JP5900651B2 - 運転支援装置及び運転支援方法 - Google Patents

運転支援装置及び運転支援方法 Download PDF

Info

Publication number
JP5900651B2
JP5900651B2 JP2014549818A JP2014549818A JP5900651B2 JP 5900651 B2 JP5900651 B2 JP 5900651B2 JP 2014549818 A JP2014549818 A JP 2014549818A JP 2014549818 A JP2014549818 A JP 2014549818A JP 5900651 B2 JP5900651 B2 JP 5900651B2
Authority
JP
Japan
Prior art keywords
line
parking frame
acceleration
unit
host vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014549818A
Other languages
English (en)
Other versions
JPWO2014083825A1 (ja
Inventor
田中 大介
大介 田中
修 深田
修 深田
早川 泰久
泰久 早川
明 森本
明 森本
大介 笈木
大介 笈木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014549818A priority Critical patent/JP5900651B2/ja
Application granted granted Critical
Publication of JP5900651B2 publication Critical patent/JP5900651B2/ja
Publication of JPWO2014083825A1 publication Critical patent/JPWO2014083825A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/12Limiting control by the driver depending on vehicle state, e.g. interlocking means for the control input for preventing unsafe operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations

Description

本発明は、駐車のための車両運転を支援する運転支援の技術に関する。
乗物の速度を制御する運転支援装置としては、例えば特許文献1に記載の安全装置がある。この安全装置では、ナビゲーション装置の地図データと現在位置の情報から、乗物が道路から外れた位置にあることを検出する。そして、上記安全装置は、乗物の走行速度を増加させる方向のアクセル操作があり且つ乗物の走行速度が所定の値より大きいと判断したときは、アクセルの実際の操作に拘わらずスロットルを減速方向に制御する。
特開2003−137001号公報
上記特許文献1では、地図情報に基づき自車両が道路から外れた位置にあり且つ所定値以上の走行速度を検出している場合でのアクセル踏込み操作を、アクセル誤操作の可能性があるとしている。そのため、上記条件をスロットル抑制の作動条件としている。
しかし、上述の作動条件では、道路から外れて駐車場に進入するだけで、車速によってはスロットル抑制が作動してしまい、駐車場内での運転性を悪化させてしまう。
本発明は、上記のような点に着目してなされたもので、駐車に対する運転支援の精度を向上させることを目的とする。
上記課題を解決するために、本発明の一態様は、撮像部が撮像した撮像画像から路面上に位置する線を検出する。また、上記撮像画像を俯瞰変換した俯瞰画像における上記撮像部の受光部を中心とする放射状の線に基づき路面で反射した線と推定される線にノイズ情報を付加する。そして、上記路面上に位置する線と上記ノイズ情報とに基づき駐車枠を抽出し、その抽出した駐車枠に基づき、運転者が加速指示するために操作する加速操作子の加速操作量に応じて自車両に発生させる加速度を低減制御する。
本発明の一態様によれば、路面で反射した線を駐車枠を構成する線と判定されることを抑制出来る。この結果、駐車枠検出の信頼性が向上して、駐車に対する運転支援の精度を向上させることが可能となる。
本発明に基づく実施形態に係る車両の構成を示す概念図である。 本発明に基づく実施形態に係る走行制御コントローラの構成を説明するための図である。 カメラによる撮像の例を示す斜視図である。 車両周囲の撮像領域の例を示す平面図である。 周囲環境認識情報演算部の処理を示す図である。 カメラで撮像した撮像画像のうちの俯瞰変換する部分を示す概念平面図である。 図6の画像を俯瞰画像に変換した状態を示す概念平面図である。 取得する俯瞰画像の連続したフレーム位置を示す図である。 放射状線の検出を説明する図である。 放射状線を説明する図である。 放射状線の判定を説明する図である。 立体物の線の判定を説明する図である。 加速抑制作動条件判断部の処理を説明するための図である。 自車両と駐車枠、自車両と駐車枠との距離を説明する図である。 加速抑制量演算部の処理を説明する図である。 ステップS230の処理の具体例を示す図である。 第2加速抑制量の例を示す図である。 第1加速抑制量の例を説明する図である。 目標スロットル開度演算部の処理を説明する図である。 第1実施形態におけるタイムチャート例を示す図である。 立体物の線の俯瞰画像でのフレーム間の移動例を示す図である。 本実施形態で検出する駐車枠の例を示す図である。 アクセル操作量に応じた加速抑制量の遷移を示す図である。 総合確信度TLVLを求め方を説明する図である。 図24の総合確信度TLVLを使用した駐車支援制御を説明する図である。 踏切関連表示線に対応する線を検出する処理例を説明する図である。 踏切に表示されている踏切関連表示線を示す概要模式図である。 俯瞰画像から検出した踏切関連表示線に対応する線の例示を示す図である。 踏切に表示されている踏切関連表示線を示す他の例の概要模式図である。 本発明に基づく第2実施形態に係るステップS186の処理を説明する図である。 自車両予想軌道枠線重複量を説明する図である。 自車両予想軌道駐車枠入り口重複率を説明する図である。 第2実施形態におけるタイムチャート例を示す図である。
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
「第1実施形態」
(構成)
車両は、制動力を発生する制動装置、及び駆動力を発生する駆動装置を備える。
制動装置は、図1に示すように、車輪11に設けられるブレーキ装置12と、その各ブレーキ装置12に接続する配管を含む流体圧回路13と、ブレーキコントローラ14とを備える。ブレーキコントローラ14は、上記流体圧回路13を介して各ブレーキ装置12で発生する制動力を、制動力指令値に応じた値に制御する。ブレーキ装置12は、流体圧で制動力を付与する装置に限定されず、電動ブレーキ装置等であっても良い。
駆動装置は、図1に示すように、駆動源としてのエンジン15と、エンジン15で発生するトルク(駆動力)を制御するエンジンコントローラ16とを備える。駆動装置の駆動源は、エンジン15に限定されず、電動モータであっても良いし、エンジン15とモータを組み合わせたハイブリッド構成であっても良い。
上記ブレーキコントローラ14とエンジンコントローラ16は、それぞれ上位コントローラである走行制御コントローラ10からの制動指令、駆動指令(加速指令値)の各指令値を受け付ける構成とする。ブレーキコントローラ14とエンジンコントローラ16は、加減速制御装置を構成する。
また車両は、図1及び図2に示すように、周囲環境認識センサ1と、車輪速センサ2と、操舵角センサ3と、シフトポジションセンサ4と、ブレーキ操作検出センサ5と、アクセル操作検出センサ6と、ナビゲーション装置7と、ワイパー検出センサ8を備える。また、車両は、走行制御コントローラ10を備える。
周囲環境認識センサ1は、自車両MM周囲の障害物や路面を認識し、認識した周囲の状態を走行制御コントローラ10に出力する。本実施形態の周囲環境認識センサ1は、車両周囲を撮像可能な1又は2台以上のカメラから構成される。カメラ1は例えばサイドミラーの位置や、車両の前部、後部、屋根部などに設けられる。各カメラ1は、予め設定した撮像間隔時間毎に車両周囲を撮像して撮像画像を取得する。
本実施形態では、図3に示すように、前後左右の4箇所に周囲環境認識センサ1としてのカメラをそれぞれ配置している。そして、図4に示すように、車両周囲の領域をARA1〜ARA4に4分割し、各カメラ1でそれぞれの領域ARA1〜ARA4を撮像するようにしている。各カメラ1での撮像領域は重複部分が存在していても良い。また車両遠方(例えば100mまで)を撮像するための個別のカメラを備えていても良い。なお、撮像画像は、カメラ1で撮像した全領域の画像である必要は無く、カメラ1が撮像した映像から切り出した画像であっても良い。
ここで、本実施形態では、自車両MMの進行方向前方の領域を、駐車枠を検出する情報を取得する領域としている。以下の説明では、例示として、自車両前方の領域ARA1を撮像した撮像画像に基づき駐車枠を検出する場合で説明する。車両後退によって駐車枠に進入する場合には、領域ARA2の撮像画像を使用して駐車枠を検出する。
車輪速センサ2は、車輪速を検出し、検出した車輪速情報を走行制御コントローラ10に出力する。車輪速センサ2は、例えば車輪速パルスを計測するロータリエンコーダなどのパルス発生器で構成する。
操舵角センサ3は、ステアリングホイール20の操舵角を検出し、検出した操舵角情報を走行制御コントローラ10に出力する。操舵角センサ3は、ステアリング軸などに設けられる。操向輪の転舵角を操舵角情報として検出しても良い。
シフトポジションセンサ4は、シフト位置(駆動指示位置、駐車指示位置、ニュートラル位置など)のシフト情報を検出し、検出信号を走行制御コントローラ10に出力する。
ブレーキ操作検出センサ5は、ブレーキペダル18の操作の有無や操作量を検出する。検出されたブレーキペダル操作量は走行制御コントローラ10に出力される。ブレーキペダル18は、運転者が操作する減速指示用の操作子である。
アクセル操作検出センサ6は、アクセルペダル19の操作量を検出する。検出されたアクセルペダル操作量は走行制御コントローラ10に出力される。アクセルペダル19は運転者が操作する加速指示用の操作子である
ナビゲーション装置7は、GPS受信機、地図データベース、および表示モニタ等を備えており、経路探索および経路案内等を行う装置である。ナビゲーション装置7は、GPS受信機を通じて得られる自車両MMの現在位置と地図データベースに格納された道路情報に基づいて、自車両MMが走行する道路の種別や道路幅員等の情報を取得することができる。
ワイパー検出センサ8は、ワイパーの作動を検出する。検出されたワイパーの作動情報は走行制御コントローラ10に出力される。
情報呈示装置は、走行制御コントローラ10からの制御信号に応じて警報その他の呈示を音声や画像によって出力する。情報呈示装置は、例えば、ブザー音や音声により運転者への情報提供を行うスピーカと、画像やテキストの表示により情報提供を行う表示ユニットとを備える。表示ユニットは、例えばナビゲーション装置7の表示モニタを流用しても良い。
走行制御コントローラ10は、CPUと、ROMおよびRAM等のCPU周辺部品とから構成される電子制御ユニットである。その走行制御コントローラ10は、駐車のための運転支援処理を行う駐車運転支援部を備える。走行制御コントローラ10の処理のうち駐車運転支援部は、機能的には、図2に示すように、周囲環境認識情報演算部10A、自車両車速演算部10B、操舵角演算部10C、操舵角速度演算部10D、シフトポジション演算部10E、ブレーキペダル操作情報演算部10F、アクセル操作量演算部10G、アクセル操作速度演算部10H、加速抑制作動条件判断部10I、加速抑制量演算部10J、及び目標スロットル開度演算部10Kの処理を備える。これらの機能は、1又は2以上のプログラムで構成される。
周囲環境認識情報演算部10Aは、周囲環境認識センサ1が撮像した撮像画像に基づき車両周囲の路面環境を認識する。
自車両車速演算部10Bは、車輪速センサ2からの信号に基づき車速を演算する。
操舵角演算部10Cは、操舵角センサ3からの信号に基づき操舵角を演算する。
操舵角速度演算部10Dは、操作角センサからの信号を微分処理することで操舵角速度を演算する。
シフトポジション演算部10Eは、シフトポジションセンサ4からの信号に基づき、シフト位置を判定する。
ブレーキペダル操作情報演算部10Fは、ブレーキ操作検出センサ5からの信号に基づきブレーキ操作量を判定する。
アクセル操作量演算部10Gは、アクセル操作検出センサ6からの信号に基づきアクセルペダル19の操作量を演算する。
アクセル操作速度演算部10Hは、アクセル操作検出センサ6からの信号を微分処理することでアクセルペダル19の操作速度を演算する。
加速抑制作動条件判断部10Iは、周囲環境認識情報演算部10Aからの路面環境情報に基づき、車両の制駆動力制御に対する加速抑制作動条件の判断を行う。
次に、上記周囲環境認識情報演算部10Aの処理について、図5を参照しながら説明する。周囲環境認識情報演算部10Aは、図5に示す処理を予め設定したサンプリング時間毎に行う。
周囲環境認識情報演算部10Aは、ステップS10にて、周囲環境認識センサ1が撮像した撮像画像を取得する。本実施形態では、図6に示すように、自車両進行方向の領域ARA1を撮像した撮像画像を使用する。
次に、ステップS20にて、ステップS10で取得した撮像画像を俯瞰変換して俯瞰画像を取得する。
なお、俯瞰画像の取得は、例えば、取得した撮像画像から、自車周囲に予め設定した俯瞰エリアとする部分の画像部分を切り出し(図6参照)、その切り出した画像を俯瞰変換して、図7に示すような俯瞰画像を得る。撮像画像では、遠方の領域の物体ほど小さく映ることから、平行な線であっても、図6のように非平行線として映っている。これを俯瞰変換することで、図7に示すように、俯瞰画像上では平行な線として検出される。なお、俯瞰変換は、各カメラが撮像した撮像画像毎に、そのカメラが担当する俯瞰エリア部分の画像を俯瞰変換して俯瞰画像を取得するようにしても良い。
ここで、俯瞰画像は、真上から見下ろす位置に設置したと仮定した仮想的なカメラから路面環境を見た画像である。俯瞰変換処理は、幾何変換などの公知の変換手法を採用すれば良い。そして、俯瞰変換は、画像の視点を上方から下方に向けた方向に画像の座標変換を行う。
次に、ステップS30にて、俯瞰画像上に存在する線を検出する。具体的には、ステップS20で取得した俯瞰画像のうち、自車両の進行方向に沿った方向の路面の俯瞰画像部分(以下、路面俯瞰画像とも呼ぶ。)に対して線の抽出を行うための画像処理を行う。画像処理は、路面俯瞰画像に対してエッジ処理等の公知の線検出処理を行って当該路面俯瞰画像上に存在する線を検出する。本実施形態では車両前方を車両の進行方向とした場合を例示している。
ここで、図8に示すように、自車両の移動に伴い、順次取得する路面俯瞰画像には、車両進行方向前方の路面が順次映り出される。そして、順次取得する路面俯瞰画像の線のうち、画像のウィンドウ領域外に延びる線(車両進行方向に延びていると推定される線)についてはトラッキングを行う。すなわち、異なる路面俯瞰画像間における線の照合処理を行い、順次取得する路面俯瞰画像間における線について、同一の線か否かの判定を行っている。
次に、ステップS40では、検出した線に対する属性付与処理を行う。
上記属性付与処理を次に説明する。
検出した各線に対して、下記のような属性に該当するか判定し、該当する場合には、その属性を検出した線に対して付与する。各属性毎に付与判定を行う。
付与する属性の一例を次に示す。
・放射状線(カメラの受光部1aを中心として放射状に延びる線)
・立体物線(立体物を示す線)
・輝度対称性(検出した線の幅方向両端部の輝度の対称性)
・路面との輝度差
・左右輝度差(検出した線の幅方向両端部外側の輝度の対称性)
・固着物(長)(汚れによって線が分断された端点発生:分断が長い場合)
・固着物(短)(汚れによって線が分断された端点発生:分断が短い場合)
・固着物(レンズ)(レンへの付着物によってエッジ発生)
ここでは、属性付与処理部の処理として、放射状の線(放射状線とも呼ぶ)及び立体物線の属性処理について説明する。
まず、放射状線の属性付与の処理について図9を参照しつつ説明する。
ここで、直前に処理した俯瞰画面と今回処理した俯瞰画面が同じと判定した場合には、次の放射状線の属性付与の処理は実施しないようにしても良い。直前の俯瞰画面と今回の俯瞰画面とが同じ場合とは、車両が停止している場合、実質車両が停止していると見なせる場合である。すなわち、例えば車両移動が実質止まっていると推定される速度か否かで、直前に処理した俯瞰画面と今回処理した俯瞰画面が同じか判定可能である。
放射状線の属性付与の処理は、まず、俯瞰画像において、現在の路面俯瞰画像上の線のうち、図10に示すように、その画像を撮像したカメラ1の撮像中心1a(受光部1a)を中心とする放射状の線L3を検出する(ステップS41a)。
このとき、撮像誤差を考慮して、放射状の線か否かは次のように判定する。すなわち、図11のように、路面俯瞰画像上における線の上端点と上記撮像中心とを結ぶ直線との差が予め設定した放射状線判定閾値角θ以内の場合には、上記放射状の線L3と判定する。上記撮像誤差は、車両挙動変化(ピッチングなど)によって発生する。
ここで、上記対象とする線が初めて検出された線の場合には、放射状線判定閾値角θとしてオン閾値角(例えば±5度)を採用し、既に検出されている線の場合には、放射状線判定閾値角θとして上記オン閾値角よりも広いオフ閾値角(例えば±7度)を採用する。
また、自車両周囲の路面が反射し易いか否かを判定し、反射が起こり易い路面状態の場合には、放射状線判定閾値角θとして、上述のような初期値の角度よりも大きな角度を使用する。若しくは、連続照合判定(後述のステップS65)のカウントnの閾値として小さな値を使用する。例えば、オン閾値角(例えば±7度)、オフ閾値角(例えば±8度)とする。
反射が起こり易い路面状態とは、例えば次のようなものが例示出来る。
・降雨、降雪などでワイパー作動時(例えばワイパー検出センサ8からの信号で判定できる)。
・μが低くなっている(例えばスリップ量で判定出来る)。
・太陽光がレンズに入射している(例えば画像の輝度で判定できる)。
次に、放射状の線と判定した線L3が、今回の路面俯瞰画像で初めて検出した線か判定し(ステップSS41b)、今回初めて検出した線の場合には、当該線L3に放射状線の属性FF(1)の属性を付与する(ステップS41c)。ここで、放射状線属性FF(n)のnは放射状線と判定される度にカウントアップされる。
一方、放射状線と判定した線L3が、直前の路面俯瞰画像でも検出されていると判定した場合には、その線L3に放射状線属性FF(n)が付与されているか判定し(ステップS41d)、付与されていると判定した場合には、放射状線の属性FF(n)のカウンタ値nをカウントアップする。すなわち当該線に放射状線FF(n+1)の属性を付与する(ステップS41e)。
ここで、図9に示すステップS41b〜S41eの処理を、後述のステップS50で実施しても良い。この場合には、ステップS40では、放射状線と判定されれば、常に放射状線の属性付与し、ステップS50では、過去に非放射状線と判定された線か否かを判定して、過去に非放射状線と判定していた場合には、放射状線の属性付与の情報を無視して駐車枠判定を行う。若しくは放射状線の属性をOFFとする。またステップS55の処理にて、予め設定した継続時間以上、同一の線が連続して放射状線と判定されたか判定することとなる。
また、連続して放射状線(n)の属性と判定された線L3に対し、その線L3が映っている2枚の路面俯瞰画像での当該線L3の位置間の差分(線状の特定の位置での差分)と、車両運動の情報とに基づき、車両運動に沿ってその線が立体物のエッジとして移動していると判定すると、その線に対し立体物線の属性FRも付与する。
また、連続して放射状線(n)の属性と判定された線に対し、その線が映っている2枚の路面俯瞰画像での当該線の位置間の差分(線状の特定の位置での差分)と、車両運動の情報とに基づき、車両運動に沿ってその線が路面上の表示として移動していると判定すると、その線に対し放射状線として見なさない処理を追加しても良い。
次に、立体物線の属性付与処理について図12を参照して説明する。
連続して取得する路面俯瞰画像に基づき、線の両端部のうち少なくとも上端若しくは下端が検出できた線について、その検出した端部を基準として特定される当該線上の2点をトラッキングする点として選定し(ステップS42a)、車両の移動に伴う当該2点の各移動量を算出する(ステップS42b)。移動量は、自車両の移動に伴い取得した2つの俯瞰画像間での上記2点の変位量を上記各移動量とすればよい。そして、その2点の移動量の関係が車両の移動に伴う立体物に沿った移動と判定し(ステップS42c)、その判定条件を満足した場合には、当該線に対して立体物線の属性FR=1を付与する(ステップS42d)。上記立体物は、静止した車両や壁などの静止物とする。上記トラッキングする2点の移動量の関係が、例えば自車両に近い側の点(下側の点)の移動量が相対的に遠い点(上側の点)の移動量よりも小さい場合に、立体物の線と判定する。立体物の線は、通常は、立体物のエッジ部分の線である。
ここで、立体物線の属性を付与した線を検出した場合には、路面俯瞰画像において、立体物線の属性FRが付加された線とカメラの受光部1aとの間にある立体物線の属性FRが付加されていない線を検出し、その検出した線のうち、上記立体物の属性FRが付加された線との離隔距離が予め設定した設定離隔距離(例えば1m)以内の線があった場合には、その線に対して優先枠候補の属性PRRを付与する。なお、予め設定した距離内で複数の立体物線が存在するか判定を行い、その複数の立体物線から立体物の存在位置を推定し、その推定した立体物における車両側の位置におけるその推定した立体物との離隔距離が予め設定した設定離隔距離以内の線に対して、優先枠候補の属性PRRを付与することにしても良い。この処理はステップS40やステップS50などで実施すればよい。
次に図5に示されるステップS50では、駐車枠認定の前処理として、放射状線FF(n)(n:例えばn=3以上)の属性、若しくは立体状線の属性FRが付与されている線を、枠線候補の線から除外する。
次に、ステップS52では、線の補間処理を行う。これは線のかすれを補間する処理である。すなわち、同一の仮想の直線上に沿って検出された複数の線、つまり同一線の可能性がある線同士の補間処理を行う。
この線の補間処理を、図26を参照しつつ説明する。
まず、同一仮想線上に沿って互いに隣り合う2本の線の間の空白の長さ(途切れ長さとも呼ぶ。)が予め設定した補間長さ以下か判定し(ステップS410)、途切れ長さが補間長さ以下の場合には、線の補間を行ってその2本の線の一本の線と見なす処理を行う(ステップS420)。補間長さは、踏切における線路幅(線路を通過する車輪分の余裕代を含む。)よりも短い値に設定する。補間長さは例えば20cmに設定する。
また、上記途切れ長さが上記補間長さを超える線間について、次のように処理を行う。
まず上記途切れ長さが予め設定した最大補間長さ(例えば1m)を超えるか判定して(ステップS430)、最大補間長さをこえ場合には、補間処理を行わない。すなわち別の線として処理する。
一方、途切れ長さが20cmより長く且つ最大補間長さ以内の線間について、次のような補間処理の適否の判断を行う。
すなわち、上記空白を構成する2本の線の少なくとも一方の線が駐車線レベルFLVLが1以上の線か否かを判定する(ステップS440)。駐車線レベルFLVLが1以上の線でない場合には補間しない。
次に、駐車線レベルFLVLが1以上の線、つまり対を成す枠線候補の線が検出されている場合には、上記空白を構成する2本の線のうちの両端が分かる側の線(検討線と呼ぶ。)について、その線と対(ペア)をなすペア線との比較を行う。上記検討線は、通常は先に検出された線である。
そして、検討線とペア線の長さが近似しており(ステップS450)、上記ペア線側の長手方向で隣り合う線と線との間の途切れ長さが、上記検討線側の途切れ長さと近似している場合には(ステップS460)、両方の線の補間を行ってその2本の線の一本の線と見なす処理を行うと共に非枠線候補の情報を当該線に付加する(ステップS470)。検討線とペア線の長さが近似とは実質同じ長さと見なせる場合であって、例えば検討線とペア線との長さの差が予め設定した閾値以下の場合に近似と判定する。上記途切れ長さが近似とは、途切れ長さが実質同じ長さと見なせる場合であって、例えば途切れ長さの差が予め設定した閾値以下の場合に近似と判定する。
次に、ステップS55では、上記連続して取得する路面俯瞰画像の処理で検出されている線に対して、枠線候補の線か否かの処理を行う。
ここでは、下記に示すような予め設定した駐車枠条件を満足するか否かで判定する。枠線候補の線か否かの処理は、例えば、自車両に対して予め設定した駐車枠存在判定領域(例えば自車両を中心とした半径10m以内の領域)に位置する線に対して行う。
すなわち、ステップS55では、下記の駐車枠線条件の全てを満足する場合に駐車枠線候補の線と判定する。駐車枠候補の線と判定した場合には、ステップS60にて、その線の属性情報としての駐車線レベルFLVLに「1(n)」を設定する。なお、駐車線レベルFLVLの初期値は「0」とする。またLVL1(n)のnは、初めて駐車枠線候補と判定された場合にn=1となり、駐車枠線候補と判定される度にカウントアップさせる。逆に一度、駐車線レベルFLVLが「1(n)」と判定された線について、駐車枠線条件を満足しないと判定される度にカウントダウンさせる。
「駐車枠線条件」
・線が直線と推定される線である。
・線幅が予め設定した線の範囲(駐車枠の線と見なされる線の太さの範囲、例えば2cm〜4cm)である。
・予め設定した離隔範囲(駐車枠の対となる線と見なすことができる範囲、例えば1.5m〜2.5m))に対となる線が存在する。
・対となる線同士の平行度が予め設定した許容角度以内(例えば4度以内)となっている。
・対となる線の対応する端部が検出されている場合に、その両方の端点における線の延長方向のズレ量が予め設定したズレ量(例えば50cm)以下である。
・対となる線同士の線幅寸法の差が予め設定した値(例えば8mm)以下である。
・線の長さが予め設定した最大長(例えば9m)以下である。
・非枠線候補の情報を有しない線である。
ここで、駐車枠の線として検出する線は、車両を駐車した場合における当該車の前後方向に沿った方向の線(駐車時に車両の側方に存在する線)と推定される線である。尚、線幅を確認しているので、線の端部の形状などは検出可能である。
ここで、対象とする線が優先枠候補の属性PRRを有する場合には、下記の駐車枠線条件の条件を緩和して駐車枠線候補か否かを判定する。緩和とは、例えば下記設定される値を広めにして判定する。例えば上記平行度の許容角度を例えば6度以内などにして判定する。
次に、ステップS65では、駐車線レベルFLVLが「1(n)」の線について、変数nが予め設定した閾値以上(例えば、サンプリング周期100msecでn=3以上)か否かを判定する。そして、上記線がその条件を満足する場合には、ステップS70にて、上記予め設定した閾値以上の線について、駐車線レベルFLVLを2に設定変更する。予め設定した閾値は、例えば線の長さとして予め設定した長さ(例えば2m)以上検出可能な値に設定する。ここで、カウンタnの大きさで判定する代わりに、線の長さが予め設定した長さ以上まで検出したか否かで判定し、線の長さが予め設定した長さ(例えば2m)以上まで検出できたと推定された線であって駐車線レベルFLVLが「1(n)」の場合に、駐車線レベルFLVLを2に設定変更するようにしても良い。または車両の移動距離が予め設定した設定移動距離の間、同一の直線と判定した場合に、駐車線レベルFLVLが「1(n)」の線を、駐車線レベルFLVL2に設定変更するようにしても良い。
なお、線の長さが予め設定した最大長さ(例えば9m)以上の場合には、駐車線レベルFLVLのレベルに関係無く、駐車線レベルFLVLを「0」に強制的に変更する。
次に、ステップS75では、駐車線レベルFLVLが2の線について、その両端部の一方が検出されている場合にはステップS80に移行して、当該ステップS80にて駐車線レベルFLVLを3に変更する。
ここで、端部の検出は、端部形状が予め設定した特定形状の場合のみ端部と認定するようにしても良い。特定形状の例は、単なる線の端部、U字状、T字状の端部形状などである。
次に、ステップS85では、駐車線レベルFLVLが3の線について、その両端部がともに検出されている場合には、ステップS90に移行し、当該ステップS90にて駐車線レベルFLVLを4に変更する。
次に、加速抑制作動条件判断部10Iの処理について、図面を参照しながら説明する。加速抑制作動条件判断部10Iは、図13に示す処理を予め設定したサンプリング時間毎に行う。
ステップS110では、加速抑制作動条件判断部10Iは、上記周囲環境認識情報演算部10Aで演算した路面環境認識情報として駐車線レベルFLVLが1以上の枠線情報を取得する。
次にステップS120では、上記ステップS110で取得した枠線情報に基づいて、駐車枠の有無を判断する。駐車線レベルFLVLが3以上の枠線情報がある場合には駐車枠が有ると判断してステップS130に移行する。一方、駐車線レベルFLVLが3以上の枠線情報が無いため、信頼性の高い駐車枠が無いと判断した場合には、加速抑制作動条件非成立と判断してステップS190に移行し、ステップS190において、加速抑制作動条件判断結果(=加速抑制作動条件非成立)を加速度制限値演算部に出力する。
次にステップS130では、上記自車両車速演算部10Bより自車両MMの車速を取得する。
次にステップS140では、上記ステップS130で取得した自車両車速に基づいて、自車両車速条件判断を行う。例えば自車両車速が予め設定した値未満の場合にはステップS150に移行し、自車両車速が上記予め設定した値以上の場合には、加速抑制作動条件非成立と判断してステップS190に移行し、ステップS190にて加速抑制作動条件判断結果(=加速抑制作動条件非成立)を加速抑制量演算部10Jに出力する。上記予め設定した値は、例えば15[km/h]とする。
次にステップS150では、上記ブレーキペダル操作情報演算部10Fから、ブレーキペダル操作情報を取得する。
次にステップS160では、上記ステップS150で取得したブレーキペダル操作情報に基づいて、ブレーキペダル操作の判断を行う。ブレーキペダル操作がないと判断した場合にはステップS170に移行する。一方、ブレーキペダル操作があると判断した場合には、加速抑制作動条件非成立と判断してステップS190に移行し、ステップS190にて、加速抑制作動条件判断結果(=加速抑制作動条件非成立)を加速抑制量演算部10Jに出力する。
ステップS170では、上記アクセル操作量演算部10Gから、アクセル操作量を取得する。
次にステップS180では、上記ステップS170で取得したアクセル操作量に基づいて、アクセル操作量判断を行う。例えばアクセル操作量が予め設定した値以上の場合は加速抑制作動条件成立と判断する。一方、アクセルペダル操作が上記予め設定した値未満の場合には、加速抑制作動条件非成立と判断してステップS190に移行し、ステップS190にて、加速抑制作動条件判断結果を加速抑制量演算部10Jに出力する。ここで、上記予め設定した値は、例えば、アクセルペダル19のアクセル開度の3[%]に相当する操作量に設定する。
次にステップS183では、駐車枠進入判断情報を取得する。ここで、本実施形態では、操舵角と、自車両MMと駐車枠の角度と、自車両MMと駐車枠の距離と、に基づいて駐車枠進入判断を行う場合とする。
具体的には、上記ステップS183では、上記操舵角演算部10Cから操舵角を取得する。またステップS183では、上記周囲環境認識情報演算部10Aが演算した自車両周囲画像に基づき、自車両MMと駐車枠L0の角度α、自車両MMと駐車枠L0の距離Dを取得する。ここで、上記自車両MMと駐車枠L0の角度αは、例えば、図14に示すように、車両の中心を通る車両の前後方向の直線(進行方向に延びる直線)Xと、駐車枠L0に駐車が完了した際に車両の前後方向と平行若しくは略平行になる駐車枠L0部分の枠線L1及びその延長線からなる駐車枠L0側の線との交角の絶対値とする。また、上記自車両MMと駐車枠L0の距離Dは、例えば、図14に示すように、自車両前端面の中心点と駐車枠L0の入り口L2の中心点との距離とする。但し、上記自車両MMと駐車枠L0の距離Dは、自車両前端面が駐車枠L0の入り口L2を通過した後は、負の値とする。上記自車両MMと駐車枠L0の距離Dは、自車両前端面が駐車枠L0の入り口L2を通過した後は、ゼロに設定しても良い。
ここで、上記距離Dを特定するための自車両MM側の位置は、自車両前端面の中心点出ある必要はない。自車両MMに予め設定した位置と、上記入り口L2の予め設定した位置との距離をDとすれば良い。
このように、ステップS183では、駐車枠進入判断情報として、操舵角、自車両MMと駐車枠L0の角度α、及び自車両MMと駐車枠L0の距離Dを取得する。
次にステップS186では、上記ステップS183で取得した駐車枠進入判断情報に基づいて、駐車枠進入判断を行う。駐車枠進入と判断した場合には、加速抑制作動条件成立と判断する。一方、駐車枠進入と判断しなかった場合には、加速抑制作動条件非成立と判断する。その後、ステップS190に移行し、加速抑制作動条件判断結果を加速抑制量演算部10Jに出力する。
上記駐車枠進入の判断は、例えば次のようにして実施する。すなわち、ステップS186では、次の3つの条件(a〜c)を全て満足した場合に駐車枠進入と判断する。
a:上記ステップS183で検出した操舵角が予め設定した設定舵角値(例えば45[deg])以上の値となってから予め設定した設定時間(例えば20[sec])以内
b:自車両MMと駐車枠L0の角度αが予め設定した設定角度(例えば40[deg])以下
c:自車両MMと駐車枠L0の距離Dが予め設定した設定距離(例えば3[m])
ここでは、駐車枠進入判断に複数の条件を使用した場合を例示したが、上記条件の中の1つ以上の条件で判断を行っても良い。また自車両MMの車速の状態によって駐車枠L0への進入か否かを判定しても良い。
次に、上記加速抑制量演算部10Jの処理について、図面を参照しながら説明する。加速抑制量演算部10Jは、図15に示す処理を予め設定したサンプリング時間毎に行う。
ステップS210では、上記加速抑制作動条件判断部10Iから加速抑制作動条件判断結果を取得する。
次にステップS220では、加速抑制処理選択情報を取得する。上記ステップS220は、例えば上記アクセル操作量演算部10Gからアクセル操作量を、上記アクセル操作速度演算部10Hからアクセル操作速度を、上記加速抑制作動条件判断部10Iから加速抑制作動条件判断結果を取得する。
次にステップS230では、上記ステップS220で取得した加速抑制処理選択情報に基づいて、加速抑制処理を選択する。具体的には、第2加速抑制処理の作動条件が成立したと判断した場合はステップS240に移行する。第2加速抑制処理の作動条件が成立せず且つ第1加速抑制処理の作動条件が成立したと判断した場合にはステップS250に移行する。更に、第2加速抑制処理及び第1加速抑制処理の作動条件がともに成立していない場合には、ステップS260に移行する。
上記ステップS230の処理、特に第2加速抑制処理の作動条件、第1加速抑制処理の作動条件の判定について図16を参照して説明する。
まずステップS231において、前回の制御サイクルでの判定処理時に第2加速抑制処理が作動していたか否かを判断する。前回の制御サイクルでの判定で第2加速抑制処理が作動していた場合にはステップS233へ移行する。前回の制御サイクルでの判定で第2加速抑制処理が作動していなかった場合にはステップS235へ移行する。
ステップS233では、前回第2加速抑制処理が作動していた場合の第2加速抑制処理の作動終了判断を行う。具体的には、上記ステップS220で取得したアクセル操作量に基づいてアクセル操作が行われていると判断した場合は、第2加速抑制の作動を継続すると判定してステップS240へ移行する。一方、アクセル操作が行われていないと判断した場合は、再度作動条件判断を行うためにステップS235に移行する。
ステップS235では、第1加速抑制処理の作動条件の判断を行う。例えば、上記ステップS210で取得した加速抑制作動条件判断結果が条件成立と判断している場合には、第1加速抑制処理の作動条件成立と判断してステップS237に移行する。一方、加速抑制作動条件判断結果が条件非成立と判断している場合には、ステップS260に移行する。
ステップS237では、第2加速抑制処理作動条件の判断を行う。例えば、下記条件(d〜f)を全て満足する場合には、第2加速抑制処理の作動を行うと判定してステップS240に移行する。それ以外の場合はステップS250に移行する。
d:上記ステップS210で取得した加速抑制作動条件判断結果が条件成立
e:上記ステップS220で取得したアクセル操作量が予め設定した設定操作量(例えばアクセル開度が50[%])以上
f:アクセル操作速度が予め設定した操作速度(例えば200[%/sec])以上
そして、図15におけるステップS240では、上記ステップS220で取得した情報に基づいて第2加速抑制量を演算し、ステップS270に移行する。
第2加速抑制量の演算方法は、例えば次のように実施する。すなわち、上記ステップS220で取得したアクセル操作量に基づいて、加速抑制量が予め設定した設定抑制量より大きくならないような加速抑制量を演算し、ステップS270に移行する。具体的には、図17に示すように、予め設定した値未満の加速操作量に対しては加速操作に応じたスロットル開度を演算し、予め設定した値以上の加速操作(アクセル操作)に対しては加速操作に拘わらず加速スロットル開度(加速指令値)が10[%]より大きくならないように加速抑制量を演算する。図17中、実線が、通常時つまり抑制をしていない状態での、アクセル操作量とスロットル開度とを示す。また一点鎖線が、第2加速抑制を実施した場合におけるアクセル操作とスロットル開度の関係を示す。すなわち、検出したアクセル操作量における、実線と一点鎖線との差分が第2加速抑制量となる。
またステップS250では、上記ステップS220で取得した情報に基づいて第1加速抑制量を演算し、ステップS270に移行する。第1加速抑制量の演算方法について説明する。上記ステップS220で取得したアクセル操作量に基づいて、アクセル操作量に応じてスロットル開度が大きくなるように演算するように第1加速抑制量を演算し、ステップS270に移行する。具体的には、図18に示すように、アクセル操作量が大きくなることに応じてスロットル開度(加速指令値)が大きくなるように演算する。ここで、第1加速抑制量は、アクセル操作量に対して第2加速抑制量より抑制量が小さく加速が大きい加速抑制量、抑制を行っていない通常時より抑制量が大きく加速が小さいスロットル開度になるように加速抑制量を演算する。図18中、実線が、通常時つまり抑制をしていない状態での、アクセル操作量とスロットル開度とを示す。また一点鎖線が、第2加速抑制を実施した場合におけるアクセル操作とスロットル開度の関係を示す。すなわち、検出したアクセル操作量における、実線と二点鎖線との差分が第1加速抑制量となる。
ここで、図18に示すように、第2加速抑制量は第1加速抑制量よりも大きく、図17及び図18に示すように、第1加速抑制量及び第2加速抑制量は、ともにアクセル操作量が大きいほど大きくなるように設定されている。
またステップS260では、アクセルの操作に対して加速抑制を行わない加速抑制量を演算し、ステップS270に移行する。本実施形態では、加速抑制を行わない加速抑制量はゼロに設定する。
ステップS270では、上記ステップS202で演算した加速抑制量を目標スロットル開度演算部10Kに出力する。
次に、上記目標スロットル開度演算部10Kの処理について、図面を参照しながら説明する。目標スロットル開度演算部10Kは、図19に示す処理を予め設定したサンプリング時間毎に行う。
まずステップS310では、上記加速抑制作動条件判断部10Iから、加速抑制作動条件判断結果を取得する。
次にステップS320では、上記アクセル操作量演算部10Gから、アクセル操作量を取得する。
次にステップS330では、上記加速抑制量演算部10Jから、加速抑制量を取得する。
次にステップS340では、上記ステップS310で取得した加速抑制作動条件判断結果と、上記ステップS320で取得したアクセル操作量と、上記ステップS330で取得した加速抑制量に基づいて、目標スロットル開度を演算する。例えば、加速抑制作動条件が非成立である場合は、加速抑制を行わない通常通りのアクセル操作量に基づいたスロットル開度を目標スロットル開度とする。一方、加速抑制作動条件が成立している場合は、加速抑制量に基づいたスロットル開度を目標スロットル開度とする。
例えば下記式によって、目標スロットル開度θを求める。
θ = θ1−Δθ
ここで、θ1は、アクセル操作量に応じたスロットル開度を示し、Δθは、加速抑制量を示す。
次にステップS350では、上記ステップS340で演算された目標スロットル開度θをエンジンコントローラ16に出力する。
エンジンコントローラ16は、取得した目標スロットル開度θとなるように、スロットル開度を制御する事で、駆動源であるエンジンを制御する。
(動作その他)
本実施形態の処理によるタイムチャートの例を図20に示す。
この例は、駐車枠進入操作検出処理が、自車両MMと駐車枠L0の角度α(条件b)、及び自車両MMと駐車枠L0の距離D(条件c)に基づいて駐車枠L0への進入操作を検出する例である。
この図20に示す例では、予め設定した確からしさ(確信度)を有する駐車枠L0を検出し(t1)且つ車速が予め設定した設定速度以下の状態になると(t2)、駐車枠L0への進入操作の判定を行う。
ここで上記予め設定した確からしさ(確信度)を有する駐車枠L0を検出する際に、図10に示すような放射状線の属性FF(n)を持つ線、及び立体物線の属性を持つ線(立体物のエッジの線)を除外して、駐車枠判定を行っている。
このとき、凍結路面や水溜まりなどには、近傍の構造物(立体物の表面部分)が反射して、その反射物のエッジが俯瞰画面上に線として映り込んでいる場合がある。このような路面で反射した線は、車両が移動しても常に車両に向かう光線であることから、俯瞰画像上では、通常、カメラの受光部1aを中心とした放射状線として認識される。また、路面から垂直に延びる立体物のエッジ線も俯瞰画像上では放射状の線として認識される。
このような事に基づいて、上記放射状の線を駐車枠候補から外すことで、反射線による誤認識が抑制されて、駐車枠判定の精度が向上する。
同様に立体物のエッジ線についても駐車枠候補から外すことで、立体物の映り込みによる誤認識が抑制されて駐車枠判定の精度が向上する。ここで立体物のエッジ線は、図21に示すように、車両の移動に伴う、見かけ上の線の移動が、路面上に描かれた線の移動の場合とは異なる。これによって立体物の線か否かを判定することが出来る。
また、線がかすれて途中で途切れている2本の線を同一の線と補間することでも、駐車枠判定の精度が向上する。
このとき、線間の途切れがかすれによるとは考え難いほど離れていても、対を成す線が共に近似した長さで且つ途切れ長さの間隔も近似している場合には、その途切れ部分を補間して2本の線を同一の線と見なすと共に非枠候補として扱う。
ここで、踏切においては、図27に示すように、線路位置で分断された一対の線Lsが連続する。これを俯瞰画像の線L5では、図28に示すように、連続した分断線として検出される。この線L5を本実施形態では、一本の線と見なすことで、個々の線を個別に駐車枠の候補線として扱われる事を回避する。なお、この線に対して駐車枠の非候補との属性を付加している。また、図29に示すような、踏切が線路を斜めに横断する場合もあるが、対を成す線は近似の長さの線の断続線として検出されるので問題はない。
ここで、本実施形態の駐車枠判定で駐車枠として検出される例を図22に示す。
次に時刻t2の後、図10に示す例では、自車両MMと駐車枠L0の距離D(条件c)が予め設定した距離以下となり(t3)、更に自車両MMと駐車枠L0の角度α(条件b)が予め設定した角度以下になると(t4)、駐車枠L0への進入操作と判定して加速抑制の作動状態となる。
この加速抑制の作動状態のときに、運転者がアクセル操作を行うと、そのアクセル操作に応じた加速指令値(スロットル開度)を抑制する。更に、この加速抑制を実施している状態で、アクセル操作量が予め設定した操作量以上となると(t5)、加速指令値の抑制量を増大する。本実施形態では、予め設定したスロットル開度以下抑えるように加速抑制を行う結果、図23に示すように、アクセル操作量が予め設定した操作量を越える前に比較して、実際のスロットル開度が小さく抑制される。この結果、運転者によるアクセルペダル19の誤操作に対する加速抑制がより有効に実行されることとなる。
ここで、図23は、アクセルペダルの操作量に応じた加速抑制御のスロットル開度(加速指示量)の遷移の例を示す。図23に示す例では、加速抑制処理が第2加速抑制処理に移行してもアクセルペダルが戻されて、第1加速抑制処理の加速抑制量と第2加速抑制処理の加速抑制量が等しくなった時点で、第1加速抑制処理に遷移する。
以上のように、予め設定した確信度以上の駐車枠としての確からしさを有する駐車枠L0への進入操作を検出、つまり自車両MMが駐車枠L0に進入することを検出することを、加速抑制の作動条件とする。この結果、自車両MMが例えば道路から外れて駐車場に進入しても、駐車枠L0への進入操作を検出するまでは加速抑制を行わないので、その分、運転性の低下を抑えることが出来る。更に、駐車枠L0への進入操作をした後は、加速抑制を行うことで、アクセルペダル誤操作時の加速抑制効果の高い加速抑制を実現することが可能となる。
また、駐車枠L0への進入操作を検出した場合と、その後さらに加速操作が行われてアクセルペダル誤操作の可能性がより高い場合とに分けて、2段階の加速抑制を行う。この結果、運転性の低下を抑えながらアクセルペダル誤操作時の加速抑制効果の高い加速抑制を行うことが可能となる。
また、駐車枠L0に進入している状態でも、加速操作量に応じてスロットル開度が大きくなるが、通常よりスロットル開度が小さくなるように加速抑制を行う。すなわち、加速操作量が大きくなるにつれて加速抑制量を大きくすることで、運転性の低下が少なく、加速の抑制効果の高い加速抑制を行うことが可能となる。加速操作が小さい状態では加速抑制量が小さいので運転性低下が少なく、加速操作が大きい状態で加速抑制量が大きくなって加速抑制効果が高くなる。
更に、大きな加速操作を行って、第2加速抑制状態となると、予め設定した値(第1加速状態と判定した加速操作量より大きな所定量)以上にはスロットル開度が大きくならないように加速抑制を行う。この結果、加速操作の誤操作によって運転者の意図しない加速が発生することを抑制でき、事故を回避・軽減する効果の高い加速抑制を行うことが可能となる。なお、第2加速抑制状態となっても、加速操作量が予め設定した値未満まで小さくなれば、第1加速抑制状態となる。
このように、駐車枠L0に進入している状態で大きな加速操作を行った場合には、第1の加速度抑制処理による加速抑制量よりも抑制量の大きい加速抑制を第2加速抑制処理として行うことによって、運転者の加速操作の誤操作による意図しない加速が発生することを抑制でき、より目的とする駐車位置に駐車させる効果の高い加速抑制を行うことが可能となる。
また、加速操作量としてアクセルペダル19の操作量とアクセルペダル操作の速度を検出することにより、加速操作の誤操作と通常操作との区別をより精度良く行うことができ、運転性の低下が少なく、加速の抑制効果の高い加速抑制を実現することが可能となる。
また、自車両MMの車速と、自車両MMの操舵角と、自車両MMと駐車枠L0の角度α、自車両MMのいずれかのポイントと駐車枠L0の入り口L2の距離D、から駐車枠L0への進入操作を検出することによって、運転者が駐車枠L0を通り過ぎる走行をしているのか、駐車枠L0に駐車しようとしているのかを周囲環境認識処理から区別することができ、より運転性の低下の少ない駐車支援が可能となる。
このとき、自車両MMの進行方向と駐車枠L0への駐車方向とのなす角度αを自車両MMと駐車枠L0の角度αとすることにより、検出している駐車枠L0への侵入操作の進行具合(駐車枠への進入の確信度)を検出することが可能となる。この結果、その検出値によって駐車枠L0に駐車しようとしていることを精度よく判断することができ、より運転性の低下の少ない駐車支援が可能となる。
(変形例)
(1)上記実施形態では、駐車線レベルFLVLが3以上の場合に駐車枠有りとしている。駐車線レベルFLVLが2以上を駐車枠有りとしても良い。
(2)また、上記実施形態では、ステップS186で、駐車枠進入判断として、駐車枠進入有りか無しかの2値化で加速抑制制御の開始判定を行っている。これに対し、駐車枠進入有りの場合について、その駐車枠への進入の確からしさを示す進入確信度ALVLを使用して複数段階で駐車枠への進入の確からしさを判定しても良い。そして、その進入確信度ALVLと駐車線レベルFLVLに応じて、上記加速抑制制御の内容を変更しても良い。
例えば、駐車枠進入有りのときの進入確信度ALVLとして「低」と「高」の2段階に区分し、その確信度ALVLと駐車線レベルFLVLとの組合せで、図24に示すような総合的な駐車支援の総合確信度TLVLを算出する。そして、その駐車支援の総合確信度TLVLに基づき、図25のような駐車支援の制御を行うようにしても良い。
図25に示す駐車支援の制御は、総合確信度TLVLが「極低」の場合には、アクセル開度が80%以上となると加速抑制を開始して、予め設定した量(小さい量)だけアクセル抑制を行う。また、総合確信度TLVLが「低」の場合には、アクセル開度が80%以上となると加速抑制を開始して、予め設定した量(総合確信度TLVLが「極低」よりも大きな値)だけアクセル抑制を行うと共に運転者へのアクセル抑制の報知処理を行う。また、総合確信度TLVLが「高」の場合には、アクセル開度が50%以上となると加速抑制を開始して、予め設定した量(総合確信度TLVLが「極低」よりも大きな値)だけアクセル抑制を行うと共に運転者へのアクセル抑制の報知処理を行う。また、総合確信度TLVLが「極高」の場合には、アクセル開度が50%以上となると加速抑制を開始して、予め設定した量(総合確信度TLVLが「高」よりも大きな値)だけアクセル抑制を行うと共に運転者へのアクセル抑制の報知処理を行う。図25に示される加速抑制実施条件(アクセル開度)のパーセントは例示である。
(3)また上記実施形態では、検出した駐車枠に基づく制駆動力制御として、加速抑制制御を例示した。検出した駐車枠に基づく制駆動力制御はこれに限定されない。例えば、検出した駐車枠への誘導支援を行うための制駆動力制御等であっても良い。
また検出した駐車枠への進入支援のための制駆動力制御に限定されない。検出した駐車枠に基づく制駆動力制御は、検出した駐車枠からの車両の発進制御であっても良い。
また、上記説明では、俯瞰変換した俯瞰画像に基づき線を検出しているが、俯瞰変換する前の撮像画像から直接、線の検出をしても良い。
ここで、周囲環境認識情報演算部10Aは撮像部を構成する。加速抑制作動条件判断部10I、加速抑制量演算部10J、及び目標スロットル開度演算部10Kは、加速抑制制御を行う制駆動力制御部を構成する。ステップS20が俯瞰画像取得部を構成する。ステップS30が線検出部を構成する。ステップS40が放射状線検出部、立体物線検出部、ノイズ情報判断部を構成する。ステップS52〜S90が駐車枠抽出部を構成する。ワイパー検出センサ8は路面推定部を構成する。
(本実施形態の効果)
本実施形態によれば、次の効果を奏する。
(1)走行制御コントローラ10は、撮像部(カメラ)が撮像した撮像画像を俯瞰変換して俯瞰画像とする。走行制御コントローラ10は、撮像部が撮像した撮像画像から路面上に位置する線を検出する。走行制御コントローラ10は、上記俯瞰画像において、撮像部の受光部1aを中心とする放射状の線を抽出する。走行制御コントローラ10は、線検出部が検出した線のうち上記抽出した放射状の線に対応する線に対し、駐車枠候補でないことを示すノイズ情報(放射状線の属性FF)を付加する。走行制御コントローラ10は、上記検出した路面上に位置する線と上記ノイズ情報(放射状線の属性FF)に基づき駐車枠を抽出する。走行制御コントローラ10は、抽出した駐車枠に基づき車両の制駆動力を制御する。
走行制御コントローラ10は、例えば、自車両の進行方向前方に上記抽出した駐車枠を検出したと判定すると、加速低減制御を行う。
この構成によれば、俯瞰画像において、撮像部の受光部1aを中心とする放射状の線を駐車枠の候補線から除外する。路面から反射した線は、俯瞰画像では上記放射状の線として認識される。このため、当該線を除外することで、路面に反射した線を駐車枠を構成する線と判定されることを抑制出来る。この結果、駐車枠検出の信頼性が向上して、駐車に対する運転支援の精度を向上させることが可能となる。
(2)走行制御コントローラ10は、抽出した駐車枠に基づき車両の加速抑制制御を行う。
この構成によれば、駐車枠に進入する際に、仮にブレーキペダルとアクセルペダルを踏み間違えても、自車両の加速が抑制される。
(3)走行制御コントローラ10は、予め設定した時間以上継続して放射状の線と認定された線を駐車枠を構成する線の候補から除外する。
この構成によれば、より確実に反射線に対応する線を検出可能となる。これによって、駐車枠検出の信頼性が向上して、駐車に対する運転支援の精度を向上させることが可能となる。
(4)走行制御コントローラ10は、反射し易い路面と推定すると、放射状線を検出するための判定条件を緩和する。
これによって、路面反射の線をより確実に検出可能となる。これによって、駐車枠検出の信頼性が向上して、駐車に対する運転支援の精度を向上させることが可能となる。
(5)走行制御コントローラ10は、予め設定した時間毎に俯瞰画像から放射状の線を抽出し、上記線検出部が検出した線が、放射状線検出部で放射状の線でないとして抽出されると、その線に非放射状線情報を付加する。そして、駐車枠判定部は、ノイズ情報判断部がノイズ情報を付加した線であっても、そのノイズ情報が付加される前に上記非放射状線情報が付加されている場合には、その線を駐車枠線の候補の線として駐車枠判定の処理を行う。
これによって、路面で反射した線で無い線を路面で反射した線と誤認することを抑制可能となる。
(6)走行制御コントローラ10は、俯瞰画像から路面上に位置する線を検出する。
これによって、同一画面上で線検出と反射線の検出を行うので、検出した線と反射したと推定した線の照合に座標変換などが不要となり、当該照合処理等が簡易となる。
また、俯瞰画像での線の判定の為、他の線との平行性などの判定も簡易となる。
(7)走行制御コントローラ10は、周囲環境認識センサの検出情報(カメラが撮像した画像情報)に基づき自車両周囲の環境を認識する。走行制御コントローラ10は、運転者が加速指示するために操作する加速操作子(アクセルペダル)の状態から加速操作量を検出する。走行制御コントローラ10は、自車両MMの状態を検出する。走行制御コントローラ10は、周囲環境と自車両MMの走行状態とに基づいて、自車両MMが駐車枠L0に進入することを検出する。走行制御コントローラ10は、自車両MMが駐車枠L0に進入すると判定すると、上記加速操作子の操作量に応じた加速指令値(スロットル開度)を抑制する。走行制御コントローラ10は、加速指令値を抑制しているときに予め設定した設定加速操作量以上の加速操作を検出したら、加速指令値の抑制を増大する。
この構成によれば、運転者が駐車枠L0への進入操作を行うことで自車両MMの駐車枠L0への進入の検出を加速抑制の作動条件とする。これによって、運転性の低下を抑えながらアクセルペダル誤操作時の加速抑制効果の高い加速抑制を行うことが可能となる。
また、駐車枠L0に進入する場合と、進入操作後さらに加速操作が行われた場合との2段階に分けて加速抑制を行うことによって、運転性の低下を抑えながらアクセルペダル誤操作時の加速抑制効果がより高い加速抑制を行うことが可能となる。
(8)走行制御コントローラ10は、加速指令値を抑制しているときに予め設定した設定加速操作量以上の加速操作を検出したら、上記加速指令値を予め設定した上限加速指令値以下に抑える。
この構成によれば、運転者が大きな加速操作を行っても、その加速操作による加速指令値を、予め設定した値以上には大きくならないように加速抑制を行う、これによって、加速操作の誤操作によって運転者の意図しない加速が発生することを抑制できる。この結果、より駐車枠L0内への駐車を支援可能となる。
(9)走行制御コントローラ10は、加速操作子の操作量及び当該加速操作子の操作速度の少なくとも一つを加速操作量として検出する。
この構成によれば、加速操作量として、アクセルペダル19の操作量及びアクセルペダル操作の操作速度を検出する。これによって、加速操作の誤操作と通常操作との区別をより精度良く行うことができる。この結果、運転性の低下が少なく、加速の抑制効果の高い加速抑制を実現することが可能となる。
(10)走行制御コントローラ10は、駐車枠L0を検出すると、自車両MMの車速または自車両MMの操舵角と、自車両MMと駐車枠L0の角度α、自車両MMと駐車枠L0の入り口L2の距離D、及び自車両MMの予想軌道と駐車枠L0の位置関係のうちの少なくとも1つの情報とに基づき、駐車枠L0への進入操作を検出し、その検出した進入操作によって自車両MMが駐車枠L0に進入することを検出する。
この構成によれば、自車両MMの車速、自車両MMの操舵角、自車両MMと駐車枠L0の角度α、自車両MMと駐車枠L0の入り口L2の距離D、及び自車両MMの予想軌道と駐車枠L0の位置関係のうちの少なくとも1つの情報を使用することで、自車両MMが、検出した駐車枠L0を通り過ぎる走行をしているのか、駐車枠L0に駐車しようとしているのかを区別することができる。このように、駐車枠L0への進入操作を検出することが可能となる。
(11)走行制御コントローラ10は、自車両MMの進行方向と駐車枠L0への駐車方向とのなす角度αを自車両MMと駐車枠L0の角度αとし、その自車両MMと駐車枠L0の角度αに基づき駐車枠L0への進入操作を検出する。
この構成によれば、自車両MMの進行方向と駐車枠L0への駐車方向とのなす角度αを自車両MMと駐車枠L0の角度αとすることにより、検出している駐車枠L0への進入操作の進行具合を検出することが可能となる。従って、その検出値によって、自車両MMが駐車枠L0に駐車しようとしているか否かを精度よく判断することができる。この結果、運転性の低下が少なく、加速の抑制効果の高い運転支援を実現することが可能となる。
「第2実施形態」
次に、第2実施形態について図面を参照して説明する。ここで、上記第1実施形態と同様な構成には同一の符号を付して説明する。
(構成)
本実施形態の基本構成は、上記第1実施形態と同様である。ただし、本実施形態は、自車両MMの予想軌道と駐車枠L0の入り口位置、枠範囲に基づいて駐車枠L0への進入判断を行う場合の例である。
すなわち、上記加速抑制作動条件判断部10IにおけるステップS183及びS186の処理、特にステップS186の処理が異なる。その他の処理は、上記第1実施形態と同様である。
次に、その構成の相違点について説明する。
上記加速抑制作動条件判断部10Iにおいて、上記ステップS183は、操舵角、操舵角速度、自車両MMの車速、シフトポジション、駐車枠線位置、駐車枠L0の入り口位置を取得する。
次に、本実施例におけるステップS186の処理を、図面を参照しながら説明する。
本実施形態のステップS186は、図30に示すように、S186A〜S186Dの処理からなる。
ステップS186Aでは、自車両予想軌道を演算する。例えば上記ステップS180Aで取得した操舵角、操舵角速度、シフトポジションに基づいて自車両予想軌道を演算する。ここで、自車両の予想軌道の演算方法は種々存在しており、本実施形態では、特に自車両の予想軌道の演算方法について限定しない。例えばシフトポジションにて自車両MMの進行方向を特定し、現在の操舵角、操舵角速度で特定される操向輪の向きによって、自車両MMの予想軌道を求める。
ステップS186Bでは、上記ステップS186Aで演算した自車両予想軌道と、上記ステップS180Aで取得した駐車枠線位置に基づいて、自車両予想軌道枠線重複率を演算する。例えば、図31に示すように、対象とする駐車枠L0の面積に対する、当該駐車枠L0内を通過する自車両予想軌道Sが占める面積S0の割合を、自車両予想軌道枠線重複率として演算する。
ステップS186Cでは、上記ステップS186Aで演算した自車両予想軌道と、上記ステップS180Aで取得した駐車枠L0の入り口位置に基づいて、自車両予想軌道駐車枠入り口重複率を演算する。例えば、図32に示すように、駐車枠L0の入り口L2となる枠線一辺の長さの中で、自車両軌道と重複している部分Hの長さの割合を自車両予想軌道駐車枠入り口重複率として演算する。
なお上記予測軌道は、例えば後輪が通過する範囲とする。前輪が通過する範囲でも良い。
ステップS186Dでは、上記ステップS186Bで演算された自車両予想軌道枠線重複率と、上記ステップS186Cで演算された自車両予想軌道駐車枠入り口重複率とに基づいて、自車両駐車枠進入判断を行う。
例えば、自車両予想軌道枠線重複率が予め設定した値以上であり、かつ、自車両予想軌道駐車枠入り口重複率が予め設定した値以上の場合に、自車両MMが駐車枠L0に進入すると判断する。具体的には自車両予想軌道枠線重複率が40[%]以上、自車両予想軌道駐車枠入り口重複率が30[%]以上の場合に、自車両MMが駐車枠L0に進入すると判断する。ここで、自車両予想軌道枠線重複率と自車両予想軌道駐車枠入り口重複率の何れかのみで自車両駐車枠進入の判断を行う構成としてもよい。
例えば、駐車枠L0の入り口L2=2.5m、自車両軌道と重複している部分H=2.3mの場合には、自車両予想軌道駐車枠入り口重複率は、2.3÷2.5×100=92パーセントとなる。
また上記自車両予想軌道枠線重複率によって、駐車枠への進入の確からしさを示す進入確信度ALVLを2以上の段階で設定するようにしても良い。
また、左右後輪間の幅方向中央部の予測軌跡が対象とする駐車枠にどの程度進入するかの進行度合によって、駐車枠への進入の確からしさを判定しても良い。
その他の構成は、上記第1実施形態と同様である。
(動作その他について)
本実施形態の処理によるタイムチャートの例を図33に示す。
この例は、走行制御コントローラ10が、自車両MMの予測軌道と駐車枠L0との位置関係に基づいて駐車枠L0への進入操作を検出する例である。
この図33に示す例では、予め設定した確からしさ(確信度)を有する駐車枠L0を検出し(t1)且つ車速が予め設定した設定速度以下の状態になると(t2)、駐車枠L0への進入操作の判定を行う。そして、図33に示す例では、自車両予想軌道枠線重複率が予め設定した値以上となり(t3)、且つ自車両予想軌道駐車枠入り口重複率が予め設定した値以上となったことを検出すると(t7)、駐車枠L0への進入操作と判定して加速抑制の作動状態となる。
この加速抑制の作動状態のときに、運転者がアクセル操作を行うと、そのアクセル操作に応じた加速指令値(スロットル開度)を抑制する。更に、この加速抑制を実施している状態で、アクセル操作量が予め設定した操作量以上となると(t8)、加速指令値の抑制量を増大する。本実施形態では、予め設定したスロットル開度以下抑えるように加速抑制を行う結果、図11に示すように、アクセル操作量が予め設定した操作量を越える前に比較して、実際のスロットル開度が小さく抑制される。この結果、運転者によるアクセルペダル19の誤操作に対する加速抑制がより有効に実行されることとなる。
本実施形態では、自車両予想軌道枠線重複率と自車両予想軌道駐車枠入り口重複率に基づいて駐車枠進入判断を行うことにより、より正確に駐車操作を検出することができ、より運転性の低下が少ない支援システムを実現することが可能となる。
(本実施形態の効果)
本実施形態によれば、第1実施形態による効果に加えて次の効果を奏する。
(1)走行制御コントローラ10は、自車両MMの操舵角、自車両MMの操舵角速度、自車両MMの車速、及び自車両MMのシフトポジションの情報と、駐車枠L0の枠線位置及び駐車枠L0の入り口位置の少なくとも1つの情報とに基づいて、自車両MMの予想軌道と駐車枠L0の位置関係を検出し、検出した自車両MMの予想軌道と駐車枠L0の位置関係に基づいて駐車枠L0への進入操作を検出する。
自車両MMの操舵角、自車両MMの操舵角、自車両MMの操舵角速度、自車両MMの車速、及び自車両MMのシフトポジションの情報を使用することで自車両MMの予想軌道を求めることが出来る。そして、求めた自車両MMの予想軌道と駐車枠L0の枠線位置及び駐車枠L0の入り口位置の少なくとも1つの情報とから、自車両MMの予想軌道と駐車枠L0の位置関係を検出する。これによって、より精度良く自車両MMの駐車枠L0への進入操作を検出することができる。
(2)走行制御コントローラ10は、自車両MMの予想軌道と駐車枠L0との重なり度合に基づき、駐車枠L0への進入操作を検出する。
これによって、重なり度合が大きいほど、自車両MMが駐車枠L0に向かっていることが検出できるので、より精度良く自車両MMの駐車枠L0への進入操作を検出することができる。
(3)走行制御コントローラ10は、自車両MMの予想軌道と駐車枠L0の入り口L2との重なり度合に基づき、駐車枠L0への進入操作を検出する。
重なり度合によって、自車両MMが駐車枠L0に向けて移動していることが検出出来る。この結果、より精度良く自車両MMの駐車枠L0への進入操作を検出することができる。
以上、本願が優先権を主張する、日本国特許出願2012−259189(2012年11月27日出願)の全内容は、参照により本開示の一部をなす。
ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 周囲環境認識センサ(撮像部)
1a 受光部
8 ワイパー検出センサ
10 走行制御コントローラ
10A 周囲環境認識情報演算部
10B 自車両車速演算部
10C 操舵角演算部
10D 操舵角速度演算部
10E シフトポジション演算部
10F ブレーキペダル操作情報演算部
10G アクセル操作量演算部
10H アクセル操作速度演算部
10I 加速抑制作動条件判断部
10J 加速抑制量演算部
10K 目標スロットル開度演算部
ALVL 進入確信度
FLVL 駐車線レベル
TLVL 総合確信度
ARA1〜4 俯瞰画像とする領域
FF 放射状線属性
FR 立体物線の属性
L0 駐車枠

Claims (6)

  1. 運転者が加速指示するために操作する加速操作子の加速操作量を検出する加速操作量検出部と、
    上記加速操作量検出部が検出した加速操作量に応じた加速を自車両に発生させる制駆動力制御部と、
    自車両周囲の路面を撮像して撮像画像を取得する撮像部と、
    上記撮像部が撮像した撮像画像を俯瞰変換して俯瞰画像とする俯瞰画像取得部と、
    上記撮像部が撮像した撮像画像から路面上に位置する線を検出する線検出部と、
    上記俯瞰画像において、上記撮像部の受光部を中心とする放射状の線を抽出する放射状線検出部と、
    上記線検出部が検出した線のうち、上記放射状線検出部が抽出した放射状の線に対応する線に対し、駐車枠候補でないことを示すノイズ情報を付加するノイズ情報判断部と、
    上記線検出部が検出した線と上記ノイズ情報に基づき駐車枠を抽出する駐車枠抽出部と、
    上記駐車枠抽出部が抽出した駐車枠に基づき、上記制駆動力制御部が制御する上記加速を低減させる加速度抑制部と、
    を備えることを特徴とする運転支援装置。
  2. 上記撮像部は、予め設定した時間毎に自車両周囲の画像を撮像し、
    上記放射状線検出部は、予め設定した時間毎に俯瞰画像から放射状の線を抽出し、
    上記駐車枠抽出部は、予め設定した時間以上継続して放射状の線と認定された線を駐車枠を構成する線の候補から除外することを特徴とする請求項1に記載した運転支援装置。
  3. 自車両周囲の路面が反射し易い路面か否かを推定する路面推定部と、
    上記路面推定部が反射し易い路面と推定すると、上記放射線検出部における放射状の線と判定する条件を緩和することを特徴とする請求項1又は請求項2に記載した運転支援装置。
  4. 上記放射状線検出部は、予め設定した時間毎に俯瞰画像から放射状の線を抽出し、
    上記線検出部が検出した線が、上記放射状線検出部で放射状の線でないとして抽出されると、その線に非放射状線情報を付加し、
    上記駐車枠抽出部は、ノイズ情報判断部がノイズ情報を付加した線であっても、そのノイズ情報が付加される前に上記非放射状線情報が付加されている場合には、その線に対するノイズ情報を無視して駐車枠判定の処理を行うことを特徴とする請求項1〜請求項3のいずれか1項に記載した運転支援装置。
  5. 上記線検出部は、俯瞰画像から路面上に位置する線を検出することを特徴とする請求項1〜請求項4のいずれか1項に記載した運転支援装置。
  6. 撮像部が撮像した自車両周囲の撮像画像を俯瞰画像に変換し、その俯瞰画像から駐車枠候補となる線を検出する際に、俯瞰画像における上記撮像部の受光部を中心とする放射状の線に基づき路面で反射した線を駐車枠候補の線から除外し、
    更に上記俯瞰画像から検出した駐車枠候補となる線に基づき駐車枠を抽出し、その抽出した駐車枠に基づき、運転者が加速指示するために操作する加速操作子の加速操作量に応じて自車両に発生させる加速度を低減制御することを特徴とする運転支援方法。
JP2014549818A 2012-11-27 2013-11-22 運転支援装置及び運転支援方法 Active JP5900651B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014549818A JP5900651B2 (ja) 2012-11-27 2013-11-22 運転支援装置及び運転支援方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012259191 2012-11-27
JP2012259191 2012-11-27
PCT/JP2013/006883 WO2014083825A1 (ja) 2012-11-27 2013-11-22 運転支援装置及び運転支援方法
JP2014549818A JP5900651B2 (ja) 2012-11-27 2013-11-22 運転支援装置及び運転支援方法

Publications (2)

Publication Number Publication Date
JP5900651B2 true JP5900651B2 (ja) 2016-04-06
JPWO2014083825A1 JPWO2014083825A1 (ja) 2017-01-05

Family

ID=50827486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014549818A Active JP5900651B2 (ja) 2012-11-27 2013-11-22 運転支援装置及び運転支援方法

Country Status (2)

Country Link
JP (1) JP5900651B2 (ja)
WO (1) WO2014083825A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288952B1 (ko) * 2014-12-18 2021-08-12 현대모비스 주식회사 차량 및 그 제어 방법
WO2018109918A1 (ja) * 2016-12-16 2018-06-21 本田技研工業株式会社 車両制御装置及び方法
CN108791063B (zh) * 2018-03-22 2020-05-22 惠州市德赛西威汽车电子股份有限公司 一种基于adas的停车位捕捉方法
JP7383973B2 (ja) * 2019-10-11 2023-11-21 株式会社アイシン 駐車支援装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005178626A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両の統合制御システム
JP2007243463A (ja) * 2006-03-07 2007-09-20 Aisin Aw Co Ltd 駐車支援方法及び駐車支援装置
JP2007243464A (ja) * 2006-03-07 2007-09-20 Aisin Aw Co Ltd 駐車支援方法及び駐車支援装置
WO2009057410A1 (ja) * 2007-10-30 2009-05-07 Nec Corporation 路面標示画像処理装置,路面標示画像処理方法及びプログラム
JP2011030140A (ja) * 2009-07-29 2011-02-10 Hitachi Automotive Systems Ltd 外界認識装置
JP2011066657A (ja) * 2009-09-17 2011-03-31 Suzuki Motor Corp 後方画像表示切替装置及び方法
JP2012228119A (ja) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd トルク制御装置及び非接触充電システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005178626A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車両の統合制御システム
JP2007243463A (ja) * 2006-03-07 2007-09-20 Aisin Aw Co Ltd 駐車支援方法及び駐車支援装置
JP2007243464A (ja) * 2006-03-07 2007-09-20 Aisin Aw Co Ltd 駐車支援方法及び駐車支援装置
WO2009057410A1 (ja) * 2007-10-30 2009-05-07 Nec Corporation 路面標示画像処理装置,路面標示画像処理方法及びプログラム
JP2011030140A (ja) * 2009-07-29 2011-02-10 Hitachi Automotive Systems Ltd 外界認識装置
JP2011066657A (ja) * 2009-09-17 2011-03-31 Suzuki Motor Corp 後方画像表示切替装置及び方法
JP2012228119A (ja) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd トルク制御装置及び非接触充電システム

Also Published As

Publication number Publication date
JPWO2014083825A1 (ja) 2017-01-05
WO2014083825A1 (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5904286B2 (ja) 運転支援装置
JP5899664B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP5846316B2 (ja) 車両用加速抑制装置及び車両用加速抑制方法
JPWO2013018537A1 (ja) 走行支援装置および走行支援方法
JP2019162915A (ja) 車両走行制御システム
JP3966219B2 (ja) 運転支援装置
JP5900651B2 (ja) 運転支援装置及び運転支援方法
JP3245363B2 (ja) 車両の衝突防止装置
JPWO2019008760A1 (ja) 駐車支援方法及び駐車支援装置
JP4865095B1 (ja) 車両の運転支援装置
JP2014159182A (ja) 駐車空間検知装置
JP2009140145A (ja) 車両の走行支援装置
JP2012131460A (ja) 目標軌道算出装置
CN110869245B (zh) 泊车辅助方法以及泊车辅助装置
JP5900649B2 (ja) 運転支援装置
JP6299171B2 (ja) 運転支援装置
JP2020082816A (ja) 車両制御装置および車両制御プログラム
JP2018079929A (ja) 運転支援装置
JP6287106B2 (ja) 運転支援装置及び記号登録装置
JP5942817B2 (ja) 車両用加速抑制装置
JP6273789B2 (ja) 運転支援装置
JP2012250674A (ja) 車両用加速抑制装置及び車両用加速抑制方法
JP2020157793A (ja) 障害物回避制御装置、車両、障害物回避制御方法、および障害物回避制御プログラム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5900651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151