JP2008151129A - タービンエンジンコンポーネントおよびその製造方法 - Google Patents

タービンエンジンコンポーネントおよびその製造方法 Download PDF

Info

Publication number
JP2008151129A
JP2008151129A JP2007322316A JP2007322316A JP2008151129A JP 2008151129 A JP2008151129 A JP 2008151129A JP 2007322316 A JP2007322316 A JP 2007322316A JP 2007322316 A JP2007322316 A JP 2007322316A JP 2008151129 A JP2008151129 A JP 2008151129A
Authority
JP
Japan
Prior art keywords
turbine engine
cooling
engine component
cooling circuit
airfoil portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007322316A
Other languages
English (en)
Inventor
Francisco J Cunha
ジェイ.クンハ フランシスコ
Edward F Pietraszkiewicz
エフ.ピエトラスキーウィッツ エドワード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JP2008151129A publication Critical patent/JP2008151129A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/103Multipart cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • F05D2230/211Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage

Abstract

【課題】タービンエンジンコンポーネントのエアフォイル部分用の改良型冷却システムを提供する。
【解決手段】タービンエンジンコンポーネント10が、正圧面側壁部20および負圧面側壁部22ならびに冷却システムを有するエアフォイル部分14を有する。冷却システムは、エアフォイル部分14に沿って長手方向に配置された少なくとも1つの冷却回路24を備える。冷却回路24の各々は、熱吸収を増大するために、互い違いに配置された複数の内部ペデスタル26を有する。
【選択図】図4

Description

本発明は、タービンエンジンコンポーネントのエアフォイル部分用の改良型冷却システムおよびその製造方法に関する。
耐熱金属コア(RMC)要素を使用して形成された、タービンブレードなどタービンエンジンコンポーネントの従来の設計は、エアフォイル部分の金属を対流冷却するために、タービンエンジンコンポーネントのエアフォイル部分の周りに配置された周辺冷却回路を有する。図1は、そのような1つのタービンエンジンコンポーネントの正圧面の図を示し、一方、図2は、タービンエンジンコンポーネントの負圧面の図を示す。ある例においては、軸方向の内部コアは、フィルム冷却スロットとして終わる。周辺微細回路のフィルム冷却と対流冷却との組合せは、全体的な冷却効率を著しく高める。これによって、従来の冷却設計と同量またはより少量の冷却流を使用して、エアフォイル部分の寿命が延長されることとなる。
従来のエアフォイル形状は、図1および図2に示されているように極めて3次的であり、様々なエアフォイル形状に適合するようにRMC要素を形成することは、残留応力によって、これらのコア要素が鋳造中に変形される前の形状に跳ね返る傾向があるため、困難となる場合がある。その結果、ワックスとコア要素とが共に組み立てられる鋳造準備段階中に、位置決め公差を維持することが困難となる。インベストメント鋳造中には、液体金属が鋳造パターンに導入されるため、特にプリフォーム条件により残留応力が存在する場合、コアが受ける温度によりRMC要素が変形することがある。
プリフォーム作業の結果を最小限に抑えることが望ましい。
タービンエンジンコンポーネントは、正圧面側壁部および負圧面側壁部ならびに冷却システムを有するエアフォイル部分を備える。冷却システムは、エアフォイル部分に沿って長手方向に配置された少なくとも1つの冷却回路を備える。各冷却回路は、熱吸収を増大するために、互い違いに配置された複数の内部ペデスタルを有する。
一実施形態では、タービンエンジンコンポーネントは、正圧面側壁部と、負圧面側壁部と、前縁および後縁と、エアフォイル部分内の複数の冷却回路と、を有するエアフォイル部分を備える。冷却回路の各々は、互いに間隔を置いて、正圧面側壁部に延在する複数の出口スロットを有する。冷却回路の各々は、互い違いに複数の配置された内部ペデスタルをさらに有する。
タービンエンジンコンポーネントの製造方法について記載する。本方法は、エアフォイル部分を形成するステップを広く含み、このエアフォイル形成ステップは、エアフォイル部分の正圧面側壁部に亘って延在する少なくとも1つの出口スロットを有し、エアフォイル部分内を長手方向に延在する少なくとも1つの冷却回路を形成するステップを含む。
図面を参照すると、図3〜図5には、プラットフォーム12と、根部部分(図示せず)と、エアフォイル部分14と、を有するタービンエンジンコンポーネント10が示されている。エアフォイル部分14は、前縁16と、後縁18と、前縁16と後縁18との間に延びる正圧面側壁部20と、前縁16と後縁18との間に延びる負圧面側壁部22と、を有する。
エアフォイル部分14は、エアフォイル部分に沿って長手方向に配置された1つまたは複数の冷却回路24を有する。各冷却回路24は、エアフォイル部分14の先端部分23付近の位置から、プラットフォーム12付近の位置に延在する。さらに、各冷却回路24は、互い違いに配置された複数のペデスタル26を備えることが好ましい。互い違いに配置されたペデスタル26は、図6A〜図6Cに示されている形状のうち1つまたは複数の形状を有することができる。図6Aからわかるように、ペデスタル26は丸形とすることができる。図6Bからわかるように、ペデスタル26は、矩形または正方形とすることができる。図6Cからわかるように、ペデスタル26は菱形とすることができる。各冷却回路24内の互い違いに配置されたペデスタル26は、回路24内の冷却流体流に乱流を生じさせ、したがって熱吸収を増大させることが有利である。
図4からわかるように、冷却回路24は各々、エンジン抽気など冷却流体を、正圧面側壁部20と負圧面側壁部22との間に位置する共通供給キャビティ28から受けることができる。供給キャビティ28はまた、エアフォイル部分先端23付近のある点からプラットフォーム12付近の位置まで延在する。供給キャビティ28は、エアフォイル部分14の根部部分31内の1つまたは複数の流体キャビティ29など、当技術分野で周知の任意の好適な手段を使用して、冷却流体源と連通することができる。冷却回路24は、正圧面側壁部20の外部表面を覆うように冷却流体が流出することを可能にする1つまたは複数のスロット出口30を有する。典型的には、各冷却回路24は、実質的に翼幅(スパン)方向つまり長手方向に位置合わせされる、互いに間隔を置いた複数のスロット出口30を有する。また、冷却回路24の1つは、そのスロット出口30を、後縁18に近接して配置することができる。スロット出口30から出る冷却流は、典型的には、涙滴形状(teardrop)の作用によって分配される。このようにして、スロットフィルム被覆率が著しく高くなる。これにより、エアフォイル部分14について高い値の全体的な冷却効果が得られる。
タービンエンジンコンポーネント10はまた、インピンジメント用クロスオーバ穴33を備えた前縁冷却回路32を有する。このクロスオーバー穴33は、前縁16に形成または機械加工された複数の形状化されたフィルム冷却穴34に供給する。冷却穴34は、正圧面側壁部20に亘って延在する。前縁冷却回路32は、前縁供給キャビティ36から冷却流体を受ける。
必要に応じて、図3および図4に示されているように、タービンエンジンコンポーネント10は、エアフォイル部分14の正圧面側壁部20内に機械加工または形成された1つまたは複数の追加のスロット出口38を有することができる。追加のスロット出口38は、正圧面側壁部20に亘って延在し、形状化された冷却穴34とスロット出口の列との間に位置することができる。出口スロット38は、冷却流体を供給キャビティ28から受ける。
冷却回路24の各々は、熱吸収を向上するように、互い違いに配置された複数のペデスタル26を有する。図4および図5に示されているように、各冷却回路24内のペデスタル26を、隣接する冷却回路24内のペデスタル26からオフセットさせてもよい。
図5に示されているように、必要に応じて、少なくとも1つの冷却回路24が、1つまたは複数の涙滴形ペデスタル26’を有することができる。
図7に示されているように、タービンエンジンコンポーネント10は、分割線102に沿って分かれるダイつまり鋳型100を設けることによって形成される。鋳型つまりダイ100は、エアフォイル部分14を形成するように形作られる。鋳型つまりダイ100はまた、プラットフォーム12および根部部分31(図示せず)を形成するように構成することができる。これらの特徴部を形成するための鋳型つまりダイ100の一部分は、便宜上示されていない。
供給キャビティ28、36を形成するために、2つのセラミックコア102、104を鋳型つまりダイ100内で位置決めすることができる。冷却回路24を形成するために、1つまたは複数の耐熱金属コア要素106をダイつまり鋳型100内に配置することができる。各耐熱金属コア要素106は、当技術分野で周知の、任意の好適な手段を使用して、セラミックコア104に取り付けることができる。
各耐熱金属コア要素106は、図8に示されているような形状を有することができる。この図からわかるように、耐熱金属コア要素106は、互い違いに配置された複数の形状化された領域108を有し、これらの形状化された領域108から、互い違いに配列されたペデスタル26の列が形成される。各耐熱金属コア要素は、エアフォイル部分の輪郭に合うようにわずかな変形を有するパターンで組み立てることができるため、プリフォーム(pre−forming)要件が最小限である。鋳造中には、ペデスタル26は、金属温度が比較的低くなり、これによって、エアフォイル部分14のクリープ能力が向上する。
必要に応じて、タービンエンジンコンポーネントの形状のワックスパターンを形成し、このワックスパターンの周囲に、セラミックシェルを形成してもよい。タービンエンジンコンポーネントは、溶融金属を鋳型つまりダイ100内に導入し、ワックスパターンを溶解することによって形成することができる。凝固すると、プラットフォーム12とエアフォイル部分14とを有するタービンエンジンコンポーネント10となる。セラミックコア102、104は、リーチング(leaching)作業など、当技術分野で周知の、任意の好適な技法を使用して除去することができ、供給キャビティ28、36を形成する。その後で、耐熱金属コア要素106を、リーチング作業など、当技術分野で周知の、任意の好適な技法を使用して除去することができる。その結果、冷却回路24が形成され、エアフォイル部分14の正圧面側壁部20がスロット出口30を有することになる。
前縁冷却穴34およびインピンジメント用クロスオーバ穴33を、当技術分野で周知の、任意の好適な手段を使用して形成することができる。たとえば、インピンジメント用クロスオーバ穴33を、コア構造物102、104に連結されたセラミックコア構造物103によって形成することができる。前縁冷却穴34を、鋳造エアフォイル部分14内にドリル加工することができる。
形状化された穴38はまた、EDM加工法など、当技術分野で周知の任意の好適な技法を使用して形成することができる。
本明細書で述べられている方法を使用してタービンエンジンコンポーネントを形成すると、生産性が増大し、プリフォーム作業が簡単になる。さらに、タービンエンジンコンポーネントは、スロットフィルム被覆率が上昇し、これにより全体的な効率が上昇することとなる。
タービンエンジンコンポーネント10は、ブレード、ベーン、または冷却を必要とするエアフォイル部分を有する他のタービンエンジンコンポーネントとすることができる。
従来のタービンエンジンコンポーネントの正圧面側の図。 図1のタービンエンジンコンポーネントの負圧面側の図。 タービンエンジンコンポーネントの正圧面側壁部の図。 図3の線4−4に沿った断面図。 図3のタービンエンジンコンポーネント内の、複数の冷却回路の一部分の拡大図。 微細冷却回路内で使用することができるペデスタルの第1の実施形態を示す図。 微細冷却回路内で使用することができるペデスタルの第2の実施形態を示す図。 微細冷却回路内で使用することができるペデスタルの第3の実施形態を示す図。 図3のタービンエンジンコンポーネントのエアフォイル部分を鋳造するシステムを示す図。 図7の鋳造システム内で使用される耐熱金属コア要素を示す図。

Claims (25)

  1. 正圧面側壁部および負圧面側壁部ならびに冷却システムを有するエアフォイル部分を備えたタービンエンジンコンポーネントであって、前記冷却システムが、前記エアフォイル部分に沿って長手方向に配置された少なくとも1つの冷却回路を備え、前記冷却回路の各々が、熱吸収を増大するために、互い違いに配置された複数の内部ペデスタルを有することを特徴とするタービンエンジンコンポーネント。
  2. 前記エアフォイル部分に沿って長手方向に配置された複数の冷却回路と、前記冷却回路の各々と連通する第1の冷却流体供給キャビティと、をさらに備えることを特徴とする請求項1に記載のタービンエンジンコンポーネント。
  3. 前記冷却回路の各々が、前記正圧面側壁部の外部表面を覆うように冷却流体を分配する少なくとも1つの出口を有することを特徴とする請求項2に記載のタービンエンジンコンポーネント。
  4. 前記冷却回路の少なくとも1つが、前記エアフォイル部分の後縁に近接して冷却流体を分配する少なくとも1つの出口を有することを特徴とする請求項2に記載のタービンエンジンコンポーネント。
  5. 前記冷却回路のうちの第1の冷却回路内の前記互い違いに配置されたペデスタルが、前記第1の冷却回路に隣接する第2の冷却回路内の前記互い違いに配置されたペデスタルからオフセットされることを特徴とする請求項2に記載のタービンエンジンコンポーネント。
  6. 前縁冷却回路をさらに備え、前記前縁冷却回路が、前記エアフォイル部分の前縁における複数のフィルム冷却穴に供給する複数のクロスオーバ穴を備え、前記前縁冷却回路が、第1の供給キャビティから冷却流体を受けることを特徴とする請求項1に記載のタービンエンジンコンポーネント。
  7. 冷却流体を前記少なくとも1つの冷却回路に供給する第2の供給キャビティをさらに備え、前記第1の供給キャビティが、前記第2の供給キャビティと流体連通することを特徴とする請求項6に記載のタービンエンジンコンポーネント。
  8. 前記正圧面側壁部内に形成された少なくとも1つの追加のスロット出口をさらに備え、前記少なくとも1つの追加のスロット出口が、前記第2の供給キャビティから冷却流体の供給を受けることを特徴とする請求項7に記載のタービンエンジンコンポーネント。
  9. 複数の追加のスロット出口をさらに備えることを特徴とする請求項8に記載のタービンエンジンコンポーネント。
  10. プラットフォームを有し、前記冷却回路の各々が、前記エアフォイル部分の先端から前記プラットフォーム付近の位置に亘って延在し、前記冷却回路の各々が、前記先端から前記プラットフォーム付近の前記位置に亘って延在する供給キャビティから流体の供給を受けることを特徴とする請求項1に記載のタービンエンジンコンポーネント。
  11. 前記ペデスタルの各々が丸形であることを特徴とする請求項1に記載のタービンエンジンコンポーネント。
  12. 前記ペデスタルの各々が菱形であることを特徴とする請求項1に記載のタービンエンジンコンポーネント。
  13. 前記ペデスタルの各々が矩形であることを特徴とする請求項1に記載のタービンエンジンコンポーネント。
  14. 前縁および後縁を有する前記エアフォイル部分と、
    前記エアフォイル部分内の複数の冷却回路と、
    をさらに備え、
    前記冷却回路の各々が、間隔を置いて前記正圧面側壁部に延在する複数の出口スロットを有することを特徴とする請求項1に記載のタービンエンジンコンポーネント。
  15. 前記冷却回路のうちの第1の冷却回路内の前記互い違いに配置されたペデスタルが、前記第1の冷却回路に隣接する前記冷却回路のうちの第2の冷却回路内の前記互い違いに配置されたペデスタルからオフセットされることを特徴とする請求項14に記載のタービンエンジンコンポーネント。
  16. 前記冷却回路のうちの第3の冷却回路内の前記互い違いに配置されたペデスタルが、前記第3の冷却回路に隣接する前記第2の冷却回路内の前記互い違いに配置されたペデスタルからオフセットされることを特徴とする請求項15に記載のタービンエンジンコンポーネント。
  17. 前記エアフォイル部分の先端付近の位置からタービンエンジンコンポーネントのプラットフォーム付近の位置まで、前記正圧面側壁部に亘って延在する複数の形状化された出口スロットを有する前縁冷却回路をさらに備えることを特徴とする請求項14に記載のタービンエンジンコンポーネント。
  18. 前記形状化された出口スロットと前記冷却回路の1つの冷却回路の前記出口スロットとの間に位置する前記正圧面側壁部に亘って延在する複数の追加の冷却スロットをさらに備え、前記追加の冷却スロットが、前記先端付近の他の位置から前記プラットフォーム付近の他の位置に延在することを特徴とする請求項17に記載のタービンエンジンコンポーネント。
  19. エアフォイル部分を形成するステップを含み、
    このエアフォイル形成ステップは、前記エアフォイル部分の正圧面側壁部に亘って延在する少なくとも1つの出口スロットを有し、前記エアフォイル部分内を長手方向に延在する少なくとも1つの冷却回路を形成するステップを含むことを特徴とするタービンエンジンコンポーネントの製造方法。
  20. 前記少なくとも1つの冷却回路を形成するステップが、前記エアフォイル部分内で長手方向に延在する複数の冷却回路を形成するステップを含み、前記少なくとも1つの冷却回路を形成するステップが、互い違いに配置された複数の内部ペデスタルを有する前記冷却回路の各々を形成するステップをさらに含むことを特徴とする請求項19に記載のタービンエンジンコンポーネントの製造方法。
  21. 前記少なくとも1つの冷却回路を形成するステップが、前記冷却回路の各々を形成するために少なくとも1つの耐熱金属コア要素を使用するステップを含むことを特徴とする請求項20に記載のタービンエンジンコンポーネントの製造方法。
  22. 前記少なくとも1つの冷却回路を形成するステップが、前記冷却回路を形成するために複数の耐熱金属コア要素を使用するステップと、前記耐熱金属コア要素の各々を鋳型内に配置するステップと、を含むことを特徴とする請求項21に記載のタービンエンジンコンポーネントの製造方法。
  23. 前記鋳型内にセラミックコアを配置するステップと、前記耐熱金属コア要素の各々を前記セラミックコアに取り付けるステップと、をさらに含むことを特徴とする請求項22に記載のタービンエンジンコンポーネントの製造方法。
  24. 前記タービンエンジンコンポーネントの形状にワックスパターンを形成するステップと、前記ワックスパターンの周りでセラミックシェルを形成するステップと、前記ワックスパターンを除去するステップと、前記エアフォイル部分を形成するために、溶融金属を前記鋳型に注入するステップと、前記溶融金属を凝固させ、その後で前記耐熱金属コア要素を除去するステップと、をさらに含むことを特徴とする請求項23に記載のタービンエンジンコンポーネントの製造方法。
  25. 前記エアフォイル部分の前記正圧面側壁部の前縁部分内に複数の形状化された冷却流体出口穴を形成するステップと、前記正圧面側壁部の中間部分内に複数の冷却流体出口スロットを形成するステップと、をさらに含むことを特徴とする請求項24に記載のタービンエンジンコンポーネントの製造方法。
JP2007322316A 2006-12-18 2007-12-13 タービンエンジンコンポーネントおよびその製造方法 Pending JP2008151129A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/641,628 US7731481B2 (en) 2006-12-18 2006-12-18 Airfoil cooling with staggered refractory metal core microcircuits

Publications (1)

Publication Number Publication Date
JP2008151129A true JP2008151129A (ja) 2008-07-03

Family

ID=39149444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322316A Pending JP2008151129A (ja) 2006-12-18 2007-12-13 タービンエンジンコンポーネントおよびその製造方法

Country Status (3)

Country Link
US (1) US7731481B2 (ja)
EP (1) EP1939400A3 (ja)
JP (1) JP2008151129A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189026A (ja) * 2011-03-11 2012-10-04 Ihi Corp タービン翼

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847684A1 (de) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Turbinenschaufel
JP5436457B2 (ja) * 2008-03-07 2014-03-05 アルストム テクノロジー リミテッド ガスタービンのための翼
GB0810986D0 (en) 2008-06-17 2008-07-23 Rolls Royce Plc A Cooling arrangement
US8100165B2 (en) * 2008-11-17 2012-01-24 United Technologies Corporation Investment casting cores and methods
US8137068B2 (en) 2008-11-21 2012-03-20 United Technologies Corporation Castings, casting cores, and methods
US8113780B2 (en) * 2008-11-21 2012-02-14 United Technologies Corporation Castings, casting cores, and methods
US8171978B2 (en) 2008-11-21 2012-05-08 United Technologies Corporation Castings, casting cores, and methods
US9890647B2 (en) * 2009-12-29 2018-02-13 Rolls-Royce North American Technologies Inc. Composite gas turbine engine component
CN101947719A (zh) * 2010-09-17 2011-01-19 李�杰 一种考登钢管的生产工艺
US8807198B2 (en) * 2010-11-05 2014-08-19 United Technologies Corporation Die casting system and method utilizing sacrificial core
US8944141B2 (en) * 2010-12-22 2015-02-03 United Technologies Corporation Drill to flow mini core
US9403208B2 (en) 2010-12-30 2016-08-02 United Technologies Corporation Method and casting core for forming a landing for welding a baffle inserted in an airfoil
US9057523B2 (en) 2011-07-29 2015-06-16 United Technologies Corporation Microcircuit cooling for gas turbine engine combustor
US8882461B2 (en) 2011-09-12 2014-11-11 Honeywell International Inc. Gas turbine engines with improved trailing edge cooling arrangements
US20130243575A1 (en) 2012-03-13 2013-09-19 United Technologies Corporation Cooling pedestal array
US20130340966A1 (en) 2012-06-21 2013-12-26 United Technologies Corporation Blade outer air seal hybrid casting core
US9879546B2 (en) 2012-06-21 2018-01-30 United Technologies Corporation Airfoil cooling circuits
US10100645B2 (en) * 2012-08-13 2018-10-16 United Technologies Corporation Trailing edge cooling configuration for a gas turbine engine airfoil
US9486854B2 (en) 2012-09-10 2016-11-08 United Technologies Corporation Ceramic and refractory metal core assembly
US9404654B2 (en) 2012-09-26 2016-08-02 United Technologies Corporation Gas turbine engine combustor with integrated combustor vane
US9551228B2 (en) 2013-01-09 2017-01-24 United Technologies Corporation Airfoil and method of making
US9669458B2 (en) 2014-02-06 2017-06-06 General Electric Company Micro channel and methods of manufacturing a micro channel
US10329916B2 (en) 2014-05-01 2019-06-25 United Technologies Corporation Splayed tip features for gas turbine engine airfoil
US10260353B2 (en) 2014-12-04 2019-04-16 Rolls-Royce Corporation Controlling exit side geometry of formed holes
US10801407B2 (en) 2015-06-24 2020-10-13 Raytheon Technologies Corporation Core assembly for gas turbine engine
US10046389B2 (en) 2015-12-17 2018-08-14 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10137499B2 (en) 2015-12-17 2018-11-27 General Electric Company Method and assembly for forming components having an internal passage defined therein
US9987677B2 (en) 2015-12-17 2018-06-05 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10099284B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having a catalyzed internal passage defined therein
US9968991B2 (en) 2015-12-17 2018-05-15 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US9579714B1 (en) 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10099276B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10099283B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10150158B2 (en) 2015-12-17 2018-12-11 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10118217B2 (en) 2015-12-17 2018-11-06 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10286450B2 (en) 2016-04-27 2019-05-14 General Electric Company Method and assembly for forming components using a jacketed core
US10335853B2 (en) 2016-04-27 2019-07-02 General Electric Company Method and assembly for forming components using a jacketed core
US20170335692A1 (en) * 2016-05-20 2017-11-23 United Technologies Corporation Refractory metal core and components formed thereby
US10323569B2 (en) 2016-05-20 2019-06-18 United Technologies Corporation Core assemblies and gas turbine engine components formed therefrom
US10697301B2 (en) 2017-04-07 2020-06-30 General Electric Company Turbine engine airfoil having a cooling circuit
US10808571B2 (en) 2017-06-22 2020-10-20 Raytheon Technologies Corporation Gaspath component including minicore plenums
US10830072B2 (en) * 2017-07-24 2020-11-10 General Electric Company Turbomachine airfoil
US10968752B2 (en) * 2018-06-19 2021-04-06 Raytheon Technologies Corporation Turbine airfoil with minicore passage having sloped diffuser orifice
US11333023B2 (en) 2018-11-09 2022-05-17 Raytheon Technologies Corporation Article having cooling passage network with inter-row sub-passages
US11352902B2 (en) * 2020-08-27 2022-06-07 Aytheon Technologies Corporation Cooling arrangement including alternating pedestals for gas turbine engine components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107705A (ja) * 1999-10-05 2001-04-17 United Technol Corp <Utc> 冷却回路及び冷却可能な壁

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515523A (en) * 1983-10-28 1985-05-07 Westinghouse Electric Corp. Cooling arrangement for airfoil stator vane trailing edge
US5405242A (en) * 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
US5383766A (en) * 1990-07-09 1995-01-24 United Technologies Corporation Cooled vane
US5370499A (en) * 1992-02-03 1994-12-06 General Electric Company Film cooling of turbine airfoil wall using mesh cooling hole arrangement
US5690472A (en) * 1992-02-03 1997-11-25 General Electric Company Internal cooling of turbine airfoil wall using mesh cooling hole arrangement
US5688104A (en) * 1993-11-24 1997-11-18 United Technologies Corporation Airfoil having expanded wall portions to accommodate film cooling holes
US6832889B1 (en) * 2003-07-09 2004-12-21 General Electric Company Integrated bridge turbine blade
US6890154B2 (en) * 2003-08-08 2005-05-10 United Technologies Corporation Microcircuit cooling for a turbine blade
US6981840B2 (en) * 2003-10-24 2006-01-03 General Electric Company Converging pin cooled airfoil
US7011502B2 (en) * 2004-04-15 2006-03-14 General Electric Company Thermal shield turbine airfoil
US7131818B2 (en) * 2004-11-02 2006-11-07 United Technologies Corporation Airfoil with three-pass serpentine cooling channel and microcircuit
US7438527B2 (en) * 2005-04-22 2008-10-21 United Technologies Corporation Airfoil trailing edge cooling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107705A (ja) * 1999-10-05 2001-04-17 United Technol Corp <Utc> 冷却回路及び冷却可能な壁

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189026A (ja) * 2011-03-11 2012-10-04 Ihi Corp タービン翼

Also Published As

Publication number Publication date
US7731481B2 (en) 2010-06-08
US20080145235A1 (en) 2008-06-19
EP1939400A3 (en) 2012-08-15
EP1939400A2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP2008151129A (ja) タービンエンジンコンポーネントおよびその製造方法
JP7455074B2 (ja) 多空洞タービン翼用のセラミック中子
US8317475B1 (en) Turbine airfoil with micro cooling channels
EP2246133B1 (en) RMC-defined tip blowing slots for turbine blades
EP2538029B1 (en) Airfoil trailing edge cooling
EP1634665B1 (en) Composite core for use in precision investment casting
EP1616642B1 (en) Investment casting
US8137068B2 (en) Castings, casting cores, and methods
US7562691B2 (en) Core for turbomachine blades
US7753104B2 (en) Investment casting cores and methods
US7841083B2 (en) Method of manufacturing a turbomachine component that includes cooling air discharge orifices
JP2007061902A (ja) インベストメント鋳造用模型製造方法およびその製造装置、ならびに鋳造コア
JP2008144760A (ja) タービンエンジン構成要素およびそのエアフォイル部を形成する方法
JP2007146837A (ja) 前縁部、冷却系統製造方法およびタービンエンジンコンポーネント
EP1923152B1 (en) Trubine blade casting method
JP2007132342A (ja) タービンエンジン構成要素、耐火金属コアならびにエアフォイル部の形成工程
EP2468433B1 (en) Drill to flow mini core
JP2007061912A (ja) インベストメント鋳造のコア、模型、鋳型の形成方法、鋳造方法ならびにその構成要素
EP2385216B1 (en) Turbine airfoil with body microcircuits terminating in platform
JP2003340548A (ja) ベースコア、加工物の鋳造方法
EP3065896B1 (en) Investment casting method for gas turbine engine vane segment
CN108067587B (zh) 使用镶铸式型芯参照结构的方法和设备

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102