JP5871135B2 - 車両のブレーキ制御装置 - Google Patents

車両のブレーキ制御装置 Download PDF

Info

Publication number
JP5871135B2
JP5871135B2 JP2012234407A JP2012234407A JP5871135B2 JP 5871135 B2 JP5871135 B2 JP 5871135B2 JP 2012234407 A JP2012234407 A JP 2012234407A JP 2012234407 A JP2012234407 A JP 2012234407A JP 5871135 B2 JP5871135 B2 JP 5871135B2
Authority
JP
Japan
Prior art keywords
pressure
hydraulic pressure
wheel
valve
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012234407A
Other languages
English (en)
Other versions
JP2014083976A (ja
Inventor
徹也 宮崎
徹也 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012234407A priority Critical patent/JP5871135B2/ja
Publication of JP2014083976A publication Critical patent/JP2014083976A/ja
Application granted granted Critical
Publication of JP5871135B2 publication Critical patent/JP5871135B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ドライバによるブレーキペダルの操作に応じて液圧を発生させるマスタシリンダと、加圧手段の駆動により液圧を発生させる動力式液圧源と、電気信号によって制御される複数の電磁弁からなり、前記マスタシリンダ又は前記動力式液圧源から出力された液圧が伝達される弁機構と、前記弁機構を介して前記マスタシリンダ又は前記動力式液圧源から出力された液圧が伝達されて車輪に制動力を与えるホイールシリンダと、前記弁機構の作動を制御する制御手段とを備えた車両のブレーキ装置に関する。
従来から、例えば、下記特許文献1に示されたブレーキ制御装置及びブレーキ制御方法は、知られている。この従来のブレーキ制御装置は、作動液の供給により複数のの車輪の各々に制動力を付与する複数のホイールシリンダと、複数のホイールシリンダの各々に対応して設けられ、各ホイールシリンダの作動液を個別的に制御する複数の個別制御弁と、複数の個別制御弁の上流に設けられ、複数の個別制御弁の上流圧を共通に制御する液圧制御弁と、複数の開閉パターンからいずれかを選択して前記複数の個別制御弁を制御する制御部を備えている。そして、この従来のブレーキ制御装置においては、制御部が、少なくとも第1及び第2の開閉パターンのそれぞれにおける液圧制御弁の作動特性を取得し、この作動特性に基づいて液圧制御弁を開閉させるようになっている。
又、従来から、例えば、下記特許文献2に示されたBBW式ブレーキ装置も知られている。この従来のBBW式ブレーキ装置においては、車輪がロック傾向になったときに制動力の減少及び増加を繰り返して車輪のロックを抑制するABS制御中に、制動力の増加時のキャリパ圧の上限値を、ブレーキペダルの操作量に応じて決まる目標キャリパ圧よりも大きく設定したABS制御用目標キャリパ圧とするようになっている。これにより、制動力の減少によりロックが解消した後に路面反力で車輪速度が増加して車体速度に一致しようとしたとき、車輪の慣性で車輪速度が車体速度を超えて過剰に増加するのを抑制し、ABS制御を効果的に行うようになっている。
更に、従来から、例えば、下記特許文献3に示された車両用アンチロックブレーキ装置も知られている。この従来の車両用アンチロックブレーキ装置は、液圧発生装置とアンチロック制御弁とを接続する液圧路に介装されてアンチロック制御弁の上流側の液圧値を液圧発生装置の出力液圧値以下である任意の液圧値に調整するための液圧調整弁装置と、電気的制御装置により形成されるアンチロック制御装置がアンチロック制御を開始したことに応答して液圧調整弁装置を操作してアンチロック制御弁の上流側の液圧値を調整する補助制御装置とを備えている。そして、この従来の車両用アンチロックブレーキ装置においては、補助制御装置が、アンチロック制御中におけるアンチロック制御弁の上流側の液圧値を、ブレーキ操作力に応じた液圧値未満である所定の液圧値に調整するようになっている。
特開2009−255847号公報 特開2007−245783号公報 特開2002−283989号公報
上記従来の各装置では、ホイールシリンダ(キャリパ)の液圧を制御する個別制御弁や開閉弁、アンチロック制御弁すなわち保持弁よりも上流側の液圧である制御圧を調整するようになっている。しかしながら、これら従来の各装置では、調整した制御圧を一定に維持するものである。このため、これら従来の各装置では、例えば、アンチスキッド制御(アンチロック制御)に従って保持弁を開閉動作させてホイールシリンダ(キャリパ)における液圧であるホイールシリンダ圧の増圧が要求される状況において、ホイールシリンダ圧を適切に増圧制御することが困難となる場合がある。
本発明は、上記した問題に対処するためになされたものであり、その目的の一つは、ホイールシリンダ圧の増圧要求に対して適切に増圧制御することができる車両のブレーキ装置を提供することにある。
上記目的を達成するための本発明による車両のブレーキ装置は、マスタシリンダと、動力式液圧源と、弁機構と、ホイールシリンダと、制御手段とを備えている。
前記マスタシリンダは、ドライバによるブレーキペダルの操作に応じて液圧を発生させるものである。前記動力式液圧源は、例えば、加圧ポンプ等の加圧手段の駆動により液圧を発生させるものである。尚、前記動力式液圧源がアキュムレータを有する場合には、加圧ポンプにより発生した液圧をアキュムレータに蓄圧することができる。前記弁機構は、電気信号によって制御される複数の電磁弁からなり、前記マスタシリンダ又は前記動力式液圧源から出力された液圧が伝達されるものである。前記ホイールシリンダは、前記弁機構を介して前記マスタシリンダ又は前記動力式液圧源から出力された液圧が伝達されて車輪に制動力を付与するものである。前記制御手段は、前記弁機構の作動を制御するものである。
この場合、車両のブレーキ装置は、更に、増圧機構を備えることができる。前記増圧機構は、前記マスタシリンダ及び前記動力式液圧源に接続されて、前記動力式液圧源からの液圧を用いて前記マスタシリンダからの液圧に対して所定の比となる液圧を発生させるものである。ここで、前記増圧機構は、例えば、前記ドライバによる前記ブレーキペダルの操作に伴って前記マスタシリンダから出力される液圧により機械的に作動することができる。
本発明による車両のブレーキ装置の特徴は、前記弁機構が、車輪ごとに設けられて前記動力式液圧源からの液圧が伝達される上流側と前記ホイールシリンダが接続される下流側との連通又は遮断を実現する電磁開閉弁である保持弁、及び、前記保持弁に対応して設けられて前記ホイールシリンダとリザーバとの連通又は遮断を実現する電磁開閉弁である減圧弁を有するとともに、前記動力式液圧源からの液圧を前記保持弁の上流側の液圧である上流側液圧に調整する電磁弁からなる液圧調整手段を有するものであり、前記制御手段は、制動力の付与された車輪の前後方向のスリップが過大になることを抑制するアンチスキッド制御が実施されているときに、前記保持弁及び前記減圧弁のうちの少なくとも前記保持弁の開弁状態又は閉弁状態に応じて、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧を変更するものであり、前記目標液圧は、少なくとも、前記上流側液圧の時間変化に対する圧力変化を表す第1圧力勾配、又は、前記第1圧力勾配よりも小さい第2圧力勾配に従って決定されるものであり、前記制御手段は、前記第1圧力勾配に従って決定した第1目標液圧に追従して前記液圧調整手段を介して前記上流側液圧を調整している状況下で、前記減圧弁を閉弁状態に維持するとともに前記保持弁を開弁状態に維持する前記ホイールシリンダの増圧制御によって前記保持弁を所定時間が経過するまで開弁状態に維持した後、前記第1目標液圧から前記第2圧力勾配に従って決定される第2目標液圧に変更することにある。
尚、この場合、前記制御手段は、制動力の付与された車輪の前後方向のスリップが過大になることを抑制するアンチスキッド制御が実施されているか否かを判定するアンチスキッド制御実施判定手段と、前記アンチスキッド制御実施判定手段によって前記アンチスキッド制御が実施されていると判定されたときに、前記保持弁及び前記減圧弁のうちの少なくとも前記保持弁の開弁状態又は閉弁状態に応じて、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧を変更する目標液圧変更手段とを有することが可能である。
これらによれば、液圧調整手段によって保持弁の上流側における上流側液圧は、少なくとも保持弁が開弁状態であるか閉弁状態であるかに応じて変更される目標液圧に追従するように調整される。これにより、保持弁が開弁状態にあるときには、保持弁の下流側に接続されたホイールシリンダに対して、目標液圧となるように調整された液圧が伝達される。従って、例えば、アンチスキッド制御(アンチロック制御)に従ってホイールシリンダの液圧を増圧する増圧要求がなされた場合、制御手段は、液圧調整手段を介して上流側液圧が増圧されるように目標液圧を変更することができる。これにより、減圧弁が閉弁状態にあり、かつ、保持弁が開弁状態にあれば、増圧するように変更された目標液圧に追従して増圧された上流側液圧が開弁状態にある保持弁を経てホイールシリンダに伝達されるため、ホイールシリンダにおける液圧を適切に増圧して制御することができる。従って、ホイールシリンダは適切に車輪に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
さらに、これらによれば、減圧弁を閉弁状態に維持するとともに保持弁を開弁状態に維持するホイールシリンダの増圧制御において、液圧の変化勾配の大きな第1圧力勾配に従って決定された第1目標液圧に追従するように上流側液圧を調整する、すなわち、ホイールシリンダの液圧を大きな圧力勾配に従って増圧させることができる。この場合、ホイールシリンダの液圧を大きな第1目標液圧に従って速やかに増加させることができて速やかに車輪に付与される制動力を増大させることができるものの、例えば、摩擦係数の小さい低ミュー路を走行している状況では、早期に車輪のロックが発生する可能性がある。これに対して、本発明の車両のブレーキ装置では、所定時間が経過するまで第1目標液圧に追従するように上流側液圧すなわちホイールシリンダにおける液圧を増圧させた後に、第1圧力勾配よりも小さい第2圧力勾配に従って決定される第2目標液圧に追従させて上流側液圧を調整してホイールシリンダにおける液圧を緩やかに増圧させることができる。これにより、ホイールシリンダが車輪に付与する制動力の増加も緩やかにすることができ、その結果、車輪にロックが発生するタイミングを遅らすことができる。従って、アンチスキッド制御(アンチロック制御)の実施によって車両を制動させるときの制動距離を短くすることができるとともに車両の挙動変化を良好に抑制することができる。又、ドライバは良好なブレーキフィーリングを知覚することができる。
又、この場合、前記制御手段は、少なくとも、前記ホイールシリンダの増圧制御によって前記保持弁の閉弁状態から開弁状態への移行が完了するまでに、前記液圧調整手段を介して前記第1圧力勾配に従って決定した前記第1目標液圧に追従して前記上流側液圧を調整することができる。
これによれば、ホイールシリンダの液圧を増圧する増圧要求がなされる状況下では、制御手段は、該当する保持弁の閉弁状態から開弁状態への移行が完了するまでに、先行して液圧調整手段を介して上流側液圧を第1目標液圧に追従させて増圧しておくことができる。これにより、保持弁を開弁状態に移行させたときには、増圧された上流側液圧をホイールシリンダに伝達することができるため、増圧要求に対して極めて応答性よくホイールシリンダの液圧を増圧制御することができる。従って、ホイールシリンダは適切に車輪に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
又、これらの場合、前記制御手段は、少なくとも、前記液圧調整手段を介して前記第2目標液圧に追従して前記上流側液圧を調整した後、前記第1目標液圧に追従して所定の液圧以上となるまで前記液圧調整手段を介して前記上流側液圧を増圧することができる。ここで、前記所定の液圧は、液圧の伝達される前記ホイールシリンダが車輪に制動力を付与したときに、前記車輪にスリップが発生することが推定される液圧とすることができる。
これらによれば、制御手段は、第2目標液圧に従って上流側液圧を調整、言い換えれば、ホイールシリンダの液圧を緩やかに増圧させた後、第1目標液圧に従って上流側液圧を速やかに所定の液圧以上に増圧、具体的には、車輪にスリップが発生することが推定される液圧までホイールシリンダの液圧を増圧することができる。これにより、ホイールシリンダが車輪に付与する制動力を速やかに大きくすることができて、例えば、アンチスキッド制御(アンチロック制御)によってロック状態から回転状態に回復した車輪において、その慣性によって車輪速が車体速度よりも大きくなることを効果的に防止することができる。従って、ホイールシリンダは適切に車輪に制動力を付与して制動停止距離を短縮することができ、ドライバは、例えば、車輪の車輪速が車体速度よりも大きくなることに起因して発生するブレーキフィーリングの違和感を覚えることがない。
又、これらの場合、前記制御手段は、前記ドライバによる前記ブレーキペダルの操作に応じて決定されて車輪に付与される制動力を実現するために前記ホイールシリンダに伝達される目標制動液圧を決定し、前記目標制動液圧の大きさに応じて、前記第1圧力勾配及び前記第2圧力勾配の大きさに制限を付与することができる。これによれば、制御手段は、ドライバがブレーキペダルを操作することによって意図した制動力に合わせて第1圧力勾配及び第2圧力勾配、言い換えれば、第1目標液圧及び第2目標液圧を制限することができる。従って、ホイールシリンダは適切に車輪に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
本発明による車両のブレーキ装置の他の特徴は、前記制御手段が、車輪ごとに設けられた前記保持弁及び前記減圧弁に関し、それぞれの開弁状態又は閉弁状態が異なるとき、車輪ごとに付与される制動力を実現するために前記ホイールシリンダに伝達される目標制動液圧をそれぞれ決定し、決定した前記目標制動液圧のうちで最大の目標制動液圧を選択し、選択した前記最大の目標制動液圧の大きさに基づいて、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧を変更することにもある。
これによれば、例えば、アンチスキッド制御(アンチロック制御)の作動タイミングのズレや路面における路面の状態(路面摩擦係数)の違いにより、車輪ごとに要求されるホイールシリンダの液圧、すなわち、上流側液圧が異なる場合であっても、制御手段がホイールシリンダの液圧として最大の目標制動液圧を選択し、選択した最大の目標制動液圧の大きさに基づいて、液圧調整手段を介して調整する上流側液圧の目標液圧を変更することができる。これにより、例えば、ホイールシリンダごとに増圧要求が異なる場合であっても、ホイールシリンダにおける液圧を確実に増圧することができる。従って、ホイールシリンダは適切に車輪に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
又、本発明による車両のブレーキ装置の他の特徴は、前記制御手段が、前記アンチスキッド制御の適用されない車輪が存在する場合、全ての車輪に前記アンチスキッド制御が適用される場合に比して、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧の変更量を小さくすることにもある。この場合、より具体的に、前記アンチスキッド制御の適用されない車輪が存在する場合、前記制御手段は、例えば、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧の変更量のうち、前記上流側液圧の目標液圧を低下させる側の変更量を小さくすることができる。更に、これらの場合、前記制御手段は、前記アンチスキッド制御の適用されない車輪が存在する場合、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧の変更を禁止することもできる。ここで、これらの場合、前記アンチスキッド制御の適用されない車輪は、車両の前後左右の車輪のうちの少なくとも1輪であればよく、より具体的には、前記アンチスキッド制御の適用されない車輪は、車両の左右一方の前後輪以外の車輪であればよい。
これらによれば、制御手段は、車両の車輪のうち、アンチスキッド制御(アンチロック制御)の適用されない車輪(以下、非作動輪とも称呼する。)が存在するときには、液圧調整手段を介して調整する上流側液圧の目標液圧の変更量を小さく(より具体的には、上流側液圧の目標液圧を低下させる側の変更量を小さく)したり、上流側液圧の目標液圧の変更を禁止したりすることができる。これにより、非作動輪におけるホイールシリンダに保持弁を介して上流側から伝達される液圧の変動を良好に抑制することができ、その結果、制動に伴って車両に発生する加速度(減速度)の変化を良好に抑制することができる。従って、ホイールシリンダは非作動輪も含む車輪に適切に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
又、制御手段は、アンチスキッド制御(アンチロック制御)の適用されない車輪が車両の左右一方の前後輪以外の車輪であるときには液圧調整手段を介して調整する上流側液圧の目標液圧の変更量を小さく(より具体的には、上流側液圧の目標液圧を低下させる側の変更量を小さく)したり、上流側液圧の目標液圧の変更を禁止したりする。言い換えれば、制御手段は、前記アンチスキッド制御の適用されない車輪が車両の左右一方の前後輪の車輪であるときには、上述したように液圧調整手段を介して調整する上流側液圧の目標液圧を第1圧力勾配又は第2圧力勾配に従って変更量を制限することなく変更することができる。これにより、例えば、車両の左右輪にて路面の状態(路面摩擦係数)が異なる場合では、アンチスキッド制御(アンチロック制御)の適用される車輪においては第1目標液圧又は第2目標液圧に追従するように変更された上流側液圧がホイールシリンダに伝達されて制動力が付与され、非作動輪においては第1目標液圧又は第2目標液圧に追従するように変更された上流側液圧の影響を受けてホイールシリンダが制動力を付与する。従って、この場合には、車両の左右輪にて路面の状態が異なる場合であっても、ホイールシリンダが車輪に適切に制動力を付与することができ、車両の挙動を安定させて制動停止距離を短縮することができる。
本発明の実施形態に係り、車両のブレーキ装置の概略システム図である。 図1の増圧機構の構成を示す概略的な断面図である。 本発明の実施形態における車両のブレーキ装置によるリニア制御モードを説明するための図である。 本発明の実施形態における車両のブレーキ装置による液漏れ発生時のバックアップモードを説明するための図である。 本発明の実施形態に係り、図1のブレーキECUにて実行される上流側液圧制御のコンピュータプログラム処理を機能的に表す機能ブロック図である。 上流側液圧である制御圧の変更及び制御圧の変更に伴うホイールシリンダ圧の変化を説明するための図である。
以下、本発明の一実施形態に係る車両のブレーキ装置について図面を用いて説明する。図1は、本実施形態に係る車両のブレーキ装置の概略システム構成図である。
車両のブレーキ装置は、ブレーキペダル10と、マスタシリンダユニット20と、動力液圧発生装置30と、ブレーキユニット40と、液圧制御弁装置50と、増圧機構80と、ブレーキ制御を司るブレーキECU100とを含んで構成される。
マスタシリンダユニット20は、マスタシリンダ21とリザーバ22とを備えている。マスタシリンダ21は、加圧ピストン21a,21bを備えたタンデム式であり、ブレーキペダル10の踏み込み操作に伴って入力されるペダル踏力に対して、それぞれ、所定の倍力比を有するマスタシリンダ圧Pmc_FR,Pmc_FLを発生する。マスタシリンダ21の上部には、作動液(ブレーキフルード)を貯留するリザーバ22が設けられている。これにより、マスタシリンダ21においては、ブレーキペダル10の踏み込み操作が解除されて加圧ピストン21a,21bが後退しているときに、加圧ピストン21a,21bによって形成される加圧室21a1,21b1がリザーバ22と連通するようになっている。尚、加圧室21a1,21b1は、それぞれ、後述するマスタ圧配管11,12を介して液圧制御弁装置50と連通するようになっている。
動力液圧発生装置30は、動力式液圧源(パワーサプライ)であって、加圧手段としての加圧ポンプ31とアキュムレータ32とを備えている。加圧ポンプ31は、その吸入口がリザーバ22に接続され、吐出口がアキュムレータ32に接続され、モータ33を駆動することにより作動液を加圧する。アキュムレータ32は、加圧ポンプ31により加圧された作動液の圧力エネルギーを窒素等の封入ガスの圧力エネルギーに変換して蓄える。又、アキュムレータ32は、マスタシリンダユニット20に設けられたリリーフバルブ23に接続されている。リリーフバルブ23は、作動液の圧力が所定の圧力以上に高まった場合に開弁し、作動液をリザーバ22に戻す。尚、本実施形態においては、動力液圧発生装置30が加圧ポンプ31及びモータ33とアキュムレータ32とを備えるように実施する。しかし、動力液圧発生装置30がアキュムレータ32を備えない場合等では、加圧ポンプ31以外の他の加圧手段として、例えば、モータにより駆動するシリンダ加圧装置等を採用して実施することが可能である。
ブレーキユニット40は、図1に示すように、車両の各車輪にそれぞれ設けられるブレーキユニット40FR,40FL,40RR,40RLからなる。尚、以下の説明においては、車輪ごとに設けられる構成についてその符号の末尾に、右前輪についてはFR、左前輪についてはFL、右後輪についてはRR,左後輪についてはRLを付すものとするが、特に車輪位置を特定する必要がない場合には、末尾の符号を省略する。各車輪にそれぞれ設けられるブレーキユニット40FR,40FL,40RR,40RLは、ブレーキロータ41FR,41FL,41RR,41RLとブレーキキャリパ内に内蔵されたホイールシリンダ42FR,42FL,42RR,42RLとを備える。ここで、ブレーキユニット40は、4輪ともディスクブレーキ式に限定されるものではなく、例えば、4輪ともドラムブレーキ式であってもよいし、前輪がディスクブレーキ式、後輪がドラムブレーキ式等のように任意に組み合わせたものであってもよい。
ホイールシリンダ42FR,42FL,42RR,42RLは、液圧制御弁装置50に接続されて、同装置50を介して供給される作動液の液圧が伝達されるようになっている。そして、液圧制御弁装置50を介して伝達される(供給される)液圧により、車輪と共に回転するブレーキロータ41FR,41FL,41RR,41RLにブレーキパッドを押し付けて車輪に制動力を付与する。
本実施形態における車両のブレーキ装置は、液圧制御弁装置50を介してホイールシリンダ42に作動液の液圧を付与する液圧源として、ドライバによるブレーキペダル10を介して入力されるペダル踏力を利用して液圧を付与するマスタシリンダユニット20のマスタシリンダ21(又は、増圧機構80)と、このマスタシリンダ21とは独立して液圧を付与する動力液圧発生装置30とを備える。そして、車両のブレーキ装置においては、マスタシリンダ21(より詳しくは、加圧室21a1,21b1)及び動力液圧発生装置30(より詳しくは、少なくともアキュムレータ32)が、それぞれ、マスタ圧配管11,12及びアキュムレータ圧配管13を介して液圧制御弁装置50に接続される。又、マスタシリンダユニット20のリザーバ22は、リザーバ配管14を介して液圧制御弁装置50に接続される。尚、以下の説明において、マスタ圧配管12については、増圧機構80よりも上流側(入力側)をマスタ圧配管12aと称呼し、増圧機構80よりも下流側(出力側)をマスタ圧配管12bと称呼して区別する。
弁機構を有する液圧制御弁装置50は、各ホイールシリンダ42FR,42FL,42RR,42RLに接続される4つの個別流路51FR,51FL,51RR,51RLと、個別流路51FR,51FL,51RR,51RLを連通する主流路52と、個別流路51FR,51FLとマスタ圧配管11,12(12b)とを接続するマスタ圧流路53,54と、主流路52とアキュムレータ圧配管13とを接続するアキュムレータ圧流路55とを備えている。ここで、マスタ圧流路53,54、及び、アキュムレータ圧流路55は、それぞれ、主流路52に対して並列に接続される。
各個別流路51FR,51FL,51RR,51RLには、それぞれ、弁機構を構成する保持弁61FR,61FL,61RR,61RLが設けられる。左前輪側のブレーキユニット40FL及び右後輪側のブレーキユニット40RRに設けられた保持弁61FL,61RRは、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドへの通電中においてのみ閉弁状態となる常開の電磁開閉弁である。一方、右前輪側のブレーキユニット40FR及び左後輪側のブレーキユニット40RLに設けられた保持弁61FR,61RLは、ソレノイドの非通電時にスプリングの付勢力により閉弁状態を維持し、ソレノイドへの通電中においてのみ開弁状態となる常閉の電磁開閉弁である。
すなわち、各保持弁61は、開弁状態では主流路52と各ホイールシリンダ42との間の作動液の連通を許可し、閉弁状態では主流路52と各ホイールシリンダ42との間の作動液の連通を禁止する(遮断する)ものである。これにより、各保持弁61は、開弁状態において作動液を主流路52から個別流路51を介して各ホイールシリンダ42に流すことによってホイールシリンダ圧Pwcを増加させる(増圧する)。一方、各保持弁61は、閉弁状態において主流路52から個別流路51を介した各ホイールシリンダ42への作動液の流通を遮断するとともに各ホイールシリンダ42から個別流路51を介した主流路52への作動液の流通を遮断することによって、ホイールシリンダ圧Pwcを維持させる(保圧する)。
ここで、左右前輪側のブレーキユニット40FR,40FLに設けられた保持弁61FR,61FL、左右後輪側のブレーキユニット40RR,40RLに設けられた保持弁61RR,61RLにおいて、一方が常開の電磁開閉弁とされ、他方が常閉の電磁開閉弁とされる。すなわち、前後の対角位置にある一方の2つの車輪に対応するブレーキユニット40FLとブレーキユニット40RRに設けられる保持弁61FL,61RRが常開の電磁開閉弁とされ、前後の対角位置にある他方の2つの車輪に対応するブレーキユニット40FRとブレーキユニット40RLに設けられる保持弁61FR,61RLが常閉の電磁開閉弁とされる。従って、本実施形態における車両のブレーキ装置は、所謂、クロス系統を形成するものである。
又、各個別流路51FR,51FL,51RR,51RLには、それぞれ、減圧用個別流路56FR,56FL,56RR,56RLが接続される。各減圧用個別流路56は、リザーバ流路57に接続される。リザーバ流路57は、リザーバ配管14を介してリザーバ22に接続される。各減圧用個別流路56FR,56FL,56RR,56RLには、その途中部分に、それぞれ、弁機構を構成する減圧弁62FR,62FL,62RR,62RLが設けられている。減圧弁62FR,62FL,62RRは、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドへの通電中においてのみ開弁状態となる常閉の電磁開閉弁である。減圧弁62RLは、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドへの通電中においてのみ閉弁状態となる常開の電磁開閉弁である。各減圧弁62は、開弁状態において作動液をホイールシリンダ42から減圧用個別流路56を介してリザーバ流路57に流すことによってホイールシリンダ圧Pwcを低下させる(減圧する)。
マスタ圧流路53,54には、それぞれ、その途中部分にマスタカット弁63,64が設けられる。マスタカット弁63,64は、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドへの通電中においてのみ閉弁状態となる常開の電磁開閉弁である。このようにマスタカット弁63,64を設けることにより、マスタカット弁63,64が閉弁状態にあるときには、マスタシリンダ21(及び増圧機構80)とホイールシリンダ42FR,42FLとの間の接続が遮断されることによって作動液の流通が禁止され、マスタカット弁63,64が開弁状態にあるときには、マスタシリンダ21(及び増圧機構80)とホイールシリンダ42FR,42FLとが接続されることによって作動液の流通が許容される。
アキュムレータ圧流路55には、その途中部分に弁機構を構成する増圧リニア制御弁65Aが設けられる。又、アキュムレータ圧流路55が接続される主流路52とリザーバ流路57との間には、弁機構を構成する減圧リニア制御弁65Bが設けられる。増圧リニア制御弁65A及び減圧リニア制御弁65Bは、ソレノイドの非通電時にスプリングの付勢力により閉弁状態を維持し、ソレノイドへの通電量(電流値)の増加に伴って弁開度を増加させる常閉の電磁リニア制御弁である。増圧リニア制御弁65A及び減圧リニア制御弁65Bは、その詳細な説明を省略するが、内蔵されたスプリングが弁体を閉弁方向に付勢するばね力と、相対的に高圧の作動液が流通する一次側(入口側)及び相対的に低圧の作動液が流通する二次側(出口側)の差圧によって弁体が開弁方向に付勢される差圧力との差分として表される閉弁力により閉弁状態を維持する。
一方、増圧リニア制御弁65A及び減圧リニア制御弁65Bは、ソレノイドへの通電により発生する弁体を開弁させる方向に作用する電磁吸引力が上記閉弁力を上回った場合、すなわち、電磁吸引力>閉弁力(=ばね力−差圧力)を満たす場合には、弁体に作用する力のバランスに応じた開度で開弁する。従って、増圧リニア制御弁65A及び減圧リニア制御弁65Bは、ソレノイドへの通電量(電流値)を制御することにより、差圧力すなわち一次側(入口側)と二次側(出口側)との差圧に応じた開度を調整することができる。ここで、増圧リニア制御弁65A及び減圧リニア制御弁65Bは、保持弁61の上流側である主流路52における上流側液圧(後述する制御圧Px)を調整するものであるため、本発明における液圧調整手段に相当する。尚、以下の説明において、増圧リニア制御弁65A及び減圧リニア制御弁65Bの両者について区別する必要がない場合には、単に、リニア制御弁65とも称呼する。
又、本実施形態における車両のブレーキ装置には、液圧制御弁装置50のマスタ圧流路54に接続されるマスタ圧配管12(より詳しくは、マスタ圧配管12a)に対して、ストロークシミュレータ70が接続されている。ストロークシミュレータ70は、ピストン70a及びスプリング70bを備えており、ドライバによるブレーキペダル10のブレーキ操作量に応じた量の作動液を内部に導入する。そして、ストロークシミュレータ70は、作動液を内部に導入することに合わせてピストン70aをスプリング70bの付勢力に抗して変位させることにより、ドライバによるブレーキペダル10のストローク操作を可能とするとともに、ブレーキ操作量に応じた反力を発生させてドライバのブレーキ操作フィーリングを良好にするものである。このストロークシミュレータ70は、シミュレータ流路71及びシミュレータカット弁72を介してマスタ圧配管12(マスタ圧配管12a)に接続される。尚、この場合、ストロークシミュレータ70をマスタ圧配管11に接続して実施可能であることは言うまでもない。
本実施形態における増圧機構80は、マスタシリンダ21の加圧室21b1から出力されるマスタシリンダ圧Pmc_FLを増圧(サーボ)してホイールシリンダ42FLに供給するものである。ここで、増圧機構80を説明しておく。尚、増圧機構80については、後述するような機械的な動作によってマスタシリンダ圧Pmc_FLを増圧(サーボ)することができる構造であれば、いかなるものであっても採用可能である。又、以下においては、マスタ圧配管12に増圧機構80を設ける場合を例示して説明するが、マスタ圧配管11に増圧機構80を設けるように実施可能であることは言うまでもない。
増圧機構80は、図2に示すように、ハウジング81と、ハウジング81に液密かつ摺動可能に嵌合された段付きピストン82とを含み、段付きピストン82の大径側に大径側室83が設けられ、小径側に小径側室84が設けられる。小径側室84は、動力液圧発生装置30のアキュムレータ32に接続された高圧室85と、高圧供給弁86及び弁座87を介して、連通可能とされている。高圧供給弁86は、図2に示すように、高圧室85内にて、スプリングの付勢力によって弁座87に押し付けられており、常閉弁である。
又、小径側室84には、高圧供給弁86に対向して開弁部材88が設けられ、開弁部材88と段付きピストン82との間にスプリングが配置される。このスプリングの付勢力は、開弁部材88を段付きピストン82から離間させる向きに作用する。又、図2に示すように、段付きピストン82の段部とハウジング81との間には、リターンスプリングが設けられ、段付きピストン82を後退方向に付勢する。尚、段付きピストン82とハウジング81との間には図示しないストッパが設けられて、段付きピストン82の前進端位置を規制するようになっている。
更に、段付きピストン82には、大径側室83と小径側室84とを連通させる連通路89が形成される。連通路89は、少なくとも段付きピストン82の後退端位置において、図2に示すように開弁部材88から離間した状態で大径側室83と小径側室84とを連通させ、段付きピストン82が前進して開弁部材88に当接すると遮断される。このように構成されることにより、増圧機構80は、メカ式増圧器(メカ弁)として作動する。
尚、図1及び図2に示すように、高圧室85と動力液圧発生装置30とは高圧供給通路15によって接続され、高圧供給通路15には、増圧機構カット弁90とともに動力液圧発生装置30から高圧室85への作動液の流れを許容し、逆向きの流れを阻止する逆止弁が設けられる。増圧機構カット弁90は、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドへの通電中においてのみ閉弁状態となる常開の電磁開閉弁である。
このように、増圧機構カット弁90が設けられることにより、ソレノイドへの通電により閉弁状態では動力液圧発生装置30(より詳しくは、加圧ポンプ31又はアキュムレータ32)と高圧室85との間の液圧の伝達、すなわち、作動液の流通が遮断される。従って、仮に、シール性の異常等により増圧機構80に液漏れが生じた場合であっても、増圧機構カット弁90を閉弁状態に維持することにより、アキュムレータ32から高圧の作動液が増圧機構80及びマスタ圧配管12aを介してマスタシリンダ21に逆流することを確実に防止することができる。又、高圧供給通路15を介したアキュムレータ32と増圧機構80の高圧室85との連通(接続)が遮断されるため、仮に、シール性の異常等により増圧機構80に液漏れが生じた場合であっても、アキュムレータ32における液圧(後述するアキュムレータ圧Paccに相当)の低下(消費)を確実に防止することができる。
又、高圧供給通路15に逆止弁を設けることにより、動力液圧発生装置30(より詳しくは、アキュムレータ32)の液圧が高圧室85の液圧よりも高い場合には動力液圧発生装置30から高圧室85への作動液の流れを許容するが、動力液圧発生装置30の液圧が高圧室85の液圧以下の場合には閉弁状態にあり、双方向の流れを禁止する。従って、増圧機構カット弁90が開弁状態にあるときに、仮に、動力液圧発生装置30に液漏れが生じても、高圧室85から動力液圧発生装置30への作動液の逆流を阻止することができ、小径側室84の液圧の低下を防止することができる。
又、マスタ圧配管12aと増圧機構80の大径側室83とはパイロット通路16によって接続されるとともに、パイロット通路16と増圧機構80の出力側(すなわち、小径側室84に連通するマスタ圧配管12b)との間には、増圧機構80をバイパスして接続するバイパス通路17が設けられる。そして、バイパス通路17にはパイロット通路16(マスタ圧配管12a)から増圧機構80の出力側であるマスタ圧配管12bへの作動液の流れを許容し、逆向きの流れを阻止する逆止弁が設けられる。更に、段付きピストン82の段部とハウジング81とによって形成される空間とリザーバ22に連通するリザーバ配管14との間には、リザーバ通路18が設けられる。
具体的に増圧機構80の機械的な動作を簡単に説明しておくと、増圧機構80において、大径側室83にマスタシリンダ21からマスタ圧配管12a及びパイロット通路16を介して作動液(マスタシリンダ圧Pmc_FL)が供給されると、作動液は、連通路89を経て小径側室84に供給される。そして、作動液(マスタシリンダ圧Pmc_FL)の供給に伴って段付きピストン82に作用する前進方向の力(大径側室83に作用するマスタシリンダ圧Pmc_FLによる前進力)がリターンスプリングの付勢力よりも大きくなると、段付きピストン82は前進する。これにより、段付きピストン82が開弁部材88に当接して連通路89が遮断されると、段付きピストン82の前進に伴って小径側室84の液圧が増加し、増圧された作動液(すなわち、サーボ圧)がマスタ圧配管12bを介して液圧制御弁装置50のマスタ圧流路53に出力される。
更に、開弁部材88の前進により高圧供給弁86が開弁状態に切り替えられると、高圧室85から高圧の作動液が小径側室84に供給され、小径側室84の液圧がより高くなる。この場合、増圧機構カット弁90が開弁状態とされていて、動力液圧発生装置30のアキュムレータ32に蓄えられた作動液の液圧(アキュムレータ圧Pacc)が高圧室85内の液圧よりも高い場合には、アキュムレータ32の液圧(アキュムレータ圧Pacc)が高圧供給通路15の逆止弁を経て高圧室85に供給され、小径側室84に供給される。そして、段付きピストン82においては、大径側室83の液圧すなわちマスタシリンダ圧Pmc_FLが、大径側に作用する力(マスタシリンダ圧Pmc_FL×受圧面積)と小径側に作用する力(サーボ圧×受圧面積)とが釣り合う大きさに調整されて出力される。従って、増圧機構80はメカ式の倍力機構であるとも言える。
一方、増圧機構カット弁90が開弁状態にされていて、アキュムレータ32の液圧(アキュムレータ圧Pacc)が高圧室85の液圧以下である場合には、高圧供給通路15に設けられた逆止弁により、アキュムレータ32と高圧室85との間の作動液の流れが阻止されるため、段付きピストン82がそれ以上前進できなくなる。又、段付きピストン82はストッパに当接することによっても前進できなくなることもある。この状態で、マスタシリンダ21から供給されるマスタシリンダ圧Pmc_FLが上昇して小径側室84の液圧よりも高くなると、バイパス通路17及び逆止弁を経てマスタシリンダ圧Pmc_FLがマスタ圧配管12bに供給される。
動力液圧発生装置30及び液圧制御弁装置50は、制御手段としてのブレーキECU100により駆動制御される。ブレーキECU100は、CPU、ROM、RAM等からなるマイクロコンピュータを主要構成部品とするものであり、ポンプ駆動回路、電磁弁駆動回路、各種のセンサ信号を入力するインターフェース、通信インターフェース等を備えている。液圧制御弁装置50に設けられた各電磁開閉弁61〜64,72,90及びリニア制御弁65は、全てブレーキECU100に接続され、ブレーキECU100から出力されるソレノイド駆動信号により開閉状態及び開度(リニア制御弁65の場合)が制御される。又、動力液圧発生装置30に設けられたモータ33についても、ブレーキECU100に接続され、ブレーキECU100から出力されるモータ駆動信号により駆動制御される。
液圧制御弁装置50には、アキュムレータ圧センサ101、マスタシリンダ圧センサ102,103、制御圧センサ104が設けられる。アキュムレータ圧センサ101は、増圧リニア制御弁65Aよりも動力液圧発生装置30側(上流側)のアキュムレータ圧流路55における作動液の液圧、すなわち、アキュムレータ圧流路55はアキュムレータ圧配管13を介してアキュムレータ32と連通しているためアキュムレータ圧Paccを検出する。アキュムレータ圧センサ101は、検出したアキュムレータ圧Paccを表す信号をブレーキECU100に出力する。これにより、ブレーキECU100は、アキュムレータ圧Paccを所定の周期で読み込み、アキュムレータ圧Paccが予め設定された最低設定圧を下回る場合にはモータ33を駆動して加圧ポンプ31により作動液を加圧し、常にアキュムレータ圧Paccが設定圧力範囲内に維持されるように制御する。
マスタシリンダ圧センサ102は、マスタカット弁63よりもマスタシリンダ21側(上流側)のマスタ圧流路53における作動液の液圧、すなわち、マスタ圧流路53はマスタ圧配管11を介して加圧室21a1と連通しているためマスタシリンダ圧Pmc_FRを検出する。マスタシリンダ圧センサ103は、マスタカット弁64よりもマスタシリンダ21側(上流側)のマスタ圧流路54における作動液の液圧、すなわち、マスタ圧流路54はマスタ圧配管12を介して加圧室21b1と連通しているためマスタシリンダ圧Pmc_FLを検出する。マスタシリンダ圧センサ102,103は、検出したマスタシリンダ圧Pmc_FR,Pmc_FLを表す信号をブレーキECU100に出力する。
制御圧センサ104は、各ホイールシリンダ42よりも上流側である主流路52における作動液の液圧(すなわち、上流側液圧)を制御圧Pxとして検出する。そして、制御圧センサ104は、上流側液圧として検出した制御圧Pxを表す信号をブレーキECU100に出力する。
又、ブレーキECU100には、ブレーキペダル10に設けられたストロークセンサ105が接続される。ストロークセンサ105は、ドライバによるブレーキペダル10の踏み込み量(操作量)であるペダルストロークHを表す信号をブレーキECU100に出力する。又、ブレーキECU100には、各車輪に対応して車輪速センサ106が接続される。車輪速センサ106は、左右前後輪の回転速度である車輪速Vxi(i=FR,FL,RR,RL)を検出し、検出した車輪速Vxi(i=FR,FL,RR,RL)を表す信号をブレーキECU100に出力する。更に、ブレーキECU100には、ドライバに対して車両のブレーキ装置に発生した異常を報知するインジケータ107が接続される。インジケータ107は、ブレーキECU100による制御に従い、発生した異常を報知する。
次に、ブレーキECU100が実行するブレーキ制御について説明する。ブレーキECU100は、動力液圧発生装置30から出力される液圧(より詳しくは、アキュムレータ圧Pacc)をリニア制御弁65により調整し、主流路52を介して各ホイールシリンダ42に伝達するリニア制御モード(4Sモード)と、ドライバによるブレーキペダル10に対するペダル踏力に応じてマスタシリンダ21にて発生したマスタシリンダ圧Pmc_FR,Pmc_FLを左右前輪側のホイールシリンダ42FR,42FLに伝達する、或いは、リニア制御弁65により調整したアキュムレータ圧Paccを左右後輪側のホイールシリンダ42RR,42RLに伝達するバックアップモード(2Sモード)の2つの制御モードによりブレーキ制御を選択的に実行する。
まず、リニア制御モードにおいては、図3に示すように、ブレーキECU100は、常開のマスタカット弁63,64をソレノイドへの通電により閉弁状態に維持するとともに、シミュレータカット弁72をソレノイドへの通電により開弁状態に維持する。又、本実施形態におけるリニア制御モードにおいては、ブレーキECU100は、常開の増圧機構カット弁90をソレノイドへの通電により閉弁状態に維持する。
又、リニア制御モードにおいては、ブレーキECU100は、増圧リニア制御弁65A及び減圧リニア制御弁65Bのソレノイドへの通電量(電流値)を制御し、通電量に応じた開度に制御する。又、ブレーキECU100は、常開の保持弁61FL,61RRを開弁状態に維持するとともに常閉の保持弁61FR,61RLをソレノイドへの通電により開弁状態に維持し、常閉の減圧弁62FR,62FL、62RRを閉弁状態に維持するとともに常開の減圧弁62RLをソレノイドへの通電により閉弁状態に維持する。
このように液圧制御弁装置50を構成する各電磁弁(電磁開閉弁)の開弁状態又は閉弁状態が制御されることにより、リニア制御モードにおいては、マスタカット弁63,64が共に閉弁状態に維持されるため、マスタシリンダ21から出力されるマスタシリンダ圧Pmc_FR,Pmc_FLは、ホイールシリンダ42FR,42FLに伝達されない。又、増圧機構カット弁90が閉弁状態に維持されるため、動力液圧発生装置30の加圧ポンプ31又はアキュムレータ32から出力されるアキュムレータ圧Paccは、増圧機構80に伝達されない。従って、リニア制御モードにおいては、増圧機構80の高圧室85から小径側室84、連通路89、大径側室83、パイロット通路16及びマスタ圧配管12(12a)を介して、高圧のアキュムレータ圧Paccがマスタシリンダ21に伝達することが防止される。
一方、増圧リニア制御弁65A及び減圧リニア制御弁65Bがソレノイドの通電制御状態にあるため、保持弁61よりも上流側にて動力液圧発生装置30から出力される高圧のアキュムレータ圧Paccが増圧リニア制御弁65A及び減圧リニア制御弁65Bによって上流側液圧すなわち制御圧Pxとして調整されて、保持弁61よりも下流側の4輪のホイールシリンダ42に伝達される。この場合、保持弁61が開弁状態に維持されるとともに減圧弁62が閉弁状態に維持されるため、各ホイールシリンダ42のホイールシリンダ圧Pwcは、主流路52における制御圧Pxで全て同じ値となる。
ところで、本実施形態の車両のブレーキ装置が設けられる車両は、例えば、バッテリ電源により駆動される走行用モータを備えた電気自動車(EV)や、走行用モータに加えて内燃機関をも備えたハイブリッド車両(HV)、ハイブリッド車両(HV)に対して更に外部電源を用いてバッテリを充電可能なプラグインハイブリッド車両(PHV)とすることができる。このような車両においては、車輪の回転エネルギーを走行用モータが電気エネルギーに変換することによって発電し、この発電電力をバッテリに回生させることによって制動力を得る回生制動を行うことが可能である。このような回生制動を行う場合には、車両を制動させるために必要な総制動力から回生による制動力分を除いた制動力を車両のブレーキ装置で発生させることにより、回生制動と液圧制動とを併用したブレーキ回生協調制御を行うことができる。
具体的には、ブレーキECU100は、制動要求を受けてブレーキ回生協調制御を開始する。制動要求は、例えば、ドライバがブレーキペダル10を踏み込み操作(以下、単に「ブレーキ操作」とも称呼する。)した場合や、自動ブレーキを作動させる要求がある場合等、車両に制動力を付与すべきときに発生する。ここで、自動ブレーキは、トラクション制御や、ビークルスタビリティー制御、車間距離制御、衝突回避制御等において作動させる場合があり、これらの制御開始条件が満たされた場合に制動要求が発生する。
ブレーキECU100は、制動要求を受けると、ブレーキ操作量として、マスタシリンダ圧センサ102により検出されるマスタシリンダ圧Pmc_FR、マスタシリンダ圧センサ103により検出されるマスタシリンダ圧Pmc_FL及びストロークセンサ105により検出されるペダルストロークHのうちの少なくとも一つを取得し、マスタシリンダ圧Pmc_FR、マスタシリンダ圧Pmc_FL及び/又はペダルストロークHの増大に伴って増大する目標制動力を演算する。尚、ブレーキ操作量については、マスタシリンダ圧Pmc_FR、マスタシリンダ圧Pmc_FL及び/又はペダルストロークHを取得することに代えて、例えば、ブレーキペダル10に対するペダル踏力を検出する踏力センサを設けて、ペダル踏力に基づいて目標制動力を演算するように実施することも可能である。
ブレーキECU100は、演算した目標制動力を表す情報をハイブリッドECU(図示省略)に送信する。ハイブリッドECUは、目標制動力のうち、電力回生により発生させた制動力を演算して、その演算結果である回生制動力を表す情報をブレーキECU100に送信する。これにより、ブレーキECU100は、目標制動力から回生制動力を減算することによってブレーキユニット40で発生させるべき制動力である目標液圧制動力を演算する。ここで、ハイブリッドECUで行う電力回生により発生する回生制動力は、モータの回転速度により変化するだけではなく、バッテリの充電状態(SOC:State Of Charge)に依存する回生電力制御によっても変化する。従って、目標制動力から回生制動力を減算することにより、適切な目標液圧制動力を演算することができる。
そして、ブレーキECU100は、演算した目標液圧制動力に基づいて、この目標液圧制動力に対応した各ホイールシリンダ42の目標液圧を演算し、制御圧Px(すなわち、ホイールシリンダ圧Pwc)が目標液圧と等しくなるように、フィードバック制御によりソレノイド駆動信号を供給して増圧リニア制御弁65A及び減圧リニア制御弁65Bの駆動電流を制御する。すなわち、リニア制御モードにおいては、ブレーキECU100は、制御圧センサ104によって検出された制御圧Pxが目標液圧に追従するように、増圧リニア制御弁65A及び減圧リニア制御弁65Bのソレノイドへの通電量(電流値)を制御する。
これにより、作動液が動力液圧発生装置30から増圧リニア制御弁65A、主流路52及び保持弁61を介して各ホイールシリンダ42に供給され、ホイールシリンダ圧Pwcが増加して車輪に制動力を発生させる。又、ホイールシリンダ42から作動液が、例えば、保持弁61、主流路52及び減圧リニア制御弁65Bを経てリザーバ流路57に排出されることにより、ホイールシリンダ圧Pwcが低下して車輪に発生する制動力を適切に調整することができる。
そして、例えば、ドライバによるブレーキ操作が解除されると、液圧制御弁装置50を構成する全ての電磁弁(電磁開閉弁)のソレノイドへの通電が遮断されることにより、全ての電磁弁(電磁開閉弁)は図1に示した原位置に戻される。このように、全ての電磁弁(電磁開閉弁)が原位置に戻されることにより、右前輪のホイールシリンダ42FRの液圧(作動液)は開弁状態にあるマスタカット弁63及びマスタ圧配管11を経てマスタシリンダ21及びリザーバ22に戻される。左前輪のホイールシリンダ42FLの液圧(作動液)は開弁状態にあるマスタカット弁64、増圧機構80の連通路89、パイロット通路16及びマスタ圧配管12(マスタ圧配管12a)を経てマスタシリンダ21及びリザーバ22に戻される。
右後輪のホイールシリンダ42RRの液圧(作動液)は、開弁状態にある保持弁61RR、主流路52、開弁状態にある保持弁61FL、開弁状態にあるマスタカット弁64、増圧機構80の連通路89、パイロット通路16及びマスタ圧配管12(マスタ圧配管12a)を経てマスタシリンダ21及びリザーバ22に戻される。左後輪のホイールシリンダ42RLの液圧(作動液)は、開弁状態にある減圧弁62RL及びリザーバ流路57を経てリザーバ22に戻される。
ここで、ホイールシリンダ42RLについては、後述する制御系(電気系)の異常発生時に、マスタシリンダ21や増圧機構80の作動液が供給されないようにするために、保持弁61RLが常閉の電磁開閉弁とされている。このため、ブレーキ操作が解除されたときには、ホイールシリンダ42RLは主流路52から遮断され、増圧機構80を経て、マスタシリンダ21に作動液を戻すことができない。これに対し、減圧弁62RLが常開の電磁開閉弁とされているため、減圧弁62RLを経てホイールシリンダ42RLの作動液をリザーバ22に戻すことができる。又、減圧弁が常開の電磁開閉弁である場合には、リニア制御モードにおいてソレノイドに電流を供給し続けなければならないため、消費電力が増大するという問題が発生するが、本実施形態においては、常開の減圧弁は減圧弁62RLの1つであるため、消費電力の増大を抑制することができる。
尚、本発明は、ブレーキ回生協調制御を行うことを必須とするものではないため、回生制動力を発生させない車両においても適用可能であることは言うまでもない。この場合には、ブレーキ操作量に基づいて目標液圧を直接演算すれば良い。目標液圧は、例えば、マップや計算式等を使って、ブレーキ操作量が大きくなるほど大きな値に設定される。
続いて、バックアップモードを例示的に説明する。車両のブレーキ装置においては、ブレーキECU100が所定のイニシャルチェックを実行するようになっており、このイニシャルチェックによって、例えば、各電磁弁(各電磁開閉弁)の開閉動作不良やブレーキECU100自体の作動異常等といった制御系(電気系)に異常が検出された場合、或いは、作動液の液漏れの可能性が検出された場合、ブレーキECU100はバックアップモードによって車両のブレーキ装置を作動させて車輪に制動力を発生させる。
まず、制御系(電気系)に異常が検出されたときには、ブレーキECU100は、全ての電磁弁(電磁開閉弁)に対する通電を遮断して、全ての電磁弁(電磁開閉弁)を図1に示す原位置に戻す。これにより、増圧リニア制御弁65A及び減圧リニア制御弁65Bは、ソレノイドへの通電が遮断されることによって閉弁状態とされて動力液圧発生装置30が主流路52を介して各ホイールシリンダ42から遮断される。又、増圧機構カット弁90が開弁状態とされるため、増圧機構80はアキュムレータ32と連通する。又、保持弁61FRと保持弁61RLは閉弁状態となり、保持弁61FLと保持弁61RRは開弁状態となる。このため、左前輪のホイールシリンダ42FLと右後輪のホイールシリンダ42RRとが主流路52を介して連通し、右前輪のホイールシリンダ42FRと左後輪のホイールシリンダ42RLとは主流路52に対して遮断される。
この状態において、ドライバによってブレーキペダル10の踏み込み操作(ブレーキ操作)がなされると、マスタシリンダ21の加圧室21a1,21b1内の作動液が加圧される。これにより、加圧室21a1の液圧(マスタシリンダ圧Pmc_FR)は、マスタ圧配管11、マスタ圧流路53及び開弁状態にあるマスタカット弁63を介して右前輪のホイールシリンダ42FRに供給され、ブレーキユニット40FRを良好に作動させることができる。
一方、加圧室21b1の液圧(マスタシリンダ圧Pmc_FL)は、マスタ圧配管12(12a)及びパイロット通路16を介して増圧機構80に供給され、増圧機構80が作動を開始する。すなわち、増圧機構80においては、段付きピストン82が前進し、小径側室84と大径側室83との連通路89を介した連通が開弁部材88によって遮断され、小径側室84内の液圧が増加する。又、開弁部材88が前進して高圧供給弁86が開弁状態になると、開弁状態にある増圧機構カット弁90を介してアキュムレータ32から高圧室85内に高圧の作動液が供給され、小径側室84にアキュムレータ圧Paccが伝達される。
これにより、小径側室84の液圧(サーボ圧)は、マスタシリンダ圧Pmc_FLよりも高くされ、マスタ圧配管12(12b)、マスタ圧流路54及び開弁状態にあるマスタカット弁64を介して左後輪のホイールシリンダ42FLに供給されるとともに、保持弁61FL、主流路52及び保持弁61RRを介して右後輪のホイールシリンダ42RRに供給される。従って、マスタシリンダ圧Pmc_FLよりも高いサーボ圧が左前輪のホイールシリンダ42FL及び右後輪のホイールシリンダ42RRに供給されることにより、ブレーキユニット40FL及びブレーキユニット40RRを良好に作動させることができる。
又、この状態においては、動力液圧発生装置30の加圧ポンプ31は停止状態であるため、アキュムレータ32の液圧(アキュムレータ圧Pacc)は徐々に低下する。このため、アキュムレータ圧Paccが高圧室85の液圧以下になると、高圧供給通路15に設けられた逆止弁によって高圧室85からアキュムレータ32への作動液の流れが阻止されるために段付きピストン82の前進が阻止され、小径側室84の液圧はそれ以上高くなることがなくて増圧機構80は倍力機能を発揮できなくなる。そして、ドライバのブレーキペダル10に対するペダル踏力によってマスタシリンダ21の加圧室21b1の液圧(マスタシリンダ圧Pmc_FL)が小径側室84の液圧よりも高くなると、マスタシリンダ圧Pmc_FLが、バイパス通路17、マスタ圧配管12b、マスタ圧流路54、マスタカット弁64、保持弁61FL、主流路52及び保持弁61RRを介して左前輪のホイールシリンダ42FLと右後輪のホイールシリンダ42RRに供給される。
ここで、制御系(電気系)の異常時においては、保持弁61RLは閉弁状態であるため、左後輪のホイールシリンダ42RLには、主流路52を介して加圧室21b1の液圧(サーボ圧又はマスタシリンダ圧Pmc_FL)が供給されないようにされている。このことは、マスタシリンダ21の1つの加圧室21b1から供給可能な作動液の量は決まっており、供給先のホイールシリンダの個数が多くなると、ホイールシリンダの液圧を十分に高くすることができないという問題を生じさせないためである。このため、本実施形態においては、互いに対角位置にある2つの車輪(左前輪と右後輪)のホイールシリンダ42FL,42RRに対して選択的にサーボ圧(又はマスタシリンダ圧Pmc_FL)を供給する。これにより、車両にヨー(ヨーモーメント)を生じ難くして、2つのブレーキユニット40FL,40RRを良好に作動させることができる。尚、右前輪のホイールシリンダ42FRには、上述したように、開弁状態にあるマスタカット弁63を介してマスタシリンダ21の加圧室21a1から液圧(マスタシリンダ圧Pmc_FR)が供給される。
このように、本実施形態においては、制御系(電気系)の異常時には、3輪のホイールシリンダ42FR,42FL,42RRにマスタシリンダ21の液圧(マスタシリンダ圧Pmc_FR,Pmc_FL)又は増圧機構80を介した液圧(サーボ圧)が供給されることにより、2輪のホイールシリンダに液圧が供給される場合に比して、車両全体として制動力を大きくすることができる。そして、増圧機構80が作動している間は、左前輪のホイールシリンダ42FLと右後輪のホイールシリンダ42RRに対し、マスタシリンダ圧Pmc_FLとほぼ等しいマスタシリンダ圧Pmc_FRに比してより大きなサーボ圧が供給されるため、より一層、ヨー(ヨーモーメント)を生じ難くすることができる。
次に、液漏れの可能性が検出された場合のバックアップモードを説明する。ブレーキECU100は、リニア制御モードにおいて、例えば、制御圧センサ104によって検出された主流路52における制御圧Px(ホイールシリンダ圧Pwcに相当)の変化(低下)等に基づいて車両のブレーキ装置に液漏れの可能性を検出したときには、原則として、図4に示すように各電磁開閉弁を開閉動作させる。すなわち、ブレーキECU100は、左右前輪の保持弁61FR,61FLを閉弁状態とし、左右後輪の保持弁61RR,61RLを開弁状態とし、マスタカット弁63,64を開弁状態とする。又、ブレーキECU100は、シミュレータカット弁72を閉弁状態とするとともに増圧機構カット弁90を閉弁状態に維持し、全ての減圧弁62を閉弁状態とする。
これにより、左右後輪のホイールシリンダ42RR及びホイールシリンダ42RLは、保持弁61RR,61RL、主流路52、増圧リニア制御弁65A、アキュムレータ圧流路55及びアキュムレータ圧配管13を介して動力液圧発生装置30の加圧ポンプ31及び/又はアキュムレータ32と連通する。このため、ホイールシリンダ42RR,42RLにおいては、保持弁61RR,61RLよりも上流側にて高圧のアキュムレータ圧Paccが増圧リニア制御弁65A及び減圧リニア制御弁65Bによって上流側液圧として調整されて、保持弁61RR,61RLよりも下流側のホイールシリンダ42RR,42RLに伝達される。
一方、右前輪のホイールシリンダ42FRは、マスタカット弁63、マスタ圧流路53及びマスタ圧配管11を介してマスタシリンダ21の加圧室21a1と連通し、液圧がマスタシリンダ圧Pmc_FRとされる。すなわち、この状況においては、保持弁61FRによって、マスタシリンダ21の加圧室21a1から直接的にホイールシリンダ42FRに伝達された作動液(言い換えれば、マスタシリンダ圧Pmc_FR)が上流側の主流路52に伝達することが禁止(遮断)される。又、左前輪のホイールシリンダ42FLは、マスタカット弁64、マスタ圧流路54、マスタ圧配管12b、増圧機構80、パイロット通路16及びマスタ圧配管12aを介してマスタシリンダ21の加圧室21b1と連通し、液圧がマスタシリンダ圧Pmc_FL(又は、増圧機構80の作動によるサーボ圧)とされる。すなわち、この状況においては、保持弁61FLによって、マスタシリンダ21の加圧室21b1から直接的にホイールシリンダ42FLに伝達された作動液(言い換えれば、マスタシリンダ圧Pmc_FL)が上流側の主流路52に伝達することが禁止(遮断)される。
このように、車両のブレーキ装置に液漏れの可能性が検出されると、左右前輪の保持弁61FR,61FLが閉弁状態(遮断状態)、すなわち、ホイールシリンダ42FR,42FLと主流路52との連通が遮断される。このため、主流路52を介した左右前輪のホイールシリンダ42FRとホイールシリンダ42FLとの連通が遮断されるとともに、主流路52を介して左右前輪のホイールシリンダ42FR,42FLと左右後輪のホイールシリンダ42RR,42RLとの連通が遮断される。従って、車両のブレーキ装置に液漏れの可能性が検出されると、前輪と後輪とのホイールシリンダ42同士が互いに遮断されるとともに前輪側において左前輪と右前輪のホイールシリンダ42同士が遮断されて、左前輪、右前輪及び左右後輪の3つのブレーキ系統が互いに独立することになる。その結果、これらの3つのブレーキ系統のうちのいずれかに液漏れが実際に生じた場合であっても、他のブレーキ系統に影響が及ばないようになっている。
このことを具体的に説明すると、今、左前輪のブレーキユニット40FLにおいて、例えば、ホイールシリンダ42FLから外部への液漏れ、或いは、減圧弁62FLのシール性に異常が発生した場合を想定してみる。この場合、ブレーキECU100は、リニア制御モードにおいて、例えば、アキュムレータ圧センサ101によって検出されるアキュムレータ圧Paccや制御圧センサ104によって検出される制御圧Px(ホイールシリンダ圧Pwcに相当)の低下等によって車両のブレーキ装置に液漏れの可能性が生じたことは検出できるものの、液漏れが発生している位置(ブレーキ系統)を特定することはできない。
このように、液漏れの可能性が生じた場合には、ブレーキECU100は、上述したように、左前輪、右前輪及び左右後輪の3つのブレーキ系統を互いに独立させる。これにより、仮に、実際に左前輪のホイールシリンダ42FLから外部への液漏れ、或いは、減圧弁62FLのシール性に異常が発生した場合であっても、他の車輪、具体的には、右前輪にはマスタシリンダ圧Pmc_FRを供給することにより適切な制動力を発生させることができ、左右後輪にはアキュムレータ圧Paccを制御(調整)した制御圧Px(ホイールシリンダ圧Pwc)を供給することにより適切な制動力を発生させることができる。
又、このように車両のブレーキ装置に液漏れの可能性が検出された場合には、ブレーキECU100は、増圧機構カット弁90を閉弁状態に維持する。これにより、動力液圧発生装置30のアキュムレータ32と増圧機構80の高圧室85との高圧供給通路15を介した連通(接続)が遮断されるため、アキュムレータ32から増圧機構80への液圧(アキュムレータ圧Pacc)の伝達すなわち作動液の流通が禁止される。従って、仮に、増圧機構80と連通している左前輪のホイールシリンダ42FLから外部への液漏れ、或いは、減圧弁62FLのシール性に異常が発生した場合であっても、アキュムレータ32から増圧機構80を介した作動液の流通が生じない。
これにより、例えば、増圧機構80の高圧室85から小径側室84側への作動液の流通、言い換えれば、アキュムレータ32に蓄圧されたアキュムレータ圧Paccの増圧機構80による消費を確実に防止することができる。従って、アキュムレータ圧Paccを増圧リニア制御弁65Aを介して左右後輪のホイールシリンダ42RR,42RLに集中して供給することができる。すなわち、増圧機構カット弁90が閉弁状態に維持されることにより、アキュムレータ32のアキュムレータ圧Paccを無駄に低下させることなく、左右後輪にアキュムレータ圧Paccを制御(調整)した上流側液圧である制御圧Pxを供給することができ、適切にホイールシリンダ圧Pwcを制御して制動力を発生させることができる。
ところで、本実施形態における車両のブレーキ装置においては、ブレーキECU100は、ドライバよる制動要求に応じた制動力を車輪に付与することと、制動力の付与された車輪の前後方向のスリップが過大になることを抑制するアンチスキッド制御(アンチロック制御)を実施して制動停止距離を短縮することとを適切に調停(両立)させるように、上流側液圧すなわち制御圧Pxを制御する。このため、ブレーキECU100は、図5に示すように、ブレーキ操作量入力部151と、制動要求対応液圧演算部152と、車輪状態量入力部153と、制動停止距離短縮対応液圧演算部154と、調停部155と、上流側液圧制御部156とからなる。
ブレーキ操作量入力部151及び制動要求対応液圧演算部152は、上述したように、例えば、リニア制御モードにおいて、ドライバによるブレーキ操作によって発生する制動要求に応じて目標制動力を演算し、この目標制動力に対応する上流側液圧である制御圧Px(すなわちホイールシリンダ圧Pwc)を演算するものである。このため、ブレーキ操作量入力部151は、制動要求の入力、言い換えれば、ドライバによってブレーキペダル10が操作されると、ブレーキ操作量として、マスタシリンダ圧センサ102により検出されるマスタシリンダ圧Pmc_FR、マスタシリンダ圧センサ103により検出されるマスタシリンダ圧Pmc_FL及びストロークセンサ105により検出されるペダルストロークHのうちの少なくも一つを入力する。そして、ブレーキ操作量入力部151は、入力したマスタシリンダ圧Pmc_FR、マスタシリンダ圧Pmc_FL及びペダルストロークHのうちの少なくとも一つを制動要求対応液圧演算部152に出力する。
制動要求対応液圧演算部152は、ブレーキ操作量入力部151からマスタシリンダ圧Pmc_FR、マスタシリンダ圧Pmc_FL及びペダルストロークHのうちの少なくとも一つを取得する。続いて、制動要求対応液圧演算部152は、取得したマスタシリンダ圧Pmc_FR、マスタシリンダ圧Pmc_FL及び/又はペダルストロークHの増大に伴って増大する目標制動力を演算する。尚、この場合、制動要求対応液圧演算部152は、現在、ブレーキ回生協調制御中であれば、電力回生により発生する回生制動力を減算して、ブレーキユニット40で発生させる目標液圧制動力を演算する。そして、制動要求対応液圧演算部152は、演算した目標液圧制動力に基づいて、この目標液圧制動力に対応した各ホイールシリンダ42における目標液圧(以下、制動要求対応目標液圧と称呼する。)を演算する。このように制動要求対応目標液圧を演算すると、制動要求対応液圧演算部152は、制動要求対応目標液圧を調停部155に出力する。
車輪状態量入力部153及び制動停止距離短縮対応液圧演算部154は、周知のアンチスキッド制御(アンチロック制御)の実施に従って適宜変更される各ホイールシリンダ42のホイールシリンダ圧Pwcに対応して、最適な上流側液圧である制御圧Pxを演算するものである。特に、制動停止距離短縮対応液圧演算部154は、周知のアンチスキッド制御(アンチロック制御)の実施に従って適宜変更される各ホイールシリンダ42のホイールシリンダ圧Pwc、言い換えれば、液圧制御弁装置50を構成する各保持弁61及び各減圧弁62のうちの少なくとも保持弁61の開弁状態又は閉弁状態に応じて、最適な上流側液圧である制御圧Pxを演算するものである。以下、具体的に説明する。
車輪状態量入力部153は、車輪速センサ106により検出される各車輪の車輪速Vxi(i=FR,FL,RR,RL)を入力する。そして、車輪状態量入力部153は、入力した各車輪の車輪速Vxi(i=FR,FL,RR,RL)を制動停止距離短縮対応液圧演算部154に出力する。尚、本実施形態においては、車輪状態量入力部153を設け、各車輪の車輪速Vxi(i=FR,FL,RR,RL)を入力するように実施するが、この車輪状態量入力部153に代えて、又は、加えて、周知のアンチスキッド制御(アンチロック制御)に利用可能な他の物理量(加速度やヨーレート等)を入力する入力部を設けて実施可能であることは言うまでもない。
制動停止距離短縮対応液圧演算部154は、車輪状態量入力部153から各車輪の車輪速Vxi(i=FR,FL,RR,RL)を取得する。続いて、制動停止距離短縮対応液圧演算部154は、例えば、取得した各車輪速Vxi(i=FR,FL,RR,RL)に基づいて推定車体速度Vbを推定するとともに、各車輪について推定車体速度Vbと各車輪速Vxi(i=FR,FL,RR,RL)との偏差として車輪の前後方向のスリップを表すスリップ率Si(i=FR,FL,RR,RL)を演算する。ここで、推定車体速度Vb及びスリップ率Si(i=FR,FL,RR,RL)の演算については、従来から広く採用されている周知の演算方法を採用することができるため、以下簡単に説明しておく。
推定車体速度Vbについては、各車輪速Vxi(i=FR,FL,RR,RL)のうち、制動停止距離短縮対応液圧演算部154は実際の車体速度に最も近いと考えられる値をまずは推定車体速度Vxbとして選択する。次に、制動停止距離短縮対応液圧演算部154は、前回演算した車体推定速度Vbfに対して、推定車体速度の増加率を抑制するための正の定数α1を減じた推定車体速度Vbn1及び推定車体速度の低下率を抑制するための正の定数α2を加えた推定車体速度Vbn2を演算する。そして、制動停止距離短縮対応液圧演算部154は、選択した車体速度Vxb、演算した推定車体速度Vbn1及び演算した推定車体速度Vbn2のうちの中間の値を今回の推定車体速度Vbとして推定(決定)する。
スリップ率Si(i=FR,FL,RR,RL)については、制動停止距離短縮対応液圧演算部154は、前記推定(決定)した推定車体速度Vbから各車輪速Vxi(i=FR,FL,RR,RL)をそれぞれ減ずる。そして、制動停止距離短縮対応液圧演算部154は、この減じて演算した値を推定車体速度Vbで除することによって、各車輪のそれぞれのスリップ率Si(i=FR,FL,RR,RL)を推定して演算する。尚、以下の説明においては、理解を容易とするために、各車輪のスリップ率Si(i=FR,FL,RR,RL)を単に車輪のスリップ率Sとも称呼する。
そして、制動停止距離短縮対応液圧演算部154は、演算したスリップ率Sが所定のスリップ率Ss以上であるときには、車輪の前後方向のスリップが過大であるために、アンチスキッド制御(アンチロック制御)を実施し、演算したスリップ率Sが所定のスリップ率Ss未満であるときには、アンチスキッド制御(アンチロック制御)を終了する。ここで、アンチスキッド制御(アンチロック制御)では、例えば、所定のスリップ率Ssとなるように車輪に制動力を付与するホイールシリンダ42のホイールシリンダ圧Pwc(以下、スリップ発生推定液圧Psと称呼する。)以下にて、ホイールシリンダ圧Pwcを増圧制御により増圧したり、減圧制御により減圧したり、或いは、保圧制御により保圧したりする。
すなわち、アンチスキッド制御(アンチロック制御)に従って、増圧制御では、対応する車輪における保持弁61が制御圧Pxをホイールシリンダ42に伝達する開弁状態とされるとともに減圧弁62が閉弁状態に維持される。これにより、アンチスキッド制御(アンチロック制御)の実施中において、ホイールシリンダ圧Pwcの増圧が要求されると、増圧制御により、保持弁61が開弁状態とされて上流側液圧である制御圧Pxがホイールシリンダ42に伝達される。又、アンチスキッド制御(アンチロック制御)に従って、減圧制御では、対応する車輪における保持弁61が閉弁状態にされるとともに減圧弁62が開弁状態とされる。これにより、アンチスキッド制御(アンチロック制御)の実施中において、ホイールシリンダ圧Pwcの減圧が要求されると、減圧制御により、減圧弁62が開弁状態とされてホイールシリンダ圧Pwcがリザーバ22に伝達される。更に、アンチスキッド制御(アンチロック制御)に従って、保圧制御では、対応する車輪における保持弁61が閉弁状態とされるとともに減圧弁62が閉弁状態とされる。これにより、アンチスキッド制御(アンチロック制御)の実施中において、ホイールシリンダ圧Pwcの保圧が要求されると、保圧制御により、保持弁61及び減圧弁62が閉弁状態に維持されてホイールシリンダ圧Pwcが密閉される。
ところで、アンチスキッド制御(アンチロック制御)が実施される状況では、応答性よくホイールシリンダ圧Pwcを増圧又は減圧して車輪のスリップ率Sを低下させて、言い換えれば、車輪の回転を回復させて制動停止距離を短縮することが必要である。このため、制動停止距離短縮対応液圧演算部154は、上流側液圧である制御圧Pxを変更して、特に、保持弁61が開弁状態とされる増圧制御時におけるホイールシリンダ圧Pwcを応答性よく速やかに増圧させる一方で、早急に車輪のスリップ率Sが所定のスリップ率Ssとなることを抑制してホイールシリンダ圧Pwcを増圧させる。このため、制動停止距離短縮対応液圧演算部154は、増圧制御時において制御圧Pxを変更させるに当たり、時間変化に対する圧力変化が大きな第1圧力勾配と、この第1圧力勾配よりも小さい第2圧力勾配とに従って、制御圧Pxの目標液圧を決定する。そして、制動停止距離短縮対応液圧演算部154は、第1圧力勾配に従って決定される第1目標液圧に追従するように制御圧Pxを変更させることにより、ホイールシリンダ圧Pwcを速やかに増圧させる。又、制動停止距離短縮対応液圧演算部154は、第2圧力勾配に従って決定される第2目標液圧に追従するように制御圧Pxを変更させることにより、ホイールシリンダ圧Pwcを緩やかに増圧させて、ホイールシリンダ圧Pwcがスリップ発生推定液圧Psとなること、言い換えれば、車輪のスリップ率Sが所定のスリップ率Ssとなることを時間的に遅らせる。
更に、制動停止距離短縮対応液圧演算部154は、増圧制御時において、ホイールシリンダ圧Pwcを応答性よく増圧させるために、増圧が要求されるホイールシリンダ42に接続された保持弁61が閉弁状態から開弁状態となるまで(すなわち、閉弁状態から開弁状態への移行が完了するまで)に、制御圧Pxの目標液圧を第1目標液圧に変更しておく。これにより、後述するように、該当する保持弁61が開弁状態に移行した時点では、既に、制御圧Pxが圧力勾配の大きな第1圧力勾配に従って決定される第1目標液圧に追従するように増圧されており、その結果、ホイールシリンダ42におけるホイールシリンダ圧Pwcが応答性よく速やかに増圧を開始する。
このように、アンチスキッド制御(アンチロック制御)が実施されるときに上流側液圧である制御圧Pxの第1目標液圧又は第2目標液圧を決定すると、制動停止距離短縮対応液圧演算部154は、決定した第1目標液圧又は第2目標液圧を調停部155に出力する。尚、アンチスキッド制御(アンチロック制御)が実施されない状況であるときには、制動停止距離短縮対応液圧演算部154は、アンチスキッド制御(アンチロック制御)が実施されていない、或いは、アンチスキッド制御(アンチロック制御)の実施が終了したことを表す制御不実施情報を調停部155に出力する。
調停部155は、制動要求対応液圧演算部152から出力された制動要求対応目標液圧を取得する。又、調停部155は、制動停止距離短縮対応液圧演算部154から出力された第1目標液圧又は第2目標液圧、或いは、制御不実施情報を取得する。これにより、調停部155においては、第1目標液圧又は第2目標液圧を取得しているときには、現在、アンチスキッド制御(アンチロック制御)が実施されている状況であるために制動停止距離を短縮することを優先し、上流側液圧制御部156に対して第1目標液圧又は第2目標液圧を出力する。一方、調停部155においては、制御不実施情報を取得しており、制動要求対応目標液圧を取得しているときには、現在、アンチスキッド制御(アンチロック制御)が実施されていない状況であるためにドライバによる制動要求に応じることを優先し、上流側液圧制御部156に対して制動要求対応目標液圧を出力する。
上流側液圧制御部156においては、上流側液圧である制御圧Pxの目標液圧として、第1目標液圧又は第2目標液圧、或いは、制動要求対応目標液圧のいずれかを取得する。尚、上流側液圧制御部156は、制動要求対応目標液圧を取得している場合には、上記したリニア制御モードの場合と同様に、制御圧Pxを制御して各ホイールシリンダ42に伝達する。
アンチスキッド制御(アンチロック制御)が実施されている状況では、図6にて破線により概略的に示すように、ホイールシリンダ42におけるホイールシリンダ圧Pwcが増圧制御、減圧制御又は保圧制御によって増圧、減圧又は保圧される。このため、上流側液圧制御部156は、特に、増圧制御によるホイールシリンダ圧Pwcの増圧に対して最適に制御圧Pxを制御する。すなわち、上流側液圧制御部156は、図6にて太実線により示すように、ホイールシリンダ圧Pwcが保圧から増圧を開始する、すなわち、増圧制御に従って保持弁61の閉弁状態から開弁状態への移行が完了する前までに、リニア制御弁65を利用して制御圧Pxを第1目標液圧に追従させた増圧を開始しておく。これにより、ホイールシリンダ42においては、増圧制御により保持弁61が開弁されたときには既に増圧されている制御圧Pxが伝達され、ホイールシリンダ圧Pwcは、図6に示すように、速やかに増圧を開始する。
そして、上流側液圧制御部156は、増圧制御に従って保持弁61の開弁状態への移行が完了してから所定時間が経過すると、図6に示すように、制御圧Pxを第2目標液圧に追従させて変化させる。具体的に、上流側液圧制御部156は、第2目標液圧に追従させることにより、リニア制御弁65を利用して制御圧Pxを緩やかに増圧したり、保圧したり、或いは、減圧したりする。これにより、ホイールシリンダ42においては、増圧制御により開弁状態を維持している保持弁61を介して、第2目標液圧に追従して変化した制御圧Pxが伝達され、ホイールシリンダ圧Pwcは緩やかにスリップ発生推定液圧Psまで増加する。従って、ホイールシリンダ圧Pwcがスリップ発生推定液圧に到達するまでの時間を適切に遅らせることができ、その結果、適切に車輪を回転させることができて制動停止距離を短縮することができる。
そして、アンチスキッド制御(アンチロック制御)の実施に伴って車輪のスリップ率Sが所定のスリップ率Ss未満となると(すなわち、車輪の回転が回復すると)、上流側液圧制御部156は、第2目標液圧から第1目標液圧に変更し、図6に示すように、制御圧Px及びホイールシリンダ圧Pwcをスリップ発生推定液圧Ps以上となるまで増圧させる。これにより、ホイールシリンダ42が車輪に付与する制動力を速やかに大きくすることができて、アンチスキッド制御(アンチロック制御)によってロック状態から回転状態に回復した車輪において、その慣性によって車輪速Vxi(i=FR,FL,RR,RL)が車体速度Vbよりも大きくなることを効果的に防止することができる。
以上の説明からも理解できるように、上記実施形態によれば、アンチスキッド制御(アンチロック制御)の実施中においては、保持弁61を開弁させることによるホイールシリンダ42の増圧制御に対し、第1圧力勾配に従って決定された第1目標液圧に追従するように上流側液圧である制御圧Pxを調整し、保持弁61の開弁から所定時間が経過すると、第1圧力勾配よりも小さい第2圧力勾配に従って決定される第2目標液圧に追従させて制御圧Pxを調整することにより、ホイールシリンダ42におけるホイールシリンダ圧Pwcを緩やかに増圧させることができる。これにより、ホイールシリンダ42が車輪に付与する制動力を速やかに増加させた後に緩やかにすることができ、その結果、車輪に適切な制動力を付与しつつ車輪にロックが発生するタイミングを遅らすことができる。従って、車両を制動させるときの制動距離を短くすることができるとともに車両の挙動変化を良好に抑制することができる。又、ドライバは良好なブレーキフィーリングを知覚することができる。
又、ホイールシリンダ42のホイールシリンダ圧Pwcを増圧する増圧要求がなされる状況下では、ブレーキECU100(より具体的には、上流側液圧制御部156)は、該当する保持弁61の閉弁状態から開弁状態への移行が完了するまでに、先行してリニア制御弁65を利用して上流側液圧である制御圧Pxを第1目標液圧に追従させて増圧しておくことができる。これにより、保持弁61を開弁状態に移行させたときには、増圧された制御圧Pxをホイールシリンダ42に伝達することができるため、増圧要求に対して極めて応答性よくホイールシリンダ42のホイールシリンダ圧Pwcを増圧制御することができる。従って、ホイールシリンダ42は適切に車輪に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
<第1変形例>
上記実施形態においては、各車輪の回転状態を区別することなく、アンチスキッド制御(アンチロック制御)を全車輪について同様に適用するように実施した。ところで、アンチスキッド制御(アンチロック制御)では、路面の状態(路面摩擦係数の違い等)や各車輪の回転状態によって、車輪ごとにその制御内容や制御タイミングが異なる場合がある。より具体的には、アンチスキッド制御(アンチロック制御)に従って車輪ごとに要求される制動力の大きさが異なる場合がある。
このように、アンチスキッド制御(アンチロック制御)に従って車輪ごとに要求される制動力の大きさが異なる場合、言い換えれば、車輪ごとに設けられたホイールシリンダ42における目標制動液圧としてのホイールシリンダ圧Pwcがそれぞれ異なる場合には、制動停止距離短縮対応液圧演算部154は、まず、要求される制動力の大きさを実現するために必要な各ホイールシリンダ42のホイールシリンダ圧Pwcを決定する。続いて、制動停止距離短縮対応液圧演算部154は、決定した各輪のホイールシリンダ42におけるホイールシリンダ圧Pwcのうち、最大となるホイールシリンダ圧Pwcを選択する。そして、制動停止距離短縮対応液圧演算部154は、この選択した最大となるホイールシリンダ圧Pwcに基づいて、例えば、車輪の回転状態に応じて補正を行ってスリップ発生推定液圧Psを決定し、このスリップ発生推定液圧Psまでホイールシリンダ42のホイールシリンダ圧Pwcを増圧させるべく、上述したように、上流側液圧である制御圧Pxを第1目標液圧又は第2目標液圧に追従させて変更することができる。
これにより、例えば、ホイールシリンダ42ごとに増圧要求が異なる場合であっても、最大となる目標制動液圧としてのホイールシリンダ圧Pwcに基づいてスリップ発生推定液圧Psを決定することにより、ホイールシリンダ42におけるホイールシリンダ圧Pwcを適切に増圧することができる。従って、上述した実施形態と同様に、この第1変形例においても、ホイールシリンダ42は適切に車輪に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
<第2変形例>
上記実施形態及び上記第1変形例においては、車両の全輪がアンチスキッド制御(アンチロック制御)の対象となる車輪であるとして実施した。ところで、路面の状態によっては、アンチスキッド制御(アンチロック制御)が適用されない車輪、言い換えれば、制御の対象外となる非作動輪が存在する場合がある。このように、車両において、アンチスキッド制御(アンチロック制御)の対象となる車輪と非作動輪とが共に存在する場合において、上述したように、一義的に上流側液圧である制御圧Pxの目標液圧を変更すると、例えば、非作動輪におけるホイールシリンダ42が付与する制動力が無用に変動して、ドライバ及び車両の乗員が違和感を覚えるような加速度(減速度)が生じる可能性がある。
このため、制動停止距離短縮対応液圧演算部154は、非作動輪として、車両の少なくとも1輪が非作動輪として存在する場合や、或いは、具体的に、左前輪と右後輪、及び、右前輪と左後輪が非作動輪として存在する場合、これら非作動輪に付与される制動力が無用に変動することを防止するために、第1目標液圧又は第2目標液圧に追従して制御圧Pxを変化させることを禁止することができる。或いは、制動停止距離短縮対応液圧演算部154は、上述したように非作動輪が存在する場合、非作動輪に付与される制動力が無用に変動することを防止するために、第1目標液圧又は第2目標液圧に追従して変化する制御圧Pxの変動量、言い換えれば、第1目標液圧を決定する第1圧力勾配の大きさ及び第2目標液圧を決定する第2圧力勾配の大きさを、非作動輪が存在せず全車輪が制御の対象の車輪となる場合に比して小さくすることができる。更には、特に、制動力が小さくなる場合には、減速度の低下に伴ってドライバ(乗員)がブレーキフィーリングに違和感を覚えやすいため、例えば、第2圧力勾配に従って低下する第2目標液圧(第2圧力勾配が負の値であるときの第2目標液圧)に追従して変化する制御圧Pxの変動量(低下量)を小さくすることができる。
これにより、非作動輪におけるホイールシリンダ42に伝達されるホイールシリンダ圧Pwcの変動を良好に抑制することができ、その結果、制動に伴って車両に発生する加速度(減速度)の変化を良好に抑制することができる。従って、この第2変形例においては、ホイールシリンダ42は非作動輪も含む車輪に適切に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
ここで、上記第2変形例においては、アンチスキッド制御(アンチロック制御)の適用されない車輪が車両の左右一方の前後輪、すなわち、右前輪と右後輪、及び、左前輪と左後輪であるときには、上述した実施形態及び第1変形例と同様に、制御圧Pxを第1目標液圧又は第2目標液圧に従って変更量を制限することなく変更することができる。これにより、例えば、車両の左右輪にて路面の状態(路面摩擦係数)が異なる場合では、アンチスキッド制御(アンチロック制御)の適用される車輪においては第1目標液圧又は第2目標液圧に追従するように変更された制御圧Pxがホイールシリンダ42に伝達されて制動力が付与され、非作動輪においては第1目標液圧又は第2目標液圧に追従するように変更された制御圧Pxの影響を受けてホイールシリンダ42が制動力を付与する。従って、この場合には、例えば、左右輪にて路面の状態が異なる状況に合わせて、ホイールシリンダ42が車輪に適切に制動力を付与することができ、車両の挙動を安定させて制動停止距離を短縮することができる。
<第3変形例>
上記実施形態、上記第1変形例及び上記第2変形例においては、上流側液圧である制御圧Pxを変更させる場合、例えば、予め設定されている第1目標液圧又は第2目標液圧に追従させて変更するように実施した。この場合、例えば、ドライバがブレーキペダル10に対するブレーキ操作によって要求する制動力の大きさすなわちホイールシリンダ42におけるホイールシリンダ圧Pwcの大きさに応じて、第1目標液圧を決定する第1圧力勾配の大きさ及び第2目標液圧を決定する第2圧力勾配の大きさを制限するように実施することも可能である。
具体的に、この第3変形例においては、制動停止距離短縮対応液圧演算部154は、例えば、制動要求対応液圧演算部152によって演算された制動要求対応目標液圧を取得する。そして、制動停止距離短縮対応液圧演算部154は、取得した制動要求対応目標液圧の大きさに応じて、例えば、制動要求対応目標液圧の大きさが小さいときには第1圧力勾配の大きさ及び第2圧力勾配の大きさが小さくなるように制限することができる。これにより、ドライバがブレーキペダル10をブレーキ操作することによって意図した制動力に合わせて第1圧力勾配及び第2圧力勾配、言い換えれば、第1目標液圧及び第2目標液圧を適切に制限することができる。従って、この第3変形例においては、ホイールシリンダ42はドライバの意図を反映して適切に車輪に制動力を付与して制動停止距離を短縮することができ、ドライバは良好なブレーキフィーリングを知覚することができる。
本発明の実施にあたっては、上記実施形態及び各変形例に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、上記実施形態及び各変形例においては、増圧機構80から出力されるサーボ圧をホイールシリンダ42FLに直接的に伝達するように実施した。この場合、増圧機構80からマスタシリンダ21に対してサーボ圧を伝達するように実施することも可能である。この場合、具体的には、マスタシリンダ21にハイドロブースタを設けておき、このハイドロブースタに対して増圧機構80からサーボ圧を供給する。これにより、マスタシリンダ21を介してサーボ圧相当の液圧を、例えば、ホイールシリンダ42FLに伝達することが可能となり、上記実施形態及び各変形例と同様の効果が期待できる。
又、上記実施形態及び各変形例においては、リニア制御弁65として、増圧リニア制御弁65A及び減圧リニア制御弁65Bを備える車両のブレーキ装置を採用して実施した。この場合、減圧リニア制御弁65Bを省略して、増圧リニア制御弁65Aのみを備える車両のブレーキ装置を採用して実施することも可能である。又、上記実施形態及び各変形例においては増圧機構80及び増圧機構カット弁90を備える車両のブレーキ装置を採用して実施した。この場合、増圧機構80及び増圧機構カット弁90を備えない車両のブレーキ装置を採用して実施することも可能である。これらの場合であっても、上記実施形態及び各変形例と同様の効果が得られる。
更に、上記実施形態及び各変形例において、上述したイニシャルチェックの実行に際しては、各電磁開閉弁の切替動作に伴う作動音が発生する可能性がある。このため、例えば、車両がHVやPHVである場合には、内燃機関の回転数が所定回転数以上であるときにイニシャルチェックを実行したり、車両がEVである場合には、オーディオ装置の音量が所定音量以上であるときにイニシャルチェックを実行するようにすることができる。これにより、イニシャルチェックに伴って発生する作動音を内燃機関から発せられる音に紛れ込ませたり、オーディオ装置から発せられる音に紛れ込ますことができて、ドライバや乗員によって作動音が知覚されにくくすることができる。
10…ブレーキペダル、20…マスタシリンダユニット、30…動力液圧発生装置、40…ブレーキユニット、50…液圧制御弁装置、51…個別流路、52…主流路、56…減圧用個別流路、61FR,61FL,61RR,61RL…保持弁、62FR,62FL,62RR,62RL…減圧弁、65…リニア制御弁、100…ブレーキECU

Claims (13)

  1. ドライバによるブレーキペダルの操作に応じて液圧を発生させるマスタシリンダと、加圧手段の駆動により液圧を発生させる動力式液圧源と、電気信号によって制御される複数の電磁弁からなり、前記マスタシリンダ又は前記動力式液圧源から出力された液圧が伝達される弁機構と、前記弁機構を介して前記マスタシリンダ又は前記動力式液圧源から出力された液圧が伝達されて車輪に制動力を付与するホイールシリンダと、前記弁機構の作動を制御する制御手段とを備えた車両のブレーキ装置において、
    前記弁機構が、
    車輪ごとに設けられて前記動力式液圧源からの液圧が伝達される上流側と前記ホイールシリンダが接続される下流側との連通又は遮断を実現する電磁開閉弁である保持弁、及び、前記保持弁に対応して設けられて前記ホイールシリンダとリザーバとの連通又は遮断を実現する電磁開閉弁である減圧弁を有するとともに、前記動力式液圧源からの液圧を前記保持弁の上流側の液圧である上流側液圧に調整する電磁弁からなる液圧調整手段を有するものであり、
    前記制御手段は、
    制動力の付与された車輪の前後方向のスリップが過大になることを抑制するアンチスキッド制御が実施されているときに、
    前記保持弁及び前記減圧弁のうちの少なくとも前記保持弁の開弁状態又は閉弁状態に応じて、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧を変更するものであり、
    前記目標液圧は、少なくとも、
    前記上流側液圧の時間変化に対する圧力変化を表す第1圧力勾配、又は、前記第1圧力勾配よりも小さい第2圧力勾配に従って決定されるものであり、
    前記制御手段は、
    前記第1圧力勾配に従って決定した第1目標液圧に追従して前記液圧調整手段を介して前記上流側液圧を調整している状況下で、前記減圧弁を閉弁状態に維持するとともに前記保持弁を開弁状態に維持する前記ホイールシリンダの増圧制御によって前記保持弁を所定時間が経過するまで開弁状態に維持した後、
    前記第1目標液圧から前記第2圧力勾配に従って決定される第2目標液圧に変更することを特徴とする車両のブレーキ装置。
  2. 請求項1に記載した車両のブレーキ装置において、
    前記制御手段は、
    少なくとも、前記ホイールシリンダの増圧制御によって前記保持弁の閉弁状態から開弁状態への移行が完了するまでに、前記液圧調整手段を介して前記第1圧力勾配に従って決定した前記第1目標液圧に追従して前記上流側液圧を調整することを特徴とする車両のブレーキ装置。
  3. 請求項1又は請求項2に記載した車両のブレーキ装置において、
    前記制御手段は、
    少なくとも、前記液圧調整手段を介して前記第2圧力勾配に従って決定した前記第2目標液圧に追従して前記上流側液圧を調整した後、
    前記第1目標液圧に追従して所定の液圧以上となるまで前記液圧調整手段を介して前記上流側液圧を増圧することを特徴とする車両のブレーキ装置。
  4. 請求項3に記載した車両のブレーキ装置において、
    前記所定の液圧は、
    液圧の伝達される前記ホイールシリンダが車輪に制動力を付与したときに、前記車輪にスリップが発生することが推定される液圧であることを特徴とする車両のブレーキ装置。
  5. 請求項1ないし請求項4のうちのいずれか一つに記載した車両のブレーキ装置において、
    前記制御手段は、
    前記ドライバによる前記ブレーキペダルの操作に応じて決定されて車輪に付与される制動力を実現するために前記ホイールシリンダに伝達される目標制動液圧を決定し、
    前記目標制動液圧の大きさに応じて、前記第1圧力勾配及び前記第2圧力勾配の大きさに制限を付与することを特徴とする車両のブレーキ装置。
  6. 請求項1ないし請求項5のうちのいずれか一つに記載した車両のブレーキ装置において、
    前記制御手段は、
    車輪ごとに設けられた前記保持弁及び前記減圧弁に関し、それぞれの開弁状態又は閉弁状態が異なるとき、
    車輪ごとに付与される制動力を実現するために前記ホイールシリンダに伝達される目標制動液圧をそれぞれ決定し、
    決定した前記目標制動液圧のうちで最大の目標制動液圧を選択し、
    選択した前記最大の目標制動液圧の大きさに基づいて、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧を変更することを特徴とする車両のブレーキ装置。
  7. 請求項1ないし請求項6のうちのいずれか一つに記載した車両のブレーキ装置において、
    前記制御手段は、
    前記アンチスキッド制御の適用されない車輪が存在する場合、
    全ての車輪に前記アンチスキッド制御が適用される場合に比して、前記液圧調整手段を介して調整する前記上流側液圧の目標液圧の変更量を小さくすることを特徴とする車両のブレーキ装置。
  8. 請求項7に記載した車両のブレーキ装置において、
    前記アンチスキッド制御の適用されない車輪が存在する場合、
    前記制御手段は、
    前記液圧調整手段を介して調整する前記上流側液圧の目標液圧の変更量のうち、前記上流側液圧の目標液圧を低下させる側の変更量を小さくすることを特徴とする車両のブレーキ装置。
  9. 請求項7又は請求項8に記載した車両のブレーキ装置において、
    前記制御手段は、
    前記アンチスキッド制御の適用されない車輪が存在する場合、
    前記液圧調整手段を介して調整する前記上流側液圧の目標液圧の変更を禁止することを特徴とする車両のブレーキ装置。
  10. 前記アンチスキッド制御の適用されない車輪は、車両の前後左右の車輪のうちの少なくとも1輪である請求項7ないし請求項9のうちのいずれか一つに記載した車両のブレーキ装置
  11. 前記アンチスキッド制御の適用されない車輪は、車両の左右一方の前後輪以外の車輪である請求項10に記載した車両のブレーキ装置。
  12. 請求項1ないし請求項11のうちのいずれか一つに記載した車両のブレーキ装置において、
    前記マスタシリンダ及び前記動力式液圧源に接続されて、前記動力式液圧源からの液圧を用いて前記マスタシリンダからの液圧に対して所定の比となる液圧を発生させる増圧機構を備えたことを特徴とする車両のブレーキ装置。
  13. 請求項12に記載した車両のブレーキ装置において、
    前記増圧機構は、
    前記ドライバによる前記ブレーキペダルの操作に伴って前記マスタシリンダから出力される液圧により機械的に動作することを特徴とする車両のブレーキ装置。
JP2012234407A 2012-10-24 2012-10-24 車両のブレーキ制御装置 Active JP5871135B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234407A JP5871135B2 (ja) 2012-10-24 2012-10-24 車両のブレーキ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234407A JP5871135B2 (ja) 2012-10-24 2012-10-24 車両のブレーキ制御装置

Publications (2)

Publication Number Publication Date
JP2014083976A JP2014083976A (ja) 2014-05-12
JP5871135B2 true JP5871135B2 (ja) 2016-03-01

Family

ID=50787462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234407A Active JP5871135B2 (ja) 2012-10-24 2012-10-24 車両のブレーキ制御装置

Country Status (1)

Country Link
JP (1) JP5871135B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111923880A (zh) * 2018-05-06 2020-11-13 张梅花 可自动制动的车辆的制动装置及其工作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039585A (zh) * 2022-11-18 2023-05-02 中国第一汽车股份有限公司 前轮压力调节方法、装置及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470867B2 (ja) * 2005-11-18 2010-06-02 トヨタ自動車株式会社 ブレーキ制御装置
JP4935760B2 (ja) * 2008-06-02 2012-05-23 トヨタ自動車株式会社 ブレーキ制御装置
JP5125944B2 (ja) * 2008-09-25 2013-01-23 トヨタ自動車株式会社 ブレーキ制御装置
JP5527332B2 (ja) * 2010-02-02 2014-06-18 トヨタ自動車株式会社 ブレーキシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111923880A (zh) * 2018-05-06 2020-11-13 张梅花 可自动制动的车辆的制动装置及其工作方法
CN111923880B (zh) * 2018-05-06 2021-11-26 张梅花 可自动制动的车辆的制动装置及其工作方法

Also Published As

Publication number Publication date
JP2014083976A (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP4333000B2 (ja) 車両用ブレーキシステム
JP4375408B2 (ja) ブレーキ制御装置及びブレーキ制御方法
US8888197B2 (en) Brake system
JP5682738B2 (ja) 車両のブレーキ装置
JP5884757B2 (ja) 車両用制動装置
JP5768936B2 (ja) 車両のブレーキ装置
EP2915708A1 (en) Vehicle brake control device
JP5780364B2 (ja) 車両のブレーキ装置
US9517759B2 (en) Vehicle brake control device
JP5776851B2 (ja) 車両のブレーキ装置
JP5725257B2 (ja) 車両のブレーキ装置
JP5787125B2 (ja) 車両のブレーキ装置
JP6235351B2 (ja) 車両用制動装置
JP5871135B2 (ja) 車両のブレーキ制御装置
JP5907346B2 (ja) 車両のブレーキ制御装置
JP2015095966A (ja) 車両用制動制御装置
JP2008265515A (ja) ブレーキ制御装置
JP6296349B2 (ja) ブレーキ装置
JP2006035981A (ja) ブレーキ液圧制御回路
JP2011168079A (ja) ブレーキ装置
JP2010013014A (ja) 制動制御装置および制動制御方法
JP2014080146A (ja) 車両のブレーキ制御装置
JP2014234011A (ja) 車両のブレーキ装置
JP2011255864A (ja) ブレーキ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151229

R151 Written notification of patent or utility model registration

Ref document number: 5871135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151