the compressor 20. A combustor 30 that generates G and a turbine 40 that is driven by the combustion gas G are provided.
  • the compressor 20 includes a compressor rotor 21 that rotates about an axis Ar, a compressor casing 25 that covers the compressor rotor 21, and a plurality of stationary blade rows 26.
  • the turbine 40 includes a turbine rotor 41 that rotates about an axis Ar, a turbine casing 45 that covers the turbine rotor 41, and a plurality of stationary blade rows 46.
  • the compressor rotor 21 and the turbine rotor 41 are located on the same axis Ar and are connected to each other to form the gas turbine rotor 11.
  • the rotor of a generator GEN is connected to the gas turbine rotor 11.
  • the gas turbine 10 further includes an intermediate casing 14 disposed between the compressor casing 25 and the turbine casing 45.
  • the combustor 30 is attached to the intermediate casing 14.
  • the compressor casing 25, the intermediate casing 14, and the turbine casing 45 are connected to each other to form a gas turbine casing 15.
  • the direction in which the axis Ar extends is referred to as the axial direction Da
  • the circumferential direction around the axis Ar is simply referred to as the circumferential direction Dc
  • the direction perpendicular to the axis Ar is referred to as the radial direction Dr.
  • the compressor 20 side is defined as the upstream side Dau and the opposite side as the downstream side Dad with respect to the turbine 40 in the axial direction Da.
  • the side closer to the axis Ar in the radial direction Dr is defined as the radial inner side Dri
  • the opposite side is defined as the radial outer side Dro.
  • the turbine rotor 41 includes a rotor shaft 42 extending in the axial direction Da around the axis line Ar, and a plurality of rotor blade rows 43 attached to the rotor shaft 42.
  • the plurality of blade arrays 43 are arranged in the axial direction Da.
  • Each rotor blade row 43 is composed of a plurality of rotor blades 50 arranged in the circumferential direction Dc.
  • a stationary blade row 46 is arranged on each upstream side Dau of the plurality of blade rows 43.
  • Each stationary blade row 46 is provided inside the turbine casing 45.
  • Each stationary blade row 46 is configured by a plurality of stationary blades 46a arranged in the circumferential direction Dc.
  • An annular space between the outer peripheral side of the rotor shaft 42 and the inner peripheral side of the turbine casing 45 and in which the stationary blades 46a and the moving blades 50 are arranged in the axial direction Da is a combustion gas from the combustor 30.
  • a combustion gas flow path 49 through which G flows is formed.
  • the combustion gas flow path 49 has an annular shape around the axis Ar and is long in the axial direction Da.
  • the moving blade 50 includes a wing body 51 having an airfoil shape, a platform 60 provided at an end portion of the wing body 51 in the blade height direction Dwh, and the platform 60 to the wing body 51. And a shaft mounting portion 90 extending to the side.
  • the side where the blade body 51 is present with respect to the platform 60 is referred to as the distal end side Dwht, and the side where the blade attachment portion 90 is present is referred to as the proximal end side Dwhs.
  • the blade height direction Dwh is substantially the same as the radial direction Dr.
  • the distal end side Dwht becomes the radially outer side Dro
  • the proximal end side Dwhs becomes the radially inner side Dri.
  • the wing body 51 exists on the radially outer side Dro
  • the shaft attachment portion 90 exists on the radially inner side Dri.
  • the blade body 51 is disposed in the combustion gas flow path 49.
  • the wing body 51 is formed with a back side surface (negative pressure surface) 54 that is a convex surface and an abdominal side surface (positive pressure surface) 55 that is a concave surface.
  • the back side surface 54 and the ventral side surface 55 are connected by the front edge 52 and the rear edge 53 of the wing body 51.
  • the front edge 52 is located on the upstream side Dau in the axial direction Da with respect to the rear edge 53.
  • both the back side surface 54 and the ventral side surface 55 face the direction having the component of the circumferential direction Dc.
  • the platform 60 is a plate-like member extending from the end of the blade body 51 in the blade height direction Dwh in a direction having a component perpendicular to the blade height direction Dwh.
  • the platform 60 includes a gas path surface 61, a shaft side surface 62, a pair of side end surfaces 63, and a pair of front and rear end surfaces 64.
  • the gas path surface 61 faces the tip side Dwht in the blade height direction Dwh and contacts the combustion gas G.
  • the axial side surface 62 is in a back-to-back relationship with the gas path surface 61 and faces the proximal end side Dwhs.
  • the pair of side end faces 63 face opposite sides in the width direction Dwp having a component perpendicular to the blade height direction Dwh and the chord direction Dwc.
  • the pair of front and rear end faces 64 face opposite sides in the chord direction Dwc.
  • the chord direction Dwc is a direction parallel to the chord Lco. In a state where the rotor blade 50 is attached to the rotor shaft 42, the direction including the component in the axial direction Da is the chord direction Dwc, and the direction including the component in the circumferential direction Dc is the width direction Dwp.
  • the gas path surface 61 of the platform 60 is a surface that extends in a direction having a component perpendicular to the blade height direction Dwh.
  • Each of the pair of side end surfaces 63 extends in a direction having a component perpendicular to the width direction Dwp and is connected to the gas path surface 61.
  • each of the pair of front and rear end surfaces 64 extends in a direction having a component perpendicular to the chord direction Dwc and is connected to the gas path surface 61.
  • one side end surface 63 forms a back side end surface 63n
  • the other side end surface 63 forms a ventral side end surface 63p.
  • one front and rear end face 64 forms a front end face 64f
  • the other front and rear end face 64 forms a rear end face 64b.
  • the back end face 63n and the ventral end face 63p are parallel to each other.
  • the front end face 64f and the rear end face 64b are parallel to each other. For this reason, when the platform 60 is viewed from the blade height direction Dwh, it forms a parallelogram. In a state where the moving blade 50 is attached to the rotor shaft 42, the front end face 64f and the rear end face 64b are surfaces perpendicular to the axial direction Da.
  • the front end face 64f is located on the upstream side Dau in the axial direction Da with respect to the rear end face 64b.
  • the side of the front end face 64f with respect to the rear end face 64b is referred to as a chord front side Dwcf
  • the side opposite to the chord front side Dwcf is referred to as a chord rear side Dwcf.
  • the side of the back side end face 63n with respect to the ventral side end face 63p is simply referred to as a back side Dpn
  • the side opposite to the back side Dpn is simply referred to as a ventral side Dpp.
  • the shaft mounting portion 90 includes a shank 91 extending from the platform 60 in the blade height direction Dwh on the opposite side of the blade body 51, and a blade root 92 extending from the shank 91 in the blade height direction Dwh on the opposite side of the blade body 51.
  • the blade root 92 has a Christmas tree shape with a cross-sectional shape perpendicular to the chord Lco.
  • the blade root 92 is fitted into a blade root groove (not shown) of the rotor shaft 42 (see FIG. 1).
  • the blade 50 is formed with a plurality of blade passages 71 extending in the blade height direction Dwh, as shown in FIGS.
  • Each blade passage 71 is formed continuously from the blade body 51, the platform 60, and the shaft mounting portion 90.
  • the plurality of blade passages 71 are arranged along the camber line Lca (see FIG. 4) of the blade body 51.
  • Adjacent blade passages 71 communicate with each other at an end portion in the blade height direction Dwh.
  • at least one blade passage 71 opens at the end of the blade root 92 in the blade height direction Dwh.
  • the cooling air Ac from the cooling air passage formed in the rotor shaft 42 flows into the blade passage 71 from this opening.
  • the moving blade 50 of this embodiment has, for example, three blade passages 71 formed therein. Of these three blade passages 71, the blade passage 71 on the foremost chord front side Dwcf is the first blade passage 71a, and the blade passage 71 adjacent to the rear chord side Dwcb of the first blade passage 71a is the second blade passage 71b.
  • the blade passage 71 adjacent to the chord rear side Dwcb of the second blade passage 71b is defined as a third blade passage 71c.
  • the third blade passage 71c opens at the end of the blade root 92 in the blade height direction Dwh.
  • the third blade passage 71c and the second blade passage 71b communicate with each other at the tip side Dwht in the blade height direction Dwh.
  • the second blade passage 71b and the first blade passage 71a communicate with each other at the base end side Dwhs in the blade height direction Dwh.
  • the blade passage 71 is formed with a plurality of blade surface ejection passages 72 that open at the outer surface of the blade body 51.
  • the third blade passage 71c is formed with a plurality of blade surface ejection passages 72 extending from the third blade passage 71c to the chord rear side Dwcb and opening on the outer surface of the blade body 51.
  • the first blade passage 71a is formed with a plurality of blade surface ejection passages 72 extending from the first blade passage 71a to the chord front Dwcf and opening at the outer surface of the blade body 51.
  • the blade body 51 is convectively cooled while the cooling air Ac flows in the blade passage 71.
  • the cooling air Ac that has flowed into the blade passage 71 flows into the blade surface ejection passage 72, and flows out from the blade surface ejection passage 72 into the combustion gas passage 49. For this reason, the leading edge 52 and the trailing edge 53 of the wing body 51 are cooled in the process in which the cooling air Ac flows through the wing surface ejection passage 72. Further, a part of the cooling air Ac flowing out from the blade surface ejection passage 72 to the combustion gas passage 49 partially covers the surface of the blade body 51 and also serves as film air.
  • the platform 60 is formed with a platform passage 81 extending in the direction along the gas path surface 61 in the platform 60. As shown in FIG. 4, the platform passage 81 is formed on the dorsal platform passage 81 n formed on the back side Dpn with respect to the wing body 51 and on the ventral side Dpp on the basis of the wing body 51. A ventral platform passage 81p.
  • the back-side platform passage 81n has an inflow passage portion 82n extending in a direction having the blade thickness direction Dwt component, and a side-end passage portion 83n extending along the back-side end face 63n of the platform 60.
  • the inflow passage portion 82n extends from a position near the inner surface of the back side Dpn in the inner surface of the first blade passage 71a to a position near the back end surface 63n in a direction having the blade thickness direction Dwt component at this position.
  • the side end passage portion 83n extends from the end of the back side Dpn of the inflow passage portion 82n to the chord rear side Dwcb along the back side end surface 63n, and opens at the rear end surface 64b of the platform 60.
  • the blade thickness direction Dwt may be a direction perpendicular to the blade height direction Dwh and perpendicular to the blade chord direction Dwc.
  • the blade thickness direction Dwt is perpendicular to the blade height direction Dwh.
  • a direction perpendicular to the camber line Lca is a generally curved curve. For this reason, the blade thickness direction Dwt changes according to the position on the camber line Lca.
  • the ventral platform passage 81p has an inflow passage portion 82p extending in a direction having the blade thickness direction Dwt component and a meandering passage portion 83p meandering in the platform 60.
  • the inflow passage portion 82p extends from a position near the inner surface of the ventral side Dpp in the inner surface of the first blade path 71a to a position near the ventral end surface 63p in a direction having the blade thickness direction Dwt component at this position.
  • the meandering passage portion 83p extends from the end of the ventral side Dpp of the inflow passage portion 82p to the chord rear side Dwcb while meandering in the width direction Dwp, and opens at the rear end face 64b of the platform 60.
  • the rotor blade 50 is further formed with a communication passage 75 that allows the blade passage 71 and the platform passage 81 to communicate with each other.
  • the communication passage 75 includes a back communication passage 75n that allows the first blade passage 71a and the back platform passage 81n to communicate with each other, and a ventral communication passage 75p that allows the first blade passage 71a and the ventral platform passage 81p to communicate. .
  • the back side communication passage 75n passes through the inflow passage portion 82n of the back side platform passage 81n from the surface forming the corner portion of the shaft side surface 62 of the platform 60 and the outer surface 93 of the shaft attachment portion 90. It leads to the one-wing passage 71a.
  • the back side communication passage 75n extends linearly from the surface forming the corner portion toward the first blade passage 71a in the blade thickness direction Dwt while extending in the blade height direction Dwh.
  • the opening of the back side communication passage 75n on the surface forming the corner is closed by a sealing member 76.
  • the inner surface forming the back platform passage 81n spreads in a direction in which the blade thickness direction Dwt component is larger than the blade height direction Dwh component and faces the shaft side surface 62, and the blade height direction Dwh component And a shaft-side inner surface 88 that spreads in a direction in which the blade thickness direction Dwt component is larger and at least partly faces the gas path-side inner surface 87.
  • the inner surface forming the inflow passage portion 82n of the back platform passage 81n has a blade height direction from the end on the first blade passage 71a side on the shaft inner surface 88 in addition to the gas path inner surface 87 and the shaft inner surface 88 described above. It includes an end inner surface 89 that extends in the direction having the Dwh component and is connected to the end of the gas path side inner surface 87 on the first blade passage 71a side.
  • the back side communication passage 75n is formed as a through-hole penetrating the first blade passage 71a through a corner portion between the axial inner surface 88 and the end inner surface 89 of the inflow passage portion 82n. Therefore, the inner surface 78 of the back communication passage 75n is connected to the shaft inner surface 88 and the end inner surface 89 of the inflow passage portion 82n.
  • the ventral side communication path 75p is connected to the first blade path 71a through the inflow path portion 82p of the ventral platform path 81p from the surface forming the corner of the shaft side surface 62 of the platform 60 and the outer surface 93 of the shaft mounting portion 90.
  • the ventral side communication path 75p extends linearly from the surface forming the corner to the side approaching the first blade path 71a in the blade thickness direction Dwt while extending in the blade height direction Dwh.
  • the opening of the ventral side communication path 75p on the surface forming the corner is closed by a sealing member 76.
  • the inner surface forming the ventral platform passage 81p also spreads in the direction in which the blade thickness direction Dwt component is larger than the blade height direction Dwh component and faces the shaft side surface 62, and the blade height direction Dwh component And a shaft-side inner surface 88 that spreads in a direction in which the blade thickness direction Dwt component is larger and at least partly faces the gas path-side inner surface 87.
  • the inner surface forming the inflow passage portion 82p of the ventral side platform passage 81p is also in the blade height direction from the end of the shaft side inner surface 88 on the first blade passage 71a side. It includes an end inner surface 89 that extends in the direction having the Dwh component and is connected to the end of the gas path side inner surface 87 on the first blade passage 71a side.
  • the ventral side communication path 75p is formed as a through-hole penetrating the first blade path 71a through a corner portion between the axial inner surface 88 and the end inner surface 89 of the inflow passage portion 82p. Therefore, the inner surface 78 of the ventral side communication path 75p intersects and is connected to the axial inner surface 88 and the end inner surface 89 of the inflow passage portion 82p. As described above, the configuration of the back communication passage 75n and the configuration of the ventral communication passage 75p are basically the same.
  • the cooling air Ac convectively cools the platform 60 in the vicinity of the inflow passage portion 82n in the process of flowing through the inflow passage portion 82n. For this reason, the gas path surface 61 in the vicinity of the inflow passage portion 82n is cooled.
  • the cooling air Ac flows from the inflow passage portion 82n into the side end passage portion 83n.
  • the cooling air Ac convectively cools the platform 60 in the vicinity of the side end passage portion 83n in the process of flowing through the side end passage portion 83n.
  • the cooling air Ac is ejected to the outside from the opening of the side end passage portion 83n formed in the rear end face 64b of the platform 60. For this reason, the rear end surface 64b of the platform 60 is cooled by the cooling air Ac.
  • the cooling air Ac flowing through the first blade passage 71a flows into the inflow passage portion 82p of the ventral platform passage 81p via the ventral communication passage 75p.
  • the cooling air Ac convectively cools the platform 60 in the vicinity of the inflow passage portion 82p in the process of flowing through the inflow passage portion 82p.
  • the cooling air Ac flows from the inflow passage portion 82p into the meandering passage portion 83p.
  • the cooling air Ac convectively cools the platform 60 in the vicinity of the meandering passage 83p in the process of flowing through the meandering passage 83p.
  • the cooling air Ac is ejected to the outside from the opening of the meandering passage 83p formed on the rear end face 64b of the platform 60. For this reason, the rear end surface 64b of the platform 60 is cooled by the cooling air Ac.
  • an intermediate product of the moving blade 50 is formed by casting (S1: intermediate product forming step).
  • S1 intermediate product forming step
  • a mold forming step (S2), a core forming step (S3), a casting step (S4), and a core melting step (S5) are executed.
  • a mold is formed in which an internal space corresponding to the outer shape of the rotor blade 50 is formed.
  • a mold is formed by the lost wax method.
  • the lost wax method first, a wax model that reproduces the outer shape of the moving blade 50 is formed. Next, a wax model is put in a slurry containing a refractory powder and the slurry is dried. Then, the wax model is removed from the dried slurry, and this is used as a mold.
  • an outer shape blade passage core that matches the shape of the blade passage 71 and an outer shape platform passage core that matches the shape of the platform passage 81 are formed. Both the blade passage core and the platform passage core are formed of ceramics such as alumina.
  • This core forming step (S3) may be executed in parallel with the mold forming step (S2), or may be executed before or after the mold forming step (S2). Further, the formation of the blade passage core and the formation of the platform passage core may be performed in parallel or at different timings.
  • the blade passage core and the platform passage core are arranged in the mold, and the molten metal is poured into the mold.
  • the molten metal is, for example, a melt such as a nickel base alloy having high heat resistance.
  • the core melting step (S5) is executed.
  • the ceramic blade blade core and the platform passage core are melted with an alkaline aqueous solution.
  • the intermediate product forming step (S1) is completed, and the intermediate product of the moving blade 50 is completed.
  • the intermediate product 50 x includes a wing body 51, a platform 60, and a shaft attachment portion 90.
  • a blade passage 71 and a platform passage 81 are formed in the intermediate product 50x.
  • no communication passage 75 is formed in the intermediate product 50x.
  • a communication passage 75 extending from the outer surface of the intermediate product 50x to the blade passage 71 in the intermediate product 50x is formed (S6: communication passage forming step).
  • this communication path forming step (S6) through holes as communication paths 75 are formed in the intermediate product 50x as shown in FIG.
  • This through-hole is a straight hole extending from the surface forming the corner between the shaft side surface 62 of the platform 60 and the outer surface 93 of the shaft mounting portion 90 to the first blade passage 71a through the inflow passage portion 82 of the platform passage 81. It is. Therefore, the inner surface 78 of the communication passage 75 is connected to the shaft inner surface 88 and the end inner surface 89 of the inflow passage portion 82 as described above.
  • the shaft-side inner surface 88 of the inflow passage portion 82 of the platform passage 81 is formed from the surface that forms the corner portion of the shaft side surface 62 of the platform 60 and the outer surface 93 of the shaft attachment portion 90.
  • a through-hole penetrating through is formed.
  • a through-hole as the communication passage 75 is formed by forming a through-hole penetrating from the inner surface forming the inflow passage portion 82 to the first blade passage 71a.
  • the blade passage 71, the platform passage 81, and the communication passage 75 are formed by casting.
  • a core in which the blade path core, the platform path core, and the communication path core are integrated is prepared, and the core is arranged in a mold to form an intermediate product.
  • the blade passage 71 is a passage formed along a plane extending in the blade height direction Dwh.
  • the platform passage 81 is a passage formed along a plane extending in a direction perpendicular to the blade height direction Dwh.
  • the blade passage core has a shape along a plane extending in the blade height direction Dwh, and the platform passage core is along a plane extending in a direction perpendicular to the blade height direction Dwh. Form the shape. Therefore, if the above-described integral core is formed, if the integral core is carelessly handled, the communication path core that forms the communication path 75 that connects the blade path 71 and the platform path 81 may be damaged. The nature is extremely high.
  • the communication passage 75 is formed in the intermediate product 50x by machining or the like.
  • sealing step (S7) the sealing member 76 is inserted into the communication path 75 from the opening of the communication path 75, and the sealing member 76 is welded from the outer surface of the intermediate product to the intermediate product.
  • the intermediate product in which the communication path 75 is formed is subjected to a finishing process to complete the rotor blade 50 (S8: finishing process).
  • finishing process for example, the outer surface of the intermediate product is polished. If necessary, heat-resistant coating is applied to the outer surface of the intermediate product.
  • the moving blade 50z of the comparative example also has a blade body 51, a platform 60, and a shaft mounting portion 90 as shown in FIG.
  • a blade passage 71 is formed in the blade body 51, the platform 60, and the shaft mounting portion 90 so as to extend in the blade height direction Dwh and through which the cooling air Ac flows.
  • the platform 60 is formed with a gas path surface 61 that contacts the combustion gas in the blade height direction Dwh, and an axial side surface 62 that has a back-to-back relationship with the gas path surface 61.
  • the platform 60 includes a platform passage 81z that extends in the blade thickness direction Dwt between the gas path surface 61 and the shaft side surface 62 and through which cooling air Ac flows, and a gas path surface from the end of the platform passage 81z on the blade passage 71 side.
  • a turn-down extension 89z extending to the side away from 61 is formed.
  • the platform 60 and the shaft mounting portion 90 are formed with a communication passage 75z that is connected to the blade passage 71 from the outer surface at the corner between the shaft side surface 62 of the platform 60 and the outer surface 93 of the shaft mounting portion 90 through the turn-down extension 89z. ing.
  • An opening on the outer surface of the corner portion in the communication path 75z is closed with a plug 76z or the like.
  • the rotor blade 50z of this comparative example is basically manufactured by casting.
  • the blade passage 71, the platform passage 81z, and the turn-down extension 89z are formed using outer-shaped cores that match the respective shapes in the casting process.
  • the platform passage 81z and the turn-down extension 89z are connected, but the turn-down extension 89z and the blade passage 71 are not connected.
  • the communication path 75z is formed after the intermediate product is formed. Specifically, a through hole is formed by machining from the outer surface of the intermediate product through the turn-down extension 89z to the blade passage 71.
  • the through hole extends linearly from the surface forming the corner portion toward the blade passage 71 in the blade thickness direction Dwt while extending in the blade height direction Dwh. That is, this through hole is a hole inclined with respect to the blade height direction Dwh and the blade thickness direction Dwt.
  • the through hole that is, the communication path 75z bisects the turn-down extension 89z into the gas path surface 61 side and the shaft side surface 62. Further, the through-hole penetrates a pair of inner surfaces that extend in the blade height direction Dwh direction and face each other in the blade thickness direction Dwt among the inner surfaces that form the turndown extension 89z.
  • a turn-down extension 89z is formed in addition to the communication passage 75z. For this reason, in the moving blade 50z of the comparative example, the strength in the vicinity of the joint between the shaft mounting portion 90 and the platform 60 decreases due to the presence of the turn-down extension 89z.
  • the speed component in the blade thickness direction Dwt of the cooling air Ac is reduced in the process in which the cooling air Ac flows into the platform passage 81z from the turndown extension 89z, and therefore the turndown extension
  • the convection cooling effect by the cooling air Ac flowing through the platform passage 81z near the portion 89z is reduced. Therefore, in the moving blade 50z of the comparative example, the cooling effect of the gas path surface 61 in the vicinity of the turn-down extension 89z, that is, the gas path surface 61 in the vicinity of the blade body 51 is reduced.
  • the inner surface 78 of the communication passage 75 is connected to the shaft-side inner surface 88 that is a part of the inner surface of the platform passage 81. Even if the turn-down extension 89z is not formed, the blade passage 71 and the platform passage 81 can be communicated with each other. For this reason, in the moving blade 50 of this embodiment, there is no turndown extension part 89z. Therefore, in the moving blade 50 of the present embodiment, it is possible to avoid a decrease in moving blade strength due to the formation of the turn-down extension 89z.
  • the turndown extension part 89z is not formed, compared with the moving blade 50z of a comparative example, as a path
  • the turn-down extension 89z is not formed, so that the cooling air Ac from the communication passage 75 has a smaller velocity component in the blade thickness direction Dwt in which the platform passage 81 extends. Instead, it flows in the platform passage 81. For this reason, in the moving blade 50 of this embodiment, the fall of the cooling effect of the gas path surface 61 near the blade body 51 can be suppressed.
  • the through hole forming the communication passage 75 penetrates not only the axial inner surface 88 of the inflow passage portion 82 in the platform passage 81 but also the end inner surface 89 facing the inner surface of the blade passage 71.
  • a more linear path toward the platform path 81 is formed. Therefore, in the present embodiment, the pressure loss of the cooling air Ac can be further reduced, and the decrease in the cooling effect of the gas path surface 61 in the vicinity of the blade body 51 can be further suppressed.
  • inspection in the platform passage using an inspection device such as a borescope is facilitated.
  • the communication path 75 in the present embodiment connects the first blade path 71a and the platform path 81.
  • the communication passage 75 may be configured to communicate the blade passage 71 other than the first blade passage 71a with the platform passage 81.
  • the communication path 75 may communicate the second blade path 71b or the third blade path 71c with the platform path 81.
  • the number of communication passages that allow the one platform passage 81 and the blade passage 71 to communicate with each other is not limited to one and may be plural.
  • a back side communication path that connects the side end path portion 83n that is a part of the platform path 81 and the third blade path 71c may be provided.
  • the communication position of the platform passage 81 with the blade passage 71 can be appropriately selected according to design conditions and the like. For example, a communication position may be provided in the middle of the meandering passage portion 83p.
  • the inner surface 88 of the inflow passage portion 82 in the platform passage 81 and the inner end surface 89 of the blade passage 71 are opposed to each other through the through hole forming the communication passage 75b. It penetrates. Therefore, the inner surface 78 of the communication path 75b of this modification is also connected to the shaft-side inner surface 88 and the end inner surface 89 of the inflow passage portion 82 in the same manner as the communication paths of the above embodiments.
  • the through hole of the present modification does not penetrate the corner portion between the axial inner surface 88 and the end inner surface 89 of the inflow passage portion 82. Further, the through hole of the present embodiment does not penetrate the corner portion between the gas path side inner surface 87 and the end inner surface 89 of the inflow passage portion 82.
  • the through hole forming the communication passage 75b of this modification penetrates the blade passage 71 only from the shaft side surface 62 of the platform 60. Therefore, unlike the through hole of the above embodiment, the through hole of the present modification does not penetrate the blade passage 71 across the shaft side surface 62 and the outer surface 93 of the shaft mounting portion 90. Thus, the through hole may penetrate the blade passage 71 only from the axial side surface 62 of the platform 60. Further, the through hole may penetrate the blade passage 71 only from the outer surface 93 of the shaft attachment portion 90.
  • the inner surface 88 of the inflow passage portion 82 in the platform passage 81 and the inner end surface 89 of the blade passage 71 are opposed to each other through the through hole forming the communication passage 75c in the same manner as in the above embodiment. It penetrates. Accordingly, the inner surface 78 of the communication path 75c of this modification is also connected to the shaft-side inner surface 88 and the end inner surface 89 of the inflow passage portion 82 in the same manner as the communication paths of the above embodiments. However, unlike the through holes of the above-described embodiment, the through hole of the present modification penetrates the corner between the axial inner surface 88 and the end inner surface 89 of the inflow passage portion 82 and the gas path of the inflow passage portion 82. The corners of the side inner surface 87 and the end inner surface 89 also penetrate. For this reason, the inner surface 78 of the communication passage 75c of the present modification is also connected to the gas path side inner surface 87 of the inflow passage portion 82.
  • the inner surface 88 of the inflow passage portion 82 in the platform passage 81 and the inner end surface 89 of the blade passage 71 are opposed to each other through the through hole forming the communication passage 75d. It penetrates. Accordingly, the inner surface 78 of the communication passage 75d of this modification is connected to the shaft-side inner surface 88 and the end inner surface 89 of the inflow passage portion 82 in the same manner as the communication passages of the above embodiments. However, unlike the through hole of the above-described embodiment, the through hole of this modification does not penetrate the corner portion between the axial inner surface 88 and the end inner surface 89 of the inflow passage portion 82, and the gas path side inner surface 87 of the inflow passage portion 82. And the end inner surface 89 are penetrated. For this reason, the inner surface 78 of the communication passage 75d of the present modification is also connected to the gas path side inner surface 87 of the inflow passage portion 82.
  • the through hole forming the communication passage 75d may penetrate the gas path side inner surface 87 of the inflow passage portion 82.
  • the through hole forming the communication passage 75e in the moving blade 50e of the present modification is the same as that in the above embodiment. That is, the through hole passes from the corner portion of the shaft side surface 62 of the platform 60 and the outer surface 93 of the shaft mounting portion 90 to the blade passage 71 through the corner portion of the shaft side inner surface 88 and the end inner surface 89 in the inflow passage portion 82. It penetrates.
  • the blade passage 71 in the platform 60 is formed with a bulging portion 77 that swells in the blade thickness direction Dwt and close to the inflow passage portion 82.
  • the through hole of this modification penetrates the region including the bulging portion 77.
  • the distance in the blade thickness direction Dwt between the blade passage 71 and the inflow passage portion 82 can be shortened. For this reason, the pressure loss of the cooling air Ac in the process in which the cooling air Ac in the blade passage 71 flows into the platform passage 81 can be further suppressed.
  • the present modification is a modification of the moving blade in the above embodiment
  • the moving blades of the first to third modifications may be modified in the same manner as the present modification.
  • a part of the communication hole 75 is formed in the intermediate product forming step (S1) shown in FIG. Specifically, in this intermediate product forming step (S1), as shown in FIG. 13, the flow of the platform passage 81 from the surface that forms the corners of the shaft side surface 62 of the platform 60 and the outer surface 93 of the shaft mounting portion 90. A pilot hole 79 that is recessed toward the passage portion 82 and the first blade passage 71a is formed.
  • this pilot hole 79 is formed. Therefore, in the core forming step (S3) in the intermediate product forming step (S1), as shown in FIG. A pilot hole core 103 having an outer shape is formed. Similar to the blade passage core 101 and the platform passage core 102, the pilot hole core 103 is formed of ceramics such as alumina.
  • the casting step (S4) in the intermediate product forming step (S1) the pilot hole core 103 is arranged in the mold 100 together with the blade passage core 101 and the platform passage core 102, and this mold 100 is arranged. The molten metal is poured into the inside. When the molten metal poured into the mold 100 is cured, the ceramic blade blade core 101, the platform passage core 102 and the pilot hole core 103 are melted with an alkaline aqueous solution in the core melting step (S5).
  • the intermediate product forming step (S1) in this modification is completed, and the intermediate product 50y shown in FIG. 13 is completed.
  • the intermediate product 50y has a wing body 51, a platform 60, and a shaft mounting portion 90.
  • the intermediate product 50 y is formed with a blade passage 71, a platform passage 81, and a pilot hole 79 that forms part of the communication hole 75.
  • a through hole penetrating the blade passage 71 from the bottom surface 80 of the pilot hole 79 through the axial inner surface 88 of the inflow passage portion 82 is formed by electrolytic machining or electric discharge machining.
  • the communication hole 75 shown in FIG. 5 is formed by the pilot hole 79 formed in the intermediate product formation step (S1) and the through hole formed by electrolytic machining or electric discharge machining in the communication passage formation step. .
  • the amount of machining by electrolytic machining or electric discharge machining for forming a through hole in the communication path forming step (S6) can be reduced.
  • the electrolytic machining or the electric discharge machining can be performed using the pilot hole 79 formed in the intermediate product forming step (S1) as a guide, the accuracy in the through direction of the communication hole 75 can be improved.
  • the present modification is a modification of the method for manufacturing a moving blade in the above embodiment
  • the moving blades of the first to fourth modifications may be manufactured in the same manner as the present modification.
  • the cross-sectional shape of the through hole forming the inflow passage portion 82 and the communication passage 75 is not particularly described, but the cross-sectional shape is not particularly limited, and for example, a circular shape, a semicircular shape, The shape may be an ellipse, a semi-elliptical, an oval, a semi-oval, a polygon such as a quadrangle, or a combination of two or more of these.
  • the communication paths in the above embodiment and each modification are all linear. However, the communication path may be slightly bent.
  • the inflow passage portion of the platform passage in the embodiment and each modification extends in the blade thickness direction. For this reason, both the gas path side inner surface and the shaft side inner surface of the inflow passage portion in the embodiment and each modification are spread in the blade surface thickness direction.
  • the inflow passage only needs to extend in a direction in which the blade thickness component is larger than the blade height direction component. For this reason, the gas path side inner surface and the shaft side inner surface of the inflow passage portion only need to spread in a direction in which the blade thickness component is larger than the blade height direction component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

動翼(50)は、翼高さ方向(Dwh)に延びる翼通路(71)と、プラットフォーム(60)に形成されているプラットフォーム通路(81)と、軸取付部(90)の外面(93)から、プラットフォーム通路(81)を経て翼通路(71)につながる連通路(75)と、を有する。プラットフォーム通路(81)の流入通路部(82)を画定する内面は、ガスパス側を向く軸側内面(88)を含む。軸側内面(88)は、翼高さ方向(Dwh)成分よりも翼厚さ方向(Dwt)成分の多い方向に広がる。連通路(75)を画定する内面は、軸側内面(88)につながっている。

Description

動翼、これを備えているガスタービン、及び動翼の製造方法
 本発明は、動翼、これを備えているガスタービン、及び動翼の製造方法に関する。
 本願は、2015年9月15日に、日本国に出願された特願2015-181691号に基づき優先権を主張し、この内容をここに援用する。
 ガスタービンは、軸線を中心として回転するロータと、このロータを覆う車室と、を備える。ロータは、ロータ軸と、このロータ軸に取り付けられている複数の動翼とを有する。動翼は、翼形を成す翼体と、翼体の翼高さ方向の端部から翼高さ方向に対してほぼ垂直な方向に広がるプラットフォームと、プラットフォームから翼体と反対側に延びる軸取付部と、を有する。
 ガスタービンの動翼は、高温の燃焼ガスに晒される。このため、動翼は、一般的に、空気等で冷却される。
 例えば、以下の特許文献1に記載の動翼には、冷却空気が通る各種冷却通路が形成されている。具体的に、翼体、プラットフォーム及び軸取付部には、内部を翼高さ方向に延びて、冷却空気が流れる翼通路が形成されている。プラットフォームには、翼高さ方向を向いて燃焼ガスに接するガスパス面と、ガスパス面と背合わせの関係にある軸側面と、が形成されている。さらに、このプラットフォームには、ガスパス面と軸側面との間を翼厚さ方向に延びて冷却空気が流れるプラットフォーム通路と、プラットフォーム通路の翼通路側の端からガスパス面から遠ざかる側に延びるターンダウン延長部と、が形成されている。プラットフォーム及び軸取付部には、プラットフォームの軸側面と軸取付部の外面との角部における外面から、ターンダウン延長部を経て翼通路につながる連通路が形成されている。この連通路における前記角部の外面での開口は、プラグ等で塞がれている。
 この動翼は、基本的に、鋳造で製造される。翼通路、プラットフォーム通路及びターンダウン延長部は、鋳造過程で、それぞれの形状にあった外形状の中子を用いて形成される。鋳造により形成された動翼の中間品では、プラットフォーム通路とターンダウン延長部とはつながっているものの、ターンダウン延長部と翼通路はつながっていない。連通路は、この中間品が形成された後、形成される。具体的に、中間品における前記角度の外面から、ターンダウン延長部を経て、翼通路にぬける貫通孔を機械加工で形成する。この貫通孔、つまり連通路は、ターンダウン延長部をガスパス面側と軸側面とに二分する。
特開2012-132438号公報
 上記特許文献1に記載の動翼では、翼通路内の冷却空気が連通路を経て、ターンダウン延長部及びプラットフォーム通路に流入する。この動翼では、冷却空気がターンダウン延長部を流れる過程で、冷却空気の翼厚さ方向の速度成分が小さくなるため、ターンダウン延長部を流れる冷却空気による対流冷却効果が小さくなる。よって、この動翼では、翼体近傍のガスパス面の冷却効果が低下する、という問題点がある。さらに、この動翼では、プラットフォーム内にプラットフォーム通路の他に、ターンダウン延長部を形成しているため、動翼の強度が低下する、という問題点もある。
 そこで、本発明は、強度及び冷却効果の低下を抑えることができる動翼、これを備えるガスタービン、動翼の製造方法を提供することを目的とする。
 前記目的を達成するための発明に係る一態様としての動翼は、
 燃焼ガスが流れる燃焼ガス流路内に配置され、翼形を成す翼体と、前記翼体の翼高さ方向の端部から前記翼高さ方向に対して垂直な成分を有する方向に広がるプラットフォームと、前記プラットフォームから前記翼体と反対側に延びる軸取付部と、を有し、前記翼体、前記プラットフォーム及び前記軸取付部には、前記翼体、前記プラットフォーム及び前記軸取付部の内部を前記翼高さ方向に延びて、冷却空気が流れる翼通路が形成され、前記プラットフォームには、前記翼高さ方向を向いて前記燃焼ガスに接するガスパス面と、前記ガスパス面と背合わせの関係にある軸側面と、前記ガスパス面と前記軸側面との間に形成され冷却空気が流れるプラットフォーム通路と、が形成され、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記プラットフォーム通路を経て前記翼通路につながる連通路が形成され、前記連通路における前記少なくとも一方の面での開口が封止部材で塞がれ、前記プラットフォーム通路は、前記翼通路近傍の位置から当該位置における翼厚さ方向成分を有する方向に延びる流入通路部を有し、前記流入通路部を画定する内面は、前記軸側面の側を向くガスパス側内面と、前記ガスパス側内面に対向する面として前記翼高さ方向成分よりも前記翼厚さ方向成分の多い方向に広がっている軸側内面のみと、を含み、前記連通路を画定する内面が、前記流入通路部の前記軸側内面に交わってつながっている。
 当該動翼では、連通路の内面がプラットフォーム通路における流入通路部の内面の一部である軸側内面に交わってつながっている。このため、背景技術の欄で説明した動翼のようにターンダウン延長部を形成してなくても、翼通路とプラットフォーム通路とを連通させることができる。よって、当該動翼では、ターンダウン延長部がない。このため、当該動翼では、ターンダウン延長部を形成することによる動翼強度の低下を回避することができる。
 また、当該動翼では、ターンダウン延長部が形成されていないため、背景技術の欄で説明した動翼に比べて、翼通路からプラットフォーム通路に至る冷却空気の経路として、プラットフォーム通路に向う直線的な経路が形成される。このため、当該動翼では、翼通路内の冷却空気がプラットフォーム通路に流入する過程での冷却空気の圧力損失を小さくすることができる。さらに、当該動翼では、ターンダウン延長部が形成されていないため、冷却空気が連通路からプラットフォーム通路における流入通路部内に流入する過程で、流入通路部が延びる翼厚さ方向の速度成分が実質的に小さくなることがない。このため、当該動翼では、翼体近傍のガスパス面の冷却効果の低下を抑えることができる。
 ここで、前記動翼において、前記流入通路部の前記内面は、前記軸側内面における前記翼通路側の端から前記翼高さ方向成分を有する方向に広がって、前記ガスパス側内面における前記翼通路側の端につながる端内面を含み、前記連通路の前記内面が、前記流入通路部の前記端内面に交わってつながっていてもよい。
 当該動翼では、連通路が流入通路部の軸側内面のみならず、翼通路の内面と対向する端内面につながっているので、翼通路からプラットフォーム通路に至る冷却空気の経路として、プラットフォーム通路に向うより直線的な経路が形成される。従って、当該動翼では、冷却空気の圧力損失をより小さくできる上に、翼体近傍のガスパス面の冷却効果の低下をより抑えることができる。
 また、以上のいずれかの前動翼において、前記連通路の前記内面が、前記流入通路部の前記ガスパス側内面に交わってつながっていてもよい。
 また、以上のいずれかの前記動翼において、前記翼通路には、前記翼厚さ方向であって前記流入通路部に近づく側に膨らんだ膨らみ部が形成され、前記連通路は、前記翼通路の前記膨らみ部に交わってつながっていてもよい。
 当該動翼では、翼通路に膨らみ部を形成することで、翼通路と流入通路部との間の翼厚さ方向における距離を短くすることができる。このため、当該動翼では、翼通路内の冷却空気がプラットフォーム通路に流入する過程での冷却空気の圧力損失をより抑えることができる。
 また、以上のいずれかの前記動翼において、前記プラットフォーム通路は、前記プラットフォーム内で蛇行している蛇行通路部を有してよい。
 当該動翼では、蛇行通路部を有するので、プラットフォーム通路に流入した冷却空気でプラットフォーム内の広い範囲にわって冷却することができる。
 また、以上のいずれかの前記動翼において、前記プラットフォームには、前記翼体の翼弦方向及び前記翼高さ方向に垂直な成分を有する幅方向に対して垂直な成分を有する方向に広がり、前記ガスパス面とつながる側端面が形成され、前記プラットフォーム通路は、前記側端面に沿って、前記翼弦方向成分を含む方向に延びる側端通路部を有してもよい。
 当該動翼では、プラットフォーム中の側端面近傍を冷却することができる。
 前記目的を達成するための発明に係る一態様としてのガスタービンは、
 以上のいずれかの複数の前記動翼と、複数の前記動翼が取り付けられているロータ軸と、複数の前記動翼、及び前記ロータ軸を覆う車室と、前記車室内で、複数の前記動翼が配置されている領域に燃焼ガスを送る燃焼器と、を備える。
 前記目的を達成するための発明に係る一態様としての動翼の製造方法は、
 燃焼ガスが流れる燃焼ガス流路内に配置され、翼形を成す翼体と、前記翼体の翼高さ方向の端部から前記翼高さ方向に対して垂直な成分を有する方向に広がるプラットフォームと、前記プラットフォームから前記翼体と反対側に延びる軸取付部と、を有する動翼の中間品を形成する中間品形成工程と、前記中間品の外面から前記中間品の内部に延びる連通路を形成する連通路形成工程と、前記連通路における前記中間品の外面での開口を塞ぐ封止工程と、を実行し、前記中間品形成工程では、前記翼体、前記プラットフォーム及び前記軸取付部の内部を前記翼高さ方向に延びて、冷却空気が流れる翼通路を形成し、前記プラットフォームに、前記翼高さ方向を向いて前記燃焼ガスに接するガスパス面と、前記ガスパス面と背合わせの関係にある軸側面と、前記ガスパス面と前記軸側面との間に形成され冷却空気が流れるプラットフォーム通路と、を形成し、前記プラットフォーム通路の一部として、前記翼通路近傍の位置から当該位置における翼厚さ方向成分を有する方向に延びる流入通路部を形成し、
 前記流入通路部を形成する際に、前記流入通路部を画定する内面の一部として、前記軸側面の側を向くガスパス側内面と、前記ガスパス側内面に対向する面として前記翼高さ方向成分よりも前記翼厚さ方向成分の多い方向に広がる軸側内面のみと、を形成し、前記連通路形成工程では、前記連通路として、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記流入通路部の前記軸側内面を経て、前記翼通路に貫通する貫通孔を形成する。
 当該製造方法では、連通路として、プラットフォーム通路における流入通路部の内面の一部である軸側内面を経て、翼通路に貫通する貫通孔を形成する。このため、当該製造方法では、背景技術の欄で説明した動翼のようにターンダウン延長部を形成してなくても、翼通路とプラットフォーム通路とを連通させることができる。よって、当該製造方法で製造された動翼では、ターンダウン延長部がない。このため、この動翼では、ターンダウン延長部を形成することによる動翼強度の低下を回避することができる。
 また、当該製造方法で製造された動翼では、ターンダウン延長部が形成されていないため、背景技術の欄で説明した動翼に比べて、翼通路からプラットフォーム通路に至る冷却空気の経路として、プラットフォーム通路に向う直線的な経路が形成される。このため、当該製造方法で形成された動翼では、翼通路内の冷却空気がプラットフォーム通路に流入する過程での冷却空気の圧力損失を小さくすることができる。さらに、当該製造方法で製造された動翼では、ターンダウン延長部が形成されていないため、冷却空気が連通路からプラットフォーム通路における流入通路部内に流入する過程で、流入通路部が延びる翼厚さ方向の速度成分が実質的に小さくなることがない。このため、当該製造方法で形成された動翼では、翼体近傍のガスパス面の冷却効果の低下を抑えることができる。
 ここで、前記製造方法において、前記中間品形成工程では、前記流入通路部を画定する内面の一部として、前記軸側内面における前記翼通路側の端から前記翼高さ方向成分を有する方向に広がって、前記ガスパス側内面における前記翼通路側の端につながる端内面を形成し、前記連通路形成工程では、前記連通路として、前記流入通路部の前記端内面を経て、前記翼通路に貫通する貫通孔を形成してもよい。
 また、以上のいずれかの前記製造方法において、前記連通路形成工程では、前記連通路として、前記流入通路部の前記軸側内面と前記端内面との角部を経て、前記翼通路に貫通する貫通孔を形成してもよい。
 また、以上のいずれかの前記製造方法において、前記連通路形成工程では、前記連通路として、前記流入通路部の前記ガスパス側内面を経て、前記翼通路に貫通する貫通孔を形成してもよい。
 また、以上のいずれかの前記製造方法において、前記連通路形成工程では、前記連通路として、前記流入通路部の前記ガスパス側内面と前記端内面との角部を経て、前記翼通路に貫通する貫通孔を形成してもよい。
 また、以上のいずれかの前記製造方法において、前記中間品形成工程は、前記動翼の外形状に合った内部空間が形成されている鋳型を形成する鋳型形成工程と、前記翼通路の形状にあった外形状の翼通路中子、及び、前記プラットフォーム通路の形状にあった外形状のプラットフォーム通路中子を形成する中子形成工程と、前記鋳型内に前記翼通路中子及び前記プラットフォーム通路中子を配置して、前記鋳型内に溶融金属を流し込む鋳込み工程と、前記溶融金属が硬化した後に、前記翼通路中子及び前記プラットフォーム通路中子を溶解させる中子溶解工程と、を含んでもよい。
 また、以上のいずれかの前記製造方法において、前記中間品形成工程では、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記流入通路部の前記軸側内面へ向けて凹む下穴を形成し、前記連通路形成工程では、前記中間品形成工程で形成された前記中間品の前記下穴の底面から、前記流入通路部の前記軸側内面を経て、前記翼通路に貫通する貫通孔を形成してもよい。
 当該製造方法では、連通路形成工程における、貫通孔を形成するための中間品に対する加工量を減らすことができる。また、当該製造方法では、中間品形成工程で形成した下穴をガイドとして、貫通孔を形成できるので、連通孔の貫通方向の正確性を高めることできる。
 前記中間品形成工程で前記下穴を形成する前記製造方法において、前記中子形成工程では、前記下穴の形状にあった外形状の下穴中子を形成し、前記鋳込み工程では、前記鋳型内に前記下穴中子を配置して、前記鋳型内に溶融金属を流し込み、前記中子溶解工程では、前記溶融金属が硬化した後に、前記下穴中子を溶解させてもよい。
 また、以上のいずれかの前記製造方法において、前記連通路形成工程では、放電加工又は電解加工で前記貫通孔を形成してもよい。
 本発明の一態様によれば、動翼の強度及び冷却効果の低下を抑えることができる。
本発明に係る一実施形態におけるガスタービンの模式的な断面図である。 本発明に係る一実施形態における動翼の斜視図である。 本発明に係る一実施形態における動翼のキャンバーラインに沿った面での断面を示す断面図である。 本発明に係る一実施形態におけるプラットフォームの翼高さ方向に垂直な面での断面を示す断面図である。 本発明に係る一実施形態における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る一実施形態における動翼の製造手順を示すフローチャートである。 本発明に係る一実施形態における動翼中間品の翼厚さ方向に広がる面での断面を示す要部断面図である。 比較例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る第一変形例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る第二変形例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る第三変形例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る第四変形例における動翼の翼厚さ方向に広がる面での断面を示す要部断面図である。 本発明に係る一変形例における動翼の製造過程で製造される動翼中間品の要部断面図である。 本発明に係る一変形例における動翼の製造過程で用いられる各種中子を示す説明図である。
 以下、本発明の実施形態及び各種変形例について、図面を参照して詳細に説明する。
 「実施形態」
 図1に示すように、本発明に係る一実施形態としてのガスタービン10は、空気Aを圧縮する圧縮機20と、圧縮機20で圧縮された空気A中で燃料Fを燃焼させて燃焼ガスGを生成する燃焼器30と、燃焼ガスGにより駆動するタービン40と、を備えている。
 圧縮機20は、軸線Arを中心として回転する圧縮機ロータ21と、圧縮機ロータ21を覆う圧縮機車室25と、複数の静翼列26と、を有する。タービン40は、軸線Arを中心として回転するタービンロータ41と、タービンロータ41を覆うタービン車室45と、複数の静翼列46と、を有する。
 圧縮機ロータ21とタービンロータ41とは、同一軸線Ar上に位置し、互いに接続されてガスタービンロータ11を成す。このガスタービンロータ11には、例えば、発電機GENのロータが接続されている。ガスタービン10は、さらに、圧縮機車室25とタービン車室45との間に配置されている中間車室14を備えている。燃焼器30は、この中間車室14に取り付けられている。圧縮機車室25と中間車室14とタービン車室45とは、互いに接続されてガスタービン車室15を成す。なお、以下では、軸線Arが延びる方向を軸方向Da、この軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。また、軸方向Daでタービン40を基準にして圧縮機20側を上流側Dau、その反対側を下流側Dadとする。また、径方向Drで軸線Arに近づく側を径方向内側Dri、その反対側を径方向外側Droとする。
 タービンロータ41は、軸線Arを中心として軸方向Daに延びるロータ軸42と、このロータ軸42に取り付けられている複数の動翼列43と、を有する。複数の動翼列43は、軸方向Daに並んでいる。各動翼列43は、いずれも、周方向Dcに並んでいる複数の動翼50で構成されている。複数の動翼列43の各上流側Dauには、静翼列46が配置されている。各静翼列46は、タービン車室45の内側に設けられている。各静翼列46は、いずれも、周方向Dcに並んでいる複数の静翼46aで構成されている。
 ロータ軸42の外周側とタービン車室45の内周側との間であって、軸方向Daで静翼46a及び動翼50が配置されている環状の空間は、燃焼器30からの燃焼ガスGが流れる燃焼ガス流路49を成す。この燃焼ガス流路49は、軸線Arを中心として環状を成し、軸方向Daに長い。
 動翼50は、図2に示すように、翼形を成す翼体51と、翼体51の翼高さ方向Dwhの端部に設けられているプラットフォーム60と、プラットフォーム60から翼体51と反対側に延びる軸取付部90と、を有する。なお、以下では、翼高さ方向Dwhで、プラットフォーム60を基準にして翼体51が存在する側を先端側Dwht、翼取付部90が存在する側を基端側Dwhsとする。この動翼50がロータ軸42に取り付けられた状態では、翼高さ方向Dwhが実質的に径方向Drと同じ方向になる。よって、この状態では、先端側Dwhtが径方向外側Droとなり、基端側Dwhsが径方向内側Driになる。また、この状態では、プラットフォーム60を基準にして、径方向外側Droに翼体51が存在し、径方向内側Driに軸取付部90が存在する。
 翼体51は、燃焼ガス流路49内に配置される。この翼体51には、凸状の面である背側面(負圧面)54と、凹状の面である腹側面(正圧面)55とが形成されている。背側面54と腹側面55とは、翼体51の前縁52と後縁53とでつながっている。動翼50がロータ軸42に取り付けられた状態では、前縁52は、後縁53に対して、軸方向Daの上流側Dauに位置する。また、この状態では、背側面54及び腹側面55は、いずれも周方向Dcの成分を有する方向を向いている。
 プラットフォーム60は、翼体51の翼高さ方向Dwhの端部から翼高さ方向Dwhに対して垂直な成分を有する方向に広がる板状の部材である。このプラットフォーム60には、ガスパス面61と、軸側面62と、一対の側端面63と、一対の前後端面64と、が形成されている。ガスパス面61は、翼高さ方向Dwhの先端側Dwhtを向き燃焼ガスGに接する。軸側面62は、ガスパス面61と背合わせの関係にあり基端側Dwhsを向く。一対の側端面63は、翼高さ方向Dwh及び翼弦方向Dwcに垂直な成分を有する幅方向Dwpで互いに相反する側を向く。一対の前後端面64は、翼弦方向Dwcで互いに相反する側を向く。なお、翼弦方向Dwcとは、翼弦Lcoと平行な方向である。動翼50がロータ軸42に取り付けられた状態では、軸方向Daの成分を含む方向が翼弦方向Dwcになり、周方向Dcの成分を含む方向が幅方向Dwpになる。
 プラットフォーム60のガスパス面61は、翼高さ方向Dwhに対して垂直な成分を有する方向に広がる面である。一対の側端面63は、いずれも、幅方向Dwpに対して垂直な成分を有する方向に広がり、ガスパス面61につながっている。また、一対の前後端面64は、いずれも、翼弦方向Dwcに対して垂直な成分を有する方向に広がり、ガスパス面61につながっている。一対の側端面63のうち、一方の側端面63は背側端面63nを成し、他方の側端面63は腹側端面63pを成す。また、一対の前後端面64のうち、一方の前後端面64は前端面64fを成し、他方の前後端面64は後端面64bを成す。
背側端面63nと腹側端面63pとは平行である。また、前端面64fと後端面64bとは平行である。このため、プラットフォーム60を翼高さ方向Dwhから見ると、平行四辺形を成している。動翼50がロータ軸42に取り付けられた状態では、前端面64f及び後端面64bは、軸方向Daに垂直な面になる。また、この状態では、前端面64fは、後端面64bに対して、軸方向Daの上流側Dauに位置する。なお、以下では、翼弦方向Dwcで後端面64bに対して前端面64fの側を翼弦前側Dwcfとし、翼弦前側Dwcfと反対側を翼弦後側Dwcbとする。また、幅方向Dwpで腹側端面63pに対し背側端面63nの側を単に背側Dpnとし、この背側Dpnと反対側を単に腹側Dppとする。
 軸取付部90は、プラットフォーム60から、翼高さ方向Dwhで翼体51と反対側に延びるシャンク91と、シャンク91から翼高さ方向Dwhで翼体51とは反対側に延びる翼根92と、を有する。翼根92は、翼弦Lcoに対して垂直な断面形状がクリスマスツリー形状を成している。この翼根92は、ロータ軸42(図1参照)の翼根溝(不図示)に嵌り込む。
 動翼50には、図2~図4に示すように、翼高さ方向Dwhに延びる複数の翼通路71が形成されている。各翼通路71は、いずれも、翼体51、プラットフォーム60、軸取付部90にかけて連なって形成されている。複数の翼通路71は、翼体51のキャンバーラインLca(図4参照)に沿って並んでいる。隣接する翼通路71は、翼高さ方向Dwhの端の部分で互いに連通している。また、複数の翼通路71のうち、少なくとも一の翼通路71は、翼根92の翼高さ方向Dwhの端で開口している。この翼通路71には、ロータ軸42に形成されている冷却空気通路からの冷却空気Acがこの開口から流入する。
 本実施形態の動翼50は、例えば、三つの翼通路71が形成されている。これらの三つの翼通路71のうち、最も翼弦前側Dwcfの翼通路71を第一翼通路71a、この第一翼通路71aの翼弦後側Dwcbに隣接する翼通路71を第二翼通路71b、この第二翼通路71bの翼弦後側Dwcbに隣接する翼通路71を第三翼通路71cとする。第三翼通路71cは、翼根92の翼高さ方向Dwhの端で開口している。第三翼通路71cと第二翼通路71bとは、翼高さ方向Dwhの先端側Dwhtの部分で連通している。また、第二翼通路71bと第一翼通路71aとは、翼高さ方向Dwhの基端側Dwhsの部分で連通している。翼通路71には、翼体51の外面で開口する複数の翼面噴出通路72が形成されている。例えば、第三翼通路71cには、この第三翼通路71cから翼弦後側Dwcbに延びて、翼体51の外面で開口する複数の翼面噴出通路72が形成されている。また、第一翼通路71aには、この第一翼通路71aからの翼弦前側Dwcfに延びて、翼体51の外面で開口する複数の翼面噴出通路72が形成されている。
 翼体51は、翼通路71内を冷却空気Acが流れる過程で対流冷却される。また、翼通路71に流入した冷却空気Acは、翼面噴出通路72に流入し、この翼面噴出通路72から燃焼ガス流路49内に流出する。このため、翼体51の前縁52及び後縁53等は、冷却空気Acが翼面噴出通路72を流れる過程で冷却される。さらに、翼面噴出通路72から燃焼ガス流路49に流出した冷却空気Acの一部は、翼体51の表面を部分的に覆ってフィルム空気としての役目も果たす。
 プラットフォーム60には、このプラットフォーム60内をガスパス面61に沿った方向に延びるプラットフォーム通路81が形成されている。プラットフォーム通路81としては、図4に示すように、翼体51を基準にして背側Dpnに形成されている背側プラットフォーム通路81nと、翼体51を基準にして腹側Dppに形成されている腹側プラットフォーム通路81pと、がある。
 背側プラットフォーム通路81nは、翼厚さ方向Dwt成分を有する方向に延びる流入通路部82nと、プラットフォーム60の背側端面63nに沿って延びる側端通路部83nと、を有する。流入通路部82nは、第一翼通路71aの内面のうちで背側Dpnの内面の近傍位置から、この位置での翼厚さ方向Dwt成分を有する方向に背側端面63nの近傍位置まで延びる。側端通路部83nは、流入通路部82nの背側Dpnの端から背側端面63nに沿って翼弦後側Dwcbに延び、プラットフォーム60の後端面64bで開口している。なお、翼厚さ方向Dwtとは、翼高さ方向Dwhに対して垂直で且つ翼弦方向Dwcに対して垂直な方向とする場合があるが、ここでは、翼高さ方向Dwhに対して垂直で且つキャンバーラインLcaに垂直な方向である。このキャンバーラインLcaは、一般的に湾曲した曲線である。このため、翼厚さ方向Dwtは、キャンバーラインLca上の位置に応じて変化する。
 腹側プラットフォーム通路81pは、翼厚さ方向Dwt成分を有する方向に延びる流入通路部82pと、プラットフォーム60内を蛇行する蛇行通路部83pと、を有する。流入通路部82pは、第一翼通路71aの内面のうちで腹側Dppの内面の近傍位置から、この位置での翼厚さ方向Dwt成分を有する方向に腹側端面63pの近傍位置まで延びる。蛇行通路部83pは、流入通路部82pの腹側Dppの端から幅方向Dwpに蛇行しつつ翼弦後側Dwcbに延び、プラットフォーム60の後端面64bで開口している。
 動翼50には、さらに、翼通路71とプラットフォーム通路81とを連通させる連通路75が形成されている。連通路75としては、第一翼通路71aと背側プラットフォーム通路81nとを連通させる背側連通路75nと、第一翼通路71aと腹側プラットフォーム通路81pとを連通させる腹側連通路75pとがある。
 図5に示すように、背側連通路75nは、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から背側プラットフォーム通路81nの流入通路部82nを経て第一翼通路71aにつながる。背側連通路75nは、前記角部を形成する面から、翼高さ方向Dwhに延びつつ翼厚さ方向Dwtで第一翼通路71aに近づく側に直線的に延びている。前記角部を形成する面における背側連通路75nの開口は、封止部材76で塞がれている。
 背側プラットフォーム通路81nを形成する内面は、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がって軸側面62の側を向くガスパス側内面87と、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がってガスパス側内面87に少なくとも一部が対向する軸側内面88と、を含む。背側プラットフォーム通路81nの流入通路部82nを形成する内面は、以上で説明したガスパス側内面87及び軸側内面88の他、軸側内面88における第一翼通路71a側の端から翼高さ方向Dwh成分を有する方向に広がって、ガスパス側内面87における第一翼通路71a側の端につながる端内面89を含む。
 背側連通路75nは、流入通路部82nの軸側内面88と端内面89との角部を経て、第一翼通路71aに貫通する貫通孔で形成されている。よって、この背側連通路75nの内面78は、流入通路部82nの軸側内面88及び端内面89に交わってつながっている。
 腹側連通路75pは、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から腹側プラットフォーム通路81pの流入通路部82pを経て第一翼通路71aにつながる。腹側連通路75pは、前記角部を形成する面から、翼高さ方向Dwhに延びつつ翼厚さ方向Dwtで第一翼通路71aに近づく側に直線的に延びている。前記角部を形成する面における腹側連通路75pの開口は、封止部材76で塞がれている。
 腹側プラットフォーム通路81pを形成する内面も、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がって軸側面62の側を向くガスパス側内面87と、翼高さ方向Dwh成分よりも翼厚さ方向Dwt成分の多い方向に広がってガスパス側内面87に少なくとも一部が対向する軸側内面88と、を含む。腹側プラットフォーム通路81pの流入通路部82pを形成する内面も、以上で説明したガスパス側内面87及び軸側内面88の他、軸側内面88における第一翼通路71a側の端から翼高さ方向Dwh成分を有する方向に広がって、ガスパス側内面87における第一翼通路71a側の端につながる端内面89を含む。
 腹側連通路75pは、流入通路部82pの軸側内面88と端内面89との角部を経て、第一翼通路71aに貫通する貫通孔で形成されている。よって、この腹側連通路75pの内面78は、流入通路部82pの軸側内面88及び端内面89に交わってつながっている。以上のように、背側連通路75nの構成と腹側連通路75pの構成とは、基本的に同じである。
 第一翼通路71aを流れる冷却空気Acの一部は、背側連通路75nを経て、背側プラットフォーム通路81nの流入通路部82n内に流入する。冷却空気Acは、この流入通路部82nを流れる過程で、この流入通路部82n近傍のプラットフォーム60を対流冷却する。このため、この流入通路部82n近傍のガスパス面61が冷却される。冷却空気Acは、流入通路部82nから側端通路部83n内に流入する。冷却空気Acは、この側端通路部83nを流れる過程で、この側端通路部83n近傍のプラットフォーム60を対流冷却する。このため、この側端通路部83n近傍のガスパス面61及び背側端面63nが冷却される。冷却空気Acは、プラットフォーム60の後端面64bに形成されている側端通路部83nの開口から外部に噴出する。このため、プラットフォーム60の後端面64bは、この冷却空気Acにより冷却される。
 第一翼通路71aを流れる冷却空気Acの他の一部は、腹側連通路75pを経て、腹側プラットフォーム通路81pの流入通路部82p内に流入する。冷却空気Acは、この流入通路部82pを流れる過程で、この流入通路部82p近傍のプラットフォーム60を対流冷却する。冷却空気Acは、流入通路部82pから蛇行通路部83p内に流入する。冷却空気Acは、この蛇行通路部83pを流れる過程で、この蛇行通路部83p近傍のプラットフォーム60を対流冷却する。冷却空気Acは、プラットフォーム60の後端面64bに形成されている蛇行通路部83pの開口から外部に噴出する。このため、プラットフォーム60の後端面64bは、この冷却空気Acにより冷却される。
 次に、以上で説明した動翼50の製造方法について、図6に示すフローチャートに従って説明する。
 まず、鋳造により動翼50の中間品を形成する(S1:中間品形成工程)。この中間品形成工程(S1)では、鋳型形成工程(S2)、中子形成工程(S3)、鋳込み工程(S4)、及び中子溶解工程(S5)を実行する。
 鋳型形成工程(S2)では、動翼50の外形状にあった内部空間が形成されている鋳型を形成する。この鋳型形成工程(S2)では、例えば、ロストワックス法で鋳型を形成する。ロストワックス法では、まず、動翼50の外形状を再現したワックス模型を形成する。次に、耐火粉末等を含むスラリー中にワックス模型を入れてから、このスラリーを乾燥させる。そして、乾燥後のスラリーからワックス模型を取り除いて、これを鋳型とする。
 中子形成工程(S3)では、翼通路71の形状にあった外形状の翼通路中子、及び、プラットフォーム通路81の形状にあった外形状のプラットフォーム通路中子を形成する。
翼通路中子及びプラットフォーム通路中子は、いずれも、アルミナ等のセラミックスで形成する。この中子形成工程(S3)は、鋳型形成工程(S2)と並行して実行してもよいし、鋳型形成工程(S2)に対して前後して実行してもよい。また、翼通路中子の形成とプラットフォーム通路中子の形成とを併行して実行してもよいし、異なるタイミングで実行してもよい。
 鋳込み工程(S4)では、鋳型内に翼通路中子及びプラットフォーム通路中子を配置して、鋳型内に溶融金属を流し込む。溶融金属は、例えば、耐熱性の高いニッケル基合金等の溶融物である。
 鋳型内に流し込んだ溶融金属が硬化すると、中子溶解工程(S5)を実行する。この中子溶解工程(S5)では、アルカリ水溶液でセラミックス製の翼通路中子及びプラットフォーム通路中子を溶解する。
 以上で、中間品形成工程(S1)が終了し、動翼50の中間品が出来上がる。図7に示すように、この中間品50xは、翼体51、プラットフォーム60と、軸取付部90を有している。この中間品50xには、翼通路71及びプラットフォーム通路81が形成されている。但し、この中間品50xには、連通路75が形成されていない。
 次に、中間品50xの外面から中間品50x内の翼通路71に延びる連通路75を形成する(S6:連通路形成工程)。この連通路形成工程(S6)では、電解加工又は放電加工等で、図7に示すように、中間品50xに連通路75としての貫通孔を形成する。この貫通孔は、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から、プラットフォーム通路81の流入通路部82を経て第一翼通路71aに抜ける直線的な孔である。このため、この連通路75の内面78は、前述したように、流入通路部82の軸側内面88及び端内面89に交わってつながっている。なお、連通路形成工程(S6)では、まず、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から、プラットフォーム通路81の流入通路部82の軸側内面88に貫通する貫通孔を形成する。その後、流入通路部82を形成する内面から第一翼通路71aに貫通する貫通孔を形成することで、連通路75としての貫通孔を形成する。
 ところで、翼通路71、プラットフォーム通路81及び連通路75が形成されている中間品を鋳造で形成することは可能である。この場合、翼通路中子、プラットフォーム通路中子、及び連通路中子を一体にした中子を準備し、この中子を鋳型内に配置して、中間品を形成することになる。翼通路71は、翼高さ方向Dwhに広がった平面に沿って形成される通路である。また、プラットフォーム通路81は、翼高さ方向Dwhに対して垂直な方向に広がった平面に沿って形成される通路である。このため、翼通路中子は、翼高さ方向Dwhに広がった平面に沿った形状を成し、プラットフォーム通路中子は、翼高さ方向Dwhに対して垂直な方向に広がった平面に沿った形状を成す。従って、仮に、前述の一体中子を形成した場合、この一体中子を不用意に扱うと、翼通路71とプラットフォーム通路81とを連通させる連通路75を形成する連通路中子が破損する可能性が極めて高い。
 このため、本実施形態では、翼通路71及びプラットフォーム通路81が形成されている中間品50xを形成した後、この中間品50xに機械加工等で連通路75を形成する。
 次に、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面における連通路75の開口を封止部材76で塞ぐ(S7:封止工程)。この封止工程(S7)では、封止部材76を連通路75の開口から連通路75内に入れて、この封止部材76を中間品の外面から中間品に溶接する。
 次に、連通路75が形成された中間品に対して仕上げ処理を施して、動翼50を完成させる(S8:仕上工程)。仕上工程(S8)では、例えば、中間品の外面を研磨する。また、必要に応じて、中間品の外面に耐熱コーティングを施す。
 次に、本実施形態の動翼50の効果について説明する。まず、比較例の動翼50zについて説明する。
 比較例の動翼50zも、図8に示すように、翼体51とプラットフォーム60と軸取付部90とを有する。翼体51、プラットフォーム60及び軸取付部90には、内部を翼高さ方向Dwhに延びて、冷却空気Acが流れる翼通路71が形成されている。プラットフォーム60には、翼高さ方向Dwhを向いて燃焼ガスに接するガスパス面61と、ガスパス面61と背合わせの関係にある軸側面62と、が形成されている。さらに、このプラットフォーム60には、ガスパス面61と軸側面62との間を翼厚さ方向Dwtに延びて冷却空気Acが流れるプラットフォーム通路81zと、プラットフォーム通路81zの翼通路71側の端からガスパス面61から遠ざかる側に延びるターンダウン延長部89zと、が形成されている。プラットフォーム60及び軸取付部90には、プラットフォーム60の軸側面62と軸取付部90の外面93との角部における外面から、ターンダウン延長部89zを経て翼通路71につながる連通路75zが形成されている。この連通路75zにおける前記角部の外面での開口は、プラグ76z等で塞がれている。
 この比較例の動翼50zも、基本的に、鋳造で製造される。翼通路71、プラットフォーム通路81z及びターンダウン延長部89zは、鋳造過程で、それぞれの形状にあった外形状の中子を用いて形成される。鋳造により形成された動翼50zの中間品では、プラットフォーム通路81zとターンダウン延長部89zとはつながっているものの、ターンダウン延長部89zと翼通路71はつながっていない。連通路75zは、この中間品が形成された後に形成される。具体的に、中間品における前記角度の外面から、ターンダウン延長部89zを経て、翼通路71にぬける貫通孔を機械加工で形成する。この貫通孔は、前記角部を形成する面から、翼高さ方向Dwhに延びつつ翼厚さ方向Dwtで翼通路71に近づく側に直線的に延びている。すなわち、この貫通孔は、翼高さ方向Dwh及び翼厚さ方向Dwtに対して傾斜した孔である。この貫通孔、つまり連通路75zは、ターンダウン延長部89zをガスパス面61側と軸側面62とに二分する。また、この貫通孔は、ターンダウン延長部89zを形成する内面のうち、翼高さ方向Dwh方向に広がり且つ翼厚さ方向Dwtで互いに対向する一対の内面を貫通する。
 この比較例の動翼50zでは、翼通路71とプラットフォーム通路81zとを連通させるために、連通路75zの他に、ターンダウン延長部89zを形成している。このため、比較例の動翼50zでは、ターンダウン延長部89zの存在により、軸取付部90とプラットフォーム60とのつなぎ目付近の強度が低下する。
 この比較例の動翼50zでは、翼通路71内を基端側Dwhsから先端側Dwhtに流れる冷却空気Acが、連通路75z内に流入した際、先端側Dwhtから基端側Dwhsに向かう流れに変わる。冷却空気Acは、連通路75zからターンダウン延長部89z内に流入すると、このターンダウン延長部89z内を基端側Dwhsから先端側Dwhtに流れる。冷却空気Acは、ターンダウン延長部89zからプラットフォーム通路81z内に流入すると、このプラットフォーム通路81z内を翼厚さ方向Dwtに流れる。よって、この比較例の動翼50zでは、翼通路71内の冷却空気Acがプラットフォーム通路81zに流入する過程で、この冷却空気Acが翼高さ方向Dwhに蛇行して流れる。このため、この比較例の動翼50zでは、翼通路71内の冷却空気Acがプラットフォーム通路81zに流入する過程での冷却空気Acの圧力損失が大きくなる。
 また、この比較例の動翼50zでは、冷却空気Acがターンダウン延長部89zからプラットフォーム通路81zに流入する過程で、冷却空気Acの翼厚さ方向Dwtの速度成分が小さくなるため、ターンダウン延長部89z寄りのプラットフォーム通路81zを流れる冷却空気Acによる対流冷却効果が小さくなる。よって、比較例の動翼50zでは、ターンダウン延長部89z近傍のガスパス面61、つまり翼体51近傍のガスパス面61の冷却効果が低下する。
 一方、本実施形態の動翼50では、図5に示すように、連通路75の内面78をプラットフォーム通路81の内面の一部である軸側内面88につなげたことにより、比較例のようにターンダウン延長部89zを形成してなくても、翼通路71とプラットフォーム通路81とを連通させることができる。このため、本実施形態の動翼50では、ターンダウン延長部89zがない。よって、本実施形態の動翼50では、ターンダウン延長部89zを形成することによる動翼強度の低下を回避することができる。
 また、本実施形態の動翼50では、ターンダウン延長部89zが形成されていないため、比較例の動翼50zに比べて、翼通路71からプラットフォーム通路81に至る冷却空気Acの経路として、プラットフォーム通路81に向う直線的な経路が形成される。このため、本実施形態の動翼50では、翼通路71内の冷却空気Acがプラットフォーム通路81に流入する過程での冷却空気Acの圧力損失を小さくすることができる。
 さらに、本実施形態の動翼50では、ターンダウン延長部89zが形成されていないため、連通路75からの冷却空気Acは、プラットフォーム通路81が延びる翼厚さ方向Dwtの速度成分が小さくなることなく、このプラットフォーム通路81内を流れる。このため、本実施形態の動翼50では、翼体51近傍のガスパス面61の冷却効果の低下を抑えることができる。
 特に、本実施形態では、連通路75を成す貫通孔がプラットフォーム通路81における流入通路部82の軸側内面88のみならず、翼通路71の内面と対向する端内面89を貫通しているので、翼通路71からプラットフォーム通路81に至る冷却空気Acの経路として、プラットフォーム通路81に向うより直線的な経路が形成される。従って、本実施形態では、冷却空気Acの圧力損失をより小さくできる上に、翼体51近傍のガスパス面61の冷却効果の低下をより抑えることができる。さらに、本実施形態では、より直線的な経路が形成されるため、ボアスコープ等の点検機器を用いたプラットフォーム通路内の点検が容易になる。
 なお、本実施形態における連通路75は、第一翼通路71aとプラットフォーム通路81とを連通させるものである。しかしながら、連通路75は、第一翼通路71aを除く他の翼通路71とプラットフォーム通路81とを連通させるものであってもよい。例えば、連通路75は、第二翼通路71bまたは第三翼通路71cと、プラットフォーム通路81とを連通させるものであってもよい。
 また、一のプラットフォーム通路81と翼通路71とを連通させる連通路の数は一つに限定されず、複数であってもよい。この場合、例えば、本実施形態の背側連通路75nに加え、プラットフォーム通路81の一部である側端通路部83nと第三翼通路71cとを連通させる背側連通路を設けてもよい。また、プラットフォーム通路81における翼通路71との連通位置は、設計条件等に応じて適宜選択することができる。例えば、蛇行通路部83pの途中に連通位置を設けてもよい。
 「動翼の第一変形例」
 上記実施形態における動翼の第一変形例について、図9を参照して説明する。
 本変形例の動翼50bでは、上記実施形態と同様に、連通路75bを成す貫通孔がプラットフォーム通路81における流入通路部82の軸側内面88、及び翼通路71の内面と対向する端内面89を貫通している。従って、本変形例の連通路75bの内面78も、以上の各実施形態の連通路と同様、流入通路部82の軸側内面88及び端内面89に交わってつながっている。但し、本変形例の貫通孔は、以上の実施形態の貫通孔と異なり、流入通路部82の軸側内面88と端内面89との角部を貫通していない。さらに、本実施形態の貫通孔は、流入通路部82のガスパス側内面87と端内面89との角部も貫通していない。
 このように、貫通孔は、流入通路部82の軸側内面88を貫通していれば、軸側内面88と端内面89との角部、及びのガスパス側内面87と端内面89との角部を貫通していなくてもよい。
 また、本変形例の連通路75bを形成する貫通孔は、プラットフォーム60の軸側面62のみから翼通路71に貫通している。従って、本変形例の貫通孔は、上記実施形態の貫通孔と異なり、この軸側面62及び軸取付部90の外面93を跨いて翼通路71に貫通していない。このように、貫通孔は、プラットフォーム60の軸側面62のみから翼通路71に貫通してもよい。また、貫通孔は、軸取付部90の外面93のみから翼通路71に貫通してもよい。
 「動翼の第二変形例」
 上記実施形態における動翼の第二変形例について、図10を参照して説明する。
 本変形例の動翼50cでは、上記実施形態と同様に、連通路75cを成す貫通孔がプラットフォーム通路81における流入通路部82の軸側内面88、及び翼通路71の内面と対向する端内面89を貫通している。従って、本変形例の連通路75cの内面78も、以上の各実施形態の連通路と同様、流入通路部82の軸側内面88及び端内面89に交わってつながっている。但し、本変形例の貫通孔は、以上の実施形態の貫通孔と異なり、流入通路部82の軸側内面88と端内面89との角部を貫通していると共に、流入通路部82のガスパス側内面87と端内面89との角部も貫通している。このため、本変形例の連通路75cの内面78は、流入通路部82のガスパス側内面87とも交わってつながっている。
 よって、本変形例では、翼通路71内の冷却空気Acがプラットフォーム通路81に流入する通路がより直線的になる上に、この通路の断面積が大きくなる。このため、本変形例の動翼50cでは、翼通路71内の冷却空気Acがプラットフォーム通路81に流入する過程での冷却空気Acの圧力損失をより抑えることができる。
 「動翼の第三変形例」
 上記実施形態における動翼の第三変形例について、図11を参照して説明する。
 本変形例の動翼50dでは、上記実施形態と同様に、連通路75dを成す貫通孔がプラットフォーム通路81における流入通路部82の軸側内面88、及び翼通路71の内面と対向する端内面89を貫通している。従って、本変形例の連通路75dの内面78も、以上の各実施形態の連通路と同様、流入通路部82の軸側内面88及び端内面89に交わってつながっている。但し、本変形例の貫通孔は、上記実施形態の貫通孔と異なり、流入通路部82の軸側内面88と端内面89との角部を貫通せず、流入通路部82のガスパス側内面87と端内面89との角部を貫通している。このため、本変形例の連通路75dの内面78は、流入通路部82のガスパス側内面87とも交わってつながっている。
 このように、連通路75dを形成する貫通孔は、流入通路部82のガスパス側内面87を貫通してもよい。
 「動翼の第四変形例」
 上記実施形態における動翼の第四変形例について、図12を参照して説明する。
 本変形例の動翼50eにおける連通路75eを形成する貫通孔は、上記実施形態と同様である。すなわち、貫通孔は、プラットフォーム60の軸側面62と軸取付部90の外面93との角部から、流入通路部82における軸側内面88と端内面89との角部を経て、翼通路71に貫通している。但し、本変形例では、プラットフォーム60内における翼通路71には、翼厚さ方向Dwtであって流入通路部82に近づく側に膨らんだ膨らみ部77が形成されている。本変形例の貫通孔は、この膨らみ部77を含む領域を貫通している。
 このように、翼通路71に膨らみ部77を形成することで、翼通路71と流入通路部82との間の翼厚さ方向Dwtにおける距離を短くすることができる。このため、翼通路71内の冷却空気Acがプラットフォーム通路81に流入する過程での冷却空気Acの圧力損失をより抑えることができる。
 なお、本変形例は、上記実施形態における動翼の変形例であるが、第一~第三変形例の動翼を本変形例と同様に変形してもよい。
 「動翼の製造方法の変形例」
 上記実施形態における動翼の製造方法の変形例について、図13及び図14を参照して説明する。
 本変形例では、図6に示す中間品形成工程(S1)で連通孔75の一部を形成する。具体的に、この中間品形成工程(S1)では、図13に示すように、プラットフォーム60の軸側面62と軸取付部90の外面93との角部を形成する面から、プラットフォーム通路81の流入通路部82と第一翼通路71aとに向かって凹む下穴79を形成する。
 中間品形成工程(S1)では、この下穴79を形成するため、中間品形成工程(S1)中の中子形成工程(S3)で、図14に示すように、下穴79の形状に合った外形状の下穴中子103を形成する。この下穴中子103は、翼通路中子101及びプラットフォーム通路中子102と同様に、アルミナ等のセラミックスで形成する。次に、中間品形成工程(S1)中の鋳込み工程(S4)で、鋳型100内に、翼通路中子101及びプラットフォーム通路中子102と共に、下穴中子103を配置して、この鋳型100内に溶融金属を流し込む。鋳型100内に流し込んだ溶融金属が硬化すると、中子溶解工程(S5)で、アルカリ水溶液でセラミックス製の翼通路中子101、プラットフォーム通路中子102及び下穴中子103を溶解する。
 以上で、本変形例における中間品形成工程(S1)が終了し、図13に示す中間品50yが出来上がる。この中間品50yは、翼体51、プラットフォーム60と、軸取付部90を有している。この中間品50yには、翼通路71、プラットフォーム通路81、及び連通孔75の一部を成す下穴79が形成されている。
 本変形例における連通路形成工程(S6)では、下穴79の底面80から、流入通路部82の軸側内面88を経て、翼通路71に貫通する貫通孔を電解加工又は放電加工等で形成する。本変形例では、中間品形成工程(S1)で形成する下穴79と、連通路形成工程で電解加工又は放電加工等で形成する貫通孔とで、図5に示す連通孔75が形成される。
 連通路形成工程(S6)が終了すると、上記実施形態と同様に、封止工程(S7)及び仕上工程(S8)を経て、動翼を完成させる。
 本変形例では、連通路形成工程(S6)における、貫通孔を形成するための電解加工又は放電加工等による加工量を減らすことができる。また、本変形例では、中間品形成工程(S1)で形成した下穴79をガイドとして、電解加工又は放電加工を行うことができるので、連通孔75の貫通方向の正確性を高めることできる。
 なお、本変形例は、上記実施形態における動翼の製造方法の変形例であるが、第一~第四変形例の動翼も、本変形例と同様に製造してもよい。
 「その他の変形例」
 上記実施形態及び各変形例において、流入通路部82及び連通路75を形成する貫通孔の断面形状について特に記載していないが、この断面形状は、特に限定されず、例えば、円形、半円形、楕円形、半楕円形、長円形、半長円形、四角形等の多角形、若しくはこれらのうちの二つ以上の形状を組み合わせた形状でもよい。
 上記実施形態及び各変形例における連通路は、いずれも直線的である。しかしながら、連通路は、多少曲がっていてもよい。
 上記実施形態及び各変形例におけるプラットフォーム通路の流入通路部は、翼厚さ方向に延びている。このため、上記実施形態及び各変形例における流入通路部のガスパス側内面及び軸側内面は、いずれも翼面厚さ方向に広がっている。しかしながら、流入通路は、翼高さ方向成分よりも翼厚さ成分の多い方向に延びていればよい。このため、流入通路部のガスパス側内面及び軸側内面は、翼高さ方向成分よりも翼厚さ成分の多い方向に広がっていればよい。
 本発明の一態様によれば、動翼の強度及び冷却効果の低下を抑えることができる。
10:ガスタービン
11:ガスタービンロータ
15:ガスタービン車室
20:圧縮機
21:圧縮機ロータ
25:圧縮機車室
30:燃焼器
40:タービン
41:タービンロータ
42:ロータ軸
43:動翼列
45:タービン車室
46:静翼列
46a:静翼
49:燃焼ガス流路
50,50a,50b,50c,50d,50e,50z:動翼
50x:中間品
51,51a:翼体
52:前縁
53:後縁
54:背側面
55:腹側面
60,60a:プラットフォーム
61:ガスパス面
62:軸側面
63:側端面
63n:背側端面
63p:腹側端面
64:前後端面
64f:前端面
64b:後端面
71:翼通路
71a:第一翼通路
71b:第二翼通路
71c:第三翼通路
75,75a,75b,75c,75d,75e,75z:連通路
75n:背側連通路
75p:腹側連通路
76:封止部材
77:膨らみ部
78:(連通路の)内面
79:下穴
81,81a,81z:プラットフォーム通路
82,82n,82p:流入通路
83n:側端通路部
83p:蛇行通路部
88:軸側内面
90,90a:軸取付部
91:シャンク
92:翼根
100:鋳型
101:翼通路中子
102:プラットフォーム通路中子
103:下穴中子
Ac:冷却空気
G:燃焼ガス
Da:軸方向
Dau:上流側
Dad:下流側
Dc:周方向
Dr:径方向
Dri:径方向内側
Dro:径方向外側
Dwc:翼弦方向
Dwf:翼弦前側
Dwb:翼弦後側
Dwh:翼高さ方向
Dwhs:基端側
Dwht:先端側
Dwp:幅方向
Dpn:背側
Dpp:腹側
Dwt:翼厚さ方向
Lca:キャンバーライン
Lco:翼弦

Claims (16)

  1.  燃焼ガスが流れる燃焼ガス流路内に配置され、翼形を成す翼体と、
     前記翼体の翼高さ方向の端部から前記翼高さ方向に対して垂直な成分を有する方向に広がるプラットフォームと、
     前記プラットフォームから前記翼体と反対側に延びる軸取付部と、
     を有し、
     前記翼体、前記プラットフォーム及び前記軸取付部には、前記翼体、前記プラットフォーム及び前記軸取付部の内部を前記翼高さ方向に延びて、冷却空気が流れる翼通路が形成され、
     前記プラットフォームには、前記翼高さ方向を向いて前記燃焼ガスに接するガスパス面と、前記ガスパス面と背合わせの関係にある軸側面と、前記ガスパス面と前記軸側面との間に形成され冷却空気が流れるプラットフォーム通路と、が形成され、
     前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記プラットフォーム通路を経て前記翼通路につながる連通路が形成され、
     前記連通路における前記少なくとも一方の面での開口が封止部材で塞がれ、
     前記プラットフォーム通路は、前記翼通路近傍の位置から当該位置における翼厚さ方向成分を有する方向に延びる流入通路部を有し、
     前記流入通路部を画定する内面は、前記軸側面の側を向くガスパス側内面と、前記ガスパス側内面に対向する面として前記翼高さ方向成分よりも前記翼厚さ方向成分の多い方向に広がっている軸側内面のみと、を含み、
     前記連通路を画定する内面が、前記流入通路部の前記軸側内面に交わってつながっている、
     動翼。
  2.  請求項1に記載の動翼において、
     前記流入通路部の前記内面は、前記軸側内面における前記翼通路側の端から前記翼高さ方向成分を有する方向に広がって、前記ガスパス側内面における前記翼通路側の端につながる端内面を含み、
     前記連通路の前記内面が、前記流入通路部の前記端内面に交わってつながっている、
     動翼。
  3.  請求項1又は2に記載の動翼において、
     前記連通路の前記内面が、前記流入通路部の前記ガスパス側内面に交わってつながっている、
     動翼。
  4.  請求項1から3のいずれか一項に記載の動翼において、
     前記翼通路には、前記翼厚さ方向であって前記流入通路部に近づく側に膨らんだ膨らみ部が形成され、
     前記連通路は、前記翼通路の前記膨らみ部に交わってつながっている、
     動翼。
  5.  請求項1から4のいずれか一項に記載の動翼において、
     前記プラットフォーム通路は、前記プラットフォーム内で蛇行している蛇行通路部を有する、
     動翼。
  6.  請求項1から5のいずれか一項に記載の動翼において、
     前記プラットフォームには、前記翼体の翼弦方向及び前記翼高さ方向に垂直な成分を有する幅方向に対して垂直な成分を有する方向に広がり、前記ガスパス面とつながる側端面が形成され、
     前記プラットフォーム通路は、前記側端面に沿って、前記翼弦方向成分を含む方向に延びる側端通路部を有する、
     動翼。
  7.  請求項1から6のいずれか一項に記載の複数の動翼と、
     複数の前記動翼が取り付けられているロータ軸と、
     複数の前記動翼、及び前記ロータ軸を覆う車室と、
     前記車室内で、複数の前記動翼が配置されている領域に燃焼ガスを送る燃焼器と、
     を備えるガスタービン。
  8.  燃焼ガスが流れる燃焼ガス流路内に配置され、翼形を成す翼体と、前記翼体の翼高さ方向の端部から前記翼高さ方向に対して垂直な成分を有する方向に広がるプラットフォームと、前記プラットフォームから前記翼体と反対側に延びる軸取付部と、を有する動翼の中間品を形成する中間品形成工程と、
     前記中間品の外面から前記中間品の内部に延びる連通路を形成する連通路形成工程と、
     前記連通路における前記中間品の外面での開口を塞ぐ封止工程と、
     を実行し、
     前記中間品形成工程では、
     前記翼体、前記プラットフォーム及び前記軸取付部の内部を前記翼高さ方向に延びて、冷却空気が流れる翼通路を形成し、
     前記プラットフォームに、前記翼高さ方向を向いて前記燃焼ガスに接するガスパス面と、前記ガスパス面と背合わせの関係にある軸側面と、前記ガスパス面と前記軸側面との間に形成され冷却空気が流れるプラットフォーム通路と、を形成し、
     前記プラットフォーム通路の一部として、前記翼通路近傍の位置から当該位置における翼厚さ方向成分を有する方向に延びる流入通路部を形成し、
     前記流入通路部を形成する際に、前記流入通路部を画定する内面の一部として、前記軸側面の側を向くガスパス側内面と、前記ガスパス側内面に対向する面として前記翼高さ方向成分よりも前記翼厚さ方向成分の多い方向に広がる軸側内面のみと、を形成し、
     前記連通路形成工程では、
     前記連通路として、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記流入通路部の前記軸側内面を経て、前記翼通路に貫通する貫通孔を形成する、
     動翼の製造方法。
  9.  請求項8に記載の動翼の製造方法において、
     前記中間品形成工程では、前記流入通路部を画定する内面の一部として、前記軸側内面における前記翼通路側の端から前記翼高さ方向成分を有する方向に広がって、前記ガスパス側内面における前記翼通路側の端につながる端内面を形成し、
     前記連通路形成工程では、前記連通路として、前記流入通路部の前記端内面を経て、前記翼通路に貫通する貫通孔を形成する、
     動翼の製造方法。
  10.  請求項8又は9に記載の動翼の製造方法において、
     前記連通路形成工程では、前記連通路として、前記流入通路部の前記軸側内面と前記端内面との角部を経て、前記翼通路に貫通する貫通孔を形成する、
     動翼の製造方法。
  11.  請求項8から10のいずれか一項に記載の動翼の製造方法において、
     前記連通路形成工程では、前記連通路として、前記流入通路部の前記ガスパス側内面を経て、前記翼通路に貫通する貫通孔を形成する、
     動翼の製造方法。
  12.  請求項8から11のいずれか一項に記載の動翼の製造方法において、
     前記連通路形成工程では、前記連通路として、前記流入通路部の前記ガスパス側内面と前記端内面との角部を経て、前記翼通路に貫通する貫通孔を形成する、
     動翼の製造方法。
  13.  請求項8から12のいずれか一項に記載の動翼の製造方法において、
     前記中間品形成工程は、
     前記動翼の外形状に合った内部空間が形成されている鋳型を形成する鋳型形成工程と、
     前記翼通路の形状にあった外形状の翼通路中子、及び、前記プラットフォーム通路の形状にあった外形状のプラットフォーム通路中子を形成する中子形成工程と、
     前記鋳型内に前記翼通路中子及び前記プラットフォーム通路中子を配置して、前記鋳型内に溶融金属を流し込む鋳込み工程と、
     前記溶融金属が硬化した後に、前記翼通路中子及び前記プラットフォーム通路中子を溶解させる中子溶解工程と、
     を含む、
     動翼の製造方法。
  14.  請求項8から13のいずれか一項に記載の動翼の製造方法において、
     前記中間品形成工程では、前記プラットフォームの前記軸側面と前記軸取付部の外面とのうち、少なくとも一方の面から、前記流入通路部の前記軸側内面へ向けて凹む下穴を形成し、
     前記連通路形成工程では、前記中間品形成工程で形成された前記中間品の前記下穴の底面から、前記流入通路部の前記軸側内面を経て、前記翼通路に貫通する貫通孔を形成する、
     動翼の製造方法。
  15.  請求項14に記載の動翼の製造方法において、
     前記中子形成工程では、前記下穴の形状にあった外形状の下穴中子を形成し、
     前記鋳込み工程では、前記鋳型内に前記下穴中子を配置して、前記鋳型内に溶融金属を流し込み、
     前記中子溶解工程では、前記溶融金属が硬化した後に、前記下穴中子を溶解させる、
     動翼の製造方法。
  16.  請求項8から15のいずれか一項に記載の動翼の製造方法において、
     前記連通路形成工程では、放電加工又は電解加工で前記貫通孔を形成する、
     動翼の製造方法。
PCT/JP2016/076496 2015-09-15 2016-09-08 動翼、これを備えているガスタービン、及び動翼の製造方法 WO2017047502A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187005726A KR102018011B1 (ko) 2015-09-15 2016-09-08 동익, 이것을 구비하고 있는 가스 터빈, 및 동익의 제조 방법
US15/743,909 US10376950B2 (en) 2015-09-15 2016-09-08 Blade, gas turbine including the same, and blade manufacturing method
EP16846373.5A EP3351728B1 (en) 2015-09-15 2016-09-08 Rotor blade and rotor blade manufacturing method
CN201680050376.0A CN107923250B (zh) 2015-09-15 2016-09-08 动叶、具备该动叶的燃气涡轮以及动叶的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015181691A JP5905631B1 (ja) 2015-09-15 2015-09-15 動翼、これを備えているガスタービン、及び動翼の製造方法
JP2015-181691 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017047502A1 true WO2017047502A1 (ja) 2017-03-23

Family

ID=55755950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076496 WO2017047502A1 (ja) 2015-09-15 2016-09-08 動翼、これを備えているガスタービン、及び動翼の製造方法

Country Status (7)

Country Link
US (1) US10376950B2 (ja)
EP (1) EP3351728B1 (ja)
JP (1) JP5905631B1 (ja)
KR (1) KR102018011B1 (ja)
CN (1) CN107923250B (ja)
TW (1) TWI641752B (ja)
WO (1) WO2017047502A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352182B2 (en) * 2016-05-20 2019-07-16 United Technologies Corporation Internal cooling of stator vanes
US10890074B2 (en) * 2018-05-01 2021-01-12 Raytheon Technologies Corporation Coriolis optimized u-channel with platform core
JP7406920B2 (ja) 2019-03-20 2023-12-28 三菱重工業株式会社 タービン翼およびガスタービン
JP6939976B1 (ja) * 2020-05-27 2021-09-22 王子ホールディングス株式会社 ヒートシール紙、包装袋
US11506061B2 (en) * 2020-08-14 2022-11-22 Mechanical Dynamics & Analysis Llc Ram air turbine blade platform cooling
JP7205654B2 (ja) * 2021-05-21 2023-01-17 王子ホールディングス株式会社 ヒートシール紙、包装袋
GB202213805D0 (en) * 2022-09-22 2022-11-09 Rolls Royce Plc Platform for stator vane
GB202213804D0 (en) * 2022-09-22 2022-11-09 Rolls Royce Plc Platform for stator vane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505195A (ja) * 1992-11-24 1996-06-04 ユナイテッド テクノロジーズ コーポレイション 一体式プラットホームおよびフィレット冷却通路を有するロータブレード
JP2008202547A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd ガスタービン動翼のプラットフォーム冷却構造
JP2012132438A (ja) * 2010-12-20 2012-07-12 General Electric Co <Ge> タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
JP2014223620A (ja) * 2013-05-15 2014-12-04 ゼネラル・エレクトリック・カンパニイ コーティングプロセス及びコーティング製品
JP2015123497A (ja) * 2013-12-27 2015-07-06 三菱重工業株式会社 鋳造部品の製造方法及び鋳造部品を製造するための中子

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887033B1 (en) * 2003-11-10 2005-05-03 General Electric Company Cooling system for nozzle segment platform edges
DE102004002327A1 (de) * 2004-01-16 2005-08-04 Alstom Technology Ltd Gekühlte Schaufel für eine Gasturbine
DE102004037331A1 (de) * 2004-07-28 2006-03-23 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenrotor
US7131817B2 (en) * 2004-07-30 2006-11-07 General Electric Company Method and apparatus for cooling gas turbine engine rotor blades
US20060269409A1 (en) * 2005-05-27 2006-11-30 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade having a platform, a method of forming the moving blade, a sealing plate, and a gas turbine having these elements
US7244101B2 (en) * 2005-10-04 2007-07-17 General Electric Company Dust resistant platform blade
US20070181278A1 (en) 2006-02-09 2007-08-09 Bancheri Stephen F Method of removal of cores from niobium-based part
US7416391B2 (en) * 2006-02-24 2008-08-26 General Electric Company Bucket platform cooling circuit and method
US7927073B2 (en) * 2007-01-04 2011-04-19 Siemens Energy, Inc. Advanced cooling method for combustion turbine airfoil fillets
US8096767B1 (en) * 2009-02-04 2012-01-17 Florida Turbine Technologies, Inc. Turbine blade with serpentine cooling circuit formed within the tip shroud
US8356978B2 (en) * 2009-11-23 2013-01-22 United Technologies Corporation Turbine airfoil platform cooling core
WO2011108164A1 (ja) * 2010-03-03 2011-09-09 三菱重工業株式会社 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン
US8444381B2 (en) * 2010-03-26 2013-05-21 General Electric Company Gas turbine bucket with serpentine cooled platform and related method
US8851846B2 (en) 2010-09-30 2014-10-07 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8794921B2 (en) * 2010-09-30 2014-08-05 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8814518B2 (en) * 2010-10-29 2014-08-26 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8905714B2 (en) 2011-12-30 2014-12-09 General Electric Company Turbine rotor blade platform cooling
US20140064984A1 (en) 2012-08-31 2014-03-06 General Electric Company Cooling arrangement for platform region of turbine rotor blade
US10001013B2 (en) * 2014-03-06 2018-06-19 General Electric Company Turbine rotor blades with platform cooling arrangements
US10280762B2 (en) * 2015-11-19 2019-05-07 United Technologies Corporation Multi-chamber platform cooling structures
US10683763B2 (en) * 2016-10-04 2020-06-16 Honeywell International Inc. Turbine blade with integral flow meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505195A (ja) * 1992-11-24 1996-06-04 ユナイテッド テクノロジーズ コーポレイション 一体式プラットホームおよびフィレット冷却通路を有するロータブレード
JP2008202547A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd ガスタービン動翼のプラットフォーム冷却構造
JP2012132438A (ja) * 2010-12-20 2012-07-12 General Electric Co <Ge> タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
JP2014223620A (ja) * 2013-05-15 2014-12-04 ゼネラル・エレクトリック・カンパニイ コーティングプロセス及びコーティング製品
JP2015123497A (ja) * 2013-12-27 2015-07-06 三菱重工業株式会社 鋳造部品の製造方法及び鋳造部品を製造するための中子

Also Published As

Publication number Publication date
EP3351728A4 (en) 2019-06-12
EP3351728B1 (en) 2021-06-02
US10376950B2 (en) 2019-08-13
JP5905631B1 (ja) 2016-04-20
EP3351728A1 (en) 2018-07-25
US20180200783A1 (en) 2018-07-19
TWI641752B (zh) 2018-11-21
CN107923250B (zh) 2020-01-03
KR20180030210A (ko) 2018-03-21
JP2017057750A (ja) 2017-03-23
CN107923250A (zh) 2018-04-17
KR102018011B1 (ko) 2019-09-03
TW201723302A (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
WO2017047502A1 (ja) 動翼、これを備えているガスタービン、及び動翼の製造方法
JP7455074B2 (ja) 多空洞タービン翼用のセラミック中子
JP6613803B2 (ja) 翼、これを備えているガスタービン、及び翼の製造方法
EP1927414B1 (en) RMC-Defined tip blowing slots for turbine blades
JP6452736B2 (ja) 一体的な壁厚制御のためのフィルム孔突出部を用いるタービンブレードインベストメント鋳造
EP1657403B1 (en) Airfoil with large fillet and micro-circuit cooling
JP2018502244A (ja) テーパしたポケットを備える翼用の冷却チャネル
EP1055800B1 (en) Turbine airfoil with internal cooling
EP2159375B1 (en) A turbine engine airfoil with convective cooling, the corresponding core and the method for manufacturing this airfoil
JP6587251B2 (ja) 流路形成板、これを備える流路形成組部材及び静翼、ガスタービン、流路形成板の製造方法、並びに流路形成板の改造方法
JP2008151129A (ja) タービンエンジンコンポーネントおよびその製造方法
EP2385216B1 (en) Turbine airfoil with body microcircuits terminating in platform
US10300526B2 (en) Core assembly including studded spacer
WO2014108318A1 (en) Blade for a turbomachine
EP3159481A1 (en) Impingement tip cooling for gas turbine blade
KR20220008914A (ko) 에어포일용 니어 월 리딩 에지 냉각 채널
US20140338772A1 (en) Active sealing member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743909

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187005726

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE