JP2010068329A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2010068329A
JP2010068329A JP2008233547A JP2008233547A JP2010068329A JP 2010068329 A JP2010068329 A JP 2010068329A JP 2008233547 A JP2008233547 A JP 2008233547A JP 2008233547 A JP2008233547 A JP 2008233547A JP 2010068329 A JP2010068329 A JP 2010068329A
Authority
JP
Japan
Prior art keywords
pixel
signal
determination
scratch
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008233547A
Other languages
English (en)
Inventor
Yoshitaka Egawa
佳孝 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008233547A priority Critical patent/JP2010068329A/ja
Publication of JP2010068329A publication Critical patent/JP2010068329A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】本発明は、CMOS型イメージセンサにおいて、高精度の欠陥画素補正処理を実現できるようにする。
【解決手段】たとえば、キズ画素を検出してキズ補正処理を実行するキズ補正回路において、キズ画素判定回路32により、判定画素G0がキズ画素か判定する。キズ画素の場合は、キズ画素置換処理回路により、保存してある画像パターンに応じて、判定画素G0の信号を置換する。良品画素の場合は、パターン抽出回路にて、画像パターンを新たに抽出し、保存する。キズ画素判定回路32は、レベルの大小順に並び替えた各信号が、標準偏差想定レベルKKにもとづいて設定される、白キズ判定レベルKizWよりも大きい場合に白キズと判定し、黒キズ判定レベルKizBよりも小さい場合に黒キズと判定する。
【選択図】 図2

Description

本発明は撮像装置に関するもので、たとえば、カメラ付き携帯電話、デジタルカメラ、および、ビデオカメラなどで使用されるCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサに関する。
一般に、イメージセンサは、製造工程などに起因する白キズおよび黒キズが発生しやすい。このイメージセンサを使用したRGBベイヤー配列の単板カラーカメラにおいては、キズ画素の信号を補正する方法として、メディアンフィルタ処理を用いた置換処理が知られている(たとえば、特許文献1または特許文献2参照)。この方法は、メモリを用いずに、キズ画素の信号をリアルタイムに補正するものである。また、キズ画素の信号を、そのキズ画素周辺の、周辺画素の平均値を利用して置換する方法(たとえば、特許文献3参照)、あるいは、周辺画素の最大値(最大レベルの信号)もしくは最小値(最小レベルの信号)によりキズ画素の信号を置換する方法(たとえば、特許文献4参照)などが、これまでに提案されている。
しかしながら、上記した方法の場合、いずれも、キズ画素が縦画像パターンの中のキズ画素なのか、横画像パターンの中のキズ画素なのかを判別できない。そのために、キズ画素の信号を、たとえば、メディアンフィルタ処理によって周辺の同色8画素の信号の中間値(中間レベルの信号)により置換したり、周辺の同色8画素の信号のうちの最大値もしくは最小値により置換したり、あるいは、上下もしくは左右の同色2画素の信号の平均値によって置換したりしていた。それゆえ、キズ画素における解像度が劣化したり、画像パターンの端部(エッジ部分)での誤補正などが発生しやすいという問題があった。
特開2006−238060号公報 特開平9−247548号公報 特開2004−112736号公報 特表2005−528857号公報
本発明は、上記の問題点を解決すべくなされたもので、画像のパターンに対応した置換処理を実施することができ、高精度の欠陥画素補正処理が可能な撮像装置を提供することを目的としている。
本願発明の一態様によれば、光電変換素子からなる複数の画素が二次元に配置された撮像部より出力された画像信号に対して、キズ補正回路によって所定の信号処理を施すように構成された撮像装置であって、前記キズ補正回路は、前記画像信号のうち、判定画素の信号および前記判定画素にそれぞれ近接する前記判定画素と同色の周辺画素の信号にもとづいて、該判定画素がキズ画素か判定するキズ判定回路と、前記判定画素の信号および前記判定画素にそれぞれ近接する前記判定画素と同色の周辺画素の信号にもとづいて、画像パターン情報を抽出・保存するパターン抽出回路と、前記キズ判定回路によってキズ画素として検出された前記判定画素の信号を、保存された前記画像パターン情報をもとに置換信号を生成して置換する置換回路とを具備したことを特徴とする撮像装置が提供される。
上記の構成により、画像のパターンに対応した置換処理を実施することができ、高精度の欠陥画素補正処理が可能な撮像装置を提供できる。
以下、本発明の実施の形態について図面を参照して説明する。ただし、図面は模式的なものであり、各図面の寸法および比率などは現実のものとは異なることに留意すべきである。また、図面の相互間においても、互いの寸法の関係および/または比率が異なる部分が含まれていることは勿論である。特に、以下に示すいくつかの実施の形態は、本発明の技術思想を具体化するための装置および方法を例示したものであって、構成部品の形状、構造、配置などによって、本発明の技術思想が特定されるものではない。この発明の技術思想は、その要旨を逸脱しない範囲において、種々の変更を加えることができる。
[第1の実施形態]
図1は、本発明の第1の実施形態にしたがった撮像装置の構成例を示すものである。なお、ここでは、CMOS型イメージセンサを例に説明する。
図1において、センサ部11は、カラーフィルタ12、複数の画素(光電変換素子)が二次元状に配置されたフォトダイオードアレイ(撮像部)13、および、カラム型アナログデジタルコンバータ(ADC)14を有している。カラーフィルタ12は、レンズ(撮像系)10で集光した光信号をRGB信号に分離し、フォトダイオードアレイ13上に結像させる。フォトダイオードアレイ13は、結像されたRGB信号を画素ごとに信号電荷に変換してADC14に送る。ADC14は、受け取った各画素の信号電荷をデジタル信号(画像信号)に変換し、ラインメモリ21に出力する。なお、カラーフィルタ12の色フィルタ配列としては、行列2×2を基本とした、RGB原色のベイヤー配列(正方配列)を想定している。
ラインメモリ21は、たとえば垂直5ライン分のメモリ1〜5を有し、センサ部11の出力信号(ADC14からの画像信号)をそれぞれ記憶する。ラインメモリ21は、この5ライン分の画像信号をキズ補正回路31に供給する。
キズ補正回路31は、ラインメモリ21からの5ライン分の画像信号を並列に取り込み、適宜、レベル設定回路41からの標準偏差想定レベルKKなどを使って判定画素が欠陥(キズ)画素か判定し、キズ画素の場合は、補正(置換)処理を実施する。また、判定画素がキズ画素でない良品画素の場合は、画像パターン(パターン情報)を抽出し、保存処理を実施する。すなわち、このキズ補正回路31は、キズ画素の検出処理を行うキズ画素判定回路32と、画像パターンの抽出・保存処理を行うパターン抽出回路33と、キズ補正のための置換処理を行うキズ画素置換処理回路34と、を有して構成されている。たとえば、キズ補正回路31では、まず、判定画素が白キズまたは黒キズなのかチェックする。判定画素が良品画素の場合は、判定画素の信号と同色の周辺8画素の信号とを用いて画像パターンを抽出し、保存する。判定画素がキズ画素の場合には、保存していた画像パターンに応じて、キズ画素と同色の周辺4画素の信号を用いて、キズ画素の信号を置換する。
ここで、標準偏差想定レベルKKは、白キズを判定するための白キズ判定レベルおよび黒キズを判定するための黒キズ判定レベルを設定する際の基準となるものであって、ランダムノイズ成分などを想定して設計される。たとえば、装置をチューニングする際に、実際に解像度および画像パターンなどが異なる被写体の白キズおよび黒キズの補正に用いた実測値(ヒストグラムのシグマ値など)をもとに、標準偏差想定レベルKKは統計的に導き出される。すなわち、キズ画素判定回路32は、標準偏差想定レベルKKをもとに、判定画素に近接する同色の周辺8画素の信号の、見かけ上の標準偏差(白キズ判定レベルおよび黒キズ判定レベル)を仮想的に生成し、その標準偏差より外れている場合をキズ画素として検出する。つまり、判定画素の信号が白キズ判定レベルよりも大きい場合に、その判定画素は白キズと判定され、黒キズ判定レベルよりも小さい場合に、その判定画素は黒キズと判定される。
信号処理回路51は、キズ補正回路31からの出力に対し、周知の信号処理、たとえばホワイトバランス処理、色分離補間処理、輪郭強調処理、および、ガンマ(γ)補正処理を施す。また、RGBマトリックス回路によってYUV信号またはRGB信号を生成して、出力端子DOUT0〜DOUT7より外部に出力する。
システムタイミング発生回路(SG)61は、外部からのクロック信号MCKおよび/またはコマンド制御回路71からのコマンドにしたがって、センサ部11、ラインメモリ21、キズ補正回路31、および、信号処理回路51を制御する。
コマンド制御回路71は、外部よりシリアルインタフェース(I/F)81を介して供給されるデータDATAに応じたコマンドを生成し、ラインメモリ21、キズ補正回路31、レベル設定回路41、信号処理回路51、および、SG61のパラメータなどを制御する。
図2は、図1に示した構成のCMOS型イメージセンサにおけるキズ補正回路31の、キズ画素判定回路32およびパターン抽出回路33の動作を説明するために示すものである。ここでは、図1に示した画素の配置(色フィルタ配列)に対して、「G0」を判定画素とした場合について説明する。また、色フィルタ配列におけるGr画素およびGb画素を、ともにG画素として説明する。なお、本実施形態は、白キズおよび黒キズを検出する画素の個数をそれぞれ“2”とした場合の例である。
図2に示すように、キズ画素判定回路32は、まず、判定画素G0がキズ画素か否かをチェックする。たとえば、判定画素G0、および、それと同色の周辺8画素G1,G2,G3,G4,G5,G6,G7,G8の、9画素分の信号をレベルの大小順に並べ替える(最大値D9〜最小値D1)。
次いで、白キズおよび黒キズを検出する画素の個数をそれぞれ“2”としたことにより、最大値D9から3番目(第n番目)の中間値D7と最小値D1から3番目(第m番目)の中間値D3との差分を算出する。そして、その差分結果(D7−D3)に、レベル設定回路41からの標準偏差想定レベルKKを掛け算した結果を、キズ判定レベルKizLとして算出する(KizL=(D7−D3)*KK)。また、中間値D7にキズ判定レベルKizLを加算した結果を、白キズ判定レベルKizW(=D7+(D7−D3)*KK)とする。さらに、中間値D3からキズ判定レベルKizLを減算した結果を、黒キズ判定レベルKizB(=D3−(D7−D3)*KK)とする。
この後、判定画素G0の信号が白キズ判定レベルKizWよりも大きいか否かを判定する。白キズ判定レベルKizWよりも大きい場合には、判定画素G0を白キズと判定し、制御信号Pkizを“0”に設定する。これにより、後述するキズ補正のための置換処理が行われる。
また、判定画素G0の信号が白キズ判定レベルKizWよりも小さい場合には、さらに、判定画素G0が黒キズ判定レベルKizBよりも小さいか否かを判定する。黒キズ判定レベルKizBよりも小さい場合には、判定画素G0を黒キズと判定し、制御信号Pkizを“0”に設定する。これにより、後述するキズ補正のための置換処理が行われる。
一方、判定画素G0の信号が黒キズ判定レベルKizBよりも大きい場合には、判定画素G0を白キズおよび黒キズではない(いわゆる、良品画素)と判定し、制御信号Pkizを“1”に設定する。良品画素と判定された場合、後述するキズ補正のための置換処理は行われない。
図3は、上記したキズ画素判定回路32において、白キズおよび黒キズを検出する画素の個数をそれぞれ“2(白キズ/黒キズ2画素対応)”とした場合の、制御信号Pkizの設定に係る動作について示すものである。この例の場合、信号が黒キズ判定レベルKizBよりも小さいレベルD1またはD2のとき、判定画素G0は黒キズと判定され、制御信号Pkizが“0”に設定される。なお、信号が白キズ判定レベルKizWよりも大きいレベル(レベルD9以上)のとき、判定画素G0は白キズと判定され、制御信号Pkizが“0”に設定される。
すなわち、判定画素の信号およびこれと同色の周辺画素の信号のうち、標準偏差想定レベルKKにもとづいて設定される、キズ画素として検出する画素の個数に応じた、ある範囲(本例の場合、D3〜D7)についての見かけ上の標準偏差(白キズ判定レベルおよび黒キズ判定レベル)を仮想的に生成し、その標準偏差より外れている場合をキズ画素として検出するようにしている。したがって、このキズ画素判定回路32によれば、画像パターンの抽出に際して、白キズおよび黒キズの有無をチェックすることにより、キズ画素を高精度に検出できる。
図2に示したように、本実施形態のパターン抽出回路33においては、判定画素G0が良品画素と判定した場合、判定画素G0の信号とそれに近接する同色の周辺画素G1,G2,G3,G4,G5,G6,G7,G8の8信号とを用いて、判定画素G0の画像パターンを抽出する。たとえば、判定画素G0と同色の、+字方向の周辺4画素G1,G3,G5,G7の信号の平均値を求める。そして、その平均値と判定画素G0の信号との差分信号(絶対値)Sub+30を求める(Sub+30=ABS((G1+G3+G5+G7)/4−G0))。同様に、判定画素G0と同色の、クロス(×字)方向の周辺4画素G2,G4,G6,G8の信号の平均値を求める。そして、その平均値と判定画素G0の信号との差分信号(絶対値)Sub×30を求める(Sub×30=ABS((G2+G4+G6+G8)/4−G0))。
さらに、求めた差分信号Sub+30,Sub×30のうち、その小さい方もしくはその大きい方を選択する。これにより、判定画素G0を含む画像パターンが、+字方向の周辺画素G1,G3,G5,G7もしくはクロス方向の周辺画素G2,G4,G6,G8のどちらに相関が強いかを判定できる。+字方向の周辺画素G1,G3,G5,G7に対する相関が強い+字パターンと判定した場合には、たとえば、パターン情報Y1(Y01方向の判定値)を“1”とし、パターン情報Y2(Y02方向の判定値)を“0”とする。逆に、クロス方向の周辺画素G2,G4,G6,G8に対する相関が強いクロスパターンと判定した場合には、たとえば、パターン情報Y1を“0”とし、パターン情報Y2を“1”とする。
次に、キズ画素判定回路32では、上記判定画素G0に隣接する、隣接画素R0を新たな判定画素として同様にキズ判定処理する。隣接画素R0がキズ画素と判定された場合には、先の判定画素G0の画像パターンに応じた周辺4画素の信号の平均値で、隣接画素R0に対する置換処理が行われる。もし、判定画素G0がキズ画素の場合、置換処理には、その1画素前の隣接画素Rの画像パターンが適用される。
本実施形態の場合、画像パターンの抽出に4画素分の信号の平均値を用いているため、よりランダムノイズ成分の低減が可能であり、高精度の欠陥画素補正処理を実現できる。特に、判定画素G0と信号のレベルが同じ周辺画素の数が多くなるほど、差分信号は小さくなるため、差分信号の精度が向上する。
図4は、上記したキズ補正回路31における、キズ画素置換処理回路34の動作を説明するために示すものである。ここでは、抽出された画像パターンに応じて、キズ画素の信号を、同色の+字方向に近接する周辺4画素の信号の平均値、または、同色のクロス方向に近接する周辺4画素の信号の平均値によって、置換する場合を例に説明する。
キズ画素置換処理回路34は、まず、上記したキズ画素判定回路32によって、判定(隣接)画素R0がキズ画素と判定されたかどうかを判断する。そして、キズ画素の検出結果にもとづいて、判定画素R0に対する、キズ補正のための置換処理(キズ画素置換処理)を行うか否かを決定する。
たとえば、制御信号Pkizが“1”のとき、つまり、判定画素R0がキズ画素として検出されない場合は、先に説明した通り、パターン抽出回路33によって、+字パターンまたはクロスパターンが抽出された後、処理は次の画素へと移行する。
一方、制御信号Pkizが“0”のとき、つまり、判定画素R0がキズ画素として検出された場合は、パターン抽出回路33によって抽出・保存された+字パターンまたはクロスパターンにしたがって、キズ画素置換処理を実行する。
すなわち、キズ画素置換処理回路34においては、パターン情報Y1より+字パターンの抽出が判断される場合、たとえば、判定画素R0の+字方向に近接する同色の周辺4画素R1,R3,R5,R7の信号の平均化信号(置換信号)を算出する。そして、その平均化信号によって、判定画素R0の信号を置換する。
また、パターン情報Y2よりクロスパターンの抽出が判断される場合は、たとえば、判定画素R0のクロス方向に近接する同色の周辺4画素R2,R4,R6,R8の信号の平均化信号(置換信号)を算出する。そして、その平均化信号によって、判定画素R0の信号を置換する。
この置換処理に、4画素の平均化信号を用いることで、ランダムノイズ成分の低減が可能となる。
以上のようなキズ画素置換処理を、順次、Gr画素、B画素、Gb画素の各画素についても同様に実施する。
上記したように、画像パターンの抽出に際し、白キズおよび黒キズの有無をチェックすることによって、キズ画素を高精度で検出できるようにしている。すなわち、標準偏差を利用してキズ画素を検出するようにしている。これにより、キズ画素における解像度の劣化を防止しつつ、キズ画素を高精度で検出することが可能となる。したがって、画像パターンに対して最適なキズ画素置換処理を実施することが可能となり、より高精度の欠陥画素補正処理を実現できるようになるものである。
特に、キズ画素の検出に標準偏差を利用するようにしているため、閾値レベルLevNを使ってキズ画素を検出する従来の撮像装置に比べ、被写体の解像度を考慮した処理が容易に可能となるものである。
図5〜図7は、それぞれ、閾値レベルLevNを使って、画像信号に対する欠陥画素補正処理を実施する撮像装置(たとえば、特願2007−119929号参照)の、キズ補正回路におけるキズ画素判定回路の動作(キズ画素の検出方法)を説明するために示すものである。
図5に示す第1のキズ画素判定回路は、まず、判定画素G0がキズ画素か否かを判定する。たとえば、判定画素G0およびそれと同色の+字方向の周辺画素G1,G3,G5,G7の5画素分の信号をレベルの大小順に並べ替える(D5〜D1)。同様に、判定画素G0およびそれと同色のクロス方向の周辺画素G2,G4,G6,G8の5画素分の信号をレベルの大小順に並べ替える(C5〜C1)。
そして、その並べ替えた信号の、最大値D5とその次の大きさの中間値D4との差分信号(D5−D4)の絶対値が、閾値レベルLevNよりも大きいか否かを判定し、大きい場合には最大値D5をもつ画素は白キズの可能性ありと判断する。同様に、最大値C5とその次の大きさの中間値C4との差分信号(C5−C4)の絶対値が、閾値レベルLevNよりも大きいか否かを判定し、大きい場合には最大値C5をもつ画素は白キズの可能性ありと判断する。2つの差分信号の絶対値から白キズの可能性がそれぞれ判定されると、最終的にAND回路LA1の出力が“1”となり、+字方向の5画素G0,G1,G3,G5,G7には白キズありと判断される。
また、その並べ替えた信号の、最小値D1とその次の大きさの中間値D2との差分信号(D2−D1)の絶対値が、閾値レベルLevNよりも大きいか否かを判定し、大きい場合には最小値D1をもつ画素は黒キズの可能性ありと判断する。同様に、最小値C1とその次の大きさの中間値C2との差分信号(C2−C1)の絶対値が、閾値レベルLevNよりも大きいか否かを判定し、大きい場合には最小値C1をもつ画素は黒キズの可能性ありと判断する。2つの差分信号の絶対値から黒キズの可能性がそれぞれ判定されると、最終的にAND回路LA2の出力が“1”となり、クロス方向の5画素G0,G2,G4,G6,G8には黒キズありと判断される。
こうして、白キズまたは黒キズの少なくとも一方が検出されると、最終的に、NOR回路LN1の出力Pkiz(制御信号)が“0”となり、判定画素G0はキズ画素と判断される。
図6に示す第2のキズ画素判定回路は、まず、判定画素G0およびそれと同色の+字方向の周辺画素G1,G3,G5,G7の5画素分の信号と、判定画素G0およびそれと同色のクロス方向の周辺画素G2,G4,G6,G8の5画素分の信号とを、それぞれレベルの大小順に並べ替える。
また、その並べ替えた信号の、最大値D5,C5の平均値とその次に大きい中間値D4,C4の平均値との差分信号((D5+C5)/2−(D4+C4)/2)の絶対値が、閾値レベルLevNよりも大きいか否かを判定し、大きい場合には最大値D5,C5をもつ画素は白キズありと判断する。同様に、最小値D1,C1の平均値とその次に大きい中間値D2,C2の平均値との差分信号((D2+C2)/2−(D1+C1)/2)の絶対値が、閾値レベルLevNよりも大きいか否かを判定し、大きい場合には最小値D1,C1をもつ画素は黒キズありと判断する。
こうして、白キズまたは黒キズの少なくとも一方が検出されると、最終的に、NOR回路LN2の出力Pkiz(制御信号)が“0”となり、判定画素G0はキズ画素と判断される。
図7に示す第3のキズ画素判定回路は、まず、判定画素G0およびそれと同色の+字方向の周辺画素G1,G3,G5,G7の5画素分の信号と、判定画素G0およびそれと同色のクロス方向の周辺画素G2,G4,G6,G8の5画素分の信号とを、それぞれレベルの大小順に並べ替える。
また、その並べ替えた信号の、最大値D5,C5の差分信号(D5−C5)の絶対値が“0”か否かを判定し、“0”の場合には最大値D5,C5をもつ画素は白キズありと判断する。同様に、最小値D1,C1の差分信号(D1−C1)の絶対値が“0”か否かを判定し、“0”の場合には最小値D1,C1をもつ画素は黒キズありと判断する。
こうして、白キズまたは黒キズの少なくとも一方が検出されると、最終的に、NOR回路LN3の出力Pkiz(制御信号)が“0”となり、判定画素G0はキズ画素と判断される。
上記した第1〜第3のキズ画素判定回路のように、大小関係によりキズ画素を判定するための閾値レベルLevNを採用する方式とした場合、細かいパターンがある被写体と細かいパターンがない被写体とで、閾値レベルLevNの調整が難しくなる。たとえば、細かいパターンがない被写体を基準にして閾値レベルLevNを定めた場合、細かいパターンはキズ画素と判定されることになるため、細かいパターンを再現できずに解像度が劣化する。逆に、たとえば、細かいパターンを再現できるように、細かいパターンがある被写体を基準にして閾値レベルLevNを定めた場合、細かいパターンがない被写体での微小な白キズおよび黒キズを補正できなくなるため、画質が劣化する。このように、閾値レベルLevNの設定は非常に難しいものであった。
これに対し、本実施形態のキズ画素判定回路32において、細かいパターンがない被写体であり、ランダムノイズ成分が少ない場合は、標準偏差想定レベルKKにもとづいて設定される、キズ画素として検出する画素の個数に応じた、ある範囲の差分(D7−D3)が小さくなる。そのため、仮想的な標準偏差も小さくなり、信号のレベルが小さいキズ画素も容易に検出できる。一方、ランダムノイズ成分が多く、細かいパターンがある被写体の場合は、標準偏差想定レベルKKにもとづいて設定される、キズ画素として検出する画素の個数に応じた、ある範囲の差分(D7−D3)が大きくなる。そのため、仮想的な標準偏差も大きくなり、解像度の小さいものはキズ画素と判定しないなど、解像度の劣化を防ぐことが可能となる。
なお、上述した本実施形態においては、キズ画素の検出のために、9個の画素(G画素G0〜G8)を用いるようにした場合を例に説明したが、これに限らない。たとえば、図8および図9に示すように、キズ画素の検出精度を向上させるために、13個の画素(G画素G0〜G12)を用いるようにすることも可能である。
また、いずれの例の場合においても、標準偏差想定レベルKKにもとづいて設定される、キズ画素として検出する画素の個数はそれぞれ“2”とする場合に限らない。たとえば、標準偏差想定レベルKKの設定に応じて、キズ画素として検出する画素の個数をそれぞれ“1(白キズ/黒キズ1画素対応)”などとすることも可能である。
ここで、標準偏差想定レベルKKとしては、信号量および/またはアナログ回路のゲインなどに応じて可変できるようにすることによって、さらに処理の最適化が可能となる。たとえば、標準偏差想定レベルKKは、低光量のときには回路ノイズを想定した値とし、光量が高い場合にはショットノイズに合わせて大きくなるように制御する。こうすることで、効果的にランダムノイズが抑圧された処理を実現できる。
特に、レンズ10の光学特性に起因したシェーディング補正を実施する撮像装置の場合、画面の中心に対して、上下端、左右端、コーナー部に近くなるほど、デジタルゲインによって信号を増幅するようにしている。このため、画面の上下端、左右端、コーナー部でのランダムノイズが増加する。そこで、標準偏差想定レベルKKを、このデジタルゲインに合わせて、画面の上下端、左右端、コーナー部で大きくなるように制御すると、ノイズ抑圧効果が大きくなり、画質を改善できる。
このように、標準偏差想定レベルKKは、信号量・画面位置・色情報・ゲイン情報などに応じて様々に変更することで、より最適なキズ補正が可能となる。
上述した本実施形態においては、カラーフィルタの色フィルタ配列をベイヤー配列とした場合を例に説明したが、これに限らない。たとえば、透明の色フィルタ(白)を使ったWRGBの色フィルタ配列、または、RGBの各画素が45度の角度をもったフィルタ配列のもの(ハニカム配列とも呼ばれる)などにも、同様に適用できる。さらに、画素の位置を行もしくは列方向に0.5画素ずらした画素配列のものにも適用できる。
また、色フィルタの基本配列は行列2×2のものに限定されず、より大きな行列のものにも適用できる。
また、画像パターンの抽出・保存は、判定画素から2画素以上も離れた近接の画素を用いて抽出することも可能である。
また、CMOS型のカラーイメージセンサに限らず、白黒センサにも適用することが可能である。
さらに、CMOS型イメージセンサに限定されるものではなく、たとえば、CCD(Charge Coupled Device)および積層型センサなどにも適用できる。
その他、本願発明は、上記(各)実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、上記(各)実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。たとえば、(各)実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題(の少なくとも1つ)が解決でき、発明の効果の欄で述べられている効果(の少なくとも1つ)が得られる場合には、その構成要件が削除された構成が発明として抽出され得る。
本発明の第1の実施形態にしたがった撮像装置(CMOS型イメージセンサ)の構成例を示すブロック図。 図1に示したCMOS型イメージセンサの、キズ補正回路におけるキズ画素判定回路の動作例を説明するために示す図。 図2に示したキズ画素判定回路の動作例を説明するために示す図。 図1に示したCMOS型イメージセンサの、キズ補正回路におけるキズ画素置換処理回路の動作例を説明するために示すフローチャート。 対比のために示す、閾値レベルLevNを用いて欠陥画素補正処理を実施する方式の撮像装置における、キズ補正回路のキズ画素判定回路の動作例を説明するための図。 対比のために示す、閾値レベルLevNを用いて欠陥画素補正処理を実施する方式の撮像装置における、キズ補正回路のキズ画素判定回路の他の動作例を説明するための図。 対比のために示す、閾値レベルLevNを用いて欠陥画素補正処理を実施する方式の撮像装置における、キズ補正回路のキズ画素判定回路のさらに別の動作例を説明するための図。 図1に示したCMOS型イメージセンサの、キズ補正回路におけるキズ画素判定回路の他の動作例を説明するために示す図。 図8に示したキズ画素判定回路の動作例を説明するために示す図。
符号の説明
11…センサ部、12…カラーフィルタ、13…フォトダイオードアレイ、21…ラインメモリ、31…キズ補正回路、32…キズ画素判定回路、33…パターン抽出回路、34…キズ画素置換処理回路、41…レベル設定回路、KK…標準偏差想定レベル、KizW…白キズ判定レベル、KizB…黒キズ判定レベル。

Claims (5)

  1. 光電変換素子からなる複数の画素が二次元に配置された撮像部より出力された画像信号に対して、キズ補正回路によって所定の信号処理を施すように構成された撮像装置であって、
    前記キズ補正回路は、
    前記画像信号のうち、判定画素の信号および前記判定画素にそれぞれ近接する前記判定画素と同色の周辺画素の信号にもとづいて、該判定画素がキズ画素か判定するキズ判定回路と、
    前記判定画素の信号および前記判定画素にそれぞれ近接する前記判定画素と同色の周辺画素の信号にもとづいて、画像パターン情報を抽出・保存するパターン抽出回路と、
    前記キズ判定回路によってキズ画素として検出された前記判定画素の信号を、保存された前記画像パターン情報をもとに置換信号を生成して置換する置換回路と
    を具備したことを特徴とする撮像装置。
  2. 前記キズ判定回路は、
    前記判定画素および前記判定画素にそれぞれ近接する前記判定画素と同色の周辺画素の各信号をレベルの大小順に並べ替え、
    前記並び替えた各信号のうち、キズ画素として検出する画素の個数に応じた、第n番目の信号から第m番目の信号についての見かけ上の標準偏差レベルを仮想的に生成し、
    前記判定画素の信号が前記標準偏差レベルより外れている場合にキズ画素として検出するものであることを特徴とする請求項1に記載の撮像装置。
  3. 前記キズ判定回路は、
    前記判定画素および前記判定画素にそれぞれ近接する前記判定画素と同色の周辺画素の各信号をレベルの大小順に並べ替え、
    前記並び替えた各信号のうち、キズ画素として検出する画素の個数に応じた、第n番目の信号から第m番目の信号についての見かけ上の標準偏差を設定するために、前記第n番目の信号と前記第m番目の信号との差分結果に前記標準偏差を設定するための標準偏差想定係数を乗算して第1のキズ判定レベルを算出し、
    前記第n番目の信号に前記第1のキズ判定レベルを加算して第2のキズ判定レベルを算出し、
    前記第m番目の信号から前記第1のキズ判定レベルを減算して第3のキズ判定レベルを算出し、
    前記判定画素の信号が前記第2のキズ判定レベルよりも大きい場合には、白キズと判定し、前記判定画素の信号が前記第3のキズ判定レベルよりも小さい場合には、黒キズと判定し、前記置換回路を制御するための制御信号を生成する
    ことを特徴とする請求項1または2に記載の撮像装置。
  4. 前記パターン抽出回路は、
    前記判定画素の+字方向にそれぞれ近接する前記判定画素と同色の周辺画素の4信号から第1の平均化信号を求めるとともに、前記第1の平均化信号と前記判定画素の1信号とから第1の差分信号を算出し、
    前記判定画素の×字方向にそれぞれ近接する前記判定画素と同色の周辺画素の4信号から第2の平均化信号を求めるとともに、前記第2の平均化信号と前記判定画素の1信号とから第2の差分信号を算出し、
    前記第1の差分信号または前記第2の差分信号の小さい方もしくは大きい方を選択することにより、前記+字方向と前記×字方向との2方向についての相関の有無を判断し、前記2方向についての前記画像パターン情報を抽出するものである
    ことを特徴とする請求項1に記載の撮像装置。
  5. 前記置換回路は、
    前記画像パターン情報にしたがって、前記判定画素の+字方向にそれぞれ近接する前記判定画素と同色の周辺画素の4信号から第1の平均化信号、または、前記判定画素の×字方向にそれぞれ近接する前記判定画素と同色の周辺画素の4信号から第2の平均化信号を算出し、
    前記第1の平均化信号または前記第2の平均化信号を前記置換信号として、前記判定画素の信号を置換するものである
    ことを特徴とする請求項1に記載の撮像装置。
JP2008233547A 2008-09-11 2008-09-11 撮像装置 Withdrawn JP2010068329A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233547A JP2010068329A (ja) 2008-09-11 2008-09-11 撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233547A JP2010068329A (ja) 2008-09-11 2008-09-11 撮像装置

Publications (1)

Publication Number Publication Date
JP2010068329A true JP2010068329A (ja) 2010-03-25

Family

ID=42193500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233547A Withdrawn JP2010068329A (ja) 2008-09-11 2008-09-11 撮像装置

Country Status (1)

Country Link
JP (1) JP2010068329A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122791A (ja) * 2015-02-12 2015-07-02 キヤノン株式会社 画像処理装置、画像処理装置の制御方法及びプログラム
US9092845B2 (en) 2012-02-15 2015-07-28 Kabushiki Kaisha Toshiba Image processing device with defect correcting circuit and image processing method
US9729805B2 (en) 2011-02-28 2017-08-08 Fujifilm Corporation Imaging device and defective pixel correction method
WO2017221376A1 (ja) * 2016-06-23 2017-12-28 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム
KR20200141808A (ko) * 2019-06-11 2020-12-21 국방과학연구소 데드픽셀 검출 방법 및 장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729805B2 (en) 2011-02-28 2017-08-08 Fujifilm Corporation Imaging device and defective pixel correction method
US9092845B2 (en) 2012-02-15 2015-07-28 Kabushiki Kaisha Toshiba Image processing device with defect correcting circuit and image processing method
JP2015122791A (ja) * 2015-02-12 2015-07-02 キヤノン株式会社 画像処理装置、画像処理装置の制御方法及びプログラム
WO2017221376A1 (ja) * 2016-06-23 2017-12-28 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム
US10728476B2 (en) 2016-06-23 2020-07-28 Olympus Corporation Image processing device, image processing method, and image processing program for determining a defective pixel
KR20200141808A (ko) * 2019-06-11 2020-12-21 국방과학연구소 데드픽셀 검출 방법 및 장치
KR102215055B1 (ko) * 2019-06-11 2021-02-10 국방과학연구소 데드픽셀 검출 방법 및 장치

Similar Documents

Publication Publication Date Title
JP4703601B2 (ja) 撮像装置
JP4686496B2 (ja) 撮像装置
JP4374488B2 (ja) デモザイク処理及び不良ピクセル補正を組み合わせるためのディジタル画像システム及び方法
US8248481B2 (en) Method and apparatus for motion artifact removal in multiple-exposure high-dynamic range imaging
JP4388909B2 (ja) 画素欠陥補正装置
US20080278609A1 (en) Imaging apparatus, defective pixel correcting apparatus, processing method in the apparatuses, and program
WO2011042948A1 (ja) 撮像装置の欠陥検出方法及び撮像装置
JP5060535B2 (ja) 画像処理装置
US20080298716A1 (en) Solid-State Imaging Device and Pixel Correction Method
US20130229550A1 (en) Defective pixel correction apparatus, method for controlling the apparatus, and program for causing computer to perform the method
JP5169994B2 (ja) 画像処理装置、撮像装置及び画像処理方法
JP4591046B2 (ja) 欠陥検出補正回路及び欠陥検出補正方法
JP2010068329A (ja) 撮像装置
JP2005101829A (ja) 信号処理装置
JP5425343B2 (ja) 撮像装置、撮像装置の制御方法、及び撮像装置の制御プログラム
JP4331120B2 (ja) 欠陥画素検出方法
JP4719442B2 (ja) 画像信号処理回路、カメラ、及び画像信号処理方法
JP4166974B2 (ja) 画素キズ検出・補正装置
JP2002271806A (ja) Ccd撮像素子の画素欠陥信号補正回路
JP2011114473A (ja) 画素欠陥補正装置
JP2010056817A (ja) 撮像装置
JP2008148115A (ja) 方向検出を用いた撮像デバイスの画像欠陥補正システム
JP4110956B2 (ja) 画素欠陥補正機能を備えた固体撮像装置及び固体撮像装置の画素欠陥補正方法
JP2010178384A (ja) 画像信号処理回路、カメラ、及び画像信号処理方法
KR100801057B1 (ko) 컬러 보정 블럭을 구비하는 cmos 이미지 센서 및 그이미지 센싱 방법

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206