JP5889405B2 - 冷媒圧縮機及びヒートポンプ装置 - Google Patents

冷媒圧縮機及びヒートポンプ装置 Download PDF

Info

Publication number
JP5889405B2
JP5889405B2 JP2014514228A JP2014514228A JP5889405B2 JP 5889405 B2 JP5889405 B2 JP 5889405B2 JP 2014514228 A JP2014514228 A JP 2014514228A JP 2014514228 A JP2014514228 A JP 2014514228A JP 5889405 B2 JP5889405 B2 JP 5889405B2
Authority
JP
Japan
Prior art keywords
refrigerant
discharge
compression mechanism
oil
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014514228A
Other languages
English (en)
Other versions
JPWO2013168193A1 (ja
Inventor
哲英 横山
哲英 横山
関屋 慎
慎 関屋
佐々木 圭
圭 佐々木
雷人 河村
雷人 河村
利秀 幸田
利秀 幸田
英明 前山
英明 前山
太郎 加藤
太郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2013168193A1 publication Critical patent/JPWO2013168193A1/ja
Application granted granted Critical
Publication of JP5889405B2 publication Critical patent/JP5889405B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Description

本発明は冷媒圧縮機及びヒートポンプ装置、特に、冷凍冷蔵庫、空調機あるいは給湯機等のヒートポンプ装置に用いられる冷媒圧縮機、および該圧縮機が用いられたヒートポンプ装置に関するものである
近年、冷媒圧縮機において地球温暖化防止を図る観点から、使用するフロン冷媒量を削減する技術や、オゾン層破壊係数がゼロで地球温暖化係数の小さな可燃性冷媒を用いる技術が必要となっている。
特に、冷媒特性に優れた炭化水素冷媒(以下、「HC冷媒」と称す)が期待されている。HC冷媒は摺動部潤滑性能、漏れシール性能、理論COPの観点からフロン冷媒と同等の冷媒特性を備えており、既にイソブタンを用いた冷凍冷蔵庫が量産されているが、可燃性冷媒の危険性から、国際規格で冷媒許容充填量が制限されている。例えば、IEC規格によると、家庭用エアコンに充填できる炭化水素冷媒量は約150g以内に削減することが必要になっている。
このため、冷媒許容充填量の制限を解決する手段として、PAG(ポリアルキレングリコール)はHC冷媒(R290)との相溶性が低く、PAGを潤滑油に用いることにより冷媒充填量を低減できる(潤滑油への溶け込み量を見こして余分に冷媒量を封入する必要がなくなる)ことが報告されている(例えば、非特許文献1参照)。
また、潤滑油としてHC冷媒との相溶性が低い油(非相溶油化)を用いると共に、潤滑油を貯蔵した密閉シェル(密閉容器)内を冷媒吸入圧雰囲気とする(低圧シェル化)ことにより、潤滑油に対するHC冷媒の溶け込み量を低減する発明が開示されている(例えば、特許文献1参照)。
さらに、HC冷媒に非相溶性の潤滑油を用いると、冷凍サイクル中に持ち出された潤滑油が圧縮機内に十分戻ってこない問題があるとして、高圧シェル形圧縮機または中間圧型圧縮機を採用し、HC冷媒がよく溶ける性質があるパラフィン系鉱油を潤滑油として用い、圧縮機の運転中に圧縮機内の潤滑油を加熱する加熱手段を設けて、潤滑油中に溶解する冷媒量を低下させる発明が開示されている(例えば、特許文献2参照)。
特開平8−200224号公報(第2−3頁、図1) 特開平11−294877号公報(第3−4頁、図3)
高橋仁"冷媒/冷凍機油混合物の特性について"、日本冷凍空調工業会主催、代替冷媒と環境 国際シンポジウム2002講演集 第160−164頁
しかしながら、特許文献1には、冷媒の潤滑油への溶け込み量を削減する上で、非相溶油化と低圧シェル化が有効な手段であることが示されているが、発明者等が下記試験評価等で見出したような、低圧シェル形式の圧縮機での運転状態の変化に伴う潤滑油の動粘度変化の大きさについては考慮されていない。
また、特許文献2のものも、高圧シェルまたは中間圧形式の圧縮機が記載されるのみであり、低圧シェル化については考慮されていない。
そして、低圧シェル形式の圧縮機について、高圧シェル形式の圧縮機との性能を比較する下記試験評価等によって以下のような課題が明らかになっていた。
(試験条件)
発明者等は低圧シェル化と非相溶油化による新たな課題抽出のために、HC冷媒としてR290を用い、1.5馬力クラスの低圧シェル形ロータリ圧縮機と高圧シェル形ロータリ圧縮機の性能試験を実施した。
図11は、かかる性能試験の条件(以下、「圧縮機試験条件」と称す)を整理したものであって、(a)ASHRAE−T条件、(b)定格冷房試験条件、(c)中間冷房試験条件 、(d)定格暖房試験条件、(e)中間暖房試験条件、(f)欧州給湯暖房A2W35条件、および(g)中国GB条件の条件について、それぞれ実施した。
このとき、HC冷媒としてR290を用い、潤滑油として相溶性の高いナフテン系鉱油(NM100)と、EO50%を含む相溶性の低いPAG油との2水準について、各運転時の油動粘度を、圧縮機シェル底に、粘度計(Cambridge社Viscopro 1600)を取り付けて測定した。
(R290とナフテン系鉱油)
図12は、HC冷媒としてR290を用い、相溶性の高いナフテン系鉱油(NM100)を潤滑油として、上記各試験を実施した場合における測定結果であって、当該潤滑油の動粘度変化を示すものである。
図12に示されるように、低圧シェル形圧縮機の場合、高圧シェル形圧縮機に比べて油動粘度が高く、例えば定格暖房運転時は約5倍に達し、機械損失が非常に大きくなる。さらに、油動粘度変動幅も大きく、最大値(中間冷房試験条件時)と最小値(定格暖房試験条件時)の比率が約7倍に達するので、幅広い条件で軸受耐久性確保と機械損失低減とを両立する設計が難しい。
このように低圧シェル形圧縮機において、HC冷媒を用い、相溶性の高いナフテン系鉱油などの鉱油を潤滑油として用いた場合、油動粘度変動幅が大きく、幅広い条件で軸受耐久性確保(粘度大が好ましい)と機械損失低減(粘度小が好ましい)とを両立する設計が難しいという問題が明らかになった。
(R290とPAG油)
図13は、潤滑油をEO50%を含む相溶性の低いPAG油(ここでは粘度がVG22であるものを用いた)に交換して同様の試験を実施した結果であって、当該潤滑油の動粘度変化を示すものである。
図13に示されるように、低圧シェル形圧縮機の場合、高圧シェル形圧縮機に比べて、油動粘度が定格暖房運転時で約2.5倍であり、また、油動粘度変動幅は最大値(中間暖房試験条件時)と最小値(中間冷房試験条件)の比率は約2倍である。
このように低圧シェル形圧縮機において、HC冷媒を用い、相溶性の低いPAG油を潤滑油として用いた場合、油動粘度変動幅はナフテン系鉱油などの鉱油を潤滑油として用いた場合に比べて小さくなる。
また、HC冷媒とPAG油との溶解度について、非特許文献1には、R290(プロパン)冷媒と主な潤滑油(鉱油、POE油、PAG油)との溶解度曲線が示されており、ポリアルキレングリコール(PAG)油が、HC冷媒に対して相溶性が低く、鉱油などの相溶性の油に比べて、冷媒溶解度の変化が小さく、HC冷媒封入量を削減することがわかる。
このように、低圧シェルにおいて、HC冷媒に対し相溶性の低いPAG油を潤滑油として用いることで、鉱油を潤滑油として用いる場合に比べて油動粘度変動幅を小さくでき、また、非相溶油化および低圧シェル化によりHC冷媒の潤滑油への溶け込み量を減らすことができる(冷媒充填量を低減できる)。
しかしながら、軸受耐久性確保と機械損失低減とを両立する設計の自由度を確保する観点から、PAGの油動粘度変動幅を更に小さくする必要がある。
また、PAG油中のEO(エチレンオキサイト)含有量を増やすと、HC冷媒に対する相溶性を下げることができる(冷媒充填量を低減できる)が、それにより潤滑磨耗性能が低下し、特に50%以上では潤滑磨耗性能が急激に低下する問題を生じる。このため、EO含有量を増やすことによる潤滑磨耗性能の低下に対する対策として、PAGの油動粘度を制御する何らかの手段が必要となる。
また、PAG油中の平均分子量を下げると標準状態の粘度を下げることができるが、一方、揮発性が高くなり、引火点が低下する。VG18(ISO粘度規格)で引火点が18
3℃であり、VG18が実用上使える粘度の限界である。このようなPAG油の標準状態の粘度低下の限界からも、PAGの油動粘度を制御する何らかの手段が必要となる。
(冷媒溶解度の変化範囲)
図14は、温度および圧力に対する冷媒溶解度の変化範囲について、低圧シェル形の場合と高圧シェル形の場合とで比較した図である。
図15は、冷媒溶解時の油動粘度の変化範囲について、低圧シェル形の場合と高圧シェル形の場合とで比較した図である。
一般的に、図14に示すように、冷媒溶解度と圧力との関係を示すグラフは圧力0とき冷媒溶解度0となる対数カーブが、異なる温度条件ごとに表される。すなわち、潤滑油を貯蔵した密閉シェル(密閉容器)内を冷媒吐出圧雰囲気とする高圧シェル形の場合、圧縮機の吐出圧条件が変化すると、密閉シェル(密閉容器)内に貯蔵する油の圧力と温度が変化する。一方、低圧シェル形の場合、圧縮機の吸入圧条件が変化すると、密閉シェル(密閉容器)内に貯蔵する油の圧力と温度が変化する。
図14のような対数カーブで表すことができる冷媒溶解度曲線の特性上、低温低圧側で圧力と温度が変化する低圧シェル形のほうが、高圧シェル形のよりも冷媒溶解度に与える影響が大きく冷媒溶解度が変化する。その結果、図15に示すように、油動粘度変化範囲も低圧シェル形のほうが高圧シェル形に比べて大きくなる。
以上のように、低圧シェル化と非相溶油化とに対応するために、以下のような新たな課題が抽出された。
(1)HC冷媒の冷媒溶解度を低減する手段として、非相溶性のPAG油を用いることが有効であるが、PAG油はVG18より粘度の低い油が実用上製造できない。したがって、軸受け設計を適正化し機械損失を低減するためには、PAG油の物性を制御する別の手段が必要である。
(2)さらに、低圧シェル形式を用いる場合には、密閉シェル(密閉容器)内に貯蔵する油の冷媒溶解度と動粘度が変化しやすい。したがって、軸受け設計を適正化し機械損失を低減するためには、油物性を制御する新たな手段が必要である。
本発明は、上記のような課題を解決するためになされたもので、低圧シェル形式の圧縮機において、冷媒の油中溶解度を小さくし、冷媒封入量を削減することができるとともに、圧縮機効率を改善することができる冷媒圧縮機およびヒートポンプ装置を得るものである。
本発明に係る冷媒圧縮機は、低圧シェル形の密閉容器と、該密閉容器内に収納され、冷媒を吸入し圧縮する圧縮機構と、前記密閉容器内に収納され、前記圧縮機構を駆動する電動機と、前記密閉容器内の下部に形成された潤滑油を貯蔵する油貯蔵部と、前記油貯蔵部に貯蔵された潤滑油と前記圧縮機構から吐出された冷媒との間で熱交換する熱交換手段と、前記圧縮機構から冷媒を前記密閉容器外に導く複数の吐出経路と、を有し、前記吐出経路は、前記潤滑油を加熱する前記熱交換手段を前記密閉容器内に備えた第1吐出経路と、前記潤滑油と熱交換しないで前記冷媒を前記密閉容器外に導く第2吐出経路とを備え、前記第1吐出経路は前記熱交換手段を通過した後に前記第2吐出経路と合流することを特徴とする。
本発明では、油貯蔵部に貯蔵された潤滑油に圧縮機構から吐出された高圧冷媒の有する温熱が受け渡されるため、冷媒の油中溶解度を小さくすることができるから、冷媒封入量を削減する効果と、圧縮機効率及びヒートポンプ効率を改善する効果とが得られる。
本発明の実施の形態1に係る冷媒圧縮機を模式的に説明する縦断面図。 本発明の実施の形態2に係るヒートポンプ装置を模式的に説明する構成図。 本発明の実施の形態3に係る冷媒圧縮機を模式的に説明する縦断面図。 本発明の実施の形態4に係るヒートポンプ装置を模式的に説明する構成図。 本発明の実施の形態5に係る冷媒圧縮機を模式的に説明する縦断面図。 本発明の実施の形態6に係るヒートポンプ装置を模式的に説明する構成図。 本発明の実施の形態7に係る冷媒圧縮機を模式的に説明する縦断面図。 本発明の実施の形態8に係るヒートポンプ装置を模式的に説明する構成図。 本発明の実施の形態9に係る冷媒圧縮機を模式的に説明する縦断面図。 本発明の実施の形態10に係るヒートポンプ装置を模式的に説明する構成図。 低圧シェル形と高圧シェル形と性能試験の条件。 R290とナフテン系鉱油を潤滑油とした場合の測定結果 R290とPAG油を潤滑油とした場合の測定結果。 温度および圧力に対する冷媒溶解度の変化を示す測定結果。 冷媒溶解度と油動粘度との関係を示す測定結果。
[実施の形態1]
図1は本発明の実施の形態1に係る冷媒圧縮機を模式的に説明する縦断面図である。なお、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(低圧シェル形2シリンダ圧縮機)
図1において、冷媒圧縮機(以下、「低圧シェル形2シリンダ圧縮機」または「冷媒圧縮機」と称す)110は、密閉容器8と、密閉容器8内に設けられた電動機9と、電動機9によって駆動される駆動軸6と、駆動軸6の両端をそれぞれ支持する短軸側軸受け7aおよび長軸側軸受け7bと、第1(下側)シリンダ11によって構成された第1(下側)圧縮機構10、第2(上側)シリンダ21によって構成された第2(上側)圧縮機構20と、第1(下側)シリンダ11と第2(上側)シリンダ21とを仕切る中間プレート5を、を有している。
低圧の冷媒は、圧縮機吸入管1から密閉容器8内に吸入され、密閉容器8内を移動して、密閉容器8内に設置された第1(下側)シリンダ吸入管15から第1(下側)圧縮機構10の第1(下側)シリンダ圧縮室11aに吸引されると共に、第2(上側)シリンダ吸入管25から第2(上側)圧縮機構20の第2(上側)シリンダ圧縮室21aにそれぞれ吸入される。
そして、第1(下側)シリンダ圧縮室11aおよび第2(上側)シリンダ圧縮室21aのそれぞれにおいて圧縮された冷媒(以下、「高圧冷媒」と称す)は、第1(下側)吐出ポート17および第2(上側)吐出ポート27からそれぞれ第1(下側)吐出マフラ空間32および第2(上側)吐出マフラ空間42に吐出され、それぞれ、密閉容器8外の冷媒回路(図示しない)に導く第1(下側)吐出流路35と第2(上側)吐出流路45に繋がる。なお、第1(下側)吐出マフラ空間32は容器33によって形成され、両者を合わせて第1(下側)吐出マフラ31と称す。
第1(下側)吐出流路35および第2(上側)吐出流路45には、それぞれ流路抵抗を調整する流路抵抗手段である第1バルブ37および第2バルブ47が設置され、それぞれの開度を調節することにより、第1(下側)吐出流路35および第2(上側)吐出流路45のそれぞれを流れる冷媒流量が適切に調整される。
また、第1(下側)吐出流路35は、第1(下側)吐出マフラ空間32から密閉容器8内の油貯蔵部50に設置された熱交換手段36を経由した後、密閉容器8の外に導かれる。
本発明の実施の形態1の構成では、2つの圧縮シリンダ11、21が、それぞれ、吐出ポート17、27から吐出する高圧冷媒を放熱器102(図2参照)に導く吐出経路30、40が上記のように構成される。そのうち、密閉容器内で潤滑油を加熱する吐出経路を第1と定義した。
縦置き圧縮機においては潤滑油が密閉容器8内の下部に貯留されるので、下側に配置した吐出経路を第1、上側に配置した吐出経路を第2と命名する構成が一般的である。しかしながら、密閉シェル内で積極的に熱交換する吐出経路を第1と命名するのであって、第2吐出経路より相対的に上側に配置した構成の場合も可能である。
熱交換手段36は駆動軸6の下端に取り付けてある油回転ポンプ51の吸い込み口付近に配置され、熱交換手段36と密閉容器8の外壁部との間に潤滑油の流動を遮る油包囲手段55が配され、断熱が図られている。熱交換手段36は、例えば、冷媒が流れる1又は2以上の伝熱管と、該伝熱管に設置された複数の放熱板(フィン)とからなり、潤滑油に浸漬されている。
第1(下側)吐出マフラ空間32と第2(上側)吐出マフラ空間42とは、連通流路46によって連通している。なお、連通流路46は、第1(下側)シリンダ11と第2(上側)シリンダ21と中間プレート5とを軸方向に貫いている。なお、第2(上側)吐出マフラ空間42は容器43によって形成され、両者を合わせて上部吐出マフラ41と称す。
例えば、低温環境条件においては、吸入温度低下により密閉容器内に貯蔵される油温が低下し、油粘度が増加し圧縮機の機械損失が増加する問題があった。
本発明の実施の形態1では、第2バルブ47を絞って、第1バルブ37を開くことによって、第1圧縮シリンダ11で圧縮され、第1吐出ポート17から第1吐出マフラ空間32に吐出される高圧冷媒は、連通流路46を通って、第2吐出マフラ空間42に流れるため、第2(上側)吐出流路45を流れる流量を減少させ、第1(下側)吐出流路35を流れる流量を増加させることができる。すなわち、熱交換手段36を通過する油の流量が増加するから、油との熱交換量(温熱の受け取り量)が増えることによって油温が上昇し、油粘度が低下するという効果が得られる。
以上より、実施の形態1に係る低圧シェル形2シリンダ圧縮機110は、油温を制御することができるため、冷媒の油中溶解度と油動粘度変動幅とが小さくなり、冷媒封入量を削減する効果と、圧縮機効率を向上させる効果が得られる。
なお、熱交換手段36と密閉容器8の壁面の間に潤滑油の流動を遮る油包囲手段55が載置されているから油包囲手段55の内部において潤滑油は加熱され、密閉容器8の外への温熱の放散が防止される。
また、潤滑油として、炭化水素冷媒と相溶性の小さな潤滑油、例えば、40℃大気圧中で動粘度が18cSt以上であるようにエチレンオキサイトを含有させたポリアルキレングリコールを用いている。
[実施の形態2]
図2は本発明の実施の形態2に係るヒートポンプ装置を模式的に説明する一部縦断面の構成図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(ヒートポンプ給湯器)
図2において、ヒートポンプ装置(以下、「ヒートポンプ給湯器」と称す)140は、冷媒圧縮機110と、放熱器102と、膨張弁103と、蒸発器104と、これらを順次連結して冷媒を循環させる冷媒配管105と、によって冷凍サイクルを実現する主冷媒回路120と、利用流体回路130とを備える。
ここで、冷媒圧縮機110は、実施の形態1において説明した低圧シェル形2シリンダ圧縮機110であり、第1(下側)吐出流路35と第2(上側)吐出流路45とは、それぞれ第1バルブ37と第2バルブ47の下流側(密閉容器8の外)で合流している。
そして、放熱器102において、冷媒圧縮機110が圧縮した冷媒(高圧冷媒)と利用流体回路130を流れる利用流体(ここでは水)とを熱交換することにより、冷媒は温熱を受け渡して冷却され、利用流体は温熱を受け取って温められる。すなわち、利用流体回路130は、放熱器102において温められた利用流体を活用するものである。
このとき、ヒートポンプ給湯器140においては、高温吐出による高温沸き上げ運転が必要である。この場合には、第1バルブ37を閉じて、第2バルブ47を開くことで、第2(上側)吐出流路45を流れる流量を増加させることができる。すなわち、油と熱交換しない高温冷媒を、放熱器102に供給することができる。
一方、定常の出湯温度で高出力が必要な場合には、冷媒圧縮機110は高い回転数で動作し吐出部で大きな圧力損失が発生するから、圧力損失を低減するために、第1バルブ37および第2バルブ47を全開にして動作させる。
さらに、圧力脈動による騒音・振動を低減するため、第1(下側)吐出マフラ空間32と第2(上側)吐出マフラ空間42との間で逆位相で発生する圧力脈動を、連通流路46を経由して相互に伝播させることで、圧力脈動の振幅を低減する効果が得られる。
なお、第1バルブ37および第2バルブ47の開度の制御は、密閉容器8内の油温、密閉容器8の外壁温度、または、吐出温度を検知しながら、能動的に制御したり、用途や環境条件によって平均的に最も効率のより開度に調整しておいたりする。
以上より、実施の形態2に係るヒートポンプ給湯器140は、実施の形態1に係る低圧シェル形2シリンダ圧縮機110を有するから、冷媒の油中溶解度と油動粘度変動幅とを小さくできるので、ヒートポンプ効率を改善する効果が得られる。
[実施の形態3]
図3は本発明の実施の形態3に係る冷媒圧縮機を模式的に説明する縦断面である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(低圧シェル形2シリンダ圧縮機)
図3において、冷媒圧縮機(以下、「低圧シェル形2シリンダ圧縮機」と称す)210は、第1(下側)吐出流路35および第2(上側)吐出流路45の一方または両方から流出した冷媒が、冷媒回路(図示しない)において油分離された後、分離された油を第1(下側)圧縮機構10および第2(上側)圧縮機構20に戻すための油戻し回路56が設けられている。
すなわち、低圧シェル形2シリンダ圧縮機210には、実施の形態1に示す低圧シェル形2シリンダ圧縮機110と同様に、第1(下側)吐出流路35が第1(下側)吐出マフラ空間32から密閉容器8内の油貯蔵部50に設置された熱交換手段36を経由した後、密閉容器8の外に導かれ、熱交換手段36において、潤滑油が加熱されるから、冷媒封入量を削減する効果と、圧縮機効率を改善する効果が得られる。
さらに、第1バルブ37および第2バルブ47の開度を調節することにより、第1吐出流路35および第2吐出流路45のそれぞれを流れる冷媒流量が適切に調整されるので、吐出流路での圧力損失を減らすには、バルブ37、47を全開にするのがよいが、一方、油との熱交換量を増やし、油動粘度低減、冷媒溶解度低減をさせる必要な場合に第1バルブ37を全開にし、第2バルブ47を閉じる。などの調整が可能となり、冷媒封入量の削減と圧縮機効率の改善に有効である。
このとき、バルブ37、47を開閉調整によって油との熱交換量を調整する機能を得るには、圧縮シリンダから吐出された冷媒が、第1吐出経路側35の熱交換手段36を経由する前に、第2吐出経路に合流できるように連通流路46を配置するのがよい。
[実施の形態4]
図4は本発明の実施の形態4に係るヒートポンプ装置を模式的に説明する一部縦断面の構成図である。なお、実施の形態3と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(ヒートポンプ給湯器)
図4において、ヒートポンプ装置240は、圧縮機210と、放熱器102と、膨張弁103と、蒸発器104と、これらを順次連結して冷媒を循環させる冷媒配管105と、によって冷凍サイクルを実現する主冷媒回路220とを備える。このとき、圧縮機210と放熱器102との間に油分離器57が設置されている。
そして、第1(下側)吐出流路35と第2(上側)吐出流路45は第1バルブ37と第2バルブの下流(密閉容器8の外)で合流し、一旦、油分離器57内に導かれ、油分離後の冷媒は放熱器102に導かれる。一方、分離された油は、油戻し回路56を通って第1(下側)圧縮機構10および第2(上側)圧縮機構20に給油される(戻される)。
以上より、実施の形態4に係るヒートポンプ装置240は、実施の形態1に係る低圧シェル形2シリンダ圧縮機110を有するから、冷媒の油中溶解度と油動粘度変動幅とを小さくできるので、ヒートポンプ効率を改善する効果が得られる。なお、実施の形態2に示したヒートポンプ給湯器140に準じて、放熱器102に利用流体回路130を熱的に接続してもよい。
[実施の形態5]
図5は本発明の実施の形態5に係る冷媒圧縮機を模式的に説明する縦断面である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(低圧シェル形2シリンダ圧縮機)
図5において、冷媒圧縮機(以下、「低圧シェル形2シリンダ圧縮機」と称す)310は、圧縮機吸入管1を経由して密閉容器8内に導かれた低圧冷媒を、一旦、密閉容器8の外に誘導した後、第1(下側)シリンダ圧縮室11aに導く第1(下側)シリンダ吸入管15と、第2(上側)シリンダ圧縮室21aに導く第2(上側)シリンダ吸入管25と、が設置されている。したがって、冷凍冷蔵庫や冷房などの冷却を主とする用途においては、吸入加熱損失を低減する効果があり、実施の形態1に示すより優れている。
また、第1(下側)圧縮機構10からの吐出直後の圧力脈動を減衰させる第1(下側)吐出マフラ31を構成する容器33に、放熱用の複数のフィン38を設置し、第1吐出径路35自体には、放熱用のフィンを設置していない。よって、独立した熱交換器を用いる(第1吐出径路35自体に放熱用のフィンを設置する構成)よりも低コスト化とコンパクト化に有利である。
すなわち、低圧シェル形2シリンダ圧縮機310には、第1(下側)吐出マフラ空間32およびフィン38からの伝熱によって潤滑油が加熱されるから、冷媒封入量を削減する効果と、圧縮機効率を改善する効果が得られる。
さらに、第1バルブ37および第2バルブ47の開度を調節することにより、第1吐出流路35および第2吐出流路45のそれぞれを流れる冷媒流量が適切に調整されるので、吐出流路での圧力損失を減らすには、バルブ37、47を全開にするのがよいが、一方、油との熱交換量を増やし、油動粘度低減、冷媒溶解度低減させる必要な場合に第1バルブ37を全開にし、第2バルブ47を閉じる。などの調整が可能となり、冷媒封入量の削減と圧縮機効率の改善に有効である。
[実施の形態6]
図6は本発明の実施の形態6に係るヒートポンプ装置を模式的に説明する一部縦断面の構成図である。なお、実施の形態5と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(ヒートポンプ給湯器)
図6において、ヒートポンプ装置340は、圧縮機310と、放熱器102と、膨張弁103と、蒸発器104と、これらを順次連結して冷媒を循環させる冷媒配管105と、によって冷凍サイクルを実現する主冷媒回路320とを備える。
したがって、ヒートポンプ装置340は、実施の形態5に係る冷媒圧縮機310を有するから、冷媒の油中溶解度と油動粘度変動幅とを小さくできるので、ヒートポンプ効率を改善する効果が得られる。なお、実施の形態2に示したヒートポンプ給湯器140に準じて、放熱器102に利用流体回路130を熱的に接続してもよい。
[実施の形態7]
図7は本発明の実施の形態7に係る冷媒圧縮機を模式的に説明する縦断面である。なお、実施の形態5と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(低圧シェル形1シリンダ圧縮機)
実施の形態5に示した低圧シェル形2シリンダ圧縮機310は、第1(下側)圧縮機構10および第2(上側)圧縮機構20の2個の圧縮機構で構成したが、図7において、冷媒圧縮機410は、圧縮機構が1シリンダで構成した低圧シェル形1シリンダ圧縮機である点が異なる。
本低圧シェル形1シリンダ圧縮機410では、圧縮機吸入管1を経由して密閉容器8内に導かれた低圧冷媒を、一旦、密閉容器8の外に誘導した後、シリンダ圧縮室61aに導くシリンダ吸入管65が設置されている。したがって、冷凍冷蔵庫や冷房などの冷却を主とする用途においては、吸入加熱損失を低減する効果があり、実施の形態1に示すより優れている。
本発明の実施の形態7では、実施の形態1から6のような連通流路46がなくとも、シリンダ圧縮室61aの2つの吐出ポート27、17が上下に分かれて取り付けてあるため、連通流路がなくとも、
第2バルブ47を絞って、第1バルブ37を開くことによって、第1圧縮シリンダ61で圧縮された高圧冷媒は、シリンダ圧縮室46から第2吐出マフラ空間42に流れやすくなるため、第2(上側)吐出流路45を流れる流量を減少させ、第1(下側)吐出流路35を流れる流量を増加させることができる。すなわち、熱交換手段36を通過する油の流量が増加するから、油との熱交換量(温熱の受け取り量)が増えることによって油温が上昇し、油粘度が低下するという効果が得られる。
なお、冷媒圧縮機410はの密閉容器8の底面に密閉容器脚台90が設置されているが、密閉容器脚台90の形態は図示するものの限定するものではない。また、その他の実施の形態1〜6においても同様に密閉容器脚台90を設置することができる。
これ以外については、実施の形態1と同様な構成であって、低圧シェル形1シリンダ圧縮機410には、また、第1バルブ37および第2バルブ47の開度を調節することにより、第1吐出流路35および第2吐出流路45のそれぞれを流れる冷媒流量を適切に調整し、冷媒封入量を削減する効果と、圧縮機効率を改善する効果が得られる。
[実施の形態8]
図8は本発明の実施の形態8に係るヒートポンプ装置を模式的に説明する一部縦断面の構成図である。なお、実施の形態7と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(ヒートポンプ給湯器)
図8において、ヒートポンプ装置440は、圧縮機410と、放熱器102と、膨張弁103と、蒸発器104と、これらを順次連結して冷媒を循環させる冷媒配管105と、によって冷凍サイクルを実現する主冷媒回路120とを備える。
したがって、ヒートポンプ装置440は、実施の形態7に係る冷媒圧縮機410を有するから、冷媒の油中溶解度と油動粘度変動幅とを小さくできるので、ヒートポンプ効率を改善する効果が得られる。なお、実施の形態2に示したヒートポンプ給湯器140に準じて、放熱器102に利用流体回路130を熱的に接続してもよい。
[実施の形態9]
図9は本発明の実施の形態9に係る冷媒圧縮機を模式的に説明する縦断面である。なお、実施の形態7と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(低圧シェル形1シリンダ圧縮機:横置き)
以上、実施の形態1〜7で示すような縦置き圧縮機においては、潤滑油が密閉容器8内の下部に貯留されるので、密閉容器8内で潤滑油を加熱する第1吐出経路は、下側に配置した吐出経路を第1、上側に配置した吐出経路を第2と命名する構成が簡便であるが、密閉容器8内で積極的に熱交換する吐出経路を第1と命名するのであって、第2吐出経路より相対的に上側に配置した構成の場合もありうる。
図9において、本実施の形態9に示す冷媒圧縮機510は、実施の形態7に示す冷媒圧縮機(低圧シェル形1シリンダ圧縮機)410を横置きにしたものに相当している。
冷媒圧縮機(低圧シェル形1シリンダ圧縮機)510には、駆動6のモータ9側を支持する長軸側軸受け7b側に、シリンダ圧縮室61aから高圧冷媒を吐出する第1吐出ポート77、第1吐出マフラ71、第1吐出マフラ空間72が形成され、第1吐出マフラ容器73の表面には油との熱交換を促進するフィン78が設置されている。第1吐出マフラ空間72から放熱器102に導く第1吐出流路75と、第1吐出流路75の開度を調整するバルブ77が取り付けられている。
一方、短軸側軸受け7a側に、第2吐出ポート87、第2吐出マフラ81、第2吐出マフラ空間82が形成され、第2吐出マフラ空間72から放熱器102に導く第2吐出流路85と、第2吐出流路85の開度を調整するバルブ87が取り付けられている。第1バルブ77および第2バルブ87の開度を調節することにより、第1吐出流路75および第2吐出流路85のそれぞれを流れる冷媒流量が適切に調整される。
なお、駆動軸6の短軸側軸受7a側には給油管52の一方の端部が接続され、給油管52の他方の端部は油貯蔵部50に位置している。また、密閉容器8の側面(円筒状部分)に密閉容器脚台90が設けられている。
冷媒圧縮機510は、前記以外については、冷媒圧縮機410(実施の形態7)と同様な構成であり、第1吐出マフラ空間72およびフィン78からの伝熱によって潤滑油が加熱されるから、冷媒封入量を削減する効果と、圧縮機効率を改善する効果が得られる。
[実施の形態10]
図10は本発明の実施の形態10に係るヒートポンプ装置を模式的に説明する一部縦断面の構成図である。なお、実施の形態9と同じ部分にはこれと同じ符号を付し、一部の説明を省略する。また、各部位は模式的に描いたものであって、本発明は図示された形態に限定するものではない。
(ヒートポンプ給湯器)
図10において、ヒートポンプ装置(以下、「ヒートポンプ給湯器」と称す)540は、実施の形態9に示す冷媒圧縮機510と、放熱器102と、膨張弁103と、蒸発器104と、これらを順次連結して冷媒を循環させる冷媒配管105と、によって冷凍サイクルを実行するものである。
すなわち、ヒートポンプ給湯器540は、実施の形態9に示す冷媒圧縮機510を有するから、冷媒の油中溶解度と油動粘度変動幅とを小さくすることができるので、ヒートポンプ効率を改善する効果が得られる。
なお、実施の形態2に示したヒートポンプ給湯器140に準じて、放熱器102に利用流体回路130を熱的に接続してもよい(図2参照)。
[その他の実施の形態]
以上、実施の形態1〜8では、第1(下側)吐出流路35および第2(上側)吐出流路45における流路抵抗を調整する手段として、第1バルブ37および第2バルブ47が設置されものを示しているが、本発明はこれに限定するものではなく、流路断面積や長さの調整や、流路折り曲げ、キャピラリーチューブなどの別の手段を用いてもよい。
また、潤滑油が密閉容器8の壁面から外部へ放熱することを防ぐ断熱手段として、熱交換手段と密閉容器8の壁面の間に前記潤滑油の流動を遮る部材55を配置して構成した断熱手段を示しているが、密閉容器8の外壁面を外気から断熱する手段も有効である。
さらに、以上は、ロータリ圧縮機を想定したシリンダ構成図で説明したが、レシプロ式やスクロール式などの圧縮機方式の場合にも、吐出流路を2つ配置できる圧縮機であれば同様の効果を得られる。
1:圧縮機吸入管、3:圧縮機構、5:中間プレート、6:駆動軸、7a:短軸側軸受け、7b:長軸側軸受け、8:密閉容器、9:電動機、10:第1(下側)圧縮機構、11:第1(下側)シリンダ、11a:第1(下側)シリンダ圧縮室、15:第1(下側)シリンダ吸入管、17:第1(下側)吐出ポート、20:第2(上側)圧縮機構、21:第2(上側)シリンダ、21a:第2(上側)シリンダ圧縮室、25:第2(上側)シリンダ吸入管、27:第2(上側)吐出ポート、30:第1吐出経路、31:第1(下側)吐出マフラ、32:第1(下側)吐出マフラ空間、33:容器、35:第1(下側)吐出流路、36:熱交換手段、37:バルブ、38:フィン、39:第1吐出経路、40:第2吐出経路、41:第2(上側)吐出マフラ、42:第2(上側)吐出マフラ空間、43:容器、45:第2(上側)吐出流路、46:連通流路、47:バルブ、50:油貯蔵部、51:油回転ポンプ、52:給油管、55:油包囲手段、56:油戻し回路、57:油分離器、60:圧縮機構、61:圧縮シリンダ、61a:シリンダ圧縮室、65:シリンダ吸入管、90:密閉容器脚台、70:第1吐出経路、71:第1吐出マフラ、72:第1吐出マフラ空間、73:容器、75:第1吐出流路、76:熱交換手段、77:バルブ、78:フィン、79:第1吐出ポート、80:第2吐出経路、81:第2吐出マフラ、82:第2吐出マフラ空間、83:容器、85:第2吐出流路、87:バルブ、89:第2吐出ポート、102:放熱器、103:膨張弁、104:蒸発器、105:冷媒配管、110:低圧シェル形2シリンダ圧縮機(冷媒圧縮機、実施の形態1)、120:冷媒圧縮機、130:利用流体回路、140:ヒートポンプ給湯器(実施の形態2)、210:低圧シェル形2シリンダ圧縮機(冷媒圧縮機、実施の形態3)、220:主冷媒回路、240:ヒートポンプ装置(実施の形態4)、310:低圧シェル形2シリンダ圧縮機(冷媒圧縮機、実施の形態5)、320:主冷媒回路、340:ヒートポンプ装置(実施の形態6)、410:低圧シェル形2シリンダ圧縮機(冷媒圧縮機、実施の形態7)、420:主冷媒回路、440:ヒートポンプ装置(実施の形態8)、510:低圧シェル形1シリンダ圧縮機(冷媒圧縮機、実施の形態9)、540:ヒートポンプ給湯器(実施の形態10)。

Claims (12)

  1. 低圧シェル形の密閉容器と、
    該密閉容器内に収納され、冷媒を吸入し圧縮する圧縮機構と、
    前記密閉容器内に収納され、前記圧縮機構を駆動する電動機と、
    前記密閉容器内の下部に形成された潤滑油を貯蔵する油貯蔵部と、
    前記油貯蔵部に貯蔵された潤滑油と前記圧縮機構から吐出された冷媒との間で熱交換する熱交換手段と、
    前記圧縮機構から冷媒を前記密閉容器外に導く複数の吐出経路と、を有し、
    前記吐出経路は、前記潤滑油を加熱する前記熱交換手段を前記密閉容器内に備えた第1吐出経路と、前記潤滑油と熱交換しないで前記冷媒を前記密閉容器外に導く第2吐出経路とを備え、前記第1吐出経路は前記熱交換手段を通過した後に前記第2吐出経路と合流することを特徴とする冷媒圧縮機。
  2. 前記圧縮機構から吐出した冷媒が前記熱交換手段を通過する前に、前記第1吐出経路と前記第2吐出経路とを連通するバイパス流路を有し、
    前記第1吐出経路と前記第2吐出経路それぞれに流れる冷媒流量を調整する流路抵抗手段を備えたことを特徴とする請求項1に記載の冷媒圧縮機。
  3. 前記第1吐出経路と前記第2吐出経路それぞれに流れる冷媒流量を調整する流路抵抗手段によって前記油貯蔵部の温度を制御することを特徴とする請求項1または2に記載の冷媒圧縮機。
  4. 前記圧縮機構は、高圧に圧縮した冷媒を前記第1吐出経路から前記密閉容器の外に導く第1圧縮機構と、高圧に圧縮した冷媒を前記第2吐出経路から前記密閉容器の外に導く第2圧縮機構との2つで形成したことを特徴とする請求項13の何れか1項に記載の冷媒圧縮機。
  5. 前記第1圧縮機構から吐出直後の高圧冷媒が流入すると共に、前記第1吐出路に連通する第1吐出マフラが設置され、
    前記第2圧縮機構から吐出直後の高圧冷媒が流入すると共に、前記第2吐出路に連通する第2吐出マフラが設置され、
    前記第1吐出マフラと前記第2吐出マフラと連通させた前記バイパス流路を有することを特徴とする請求項2に従属する請求項4に記載の冷媒圧縮機。
  6. 前記第1圧縮機構と前記第2圧縮機構は逆位相で圧縮動作するツインロータリ圧縮機であることを特徴とする請求項に記載の冷媒圧縮機。
  7. 前記密閉容器は、前記潤滑油が前記密閉容器の壁面から外部への放熱を防ぐ断熱手段を備えることを特徴とする請求項4または5に記載の冷媒圧縮機。
  8. 前記第1吐出路の前記油貯蔵部を通過する範囲の一部に、熱交換手段が設置され、該熱交換手段と前記密閉容器の壁面との間に前記潤滑油の流動を遮る油包囲手段が配置されることを特徴とする請求項1に記載の冷媒圧縮機。
  9. 前記潤滑油が、炭化水素冷媒との相溶性が小さいことを特徴とする請求項1に記載の冷媒圧縮機。
  10. 前記潤滑油は、40℃大気圧中で動粘度が18cSt以上であるようにエチレンオキサイトを含有させたポリアルキレングリコールを用いたことを特徴とする請求項に記載の冷媒圧縮機。
  11. 前記圧縮機構が第1圧縮機構と、
    該第1圧縮機構の上方に配置された第2圧縮機構とからなり、
    前記第1圧縮機構から吐出された直後の高圧冷媒が流入する第1吐出マフラと、
    該第1吐出マフラに連通し、前記密閉容器の外に直接導かれる第1吐出路と、
    前記第2圧縮機構から吐出された直後の高圧冷媒が流入する第2吐出マフラと、
    該第2吐出マフラに連通し、前記密閉容器の外に直接導かれる第2吐出路と、
    を有し、前記油貯蔵部に貯蔵された潤滑油と、前記第1吐出マフラに流入した高圧冷媒との間で、熱交換することを特徴とする請求項1記載の冷媒圧縮機。
  12. 請求項1〜11の何れか1項に記載の冷媒圧縮機を用いたヒートポンプ装置。
JP2014514228A 2012-05-09 2012-05-09 冷媒圧縮機及びヒートポンプ装置 Expired - Fee Related JP5889405B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003021 WO2013168193A1 (ja) 2012-05-09 2012-05-09 冷媒圧縮機及びヒートポンプ装置

Publications (2)

Publication Number Publication Date
JPWO2013168193A1 JPWO2013168193A1 (ja) 2015-12-24
JP5889405B2 true JP5889405B2 (ja) 2016-03-22

Family

ID=49550280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014514228A Expired - Fee Related JP5889405B2 (ja) 2012-05-09 2012-05-09 冷媒圧縮機及びヒートポンプ装置

Country Status (3)

Country Link
JP (1) JP5889405B2 (ja)
CN (1) CN104380009B (ja)
WO (1) WO2013168193A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210112850A (ko) * 2020-03-06 2021-09-15 엘지전자 주식회사 압축기

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015364875B2 (en) * 2014-12-19 2018-09-27 Fujitsu General Limited Rotary compressor
CN107636404B (zh) * 2015-07-03 2020-03-27 三菱电机株式会社 热泵装置
JP7044463B2 (ja) 2016-11-14 2022-03-30 株式会社富士通ゼネラル ロータリ圧縮機
CN108180680B (zh) * 2018-01-22 2023-08-22 珠海格力电器股份有限公司 一种回油控制装置、空调系统及其回油控制方法
CN108895570A (zh) * 2018-07-25 2018-11-27 珠海格力电器股份有限公司 一种水泵保温装置及热泵室外机
CN109374831A (zh) * 2018-10-30 2019-02-22 天津商业大学 制冷剂与润滑油相溶性测试实验装置
BE1029292B1 (nl) * 2021-04-09 2022-11-16 Atlas Copco Airpower Nv Element, inrichting en werkwijze voor het samenpersen van samen te persen gas met een lage temperatuur
CN115435230B (zh) * 2022-09-02 2024-01-16 江森自控空调冷冻设备(无锡)有限公司 离心压缩机润滑油粘度的控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115270Y2 (ja) * 1978-11-30 1986-05-12
JP4436716B2 (ja) * 2004-06-14 2010-03-24 パナソニック株式会社 自動販売機
JP2006105458A (ja) * 2004-10-04 2006-04-20 Mitsubishi Electric Corp 冷媒循環装置及び密閉形圧縮機
JP2008248865A (ja) * 2007-03-30 2008-10-16 Fujitsu General Ltd インジェクション対応2段圧縮ロータリ圧縮機およびヒートポンプシステム
JP2009097486A (ja) * 2007-10-19 2009-05-07 Mitsubishi Heavy Ind Ltd 圧縮機
JP2009250111A (ja) * 2008-04-07 2009-10-29 Daikin Ind Ltd 圧縮機
JP5178306B2 (ja) * 2008-04-28 2013-04-10 三菱電機株式会社 スクロール圧縮機
JP2010261679A (ja) * 2009-05-11 2010-11-18 Panasonic Corp 冷凍サイクル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210112850A (ko) * 2020-03-06 2021-09-15 엘지전자 주식회사 압축기
KR102381160B1 (ko) * 2020-03-06 2022-03-31 엘지전자 주식회사 압축기
US11448214B2 (en) 2020-03-06 2022-09-20 Lg Electronics Inc. Compressor including a heat radiating member

Also Published As

Publication number Publication date
CN104380009B (zh) 2017-05-03
WO2013168193A1 (ja) 2013-11-14
JPWO2013168193A1 (ja) 2015-12-24
CN104380009A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5889405B2 (ja) 冷媒圧縮機及びヒートポンプ装置
US8857211B2 (en) Injectable two-staged rotary compressor and heat pump system
JP4225304B2 (ja) 冷凍空調装置の制御方法
JP2013029269A (ja) 超臨界サイクルヒートポンプ
JP3726541B2 (ja) 冷凍空調装置
JP2012097638A (ja) 圧縮機および冷凍装置
WO2014083901A1 (ja) 圧縮機、冷凍サイクル装置およびヒートポンプ給湯装置
JP5321697B2 (ja) インジェクション対応2段圧縮ロータリ圧縮機
CN112752934B (zh) 多级压缩系统
JP5599514B2 (ja) 二段圧縮機及びヒートポンプ装置
JP2016161163A (ja) 空気調和機
JP2013234796A (ja) ヒートポンプ装置
JP6702401B1 (ja) 多段圧縮システム
JP6791233B2 (ja) 多段圧縮システム
JP6702400B1 (ja) 多段圧縮システム
JP6791234B2 (ja) 多段圧縮システム
JP2013044469A (ja) 冷凍空調装置
JP2017161164A (ja) 空調給湯システム
JP3960349B1 (ja) 圧縮機および自動販売機
JP4492284B2 (ja) 流体機械
US11428226B2 (en) Multistage compression system
JP2005264829A (ja) 流体機械
JP2012097644A (ja) 圧縮機
JP2007241705A (ja) 加温システムおよびこれを用いた自動販売機
JPWO2014083901A1 (ja) 冷凍サイクル装置およびヒートポンプ給湯装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160216

R150 Certificate of patent or registration of utility model

Ref document number: 5889405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees