WO2011108440A1 - ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン - Google Patents

ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン Download PDF

Info

Publication number
WO2011108440A1
WO2011108440A1 PCT/JP2011/054164 JP2011054164W WO2011108440A1 WO 2011108440 A1 WO2011108440 A1 WO 2011108440A1 JP 2011054164 W JP2011054164 W JP 2011054164W WO 2011108440 A1 WO2011108440 A1 WO 2011108440A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
rotor blade
long hole
blade
moving blade
Prior art date
Application number
PCT/JP2011/054164
Other languages
English (en)
French (fr)
Inventor
羽田 哲
亘彦 今田
智史 新谷
克利 大江
憲史 平田
弘 浅野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11750550.3A priority Critical patent/EP2543821B1/en
Priority to CN201180007776.0A priority patent/CN102741506B/zh
Priority to EP15181429.0A priority patent/EP2987955B1/en
Priority to JP2012503100A priority patent/JP5200189B2/ja
Priority to KR1020127017810A priority patent/KR101245083B1/ko
Publication of WO2011108440A1 publication Critical patent/WO2011108440A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/11Manufacture by removing material by electrochemical methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage

Definitions

  • the present invention relates to a moving blade of a gas turbine used for thermal power generation or the like, and more specifically, to a moving blade of a gas turbine, a manufacturing method thereof, and a moving blade with an improved cooling passage for cooling air formed inside the moving blade.
  • the present invention relates to a gas turbine using blades.
  • a single space-like cavity is formed from the base side of the moving blade toward the tip side, while a plurality of cavities are formed from the tip side of the moving blade toward the base side.
  • the long holes in the shape of straight passages are formed, and these long holes communicate with the cavity at the intermediate portion in the longitudinal direction of the rotor blade.
  • variety of a cavity part is expanded in the communication part with a long hole. For this reason, when forming a long hole from the front end side of a moving blade, it is easy to make a long hole communicate with a hollow part, and processing is easy.
  • Patent Document 1 since the hollow portion is formed in a single space, the effective cross-sectional area of the moving blade in this portion is reduced, and the strength and rigidity of the moving blade are impaired. In some cases, there was a concern of destruction (creep cracks, etc.), which was unreliable. On the other hand, if it is formed into a plurality of straight passages by forming a long hole from both the tip side and the base side of the rotor blade and connecting them in the middle to form a single long hole without providing a hollow part, Since the portion is not provided, the effective sectional area of the rotor blade can be increased. However, in this method, it is difficult to align the center when processing a long hole from two directions, and there is a concern that the processing cost increases or the yield decreases due to poor penetration between the long holes.
  • the present invention has been made in view of such circumstances, and facilitates the formation of a cooling passage provided inside the rotor blade, and at the same time, the strength and rigidity of the rotor blade are impaired by the formation of the cooling passage. It is an object of the present invention to provide a highly reliable gas turbine rotor blade, a method for manufacturing the same, and a gas turbine using the rotor blade.
  • the moving blade of the gas turbine according to the first aspect of the present invention includes a cooling passage formed inside the moving blade of the turbine, and cooling air is circulated through the cooling passage to cool the moving blade.
  • the cooling passage includes a plurality of straight passage-like base-side elongated holes extending in the base-side longitudinal direction of the rotor blade, and a plurality of linear passage-like shapes extending in the distal-end-side longitudinal direction of the rotor blade.
  • Each of the long holes is communicated with each other, and is wider than the passage cross-sectional area of the long holes.
  • a plurality of communicating cavities having a cross-sectional area.
  • the cross-sectional area of the communication cavity is the base side length. Since it is larger than the passage cross-sectional area of the hole or the tip side long hole, the tip side long hole can be easily penetrated into the communication cavity. For this reason, the formation of the cooling passage formed in the moving blade can be facilitated. Further, since the base side long hole is not formed as a single cavity but is formed in a plurality of linear passages, it is possible to avoid impairing the blade strength and rigidity due to the formation of the cooling passage.
  • the communication cavity is formed in accordance with the position of the platform portion of the moving blade.
  • the communication cavity portion having the largest cross-sectional area in the cooling passage is formed inside the platform portion having the largest wall thickness in the rotor blade, so that the effective sectional area of the rotor blade is substantially reduced. Is minimized, and the strength and rigidity of the rotor blade can be prevented from being impaired.
  • the moving blade of the gas turbine which concerns on the 3rd aspect of this invention makes the height of the adjacent communicating cavity part different from the said some communicating cavity part. This prevents adjacent communicating cavities from being lined up at the same height and increases the distance between the communicating cavities, so that the effective cross-sectional area of the moving blade is prevented from becoming smaller at the position of the communicating cavities. Thus, the strength and rigidity of the moving blade can be prevented from being damaged. Furthermore, the moving blade of the gas turbine of the present invention is characterized in that at least the lengths from the tips of the plurality of tip side long holes to the communication cavity are the same. As a result, simultaneous machining with a plurality of electrodes or drills becomes possible, variation in machining accuracy of the long hole does not occur, and machining accuracy is further improved.
  • the moving blade of the gas turbine according to any one of the first to third aspects is used for the turbine. Therefore, the strength and rigidity of the moving blade are ensured, and the reliability is improved.
  • a method for manufacturing a moving blade of a gas turbine according to a fifth aspect of the present invention provides the moving blade in the case where the cooling passage is formed in the moving blade of the gas turbine according to any one of the first to third aspects.
  • a base-side slotted hole forming step for forming the base-side slotted hole by electrical machining from the base side of the blade, and the communication progressing speed is reduced or stopped at the terminal position of the base-side slotted hole.
  • the communication cavity portion having a cross-sectional area larger than the passage cross-sectional area of the base-side long hole can be easily reduced by reducing or stopping the speed of electrical processing at the terminal position of the base-side long hole. It can be formed, and as a result, the entire cooling passage can be easily formed.
  • the moving blade of the gas turbine and the manufacturing method thereof according to the present invention it is easy to form the cooling passage provided inside the moving blade, and at the same time, the cooling passage is formed to It is possible to avoid the loss of rigidity, and to improve the reliability of the moving blade, and thus the entire gas turbine.
  • FIG. 3 is a transverse sectional view of a moving blade taken along line III-III in FIG. 2. It is a cross-sectional view of the blade portion showing an example in which the inner diameter of the distal end side long hole is changed according to the thickness of the blade portion.
  • FIG. 3 is a longitudinal sectional view showing the vicinity of a communication cavity portion of a cooling passage by enlarging a V portion in FIG. 2.
  • FIG. 1 is an overall configuration diagram showing an example of a gas turbine to which a moving blade according to the present invention is applied.
  • the gas turbine 1 includes a compressor 2, a combustor 3, and a turbine 4.
  • the compressor 2 compresses the air taken in from the air intake and generates compressed air.
  • the combustor 3 injects fuel into the compressed air to generate high-temperature and high-pressure combustion gas.
  • the turbine 4 converts the thermal energy of the combustion gas into rotational energy of the rotor 5 to generate a driving force.
  • the driving force is transmitted to a generator (not shown) connected to the rotor 5.
  • the turbine 4 is disposed inside a turbine housing 6 provided so as to be connected to the combustor 3.
  • the turbine 4 includes several stages of moving blades 41 provided integrally with the rotor 5 and several stages of stationary blades fixed to the inner peripheral surface of the turbine housing 6 and alternately arranged between the moving blades 41. 42.
  • the high-temperature and high-pressure combustion gas generated in the combustor 3 passes between the moving blades 41 and the stationary blades 42 while being expanded, so that the rotor 5 rotates with the moving blades 41 to generate driving force.
  • a part of the compressed air is extracted from the compressor 2 as cooling air, and members exposed to high-temperature gas such as the moving blade 41 and the stationary blade 42 are cooled from the inside by the cooling air as described later. Is done.
  • a base portion 411, a blade portion 412, and a platform portion 413 are integrally formed of a strong steel material having heat resistance and corrosion resistance, and the base portion 411 is fitted into the blade portion 412. Extends radially from the rotor 5 and the tip of each blade portion 412 is connected circumferentially by an annular shroud 415.
  • the platform 413 continuously forms a cylinder when each rotor blade 41 is attached to the rotor 5 and rectifies the flow of combustion gas.
  • a plurality of multi-hole cooling passages 410 are formed inside the rotor blade 41, and the compressed air extracted from the compressor 2 is provided in the cooling passages 410 as cooling air inside the rotor 5. It is supplied via a flow path (not shown). Cooling air is supplied from the bottom on the base side of the moving blade 41, cools the inside of the moving blade 41 in the process of flowing in the cooling passage 410 toward the tip, and protects the blade portion 412 from the heat of high-temperature combustion gas.
  • the cooling passage 410 has a plurality of straight passage-like base-side long holes 410a formed so as to extend in the base-side longitudinal direction of the rotor blade 41, and also extends in the tip-side longitudinal direction of the rotor blade 41 in the same linear passage shape.
  • the plurality of long holes 410a and 410b communicate with each other one by one through a plurality of front end side long holes 410b formed so as to exist, and a connection portion between the base side long hole 410a and the front end side long hole 410b.
  • a plurality of communication hollow portions 410c are provided.
  • the distal end side long holes 410b are arranged at substantially equal intervals along the curved shape of the blade portion 412. As shown in FIG. 4, the inner diameter of the distal end side long hole 410 b may be changed according to the thickness of the blade portion 412. Here, the inner diameter of the distal end side long hole 410b passing through the thick part of the blade portion 412 is made larger than the inner diameter of the distal end side long hole 410b passing through the thin part.
  • the passage cross-sectional area (inner diameter d1) of the base-side long hole 410a is larger than the passage cross-sectional area (inner diameter d2) of the distal-side long hole 410b.
  • the internal diameter d1 of the base side long hole 410a, and the internal diameter d2 of the front end side long hole 410b into the same dimension.
  • the inner diameter of the distal end side long hole 410b may be similarly changed.
  • the communication cavity 410c is formed in a spherical shape or an elliptical spherical shape having a cross-sectional area larger than the passage cross-sectional area of the base side long hole 410a and the tip side long hole 410b.
  • the communication cavity portion 410 c is formed in accordance with the position (height) of the platform portion 413 that is thicker than the base portion 411 and the blade portion 412.
  • the base-side long hole is formed from the base side of the moving blade 41, that is, the base 411 side by electrical machining, for example, electric discharge machining or electrolytic machining (preferably nitric acid electrolytic machining). 410a is formed.
  • the machining progress speed of electrical machining is reduced or stopped at the end position of the base side long hole 410a, that is, near the height at which the platform portion 413 is formed. Hold for a while.
  • the inner diameter at the terminal end of the base side long hole 410a is expanded, and a spherical or oval spherical communication cavity 410c is formed inside the platform 413.
  • the processing from the base side of the moving blade 41 is completed.
  • the end position of the base side long hole 410a is not limited to the platform part 413, and may be provided in the base part 411.
  • the front end side long hole 410b is formed from the front end side of the rotor blade 41 by electrical machining, for example, electric discharge machining, electrolytic machining, or cutting with a drill.
  • the distal end side long hole 410b is passed through the communication cavity 410c to complete the processing.
  • the base side long hole 410a, the tip side long hole 410b, and the communication cavity 410c communicate with each other to complete the cooling passage 410.
  • the moving blade 41 configured as described above has a cooling passage 410 extending in the longitudinal direction of the distal end side of the moving blade 41 and a plurality of long holes 410a extending in the longitudinal direction of the proximal side of the moving blade 41.
  • a plurality of distal end side long holes 410b and a communication cavity portion 410c positioned at a connection portion between the long holes 410a and 410b, and a cross-sectional area (inner diameter d3) of the communication cavity portion 410c is defined by each long hole.
  • the penetration rate with respect to the communication cavity 410c can be increased even if the position of the distal long hole 410b is slightly shifted in the distal long slot forming step shown in FIG. 7C. This greatly improves the formation of the cooling passage 410.
  • the base-side long hole 410a is formed in a plurality of linear passages instead of a single cavity, a sufficient effective cross-sectional area of the moving blade 41 in this portion is sufficiently secured, and the strength of the moving blade 41 is increased. And the rigidity is not impaired.
  • the communication cavity portion 410c having the largest cross-sectional area in the cooling passage 410 is formed inside the platform portion 413 having the largest thickness in the moving blade 41, the effective sectional area of the moving blade 41 is substantially increased. A portion to be reduced is minimized, and a decrease in strength and rigidity of the moving blade 41 can be reliably suppressed.
  • the processing is started from the base side toward the tip side, but conversely, the processing may be started from the tip side toward the base side.
  • the moving blade 51 shown in the second embodiment has a moving blade 41 according to the first embodiment shown in FIG. 2 except that the plurality of communicating cavities 410c constituting the cooling passage 410 are different in longitudinal position. It is the same.
  • the communication cavities 410c are alternately arranged by changing the height in the vertical direction, for example, so that the adjacent communication cavities 410c among the plurality of communication cavities 410c have different heights. Even if the height is changed in this way, it is desirable that all the communication cavities 410 c are formed so as to be located inside the platform 413.
  • adjacent communicating cavities 410c are not arranged at the same height, and the distance between the communicating cavities 410c is increased. It is possible to more effectively prevent the effective cross-sectional area from being reduced and the strength and rigidity of the rotor blades 51 from being impaired.
  • the moving blade 61 shown in the third embodiment is the same as the moving blade 41 in the first embodiment shown in FIG. 2 except that the length from the tip of the plurality of tip side long holes 610b to the communication cavity is the same. It is.
  • the plurality of distal end side long holes 610b have the same length, simultaneous processing by a plurality of electrodes or drills is possible, and variations in processing accuracy of the long holes do not occur, and processing accuracy is further improved.
  • the moving blade 71 shown in the fourth embodiment has the same length from the tip of the plurality of distal end side long holes 710b to the communication cavity, and further from the end surface of the base 411 of the plurality of base end side long holes 710a to the communication cavity. 2 is the same as the moving blade 41 in the first embodiment shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

 動翼内部に設けられる冷却通路の形成を容易にすると同時に、冷却通路が形成されることによって動翼強度や剛性が損なわれることを回避可能なガスタービンの動翼を提供する。ガスタービンの動翼(41)は、その内部に形成される冷却通路(410)が、動翼(41)の基部側長手方向に延在する複数の直線通路状の基部側長孔(410a)と、動翼(41)の先端側長手方向に延在する複数の直線通路状の先端側長孔(410b)と、これら両方の長孔(410a,410b)の接続部に介在して両長孔(410a,410b)を1本ずつ相互に連通させ、且つこれら両長孔(410a,410b)の通路断面積よりも大きい断面積を有する複数の連通空洞部(410c)と、を有する。また、連通空洞部(410c)は、動翼(41)のプラットフォーム部(413)の位置に合わせて形成されている。

Description

ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン
 本発明は、火力発電などに使用されるガスタービンの動翼に係り、詳しくは動翼内部に形成される冷却空気流通用の冷却通路を改良した、ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービンに関するものである。
 ガスタービンでは、タービン動翼の周囲を高温の作動流体が流れるため、一般に、タービン動翼の内部には、動翼の長手方向に沿う冷却通路が形成されており、この冷却通路に冷却空気を流通させることによって動翼の冷却がなされている。冷却通路にはタービンの圧縮機により圧縮された空気の一部が抽気されて冷却空気として圧送され、この冷却空気は冷却通路を流れて動翼を内側から冷却し、高温な作動流体(燃焼ガス)の熱から動翼を保護する。かかる構成を採用する従来のガスタービン(ガスタービン動翼)として、特許文献1に記載された技術が知られている。
 特許文献1に記載されている従来のガスタービンでは、動翼の基部側から先端側に向かって単一空間状の空洞部が形成される一方、動翼の先端側から基部側に向かって複数の直線通路状の長孔が形成され、これらの長孔が、動翼の長手方向中間部で空洞部に連通している。そして、空洞部の幅が、長孔との連通部において拡張されている。このため、動翼の先端側から長孔を加工形成する時に、長孔を空洞部に連通させ易く、加工が容易である。
特開2007-211618号公報
 しかしながら、特許文献1の構造では、空洞部が単一空間状に形成されていたため、この部分における動翼の有効断面積が小さくなってしまい、動翼の強度や剛性が損なわれて、最悪の場合には破壊(クリープ亀裂等)に至る懸念があり、信頼性に欠けるものであった。
 一方、空洞部を設けずに、動翼の先端側と基部側の両側から長孔加工して中間で接続して一本の長孔とすることにより複数の直線通路状に形成すれば、空洞部を設けない分、動翼の有効断面積を大きくすることができる。しかし、この方法では、2方向からの長孔加工時の芯あわせが難しく、加工コストが増大したり、長孔同士の貫通不良により歩留まりが低下したりする懸念があった。
 本発明は、このような事情に鑑みてなされたものであって、動翼内部に設けられる冷却通路の形成を容易にすると同時に、冷却通路が形成されることによって動翼強度や剛性が損なわれることを回避できて、信頼性の高いガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービンを提供することを目的とする。
 上記課題を解決するために、本発明は、以下の手段を採用する。
 即ち、本発明の第1の態様に係るガスタービンの動翼は、タービンの動翼内部に冷却通路が形成され、該冷却通路に冷却空気を流通させて前記動翼の冷却を行うガスタービンの動翼において、前記冷却通路は、前記動翼の基部側長手方向に延在する複数の直線通路状の基部側長孔と、前記動翼の先端側長手方向に延在する複数の直線通路状の先端側長孔と、前記基部側長孔と前記先端側長孔との接続部に介在して両長孔を1本ずつ相互に連通させ、且つ前記両長孔の通路断面積よりも広い断面積を有する複数の連通空洞部と、を有する。
 本発明によれば、例えば基部側長孔と連通空洞部とを先に形成し、その後で動翼の先端側から先端側長孔を形成する際に、連通空洞部の断面積が基部側長孔や先端側長孔の通路断面積よりも大きいため、先端側長孔を連通空洞部に容易に貫通させることができる。このため、動翼内部に形成される冷却通路の形成を容易にすることができる。また、基部側長孔が、単一の空洞部とならずに複数の直線通路状に形成されるため、冷却通路の形成に起因して動翼強度や剛性が損なわれることが回避される。
 また、本発明の第2の態様に係るガスタービンの動翼は、前記連通空洞部を、前記動翼のプラットフォーム部の位置に合わせて形成している。これにより、冷却通路中で最も横断面積の大きい連通空洞部が、動翼の中で最も肉厚の大きいプラットフォーム部の内部に形成されるため、実質的に動翼の有効断面積が小さくなる部分が最小限となり、動翼の強度や剛性が損なわれることを防止できる。
 さらに、本発明の第3の態様に係るガスタービンの動翼は、前記複数の連通空洞部のうちの、隣り合う連通空洞部の高さを異ならせている。これにより、隣り合う連通空洞部同士が同じ高さに並ぶことがなくなり、各連通空洞部の間の距離が大きくなるため、連通空洞部の位置において動翼の有効断面積が小さくなることが回避され、動翼の強度や剛性が損なわれることを防止できる。
 さらに、本発明のガスタービンの動翼は、少なくとも前記複数の先端側長孔の先端から前記連通空洞部までの長さを同一としたことを特徴とする。これにより、複数の電極またはドリルによる同時加工が可能となり、長孔の加工精度のばらつきが発生せず、加工精度が一層向上する。
 また、本発明の第4の態様に係るガスタービンは、前記第1から第3の態様のいずれかのガスタービンの動翼をタービンに用いている。これにより、動翼の強度および剛性が確保されて信頼性が向上する。
 そして、本発明の第5の態様に係るガスタービンの動翼の製造方法は、前記第1から第3の態様のいずれかのガスタービンの動翼に前記冷却通路を形成する場合において、前記動翼の基部側から電気的加工により前記基部側長孔を形成する基部側長孔形成工程と、該基部側長孔の終端位置で前記電気的加工の加工進行速度を低下もしくは停止させて前記連通空洞部を形成する連通空洞部形成工程と、前記動翼の先端側から前記先端側長孔を形成し、該先端側長孔を前記連通空洞部に貫通させる先端側長孔形成工程と、を有する。
 この製造方法によれば、基部側長孔の終端位置で電気的加工の進行速度を低下もしくは停止させることにより、基部側長孔の通路断面積よりも大きい断面積を有する連通空洞部を容易に形成でき、ひいては冷却通路全体の形成を容易にすることができる。
 以上のように、本発明に係るガスタービンの動翼およびその製造方法によれば、動翼内部に設けられる冷却通路の形成を容易にすると同時に、冷却通路が形成されることによって動翼強度や剛性が損なわれることを回避し、動翼、ひいてはガスタービン全体の信頼性を高めることができる。
本発明の実施形態に係る動翼が適用されたガスタービンの一例を示す全体構成図である。 本発明の第1実施形態を示す動翼の縦断面図である。 図2のIII-III線に沿う動翼の横断面図である。 先端側長孔の内径をブレード部の肉厚に応じて変化させた例を示すブレード部の横断面図である。 図2のV部を拡大して冷却通路の連通空洞部付近を示す縦断面図である。 基部側長孔と先端側長孔の内径を同一にした例を示す連通空洞部付近の縦断面図である。 動翼の製造工程の基部側長孔形成工程を示す縦断面図である。 動翼の製造工程の連通空洞部形成工程を示す縦断面図である。 動翼の製造工程の先端側長孔形成工程を示す縦断面図である。 動翼の製造工程の冷却通路が完成した状態を示す縦断面図である。 本発明の第2実施形態を示す動翼の縦断面図である。 本発明の第3実施形態を示す動翼の縦断面図である。 本発明の第4実施形態を示す動翼の縦断面図である。
 以下に、本発明に係るガスタービンの動翼の複数の実施形態について、図面を参照しながら説明する。
〔第1実施形態〕
 図1~図6は、本発明の第1実施形態を示している。図1は、本発明に係る動翼が適用されたガスタービンの一例を示す全体構成図である。このガスタービン1は、圧縮機2と、燃焼器3と、タービン4とを有する。圧縮機2は、空気取込口から取り込まれた空気を圧縮して圧縮空気を生成する。燃焼器3は、この圧縮空気に燃料を噴射して高温・高圧の燃焼ガスを発生させる。タービン4は、この燃焼ガスの熱エネルギーをロータ5の回転エネルギーに変換して駆動力を発生させる。そして、この駆動力がロータ5に連結された発電機(図示省略)などに伝達される。タービン4は燃焼器3に繋がるように設けられたタービンハウジング6の内部に配置されている。
 タービン4は、ロータ5に回転一体に設けられた数段の動翼41と、タービンハウジング6の内周面に固定されて、各動翼41の間に交互に配置された数段の静翼42とを有する。そして、燃焼器3で発生した高温・高圧の燃焼ガスが、これらの動翼41および静翼42間を膨張しつつ通過することにより、動翼41と共にロータ5が回転して駆動力が発生する。このタービン4では、圧縮空気の一部が冷却空気として圧縮機2から抽出され、この冷却空気により動翼41、静翼42等の、高温なガスに晒される部材が後に述べるように内部から冷却される。
 動翼41は、基部411と、ブレード部412と、プラットフォーム部413とが、耐熱性および耐食性を備えた強靭な鋼材料により一体に成形されており、その基部411が嵌合され、ブレード部412がロータ5から放射方向に延び、各ブレード部412の先端部が環状のシュラウド415によって周方向に連結される。プラットフォーム部413は、各動翼41がロータ5に取付けられた時に連続して筒状をなし、燃焼ガスの流れを整流する。
 動翼41の内部には複数のマルチホール状の冷却通路410が形成されており、これらの冷却通路410に、圧縮機2から抽出された圧縮空気が冷却空気として、ロータ5内部に設けられた流路(図示せず)を経由して供給される。冷却空気は、動翼41の基部側底部から供給され、先端部に向かう冷却通路410内を流れる過程で動翼41の内部を冷却し、高温の燃焼ガスの熱からブレード部412を保護する。
 冷却通路410は、動翼41の基部側長手方向に延在するように形成された複数の直線通路状の基部側長孔410aと、同じく直線通路状で動翼41の先端側長手方向に延在するように形成された複数の先端側長孔410bと、これら基部側長孔410aと先端側長孔410bとの接続部に介在して両長孔410a,410bを1本ずつ相互に連通させる複数の連通空洞部410cとを備えて構成されている。
 図3にも示すように、先端側長孔410bは、ブレード部412の湾曲形状に沿ってほぼ等間隔に配設されている。図4に示すように、ブレード部412の肉厚に応じて先端側長孔410bの内径を変化させてもよい。ここでは、ブレード部412の肉厚の大きい部分を通過する先端側長孔410bの内径を、肉厚の小さい部分を通過する先端側長孔410bの内径よりも大きくしている。
 図5に拡大して示すように、基部側長孔410aの通路断面積(内径d1)は、先端側長孔410bの通路断面積(内径d2)よりも大きい。なお、図6に示すように、基部側長孔410aの内径d1と先端側長孔410bの内径d2とを同一寸法にしてもよい。図4に示すように、ブレード部412の肉厚に応じて先端側長孔410bの内径を変化させる場合には、同様に基部側長孔410aの内径を変化させてもよい。
 連通空洞部410cは、基部側長孔410aおよび先端側長孔410bの通路断面積よりも大きい横断面積を有する球状または楕円球状等に形成されている。この連通空洞部410cは、基部411やブレード部412に比べて肉厚の大きなプラットフォーム部413の位置(高さ)に合わせて形成されている。
 次に、以上のように構成された動翼41における冷却通路410の形成方法について、図7Aから図7Dを参照しながら説明する。
 まず、図7Aに示す基部側長孔形成工程において、動翼41の基部側、即ち基部411側から、電気的加工、例えば放電加工または電解加工(好ましくは硝酸電解加工)等により基部側長孔410aを形成する。
 次に、図7Bに示す連通空洞部形成工程において、基部側長孔410aの終端位置、即ちプラットフォーム部413の形成される高さ付近で、電気的加工の加工進行速度を低下、もしくは停止させて暫時保持する。これにより、基部側長孔410aの終端部における内径が拡張し、プラットフォーム部413の内部に球状または楕円球状の連通空洞部410cが形成される。ここで動翼41の基部側からの加工は完了する。なお、基部側長孔410aの終端位置は、プラットフォーム部413に限らず、基部411に設けてもよい。
 次に、図7Cに示す先端側長孔形成工程において、動翼41の先端側から、電気的加工、例えば放電加工ないしは電解加工またはドリル等による切削加工によって先端側長孔410bを形成し、この先端側長孔410bを連通空洞部410cに貫通させて加工を完了する。
 こうして、図7Dに示すように、基部側長孔410aと先端側長孔410bと連通空洞部410cとが互いに連通して冷却通路410が完成する。
 このように、基部側長孔410aの終端位置にて電気的加工の加工進行速度を低下もしくは停止させる加工方法を採ることにより、基部側長孔410aの通路断面積よりも大きな断面積を有する連通空洞部410cを容易に形成でき、ここに通じる先端側長孔410bの貫通性を向上させ、ひいては冷却通路410全体の形成を容易にすることができる。
 以上のように構成された動翼41は、その冷却通路410が、動翼41の基部側長手方向に延在する複数の基部側長孔410aと、動翼41の先端側長手方向に延在する複数の先端側長孔410bと、これら各長孔410a,410bの接続部に位置する連通空洞部410cとを有して構成され、連通空洞部410cの断面積(内径d3)が各長孔410a,410bの通路断面積(内径d1,d2)よりも広いため、図7Cに示す先端側長孔形成工程において、先端側長孔410bの位置が多少ずれても連通空洞部410cに対する貫通率が極めてよくなり、これによって冷却通路410の形成を非常に容易にすることができる。
 また、基部側長孔410aが、単一の空洞部とならずに複数の直線通路状に形成されるため、この部分における動翼41の有効断面積が十分に確保され、動翼41の強度や剛性が損なわれることがない。しかも、冷却通路410の中で最も横断面積の大きな連通空洞部410cを、動翼41の中で最も肉厚の大きなプラットフォーム部413の内部に形成したため、実質的に動翼41の有効断面積が小さくなる部分が最小限となり、動翼41の強度や剛性の低下を確実に抑制することができる。
 なお、図7Aから図7Cに示す長孔形成工程は、基部側から先端側に向けて加工を開始したが、これとは逆に先端側から基部側に向けて加工を開始してもよい。
 そして、このように、強度および剛性が確保された動翼41をタービン4に適用することにより、ガスタービン1の信頼性を格段に向上させることができる。
〔第2実施形態〕
 次に、本発明の第2実施形態について、図8を参照して説明する。この第2実施形態に示す動翼51は、その冷却通路410を構成している複数の連通空洞部410cの長手方向の位置が異なる点を除き、図2に示す第1実施形態における動翼41と同様である。
 ここでは、複数の連通空洞部410cのうちの、隣り合う連通空洞部410c同士の高さが異なるように、例えば上下に高さを変化させて互い違いに連通空洞部410cが配置されている。このように高さを変化させたとしても、全部の連通空洞部410cがプラットフォーム部413の内部に位置するように形成することが望ましい。
 このように構成することにより、隣り合う連通空洞部410c同士が同じ高さに並ぶことがなくなり、各連通空洞部410cの間の距離が大きくなるため、連通空洞部410cの位置において動翼51の有効断面積が小さくなることが回避され、動翼51の強度や剛性が損なわれることを、より効果的に防止することができる。
〔第3実施形態〕
 次に、本発明の第3実施形態について、図9を参照して説明する。第3実施形態に示す動翼61は、複数の先端側長孔610bの先端から連通空洞部までの長さを同一としたことを除き、図2に示す第1実施形態における動翼41と同様である。
 複数の先端側長孔610bを同一の長さとすることにより、複数の電極またはドリルによる同時加工が可能となり、長孔の加工精度のばらつきが発生せず、加工精度が一層向上する。
〔第4実施形態〕
 次に、本発明の第4実施形態について、図10を参照して説明する。第4実施形態に示す動翼71は、複数の先端側長孔710bの先端から連通空洞部までの長さを同一とし、更に複数の基端側長孔710aの基部411の端面から連通空洞部までの長さも同一としたことを除き、図2に示す第1実施形態における動翼41と同様である。
 先端側長孔710bおよび基端側長孔710aをそれぞれ同一の長さとすることにより、第3実施形態における動翼61と同様の効果が得られる。
1 ガスタービン
2 圧縮機
3 燃焼器
4 タービン
5 ロータ
6 タービンハウジング
41 動翼
51 動翼
61 動翼
71 動翼
410 冷却通路
410a 基部側長孔
410b 先端側長孔
410c 連通空洞部
411 基部
412 ブレード部
413 プラットフォーム部
415 シュラウド

Claims (6)

  1.  タービンの動翼内部に冷却通路が形成され、該冷却通路に冷却空気を流通させて前記動翼の冷却を行うガスタービンの動翼において、
     前記冷却通路は、
     前記動翼の基部側長手方向に延在する複数の直線通路状の基部側長孔と、
     前記動翼の先端側長手方向に延在する複数の直線通路状の先端側長孔と、
     前記基部側長孔と前記先端側長孔との接続部に介在して両長孔を1本ずつ相互に連通させ、且つ前記両長孔の通路断面積よりも大きい断面積を有する複数の連通空洞部と、
    を有するガスタービンの動翼。
  2.  前記連通空洞部を、前記動翼のプラットフォーム部の位置に合わせて形成した請求項1に記載のガスタービンの動翼。
  3.  前記複数の連通空洞部のうちの、隣り合う連通空洞部の高さを異ならせた請求項1または2に記載のガスタービンの動翼。
  4.  少なくとも前記複数の先端側長孔の先端から前記連通空洞部までの長さを同一としたことを特徴とする請求項1または請求項2に記載のガスタービンの動翼。
  5.  請求項1乃至4のいずれかに記載のガスタービンの動翼をタービンに用いたガスタービン。
  6.  請求項1乃至4のいずれかに記載のガスタービンの動翼に前記冷却通路を形成する場合において、
     前記動翼の基部側から電気的加工により前記基部側長孔を形成する基部側長孔形成工程と、
     該基部側長孔の終端位置で前記電気的加工の加工進行速度を低下もしくは停止させて前記連通空洞部を形成する連通空洞部形成工程と、
     前記動翼の先端側から前記先端側長孔を形成し、該先端側長孔を前記連通空洞部に貫通させる先端側長孔形成工程と、
    を有するガスタービンの動翼の製造方法。
PCT/JP2011/054164 2010-03-03 2011-02-24 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン WO2011108440A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11750550.3A EP2543821B1 (en) 2010-03-03 2011-02-24 Rotor blade for gas turbine, method for manufacturing same, and gas turbine using rotor blade
CN201180007776.0A CN102741506B (zh) 2010-03-03 2011-02-24 燃气轮机的动翼及其制造方法、以及使用了动翼的燃气轮机
EP15181429.0A EP2987955B1 (en) 2010-03-03 2011-02-24 Gas turbine blade, manufacturing method therefore, and gas turbine using turbine blade
JP2012503100A JP5200189B2 (ja) 2010-03-03 2011-02-24 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン
KR1020127017810A KR101245083B1 (ko) 2010-03-03 2011-02-24 가스 터빈의 동익 및 그 제조 방법 및 동익을 이용한 가스 터빈

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010046687 2010-03-03
JP2010-046687 2010-03-03
JPPCT/JP2010/071506 2010-12-01
PCT/JP2010/071506 WO2011108164A1 (ja) 2010-03-03 2010-12-01 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン

Publications (1)

Publication Number Publication Date
WO2011108440A1 true WO2011108440A1 (ja) 2011-09-09

Family

ID=44531486

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/071506 WO2011108164A1 (ja) 2010-03-03 2010-12-01 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン
PCT/JP2011/054164 WO2011108440A1 (ja) 2010-03-03 2011-02-24 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071506 WO2011108164A1 (ja) 2010-03-03 2010-12-01 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン

Country Status (6)

Country Link
US (1) US20110217180A1 (ja)
EP (2) EP2543821B1 (ja)
JP (1) JP5200189B2 (ja)
KR (1) KR101245083B1 (ja)
CN (2) CN104895621B (ja)
WO (2) WO2011108164A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905631B1 (ja) * 2015-09-15 2016-04-20 三菱日立パワーシステムズ株式会社 動翼、これを備えているガスタービン、及び動翼の製造方法
US11905848B2 (en) 2019-06-05 2024-02-20 Mitsubishi Heavy Industries, Ltd. Turbine blade, manufacturing method for turbine blade, and gas turbine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863013A1 (de) * 2013-10-21 2015-04-22 Siemens Aktiengesellschaft Anordnung von Kühlkanälen in einer Turbinenschaufel in einer Bogenstruktur
US9528380B2 (en) * 2013-12-18 2016-12-27 General Electric Company Turbine bucket and method for cooling a turbine bucket of a gas turbine engine
KR101509383B1 (ko) * 2014-01-15 2015-04-07 두산중공업 주식회사 터빈 냉각장치
EP3351341A1 (de) * 2017-01-23 2018-07-25 Siemens Aktiengesellschaft Verfahren zur herstellung eines hohlraums in einer schaufelplattform
WO2019102556A1 (ja) * 2017-11-22 2019-05-31 東芝エネルギーシステムズ株式会社 タービン翼およびタービン
JP2021102929A (ja) * 2019-12-24 2021-07-15 三菱パワー株式会社 タービン翼およびタービン翼の製造方法並びにガスタービン
JP6637630B1 (ja) * 2019-06-05 2020-01-29 三菱日立パワーシステムズ株式会社 タービン翼およびタービン翼の製造方法並びにガスタービン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210402A (ja) * 1985-07-03 1987-01-19 ウエスチングハウス エレクトリック コ−ポレ−ション 燃焼タ−ビンロ−タの羽根
JPH03151501A (ja) * 1989-11-07 1991-06-27 Mitsubishi Heavy Ind Ltd ガスタービン翼冷却穴の検査方法
JPH03182602A (ja) * 1989-12-08 1991-08-08 Hitachi Ltd 冷却流路を有するガスタービン翼及びその冷却流路の加工方法
JP2007211618A (ja) 2006-02-07 2007-08-23 Mitsubishi Heavy Ind Ltd ガスタービン
JP2009167934A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd ガスタービン動翼およびガスタービン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2972807A (en) * 1957-02-19 1961-02-28 Int Nickel Co Method of making hollow turbine or compressor blades
US2985953A (en) * 1957-12-13 1961-05-30 Rolls Royce Manufacture of blades of internal combustion turbine engines
MX161567A (es) * 1985-03-13 1990-11-08 Westinghouse Electric Corp Mejoras en aspa fabricada con conductos longitudinales de enfriamiento para turbina de gas
JPH07119405A (ja) * 1993-10-26 1995-05-09 Hitachi Ltd ガスタービン冷却翼
US6644921B2 (en) * 2001-11-08 2003-11-11 General Electric Company Cooling passages and methods of fabrication
GB0229908D0 (en) * 2002-12-21 2003-01-29 Macdonald John Turbine blade
US6910864B2 (en) * 2003-09-03 2005-06-28 General Electric Company Turbine bucket airfoil cooling hole location, style and configuration
US6957948B2 (en) * 2004-01-21 2005-10-25 Power Systems Mfg., Llc Turbine blade attachment lightening holes
US7467922B2 (en) * 2005-07-25 2008-12-23 Siemens Aktiengesellschaft Cooled turbine blade or vane for a gas turbine, and use of a turbine blade or vane of this type
US7413406B2 (en) * 2006-02-15 2008-08-19 United Technologies Corporation Turbine blade with radial cooling channels
JP5281245B2 (ja) * 2007-02-21 2013-09-04 三菱重工業株式会社 ガスタービン動翼のプラットフォーム冷却構造
CN101397917A (zh) * 2007-09-28 2009-04-01 通用电气公司 用于涡轮机的空气冷却的叶片
US8511992B2 (en) * 2008-01-22 2013-08-20 United Technologies Corporation Minimization of fouling and fluid losses in turbine airfoils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210402A (ja) * 1985-07-03 1987-01-19 ウエスチングハウス エレクトリック コ−ポレ−ション 燃焼タ−ビンロ−タの羽根
JPH03151501A (ja) * 1989-11-07 1991-06-27 Mitsubishi Heavy Ind Ltd ガスタービン翼冷却穴の検査方法
JPH03182602A (ja) * 1989-12-08 1991-08-08 Hitachi Ltd 冷却流路を有するガスタービン翼及びその冷却流路の加工方法
JP2007211618A (ja) 2006-02-07 2007-08-23 Mitsubishi Heavy Ind Ltd ガスタービン
JP2009167934A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd ガスタービン動翼およびガスタービン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2543821A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905631B1 (ja) * 2015-09-15 2016-04-20 三菱日立パワーシステムズ株式会社 動翼、これを備えているガスタービン、及び動翼の製造方法
US10376950B2 (en) 2015-09-15 2019-08-13 Mitsubishi Hitachi Power Systems, Ltd. Blade, gas turbine including the same, and blade manufacturing method
US11905848B2 (en) 2019-06-05 2024-02-20 Mitsubishi Heavy Industries, Ltd. Turbine blade, manufacturing method for turbine blade, and gas turbine

Also Published As

Publication number Publication date
WO2011108164A1 (ja) 2011-09-09
CN102741506A (zh) 2012-10-17
EP2543821B1 (en) 2015-11-04
US20110217180A1 (en) 2011-09-08
EP2543821A4 (en) 2014-02-26
KR101245083B1 (ko) 2013-03-18
JPWO2011108440A1 (ja) 2013-06-27
KR20120092183A (ko) 2012-08-20
EP2987955B1 (en) 2019-05-22
EP2987955A1 (en) 2016-02-24
CN102741506B (zh) 2015-07-01
CN104895621A (zh) 2015-09-09
EP2543821A1 (en) 2013-01-09
JP5200189B2 (ja) 2013-05-15
CN104895621B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
JP5200189B2 (ja) ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン
US8506251B2 (en) Gas turbine blade, manufacturing method therefor, and gas turbine using turbine blade
EP3184741B1 (en) Cooling circuit for a multi-wall blade
EP2885504B1 (en) Airfoil and corresponding gas turbine engine
EP2634369B1 (en) Turbine buckets and corresponding forming method
US9926788B2 (en) Cooling circuit for a multi-wall blade
US9156114B2 (en) Method for manufacturing turbine nozzle having non-linear cooling conduit
EP3184740A1 (en) Cooling circuit for a multi-wall blade
CN106609682B (zh) 涡轮机轮叶及相应的涡轮机
US9932838B2 (en) Cooling circuit for a multi-wall blade
EP3336311A1 (en) Turbomachine blade with trailing edge cooling circuit
EP2607629A1 (en) Shrouded turbine blade with cooling air outlet port on the blade tip and corresponding manufacturing method
CN107035419B (zh) 用于多壁叶片的平台核心供给冷却系统
EP2775101B1 (en) Gas turbine blade
KR101277388B1 (ko) 가스 터빈 동익 및 가스 터빈
US9200534B2 (en) Turbine nozzle having non-linear cooling conduit
EP2620592A1 (en) Airfoil for a gas turbine engine having a tubular impingement element
US9022735B2 (en) Turbomachine component and method of connecting cooling circuits of a turbomachine component
US20180355728A1 (en) Cooled component for a turbine engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007776.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127017810

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012503100

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011750550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE