JP5900194B2 - 信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器 - Google Patents

信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器 Download PDF

Info

Publication number
JP5900194B2
JP5900194B2 JP2012148608A JP2012148608A JP5900194B2 JP 5900194 B2 JP5900194 B2 JP 5900194B2 JP 2012148608 A JP2012148608 A JP 2012148608A JP 2012148608 A JP2012148608 A JP 2012148608A JP 5900194 B2 JP5900194 B2 JP 5900194B2
Authority
JP
Japan
Prior art keywords
pixel
color
pixels
correction
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012148608A
Other languages
English (en)
Other versions
JP2014011732A (ja
Inventor
英樹 庄山
英樹 庄山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2012148608A priority Critical patent/JP5900194B2/ja
Priority to CN201310198715.8A priority patent/CN103533262B/zh
Priority to US13/920,609 priority patent/US9197871B2/en
Publication of JP2014011732A publication Critical patent/JP2014011732A/ja
Application granted granted Critical
Publication of JP5900194B2 publication Critical patent/JP5900194B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

本開示は、信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器に関し、特に、画質の劣化を抑制した画像を取得することができるようにした信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器に関する。
従来、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサなどの固体撮像素子では、いわゆるベイヤ(Bayer)配列のように、各色が等間隔に並ぶような画素配列となるカラーフィルタが採用されている。
また、固体撮像素子が有する画素の中に、入射する光量とは無関係の画素信号を発生する欠陥画素が含まれていることがあり、一般的に、その欠陥画素の画素信号を補正する欠陥補正処理が行われる。従来の欠陥補正処理では、各色が等間隔に並ぶような画素配列に適した処理が行われている。
例えば、特許文献1には、欠陥画素と、その欠陥画素および欠陥補正に用いる同色画素とが近隣に配置されていることを利用して、欠陥を補正する技術が開示されている。
特開2003−158744号公報
ところで、近年、高感度化を目的として、輝度信号の主成分となる白色を用いたカラーフィルタが提案されており、このようなカラーフィルタでは、赤色および青色の画素が4画素ピッチ以上となる画素配列のものがある。このような画素配列のカラーフィルタを採用した固体撮像素子で撮像された画像に、従来の欠陥補正処理を適用しても、その効果を十分に発揮することができず、欠陥画素による画質の劣化を抑制することは困難であった。
本開示は、このような状況に鑑みてなされたものであり、画質の劣化を抑制した画像を取得することができるようにするものである。
本開示の一側面の信号処理装置は、色成分を取得する画素である色画素の空間周波数が、輝度成分を取得する画素である輝度画素の空間周波数よりも低くなる配列で前記画素が配置されたセンサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う補正処理部を備え、前記補正処理部は、前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正を行い、処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値を、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定する補正基準値決定部を有する
本開示の一側面の信号処理方法またはプログラムは、色情報成分を取得する画素である色画素の空間周波数が、輝度信号の主成分を取得する画素である輝度画素の空間周波数よりも低くなるように前記画素が配置されたセンサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行うステップを含み、前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正が行われ、処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値が、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定される
本開示の一側面の固体撮像素子は、色成分を取得する画素である色画素の空間周波数が、輝度成分を取得する画素である輝度画素の空間周波数よりも低くなる配列で前記画素が配置されたセンサと、前記センサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う補正処理部とを備え、前記補正処理部は、前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正を行い、処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値を、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定する補正基準値決定部を有する
本開示の一側面の電子機器は、色成分を取得する画素である色画素の空間周波数が、輝度成分を取得する画素である輝度画素の空間周波数よりも低くなる配列で前記画素が配置されたセンサと、前記センサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う補正処理部とを有し、前記補正処理部は、前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正を行い、処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値を、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定する補正基準値決定部を有する固体撮像素子を備える。
本開示の一側面においては、色情報成分を取得する画素である色画素の空間周波数が、輝度信号の主成分を取得する画素である輝度画素の空間周波数よりも低くなるように画素が配置されたセンサから出力された画素信号が取得され、センサが有する画素のうちの欠陥画素から出力された画素信号を補正する処理が行われる。そして、色画素の画素信号に対する補正の際に、色画素よりも空間周波数の高い輝度画素の画素信号が参照される。さらに、処理対象の色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の色画素から1画素ピッチの位置にある輝度画素の画素信号と、処理対象の色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値が、処理対象の色画素の画素信号を補正する際の基準となる補正基準値として決定される。
本開示の一側面によれば、画質の劣化を抑制した画像を取得することができる。
本技術を適用した固体撮像素子の一実施の形態の構成例を示す図である。 固体撮像素子の構成例を示すブロック図である。 画像信号処理部の構成例を示すブロック図である。 補正基準値について説明する図である。 分光特性を示す図である。 補正基準値について説明する図である。 輝度ブレ幅について説明する図である。 欠陥補正値について説明する図である。 欠陥補正処理を説明するフローチャートである。 欠陥補正処理の効果を示す図である。 電子機器に搭載される撮像装置の構成例を示すブロック図である。
以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
図1は、本技術を適用した固体撮像素子の一実施の形態の構成例を示す図である。
図1Aには、固体撮像素子の斜視図が示されており、図1Bには、固体撮像素子を構成するカラーフィルタの配色の一例が示されている。
図1Aに示すように、固体撮像素子11は、デジタル系の回路が搭載されるロジック基板12と、アナログ系の回路が搭載されるセンサ基板13とが貼り合されて積層され、センサ基板13の受光面側にカラーフィルタ14が配置されて構成されている。ロジック基板12およびセンサ基板13は、それぞれ独立したチップとして形成された後に積層され、このような構成の固体撮像素子11については、例えば、本願出願人が出願済みの特開2011−159958号公報に詳細に開示されている。
図1Bに示すように、カラーフィルタ14は、いわゆるベイヤ配列とは異なり、赤色(R)、緑色(G)、および青色(B)の三原色のフィルタに加えて、輝度成分を得るための白色(W)のフィルタを有して構成されている。
固体撮像素子11では、例えば、輝度成分を取得する白色の画素(輝度画素)が市松状に配置され、残りの部分に色成分を取得する赤色、緑色、および青色の画素(色画素)が配置されたカラーフィルタ14が採用されている。カラーフィルタ14では、白色の画素は、水平方向および垂直方向に2画素ピッチで配置される一方、赤色、緑色、および青色の画素は、水平方向および垂直方向に4画素ピッチで配置されている。つまり、カラーフィルタ14により、白色の画素の空間周波数が高く、赤色、緑色、および青色の画素の空間周波数が低くなるような画素配列で画素が配置される。
なお、カラーフィルタ14の配色については、図1Bの配色に限定されるものではなく、本願出願人が出願済みの特開2011−091849号公報に開示されている様々な種類の配色を採用することができる。例えば、白色の画素により輝度成分を取得するのに替えて、緑色の画素により輝度成分を取得するようにしてもよく、この場合、図1Bにおいて白色の画素が配置されている箇所に、緑色の画素が配置される。
また、後述するように、固体撮像素子11では、欠陥補正処理を行う際に、処理対象の画素を中心として、水平方向に所定範囲内に一列に配置されている画素の画素信号を参照して処理が行われる。例えば、図1Bに示すように、欠陥補正処理では、赤色の画素P(0)を処理対象としたとき、画素P(0)を中心として水平方向へ4画素ピッチの範囲内に配置されている画素P(−4)から画素P(4)までの9つの画素信号が参照される。ここで、以下適宜、赤色、緑色、および青色の画素よりも狭い画素ピッチで配置されている白色の画素(例えば、図1Bの例では、画素P(−3)、画素P(−1)、画素P(1)、および画素P(3))を高周波検出画素と称する。また、以下適宜、処理対象の画素に対して4画素ピッチの位置にある処理対象の画素と同色の画素(例えば、図1Bの例では、画素P(−4)および画素P(4))を最寄同色画素と称する。
次に、図2は、固体撮像素子11の構成例を示すブロック図である。
図2に示すように、固体撮像素子11は、画素アレイ21、垂直デコーダ22、垂直駆動回路23、参照信号供給部24、カラム処理部25、水平走査回路26、画像信号処理部27、出力部28、およびタイミング制御回路29を備えて構成されている。
また、画素アレイ21、垂直デコーダ22、垂直駆動回路23、参照信号供給部24は、センサ基板13に形成され、水平走査回路26、画像信号処理部27、出力部28、およびタイミグ制御回路29は、ロジック基板12に形成されている。さらに、カラム処理部25は、コンパレータ30およびカウンタ回路31から構成されており、コンパレータ30はセンサ基板13に形成され、カウンタ回路31はロジック基板12に形成されている。
画素アレイ21には、複数の画素がアレイ状に配置されており、それぞれの画素は、水平信号線を介して垂直駆動回路23に接続されるとともに、垂直信号線を介してカラム処理部25のコンパレータ30に接続されている。画素アレイ21に配置されている画素は、垂直駆動回路23からのタイミング信号に従って行ごとに駆動し、各画素における受光量に応じたレベルの画素信号がカラム処理部25のコンパレータ30に読み出される。
垂直デコーダ22は、タイミング制御回路29から供給されるタイミング信号に従って、画素信号を読み出す画素の垂直方向の行を規定する信号を垂直駆動回路23に供給する。垂直駆動回路23は、垂直デコーダ22により規定された行の画素に対してパルスを供給して画素を駆動する。
参照信号供給部24は、タイミング制御回路29から供給されるタイミング信号に従い、カラム処理部25のコンパレータ30が参照する参照信号を生成してコンパレータ30に供給する。例えば、参照信号供給部24は、参照信号として、所定の初期電圧から一定の傾きで電圧が降下する波形(いわゆるRAMP波形)の信号を生成する。
カラム処理部25は、垂直信号線を介して画素アレイ21の各画素から出力される画素信号を、列ごとに並列的にA/D(Analog/Digital)変換処理およびCDS(Correlated Double Sampling:相関2重サンプリング)処理を行うカラム処理を行う。上述したように、カラム処理部25は、コンパレータ30およびカウンタ回路31から構成されている。
コンパレータ30は、画素アレイ21の画素から供給される画素信号と、参照信号供給部24から供給される参照信号とを比較し、例えば、一定の傾きで電圧が降下する波形の参照信号が画素信号以下となったタイミングで、カウンタ回路31のカウントアップ/カウントダウンを切り替える信号をカウンタ回路31に出力する。そして、カウンタ回路31は、タイミング制御回路29から供給されるクロック信号をカウントし、コンパレータ30からの信号に基づいてカウントアップ/カウントダウンを切り替えることで、例えば、リセットノイズなどが除去された画素信号を出力する。
水平走査回路26は、タイミング制御回路29から供給されるタイミング信号に従って、カラム処理部25から画素信号を順次出力させる制御を行う。
画像信号処理部27は、信号処理回路、マイクロプロセッサ、およびメモリを有して構成されており、カラム処理部25のカウンタ回路31から供給される画素信号に対して所定の信号処理を行う。例えば、画像信号処理部27は、センサ基板13の画素アレイ21が有する画素のうちの欠陥画素から出力された画素信号を補正する欠陥補正処理を行う。また、画像信号処理部27は、図1Bに示したように、赤色の画素P(0)を処理対象としたとき、画素P(0)を中心として水平方向へ4画素ピッチの範囲内に配置されている画素P(−4)から画素P(4)までの9つの画素信号を参照して、画素P(0)の画素信号を補正する。なお、画像信号処理部27による欠陥補正処理については、図3乃至9を参照して後述する。
出力部28は、画像信号処理部27から出力される画素信号を、所定の増幅率で増幅して、図示しない後段の回路(例えば、図11の信号処理回路104)に供給する。
タイミング制御回路29は、外部から供給されるマスタークロックに基づいて、固体撮像素子11を構成する各ブロックの動作の基準となるタイミング信号を生成して、それぞれのブロックに供給する。
このように構成されている固体撮像素子11では、画像信号処理部27において欠陥補正処理が施された画素信号が出力されるので、画素アレイ21が欠陥画素を有していても、その欠陥画素による画質の劣化が抑制された画像を撮像することができる。
図3は、画像信号処理部27の構成例を示すブロック図である。
図3に示すように、画像信号処理部27は、画素信号保持部41、補正基準値決定部42、輝度ブレ幅決定部43、欠陥補正値算出部44、および欠陥補正部45を備えて構成される。
画素信号保持部41は、カラム処理部25から順次出力される画素信号を取得し、欠陥補正処理を行うのに必要な所定数の画素信号を保持する。例えば、画素信号保持部41は、欠陥補正処理において処理対象となる画素を中心として水平方向へ所定範囲内に配置されている複数の画素の画素信号を保持する。つまり、画素信号保持部41は、上述した図1Bにおいて、処理対象の画素P(0)を中心として画素P(−4)から画素P(4)までの9つの画素信号を保持する。
補正基準値決定部42は、画素信号保持部41に保持されている画素信号のうちの、所定の画素の画素信号に基づいて、処理対象の画素の画素信号を補正する際に基準となる補正基準値を決定する。なお、補正基準値を決定する処理については、図4乃至図6を参照して後述する。
輝度ブレ幅決定部43は、例えば、処理対象の画素が欠陥画素ではないのにもかかわらず画素信号が補正されてしまうことを回避するための輝度ブレ幅を決定する。なお、輝度ブレ幅を決定する処理については、図7を参照して後述する。
欠陥補正値算出部44は、補正基準値決定部42により求められた補正基準値に、輝度ブレ幅決定部43により決定された輝度ブレ幅を加算することにより、欠陥補正値を算出する。
欠陥補正部45は、処理対象の画素の画素信号が、欠陥補正値算出部44により求められた欠陥補正値を超えている場合、処理対象の画素は欠陥画素であるとして、処理対象の画素の画素信号を欠陥補正値で置き換えて、その画素の画素信号を補正する。
次に、図4乃至図6を参照して、補正基準値決定部42が補正基準値を決定する処理について説明する。
図4には、処理対象の画素P(0)に対して欠陥補正を行う際に参照される画素P(−4)から画素P(4)までの画素信号が、画素の配置に従って示されている。即ち、処理対象の画素P(0)の画素信号を中心として、処理対象の画素P(0)よりも前に出力される画素P(−4)から画素P(−1)までの画素信号が画素P(0)より左側に順番に配置され、画素P(0)よりも後に出力される画素P(1)から画素P(4)までの画素信号が画素P(0)より右側に順番に配置されている。
まず、補正基準値決定部42は、高周波検出画素のうちの画素P(0)から1画素ピッチの位置にある画素P(1)および画素P(−1)の画素信号、並びに、最寄同色画素である画素P(4)および画素P(−4)の画素信号を比較する。そして、補正基準値決定部42は、それらの比較対象とした画素信号のうちの最大値を、処理対象の画素P(0)の画素信号を補正する際の基準となる補正基準値として決定する。
例えば、図4Aに示すように、比較対象とした画素信号のうちの高周波検出画素である画素P(1)の画素信号が最大値(最大輝度値)である場合、補正基準値決定部42は、画素P(1)の画素信号を補正基準値とする。また、例えば、図4Bに示すように、比較対象とした画素信号のうちの最寄同色画素である画素P(4)の画素信号が最大値である場合、補正基準値決定部42は、画素P(4)の画素信号を補正基準値とする。
ところで、異なる色の画素の画素信号は、それぞれの色で同じテクスチャに対しても画素値が異なることより、異なる色の画素の画素信号を、完全に同意義に補正基準値として用いた場合には、彩度が低下することがある。例えば、赤色の画素の画素信号を、白色の画素の画素信号を基準として欠陥補正処理を行った場合には、赤色の彩度が低下することになる。
即ち、図5の分光特性に示すように、赤色の波長域では、白色の画素の画素信号が赤色の画素の画素信号以下に落ち込んでいる。従って、例えば、処理対象の赤色の画素P(0)の画素信号が、最大輝度値として補正基準値とされた白色の画素P(1)の画素信号を超えているという判断だけで、画素P(0)が欠陥画素であるとして、画素P(0)の画素信号を補正したとする。その場合、赤色の画素P(0)の画素信号が白色の画素P(1)の画素信号のレベルまで低下することになるため、欠陥補正処理を行った結果、赤色の彩度が低下すると想定される。
そこで、補正基準値決定部42は、欠陥補正処理において参照する全ての高周波検出画素の画素信号が、最寄同色画素の画素信号を上回っている場合には、最寄同色画素のうちの最大値を補正基準値として決定する。
例えば、図6には、高周波検出画素である画素P(−3)、画素P(−1)、画素P(1)、および画素P(3)の全ての画素信号が、最寄同色画素である画素P(4)および画素P(−4)の画素信号を上回っている例が示されている。この場合、補正基準値決定部42は、画素P(4)および画素P(−4)の画素信号のうちの最大値である画素P(−4)の画素信号を補正基準値として決定する。このように補正基準値を決定することで、彩度が高い領域で誤検出によって、処理対象の画素の画素信号が、別色の画素の画素信号のレベルまで落ち込んで彩度が低下することを回避することができる。
以上のように、補正基準値決定部42は、処理対象の画素から1画素ピッチの位置にある高周波検出画素の画素信号、および、最寄同色画素の画素信号のうちの最大値を、補正基準値として決定する。または、補正基準値決定部42は、欠陥補正処理において参照する全ての高周波検出画素の画素信号が最寄同色画素の画素信号を上回っている場合には、最寄同色画素のうちの最大値を補正基準値として決定する。
次に、図7を参照して、輝度ブレ幅決定部43が輝度ブレ幅を決定する処理について説明する。
まず、輝度ブレ幅決定部43は、最寄同色画素である画素P(4)および画素P(−4)の画素信号差分の絶対値を、同色差分として求める。さらに、輝度ブレ幅決定部43は、処理対象の画素P(0)から3画素ピッチ離れた画素P(3)の画素信号に対する、処理対象の画素P(0)から1画素ピッチ離れた画素P(1)の画素信号の増加分を、第1の増加量として求める。同様に、輝度ブレ幅決定部43は、処理対象の画素P(0)から3画素ピッチ離れた画素P(−3)の画素信号に対する、処理対象の画素P(0)から1画素ピッチ離れた画素P(−1)の画素信号の増加分を、第2の増加量として求める。
そして、輝度ブレ幅決定部43は、同色差分、第1の増加量、および第2の増加量のうちの最大値を、輝度ブレ幅として決定する。
例えば、処理対象の画素の画素信号が、上述したように決定された補正基準値を超えているときに補正を行うとした場合に、画像に高周波成分が含まれていると、処理対象の画素が欠陥画素でなくても画素信号が補正されることがあると想定される。つまり、補正対象の画素が欠陥画素でなくても、画像に高周波成分が含まれている場合には、その画素信号が補正基準値を超えることがある。そこで、輝度ブレ幅決定部43により決定される輝度ブレ幅を用いることで、処理対象の画素が欠陥画素ではないのにもかかわらず、その画素信号が補正されてしまうことを回避することができる。
なお、輝度ブレ幅として、高周波検出画素の増加量(第1の増加量および第2の増加量)を用いることで、例えば、上述の特許文献1に開示されている「最大値+白傷判定余裕>注目画素のデータ>最小値−黒傷判定余裕」の式における判定余裕などのパラメータを外部から設定することなく、周囲の画素信号の直流成分レベルおよびノイズ量に応じて適切に欠陥画素であるか否かの判定を行うことができる。また、同色差分、第1の増加量、および第2の増加量のうちの最大値を輝度ブレ幅とすることにより、空間的に離れた同色画素を持つ画素配列に対して、自然法則(例えば、光量の平方根で増加する光ショットノイズ)を利用して効果的に輝度ブレ幅を決定することができる。
図8を参照して、欠陥補正値算出部44が算出する欠陥補正値について説明する。
例えば、図8Aに示す例では、画素P(−4)の画素信号が補正基準値とされ、画素P(4)および画素P(−4)から求められる同色差分が輝度ブレ幅とされる。従って、欠陥補正値算出部44は、補正基準値である画素P(−4)の画素信号に輝度ブレ幅を加算して、処理対象の画素P(0)が欠陥画素である場合に画素P(0)の画素信号を補正する欠陥補正値を求める。
また、図8Bに示す例では、画素P(1)の画素信号が補正基準値とされ、画素P(3)に対する画素P(1)の第1の増加量が輝度ブレ幅とされる。従って、欠陥補正値算出部44は、補正基準値である画素P(1)の画素信号に輝度ブレ幅を加算して、処理対象の画素P(0)が欠陥画素である場合に画素P(0)の画素信号を補正する欠陥補正値を求める。
また、図8Cに示す例では、画素P(4)の画素信号が補正基準値とされ、画素P(4)および画素P(−4)から求められる同色差分が輝度ブレ幅とされる。従って、欠陥補正値算出部44は、補正基準値である画素P(4)の画素信号に輝度ブレ幅を加算して、処理対象の画素P(0)が欠陥画素である場合に画素P(0)の画素信号を補正する欠陥補正値を求める。
このように、欠陥補正値算出部44は、補正基準値決定部42により決定された補正基準値に、輝度ブレ幅決定部43により決定された輝度ブレ幅を加算することにより、処理対象の画素が欠陥画素である場合に、その画素の画素信号を補正する欠陥補正値を求める。そして、欠陥補正部45は、このようにして求められた欠陥補正値を用いて、処理対象の画素の画素信号が欠陥補正値を超えている場合には画素信号を補正し、処理対象の画素の画素信号が欠陥補正値を超えていない場合には画素信号の補正を行わない。
次に、図9は、画像信号処理部27において行われる欠陥補正処理を説明するフローチャートである。
例えば、カラム処理部25から画素信号が順次出力され、欠陥補正処理を行うのに必要な画素信号、例えば、処理対象の画素P(0)を中心として画素P(−4)から画素P(4)までの画素信号が、画素信号保持部41に保持されると処理が開始される。ステップS11において、補正基準値決定部42は、高周波検出画素の全ての画素信号が最寄同色画素の画素信号を上回っているか否かを判定する。即ち、補正基準値決定部42は、画素P(−3)、画素P(−1)、画素P(1)、および画素P(3)の全ての画素信号が、画素P(4)および画素P(−4)の画素信号を上回っているか否かを判定する。
ステップS11において、補正基準値決定部42が、高周波検出画素の全ての画素信号が最寄同色画素の画素信号を上回っていないと判定した場合、即ち、高周波検出画素の画素信号のいずれか1つが最寄同色画素の画素信号以下である場合、処理はステップS12に進む。
ステップS12において、補正基準値決定部42は、画素P(0)から1画素ピッチの位置にある高周波検出画素である画素P(−1)および画素P(1)、並びに、最寄同色画素である画素P(4)および画素P(−4)のうちの最大値を示す画素信号を、補正基準値として決定する。
一方、ステップS11において、補正基準値決定部42が、高周波検出画素の全ての画素信号が最寄同色画素の画素信号を上回っていると判定した場合、処理はステップS13に進む。ステップS13において、補正基準値決定部42は、最寄同色画素である画素P(4)および画素P(−4)のうちの最大値を示す画素信号を、補正基準値として決定する。
ステップS12またはS13の処理後、処理はステップS14に進み、輝度ブレ幅決定部43は、最寄同色画素である画素P(4)および画素P(−4)の画素信号差分の絶対値を、同色差分として求める。
ステップS15において、輝度ブレ幅決定部43は、画素P(3)の画素信号に対する画素P(1)の画素信号の増加分である第1の増加量と、画素P(−3)の画素信号に対する画素P(−1)の画素信号の増加分である第2の増加量とを求める。
ステップS16において、輝度ブレ幅決定部43は、ステップS14で求めた同色差分と、ステップS15で求めた第1の増加量および第2の増加量とのうちの最大値を、輝度ブレ幅として決定する。
ステップS17において、欠陥補正値算出部44は、ステップS12またはS13で決定された補正基準値に、ステップS16で決定された輝度ブレ幅を加算して、欠陥補正値を算出する。
ステップS18において、欠陥補正部45は、画素信号保持部41に保持されている処理対象の画素P(0)の画素信号と、ステップS17で欠陥補正値算出部44により算出された欠陥補正値とを比較する。そして、欠陥補正部45は、処理対象の画素P(0)の画素信号が欠陥補正値より大きな値であるか否かを判定する。
ステップS18において、欠陥補正部45が処理対象の画素P(0)の画素信号が欠陥補正値より大きな値であると判定した場合、処理対象の画素P(0)は欠陥画素であるとされて、処理はステップS19に進む。
ステップS19において、欠陥補正部45は、処理対象の画素P(0)の画素信号を、ステップS17で欠陥補正値算出部44により算出された欠陥補正値で置き換えて、欠陥画素の画素信号を補正する。ステップS19の処理後、欠陥補正処理は終了される。
一方、ステップS18において、欠陥補正部45が、処理対象の画素P(0)の画素信号が欠陥補正値より大きな値でない(即ち、画素P(0)の画素信号は欠陥補正値未満である)と判定した場合、処理対象の画素P(0)は欠陥画素でないとされ、ステップS19をスキップして欠陥補正処理は終了される。
以上のように、固体撮像素子11では、赤色、緑色、および青色の画素の空間周波数が低くなるような画素配列により得られた画素信号に対しても、高周波検出画素を参照して欠陥補正処理を行うことにより、誤補正が少なく、より高精度な欠陥補正を行うことができる。これにより、固体撮像素子11では、欠陥画素による画質の劣化を抑制した、より良好な画像を取得することができる。
また、固体撮像素子11では、高周波検出画素を参照することにより、例えば、点状の反射などのように小面積で高輝度な部分に対して正常値であると判定することができ、そのような部分に対して誤補正が行われることを回避することができる。また、固体撮像素子11では、上述したように、彩度が低下することを回避することができる。
また、固体撮像素子11では、処理対象の画素を中心として一列に配置されている所定数の画素を参照して欠陥補正処理を行うので、ラインバッファを使用することなく、より精度の高い欠陥補正を行うことができる。つまり、ラインバッファを必要とする処理方法では、多数の画素情報を保有するためのメモリを搭載することによって製造コストが高くなるのに対し、固体撮像素子11は、ラインバッファが必要なく製造コストを低減することができる。
また、欠陥補正処理において輝度ブレ幅を用いて補正を行うか否かの判定を行うので、処理対象の画素に対して周囲の画素信号の直流成分レベルおよびノイズ量に応じた適切な判定を行うことができる。
例えば、図10を参照して、画像信号処理部27による欠陥補正処理の効果について説明する。
図10Aには、図1に示したカラーフィルタ14を用いて得られる画像のような、赤色、緑色、および青色の画素の空間周波数が低い原画像に対して疑似欠陥を挿入した画像が示されている。図10Bには、図10Aの原画像に対して、従来の欠陥補正処理を適用した画像が示されており、図10Cには、図10Aの原画像に対して、画像信号処理部27による上述の欠陥補正処理を適用した画像が示されている。
図10Bの画像と、図10Cの画像とを比較して分かるように、画像信号処理部27による上述の欠陥補正処理を適用することにより、原画像に挿入された疑似欠陥を適切に補正し、補正残りの少ない画像を得ることができる。
なお、本実施の形態においては、補正基準値決定部42が、高周波検出画素のうちの画素P(0)から1画素ピッチの位置にある画素P(1)および画素P(−1)の画素信号から補正基準値を決定する例について説明した。これに対して、補正基準値決定部42は、画素P(1)および画素P(−1)以外にも、例えば、画素P(0)から最寄同色画素である画素P(4)および画素P(−4)までの間に配置されている高周波検出画素から補正基準値を決定してもよい。例えば、補正基準値の決定に用いる高周波検出画素は、画素の配列に応じたMTF(Modulation Transfer Function)に従って変更することができる。なお、できるだけ画素P(0)の近傍に配置された高周波検出画素を用いることにより、より良好な結果を得ることができる。
また、固体撮像素子11では、画素アレイ21に配置されている全ての画素に対して順に欠陥補正処理を施す他、欠陥が発生している画素だけに対して欠陥補正処理を施すようにすることができる。即ち、例えば、固体撮像素子11の製造時における試験にて欠陥が発生している画素を特定した場合、画像信号処理部27に対して欠陥画素のアドレスを設定することで、そのアドレスから出力された画素信号に対してのみ欠陥補正処理を施すことができる。これにより、欠陥画素以外の画素に対して欠陥補正処理が間違って施されることを回避することができるとともに、処理速度の向上や低消費電力化などを図ることができる。
なお、上述のフローチャートを参照して説明した各処理は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含むものである。また、プログラムは、1のCPUにより処理されるものであっても良いし、複数のCPUによって分散処理されるものであっても良い。
また、上述したような固体撮像素子11は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
図11は、電子機器に搭載される撮像装置の構成例を示すブロック図である。
図11に示すように、撮像装置101は、光学系102、撮像素子103、信号処理回路104、モニタ105、およびメモリ106を備えて構成され、静止画像および動画像を撮像可能である。
光学系102は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を撮像素子103に導き、撮像素子103の受光面(センサ部)に結像させる。
撮像素子103としては、上述した構成例の固体撮像素子11が適用される。撮像素子103には、光学系102を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、撮像素子103に蓄積された電子に応じた信号が信号処理回路104に供給される。
信号処理回路104は、撮像素子103から出力された画素信号に対して各種の信号処理を施す。信号処理回路104が信号処理を施すことにより得られた画像(画像データ)は、モニタ105に供給されて表示されたり、メモリ106に供給されて記憶(記録)されたりする。
このように構成されている撮像装置101では、撮像素子103として、上述したような構成例の固体撮像素子11を適用することにより、欠陥画素による画質の劣化を抑制した画像を取得することができる。
なお、固体撮像素子11において欠陥補正処理を施した画素信号を出力する他、例えば、固体撮像素子11において欠陥補正処理を行わずに出力された画素信号に対して、信号処理回路104が上述の欠陥補正処理を施してもよい。また、センサ基板13の画素アレイ21から出力されるそのままの画素信号(RAWデータ)を外部に出力して、例えば、その画素信号に対してパーソナルコンピュータなどにおいてプログラムを実行することにより、上述の欠陥補正処理を施してもよい。このような場合でも、固体撮像素子11において欠陥補正処理を施したのと同様の効果を得ることができる。
なお、本技術は以下のような構成も取ることができる。
(1)
色成分を取得する画素である色画素の空間周波数が、輝度成分を取得する画素である輝度画素の空間周波数よりも低くなる配列で前記画素が配置されたセンサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う補正処理部
を備え、
前記補正処理部は、前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正を行う
を備える信号処理装置。
(2)
前記補正処理部は、
処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値を、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定する補正基準値決定部
を有する上記(1)に記載の信号処理装置。
(3)
前記補正基準値決定部は、処理対象の前記色画素を中心として所定の範囲内にある前記輝度画素の全ての画素信号が前記最寄同色画素の画素信号を超えている場合、一対の前記最寄同色画素のうちの最大値を、前記補正基準値として決定する
上記(1)または(2)に記載の信号処理装置。
(4)
前記補正処理部は、
一対の前記同色画素の画素信号の差分の絶対値、処理対象の前記色画素に対して一方側に配置されている複数の前記輝度画素の増加量、および、処理対象の前記色画素に対して他方側に配置されている複数の前記輝度画素の増加量のうちの最大値を、輝度ブレ幅として決定する輝度ブレ幅決定部と、
前記補正基準値決定部により決定された前記補正基準値に、前記輝度ブレ幅決定部により決定された前記輝度ブレ幅を加算して、前記欠陥画素の画素信号を補正する欠陥補正値を算出する欠陥補正値算出部と
をさらに有する上記(1)から(3)までのいずれかに記載の信号処理装置。
(5)
前記補正処理部は、
処理対象の前記画素の画素信号が、前記欠陥補正値算出部により算出された欠陥補正値を超えている場合に、処理対象の前記画素の画素信号を前記欠陥補正値で置き換えることにより補正を行う欠陥補正部
をさらに有する上記(1)から(4)までのいずれかに記載の信号処理装置。
(6)
前記補正処理部は、処理対象の前記色画素を中心として、前記センサにおいて一列に配置されている所定数の画素を参照して欠陥補正処理を行う
上記(1)から(5)までのいずれかに記載の信号処理装置。
なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
11 固体撮像素子, 12 ロジック基板, 13 センサ基板, 14 カラーフィルタ, 21 画素アレイ, 22 垂直デコーダ, 23 垂直駆動回路, 24 参照信号供給部, 25 カラム処理部, 26 水平走査回路, 27 画像信号処理部, 28 出力部, 29 タイミング制御回路, 30 コンパレータ, 31 カウンタ回路, 41 画素信号保持部, 42 補正基準値決定部, 43 輝度ブレ幅決定部, 44 欠陥補正値算出部, 45 欠陥補正部

Claims (9)

  1. 色成分を取得する画素である色画素の空間周波数が、輝度成分を取得する画素である輝度画素の空間周波数よりも低くなる配列で前記画素が配置されたセンサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う補正処理部
    を備え、
    前記補正処理部は、
    前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正を行い、
    処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値を、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定する補正基準値決定部を有する
    信号処理装置。
  2. 前記補正基準値決定部は、処理対象の前記色画素を中心として所定の範囲内にある前記輝度画素の全ての画素信号が前記最寄同色画素の画素信号を超えている場合、一対の前記最寄同色画素のうちの最大値を、前記補正基準値として決定する
    請求項1に記載の信号処理装置。
  3. 前記補正処理部は、
    一対の前記最寄同色画素の画素信号の差分の絶対値、処理対象の前記色画素に対して一方側に配置されている複数の前記輝度画素の増加量、および、処理対象の前記色画素に対して他方側に配置されている複数の前記輝度画素の増加量のうちの最大値を、輝度ブレ幅として決定する輝度ブレ幅決定部と、
    前記補正基準値決定部により決定された前記補正基準値に、前記輝度ブレ幅決定部により決定された前記輝度ブレ幅を加算して、前記欠陥画素の画素信号を補正する欠陥補正値を算出する欠陥補正値算出部と
    をさらに有する請求項1に記載の信号処理装置。
  4. 前記補正処理部は、
    処理対象の前記画素の画素信号が、前記欠陥補正値算出部により算出された欠陥補正値を超えている場合に、処理対象の前記画素の画素信号を前記欠陥補正値で置き換えることにより補正を行う欠陥補正部
    をさらに有する請求項3に記載の信号処理装置。
  5. 前記補正処理部は、処理対象の前記色画素を中心として、前記センサにおいて一列に配置されている所定数の画素を参照して欠陥補正処理を行う
    請求項1に記載の信号処理装置。
  6. 色情報成分を取得する画素である色画素の空間周波数が、輝度信号の主成分を取得する画素である輝度画素の空間周波数よりも低くなるように前記画素が配置されたセンサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う
    ステップを含み、
    前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正が行われ
    処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値が、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定される
    信号処理方法。
  7. 色成分を取得する画素である色画素の空間周波数が、輝度成分を取得する画素である輝度画素の空間周波数よりも低くなる配列で前記画素が配置されたセンサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う
    ステップを含み、
    前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正が行われ
    処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値が、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定される
    処理をコンピュータに実行させるプログラム。
  8. 色成分を取得する画素である色画素の空間周波数が、輝度成分を取得する画素である輝度画素の空間周波数よりも低くなる配列で前記画素が配置されたセンサと、
    前記センサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う補正処理部と
    を備え、
    前記補正処理部は、
    前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正を行い、
    処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値を、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定する補正基準値決定部を有する
    固体撮像素子。
  9. 色成分を取得する画素である色画素の空間周波数が、輝度成分を取得する画素である輝度画素の空間周波数よりも低くなる配列で前記画素が配置されたセンサと、
    前記センサから出力された画素信号を取得し、前記センサが有する前記画素のうちの欠陥画素から出力された前記画素信号を補正する処理を行う補正処理部と
    を有し、
    前記補正処理部は、
    前記色画素の画素信号に対する補正の際に、前記色画素よりも空間周波数の高い前記輝度画素の画素信号を参照して補正を行い、
    処理対象の前記色画素を中心として所定の範囲内にある画素の画素信号のうち、処理対象の前記色画素から1画素ピッチの位置にある前記輝度画素の画素信号と、処理対象の前記色画素に最も近い位置にある同色の色画素である一対の最寄同色画素の画素信号とのうちの最大値を、処理対象の前記色画素の画素信号を補正する際の基準となる補正基準値として決定する補正基準値決定部を有する
    固体撮像素子を備える電子機器。
JP2012148608A 2012-07-02 2012-07-02 信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器 Expired - Fee Related JP5900194B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012148608A JP5900194B2 (ja) 2012-07-02 2012-07-02 信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器
CN201310198715.8A CN103533262B (zh) 2012-07-02 2013-05-24 信号处理装置及方法、固体图像传感器和电子设备
US13/920,609 US9197871B2 (en) 2012-07-02 2013-06-18 Signal processing device with pixel correction, signal processing method, program solid-state image sensor, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012148608A JP5900194B2 (ja) 2012-07-02 2012-07-02 信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器

Publications (2)

Publication Number Publication Date
JP2014011732A JP2014011732A (ja) 2014-01-20
JP5900194B2 true JP5900194B2 (ja) 2016-04-06

Family

ID=49777778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012148608A Expired - Fee Related JP5900194B2 (ja) 2012-07-02 2012-07-02 信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器

Country Status (3)

Country Link
US (1) US9197871B2 (ja)
JP (1) JP5900194B2 (ja)
CN (1) CN103533262B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055308A (ja) * 2015-09-10 2017-03-16 キヤノン株式会社 撮像装置及びその制御方法
JP2017055309A (ja) 2015-09-10 2017-03-16 キヤノン株式会社 撮像装置及びその制御方法
CN105670550B (zh) 2016-03-31 2017-11-14 东莞新能源科技有限公司 一种导热胶及含有该导热胶的二次电池
GB2555713B (en) 2016-09-30 2021-03-03 Canon Kk Imaging device, imaging system, moving body, and control method
KR20210069632A (ko) * 2018-10-04 2021-06-11 소니그룹주식회사 화상 처리 장치와 화상 처리 방법 및 프로그램
US10812708B2 (en) * 2019-02-22 2020-10-20 Semiconductor Components Industries, Llc Imaging systems with weathering detection pixels
WO2021166450A1 (ja) * 2020-02-19 2021-08-26 ソニーグループ株式会社 画像処理方法、センサ装置
WO2022094937A1 (en) * 2020-11-06 2022-05-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electrical device, method of generating image data, and non-transitory computer readable medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285229A (ja) * 1999-03-15 2000-10-13 Texas Instr Inc <Ti> ディジタルイメージャのための不良画素フィルタリング
JP3864021B2 (ja) * 1999-11-01 2006-12-27 シャープ株式会社 ビデオカメラ
US7082218B2 (en) * 2001-07-27 2006-07-25 Hewlett-Packard Development Company, L.P. Color correction of images
JP4166974B2 (ja) 2001-11-22 2008-10-15 松下電器産業株式会社 画素キズ検出・補正装置
JP2005354278A (ja) * 2004-06-09 2005-12-22 Seiko Epson Corp 撮像手段の撮像した画像の画像データを処理する画像データ処理
US7471820B2 (en) * 2004-08-31 2008-12-30 Aptina Imaging Corporation Correction method for defects in imagers
JP2006148748A (ja) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd 画素欠陥補正装置および画素欠陥補正方法
US8111307B2 (en) * 2008-10-25 2012-02-07 Omnivision Technologies, Inc. Defective color and panchromatic CFA image
JP5697353B2 (ja) * 2010-03-26 2015-04-08 キヤノン株式会社 画像処理装置、画像処理装置の制御方法及びプログラム

Also Published As

Publication number Publication date
US20140002698A1 (en) 2014-01-02
CN103533262A (zh) 2014-01-22
CN103533262B (zh) 2017-11-24
US9197871B2 (en) 2015-11-24
JP2014011732A (ja) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5900194B2 (ja) 信号処理装置、信号処理方法、プログラム、固体撮像素子、および電子機器
JP4374488B2 (ja) デモザイク処理及び不良ピクセル補正を組み合わせるためのディジタル画像システム及び方法
JP3984936B2 (ja) 撮像装置および撮像方法
US9729805B2 (en) Imaging device and defective pixel correction method
US8730545B2 (en) Color imaging element, imaging device, and storage medium storing a control program for imaging device
US9420206B2 (en) Image-pickup apparatus and method of detecting defective pixel thereof
US8451350B2 (en) Solid-state imaging device, camera module, and imaging method
JP6037170B2 (ja) 固体撮像装置およびその信号処理方法、並びに電子機器
JP4997359B2 (ja) 撮像装置及び混色補正方法
JP2008244947A (ja) 固定パターンノイズ除去回路、固定パターンノイズ除去方法、プログラムおよび撮像装置
JP2008252558A (ja) 撮像装置
JP2009033321A (ja) 撮像装置、および画像処理方法、並びにコンピュータ・プログラム
JP2013168793A (ja) 画像処理装置
JP5262953B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2007274504A (ja) デジタルカメラ
US9883123B2 (en) Solid-state imaging device and imaging system using a bit reduction method based on a reduced pixel signal
JP4331120B2 (ja) 欠陥画素検出方法
JP2010068329A (ja) 撮像装置
JP2009177436A (ja) 固体撮像装置、信号処理装置、および電子情報機器
JP2009290653A (ja) 欠陥画素補正装置、撮像装置、欠陥画素補正方法、およびプログラム
JP4952548B2 (ja) ノイズ検出装置、撮像装置、およびノイズ検出方法
US20150264330A1 (en) Solid state imaging device and camera system
KR20150107563A (ko) 화상 처리 장치 및 고체 촬상 장치
JP2012248938A (ja) 画像処理装置
JP5515320B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5900194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees