JP5863323B2 - Semiconductor device and manufacturing method of semiconductor device - Google Patents

Semiconductor device and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5863323B2
JP5863323B2 JP2011175971A JP2011175971A JP5863323B2 JP 5863323 B2 JP5863323 B2 JP 5863323B2 JP 2011175971 A JP2011175971 A JP 2011175971A JP 2011175971 A JP2011175971 A JP 2011175971A JP 5863323 B2 JP5863323 B2 JP 5863323B2
Authority
JP
Japan
Prior art keywords
metal layer
resin
semiconductor element
porous metal
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011175971A
Other languages
Japanese (ja)
Other versions
JP2013041870A (en
Inventor
直之 児島
直之 児島
俊昭 天野
俊昭 天野
佐藤 俊一郎
俊一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011175971A priority Critical patent/JP5863323B2/en
Publication of JP2013041870A publication Critical patent/JP2013041870A/en
Application granted granted Critical
Publication of JP5863323B2 publication Critical patent/JP5863323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は、基板またはリードフレームに半導体素子が接合されてなる半導体装置、及び半導体装置の製造方法に関する。
The present invention relates to a semiconductor device in which a semiconductor element is bonded to a substrate or a lead frame , and a method for manufacturing the semiconductor device .

従来のパワートランジスタの様な半導体装置は、一般に、リードフレームの素子担持部上に、半導体素子(ダイ)を接合するためのダイボンド材(ダイアタッチ材、又はダイマウント材ともいわれる)を形成する工程と、リードフレーム上のダイマウント材表面に半導体素子を搭載しリードフレームの素子担持部と半導体素子とを接合する工程と、半導体素子の電極部と、リードフレームの端子部とを電気的に接合するワイヤボンディング工程と、このようにして組み立てられた半導体装置を樹脂で封止するモールド工程を備えている。
半導体素子(ダイ)と、基板の金属層からなるパッド部を接合するダイボンド材は1980年以前の金−シリコン共晶に代わるダイボンド材として、樹脂接着法、テープ接着法、はんだ材又は導電性の樹脂系ペーストを用いた方法等が知られている。
A conventional semiconductor device such as a power transistor generally has a process of forming a die bond material (also referred to as a die attach material or a die mount material) for bonding a semiconductor element (die) on an element carrying portion of a lead frame. Mounting a semiconductor element on the surface of the die mount material on the lead frame, joining the element holding part of the lead frame and the semiconductor element, and electrically joining the electrode part of the semiconductor element and the terminal part of the lead frame And a molding process for sealing the semiconductor device assembled in this way with a resin.
A die bond material for bonding a semiconductor element (die) and a pad portion made of a metal layer of a substrate is a die bond material replacing a gold-silicon eutectic before 1980 as a resin bonding method, a tape bonding method, a solder material or a conductive material. A method using a resin paste is known.

金Si共晶法は、約360℃で金Si共晶が生成するのを利用している。金はウェーハ裏面に金の薄い膜を蒸着又はスパッタなどで形成され、リードフレームとの接触抵抗が少ないことが必要な場合に用いられる。
樹脂接着法は、樹脂のペーストをシリンジからノズルを通してリード表面に塗布しチップを搭載後適切な加重で押し付けた状態で加熱する。この際、樹脂からでるガスがチップに付着しないようにチップ表面にドライエア又は窒素ガスを吹き付ける場合がある。
テープ接着法では、上記方法がチップの裏面で接合したのに対し、チップ表面とリードフレームを接合させるLOC構造の場合に用いられる方法であり、リードフレームの表面に接着テープを貼り、テープ裏面をこのテープの接着剤で固着する。銀ペーストと比較して硬化時間が不要となる利点はあるが接着テープの価格が問題となる。
はんだ材としては、例えば、鉛含有はんだである高融点はんだ(Pb−5Sn)や、非鉛含有はんだ、例えばAu−20Sn、Sn−8.5Sbが用いられている。
一方、導電性の樹脂系ペーストは、銀、金等の金属粒子と樹脂を混合したペーストが用いられている。近年、銀ペーストが最も汎用されている。
The gold-Si eutectic method utilizes the formation of a gold-Si eutectic at about 360 ° C. Gold is used when a thin film of gold is formed on the back surface of the wafer by vapor deposition or sputtering, and it is necessary to have low contact resistance with the lead frame.
In the resin bonding method, a resin paste is applied from a syringe to a lead surface through a nozzle, a chip is mounted, and then heated in a state of being pressed with an appropriate load. At this time, dry air or nitrogen gas may be sprayed onto the chip surface so that the gas generated from the resin does not adhere to the chip.
The tape bonding method is a method used in the case of the LOC structure in which the chip surface and the lead frame are bonded to each other while the above method is bonded on the back surface of the chip. The tape is fixed with an adhesive. Although there is an advantage that the curing time is not required as compared with the silver paste, the price of the adhesive tape becomes a problem.
As the solder material, for example, a high melting point solder (Pb-5Sn) which is a lead-containing solder or a non-lead-containing solder such as Au-20Sn or Sn-8.5Sb is used.
On the other hand, as the conductive resin paste, a paste in which metal particles such as silver and gold and a resin are mixed is used. In recent years, silver paste has been most widely used.

ダイアタッチフィルム(テープ接着法)は、高温になると樹脂が劣化してしまうため、高い放熱性と導電性を要求される用途には適用できない。
ダイボンド材を素子担持部表面に付与する工程及び半導体素子搭載工程においては、ダイボンド材がはんだの場合は、はんだ個片(ペレット)、または、はんだワイヤを溶融切断して、リードフレームの素子担持部上に供給する。続いて、このはんだを加熱し溶融した後、半導体素子をマウントし冷却することで半導体素子とリードフレームの素子担持部を接合する。特許文献1には、半導体装置の電極部等の接合に使用されるはんだ付け方法、半導体装置の製造方法及びはんだ材に関し、特に、低融点はんだ層を利用したはんだ付け技術が開示されている。
The die attach film (tape bonding method) is not applicable to applications requiring high heat dissipation and conductivity because the resin deteriorates at high temperatures.
In the step of applying a die bond material to the surface of the element carrier and the step of mounting the semiconductor element, if the die bond material is solder, a piece of solder (pellet) or a solder wire is melted and cut to obtain an element carrier of the lead frame. Feed on. Subsequently, the solder is heated and melted, and then the semiconductor element is mounted and cooled to join the semiconductor element and the element holding portion of the lead frame. Patent Document 1 discloses a soldering technique using a low-melting-point solder layer, in particular, regarding a soldering method used for joining electrode portions and the like of a semiconductor device, a method for manufacturing a semiconductor device, and a solder material.

パワートランジスタのような、電力半導体装置は、素子駆動時の発熱が著しいことから、その接合層は、高耐熱性、高熱伝導性などにおいて優れていることが必要であり、さらに、半導体装置寿命の観点から高密着性であること、及び環境問題を配慮して鉛フリー化などが要求されている。 鉛フリー化については、はんだ材に替わる鉛レスのはんだ材があり、前述の如く、Au−20Sn、Sn−8.5Sb等の材料を用いることである。しかしながら、このようなはんだ材は、融点が300℃以下であるため、耐熱温度(300℃)が確保できない。また、Au−20Snはんだは応力緩和性に乏しく高価であること、Sn−8.5SbはんだはSbが環境負荷物質であること等の問題点がある。   Since power semiconductor devices such as power transistors generate significant heat during element driving, the bonding layer must be excellent in high heat resistance, high thermal conductivity, etc. From the viewpoint, lead-free and the like are required in consideration of high adhesion and environmental issues. Regarding lead-free, there is a lead-less solder material that replaces the solder material, and as described above, a material such as Au-20Sn or Sn-8.5Sb is used. However, since such a solder material has a melting point of 300 ° C. or lower, a heat resistant temperature (300 ° C.) cannot be secured. In addition, Au-20Sn solder has poor stress relaxation properties and is expensive, and Sn-8.5Sb solder has problems such as Sb being an environmental load substance.

導電性の樹脂系ペーストは、銀、金等の金属粒子と樹脂を混合したペーストが用いられている(特許文献2、3参照)。銀ペーストは、耐熱温度が約300℃と高いため、鉛フリー化と耐熱性の課題は解決できる。しかし、従来の銀ペーストの組成では、はんだ材と比較して、熱伝導率が低い(10〜20W/mk)という問題点がある。一般に、銀ペーストの硬化後の銀粒子含有率は多いもので90質量%程度であり、残りの10質量%は熱伝導率が低い樹脂材料などからなっているため、銀ペースト硬化後の材料の熱伝導率は低くなる。銀ペーストは、例えば大きさが3〜10μm程度の球形もしくはフレーク状(燐片状)の銀粒子を70〜90質量%と、エポキシやフェノール等の熱硬化性樹脂を5〜20質量%と、テルピネオールやブチルカルビトール、エチレングリコール等の溶剤5〜10質量%で構成されている。
すなわち、銀ペーストの熱伝導のパスは、銀粒子同士および、銀粒子と被接合材(前記半導体素子裏面金属蒸着膜およびリードフレーム表面の金属メッキ)の機械的な接触によるため、伝導のパスが不安定で、はんだのように被接合材と全面で金属接合しているものと比較し、接触界面での熱抵抗が大きい。
As the conductive resin paste, a paste in which metal particles such as silver and gold and a resin are mixed is used (see Patent Documents 2 and 3). Since the silver paste has a high heat resistance temperature of about 300 ° C., the problems of lead-free and heat resistance can be solved. However, the conventional silver paste composition has a problem that the thermal conductivity is low (10 to 20 W / mk) as compared with the solder material. In general, the silver paste content after curing of the silver paste is large, about 90% by mass, and the remaining 10% by mass is made of a resin material having a low thermal conductivity. Thermal conductivity is low. The silver paste is, for example, 70 to 90% by mass of spherical or flaky (flaky) silver particles having a size of about 3 to 10 μm, and 5 to 20% by mass of a thermosetting resin such as epoxy or phenol, It is comprised with 5-10 mass% of solvents, such as terpineol, butyl carbitol, and ethylene glycol.
In other words, the heat conduction path of the silver paste is based on the mechanical contact between the silver particles and between the silver particles and the material to be joined (the metal plating on the semiconductor element backside metal deposition film and the lead frame surface). It is unstable and has a higher thermal resistance at the contact interface than a metal-bonded material such as solder on the entire surface.

特許文献2には金属層を表面に持つリードフレームと金属層を裏面に持つ半導体素子の間を、鉛元素を含有しない材料を用いた3層からなる接合層を介して接合し、前記リードフレーム、前記半導体素子、接合層の隣り合ったいずれの界面でも金属接合させることにより、熱伝導性と、密着性を向上することが開示されている。   In Patent Document 2, a lead frame having a metal layer on the front surface and a semiconductor element having a metal layer on the back surface are joined via a joining layer composed of three layers using a material not containing lead element, It is disclosed that the thermal conductivity and adhesion are improved by metal bonding at any adjacent interface of the semiconductor element and the bonding layer.

特許文献3には、2つの構造素子を結合するために、発熱的に緻密化可能な金属ペーストを介して互いにボンディングするための、金属粉末、吸熱分解可能な金属化合物、及び溶剤を含有する金属ペーストが開示されている。
特許文献2、3に開示の金属微粒子を含む金属ペーストの焼結による接合では、鉛フリー化と耐熱性と熱伝導性の課題は解決できるが、耐電圧や他の特性を悪化する傾向がみられる。また、銀ペーストは、チップ側面にフィレットを形成するが、銀などの重金属は熱処理すると容易にチップ内部に拡散・固溶し,ドーパントとペアを形成したり重金属析出物や積層欠陥などを生成して,酸化膜耐圧の劣化やリーク電流の増加を引き起こす傾向があることがわかった。すなわち、チップ側面に金属成分が付着することにより、耐電圧や他の特性を悪化するおそれがあることがわかった。
Patent Document 3 discloses a metal containing a metal powder, an endothermic decomposable metal compound, and a solvent for bonding two structural elements to each other via a metal paste that can be exothermically densified. A paste is disclosed.
In joining by sintering metal paste containing metal fine particles disclosed in Patent Documents 2 and 3, the problems of lead-free, heat resistance, and thermal conductivity can be solved, but the withstand voltage and other characteristics tend to deteriorate. It is done. Silver paste forms a fillet on the side of the chip, but heavy metals such as silver easily diffuse and dissolve inside the chip when heat-treated, forming pairs with dopants and generating heavy metal precipitates and stacking faults. Therefore, it was found that there is a tendency to cause deterioration of the oxide film breakdown voltage and increase of leakage current. That is, it has been found that the withstand voltage and other characteristics may be deteriorated by the metal component adhering to the side surface of the chip.

上記したように、従来の半導体装置で採用しているリードフレームと半導体素子の接合技術(ダイマウント技術)では、高耐熱性、高熱伝導性、高密着性、鉛フリー化をはじめ環境調和型であるという前記要求に応えることができなかった
As described above, the lead frame and semiconductor element bonding technology (die mounting technology) used in conventional semiconductor devices is environmentally friendly, including high heat resistance, high thermal conductivity, high adhesion, and lead-free technology. It was not possible to meet the above requirement .

特開平7−169908号公報JP 7-169908 A 特開2006−59904号公報JP 2006-59904 A 特開2010−53449号公報JP 2010-53449 A

本発明は、上記従来技術の問題点に鑑みてなされたものであり、半導体装置の製造工程中に、半導体素子の側面から金属微粒子等が付着するのを防止して、特性のよい半導体装置、及び半導体装置の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and prevents a fine metal particle or the like from adhering from the side surface of the semiconductor element during the manufacturing process of the semiconductor device, thereby providing a semiconductor device with good characteristics , It is another object of the present invention to provide a method for manufacturing a semiconductor device .

本発明者らは、上記従来技術に鑑みて、基板またはリードフレームの金属層を多孔質状金属層を介して半導体素子と接合すると共に、該多孔質状金属層の外周側面の少なくとも一部、及び/又は半導体素子の外周側面の少なくとも一部被覆樹脂部(I)を配置することにより、上記課題を解決できることを見出し、本発明を完成するに至った。即ち、本発明は、以下の(1)〜(5)に記載する発明を要旨とする。
In view of the prior art, the present inventors joined the metal layer of the substrate or the lead frame to the semiconductor element through the porous metal layer, and at least a part of the outer peripheral side surface of the porous metal layer, and / or at least part of the outer peripheral side surface of the semiconductor element by arranging the coating resin part (I), it can solve the above problems, and have completed the present invention. That is, the gist of the present invention is the invention described in the following (1) to (5).

(1)基板(K)またはリードフレーム(L)に設けられたパッド部(P)と、半導体素子(S)の金属層とが、多孔質状金属層(C)を介して接合され、
該半導体素子(S)と他の電極端子(T)間とが金属製ワイヤで接続され、
かつ前記パッド部(P)、多孔質状金属層(C)、半導体素子(S)、被覆樹脂部(I)、及び半導体素子(S)と電極端子(T)間を接続する金属製ワイヤが封止樹脂(H)で封止されている半導体装置であって、
前記多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部被覆樹脂部(I)が配置され、かつ、前記被覆樹脂部(I)前記封止樹脂(H)との間に界面が存在していることを特徴とする半導体装置。
(2)前記多孔質状金属層(C)が、銅、金、銀、ニッケル、及びコバルトの中から選択される1種又は2種以上の元素を含むことを特徴とする、請求項1に記載の半導体装置。
(3)前記被覆樹脂部(I)が耐熱性樹脂から形成されていることを特徴とする、前記(1)又は(2)に記載の半導体装置。
(4)前記耐熱性樹脂がポリイミド系樹脂、ポリアミドイミド系樹脂、フッ素樹脂、エポキシ系樹脂、又はポリビニルピロリドン系樹脂であることを特徴とする、前記(3)に記載の半導体装置。
(5)基板(K)又はリードフレーム(L)に設けられたパッド部(P)上に、金属微粒子(M)と分散溶液(D)を含む金属微粒子分散材(A)からなるペースト状物を塗布又はパターニングして多孔質状金属層前駆体(B)を形成し、次に該前駆体(B)上に半導体素子(S)を搭載した後、該多孔質状金属層前駆体(B)を加熱・焼結して多孔質状金属層(C)を形成することにより、パッド部(P)と半導体素子(S)とを多孔質状金属層(C)を介して接合する工程(接合工程)、
該半導体素子(S)と他の電極端子(T)間を金属製ワイヤでワイヤボンディングする工程(ワイヤボンディング工程)、及び、
前記パッド部(P)、多孔質状金属層(C)、半導体素子(S)、被覆樹脂部(I)、及び半導体素子(S)と電極端子(T)間を接続する金属製ワイヤを封止樹脂(H)で封止する工程(モールド工程)、
を含む半導体装置の製造方法であって、
前記接合工程において
(i)前記多孔質状金属層前駆体(B)を加熱・焼結する前に、多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を構成する樹脂を被覆することにより、多孔質状金属層前駆体(B)の加熱・焼結後に多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を配置する、又は
(ii)金属微粒子分散材(A)に更に予め樹脂(G)を溶解させておき、多孔質状金属層前駆体(B)を加圧下に加熱・焼結して多孔質状金属層(C)を形成する際に、多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部を樹脂(G)から形成されるフィレット状の被覆樹脂部(I)を配置する、
ことを特徴とする、半導体装置の製造方法。
(1) The pad portion (P) provided on the substrate (K) or the lead frame (L) and the metal layer of the semiconductor element (S) are bonded via the porous metal layer (C),
The semiconductor element (S) and the other electrode terminal (T) are connected with a metal wire,
The pad portion (P), the porous metal layer (C), the semiconductor element (S), the coating resin portion (I), and the metal wire connecting the semiconductor element (S) and the electrode terminal (T) are provided. A semiconductor device sealed with a sealing resin (H),
The porous metal layer (C) at least a portion of the outer peripheral side surface of, and / or at least partially covering the resin portion of the outer peripheral side surface of the semiconductor device (S) (I) is arranged, and the covering resin portion ( A semiconductor device characterized in that an interface exists between I) and the sealing resin (H).
(2) The porous metal layer (C) contains one or more elements selected from copper, gold, silver, nickel, and cobalt. The semiconductor device described.
(3) The semiconductor device according to (1) or (2), wherein the coating resin portion (I) is formed of a heat resistant resin.
(4) The semiconductor device according to (3), wherein the heat resistant resin is a polyimide resin, a polyamideimide resin, a fluororesin, an epoxy resin, or a polyvinylpyrrolidone resin.
(5) A paste-like material comprising a metal fine particle dispersion (A) containing metal fine particles (M) and a dispersion solution (D) on a pad portion (P) provided on a substrate (K) or a lead frame (L). Is applied or patterned to form a porous metal layer precursor (B), and then a semiconductor element (S) is mounted on the precursor (B), and then the porous metal layer precursor (B) ) Is heated and sintered to form the porous metal layer (C), thereby joining the pad portion (P) and the semiconductor element (S) via the porous metal layer (C) ( Joining process),
A step of wire bonding between the semiconductor element (S) and another electrode terminal (T) with a metal wire (wire bonding step); and
The pad part (P), the porous metal layer (C), the semiconductor element (S), the coating resin part (I), and the metal wire connecting the semiconductor element (S) and the electrode terminal (T) are sealed. A step of sealing with a stop resin (H) (molding step),
A method of manufacturing a semiconductor device including:
In the bonding step, (i) before heating and sintering the porous metal layer precursor (B), at least a part of the outer peripheral side surface of the porous metal layer precursor (B) and / or a semiconductor element The porous metal layer (C) is heated and sintered after the porous metal layer precursor (B) is heated by coating the resin constituting the coating resin portion (I) on at least a part of the outer peripheral side surface of (S). ) And / or at least a part of the outer peripheral side surface of the semiconductor element (S), or (ii) a resin in advance on the metal fine particle dispersion (A). (G) is dissolved, and when the porous metal layer precursor (B) is heated and sintered under pressure to form the porous metal layer (C), the porous metal layer (C ) And / or at least part of the outer peripheral side surface of the semiconductor element (S). Arranging fillet-like coating resin portion formed of a resin (G) to (I),
A method for manufacturing a semiconductor device.

本発明の半導体装置は、多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部被覆樹脂部(I)が配置されていることにより、半導体装置の製造工程中に、半導体素子(S)の側面から金属微粒子等が付着するのを防止して、特性のよい半導体装置を得ることが可能になる。
In the semiconductor device of the present invention , the coating resin portion (I) is disposed on at least a part of the outer peripheral side surface of the porous metal layer (C) and / or at least a part of the outer peripheral side surface of the semiconductor element (S). As a result, during the manufacturing process of the semiconductor device, it is possible to prevent metal fine particles and the like from adhering from the side surface of the semiconductor element (S), and to obtain a semiconductor device with good characteristics.

本発明の半導体装置の1例を示す。1 shows an example of a semiconductor device of the present invention. 本発明の半導体装置の他の例を示す。Another example of the semiconductor device of the present invention is shown. 被覆樹脂部(I)が多孔質状金属層前駆体(B)及び/又は半導体素子(S)の外周側面の少なくとも一部に塗布又はパターニングされた樹脂溶液(E)から形成される工程を示す概念図である。The coating resin part (I) shows the process formed from the resin solution (E) apply | coated or patterned to at least one part of the outer peripheral side surface of a porous metal layer precursor (B) and / or a semiconductor element (S). It is a conceptual diagram. 被覆樹脂部(I)が多孔質状金属層前駆体(B)と基板(K)間に配置された樹脂シート(F)から形成される工程を示す概念図である。It is a conceptual diagram which shows the process in which coating resin part (I) is formed from the resin sheet (F) arrange | positioned between a porous metal layer precursor (B) and a board | substrate (K). 被覆樹脂部(I)がパッド部(P)と多孔質状金属層前駆体(B)間に配置された樹脂シート(F)から形成される工程を示す概念図である。It is a conceptual diagram which shows the process in which coating resin part (I) is formed from the resin sheet (F) arrange | positioned between a pad part (P) and a porous metal layer precursor (B). 被覆樹脂部(I)が多孔質状金属層前駆体(B)に含有されていた樹脂(G)から形成される工程を示す概念図である。It is a conceptual diagram which shows the process in which coating resin part (I) is formed from resin (G) contained in the porous metal layer precursor (B). 被覆樹脂部(I)が多孔質状金属層(A)及び/又は半導体素子(S)の外周側面の少なくとも一部に塗布された樹脂溶液(E)から形成される工程を示す概念図である。It is a conceptual diagram which shows the process in which coating resin part (I) is formed from the resin solution (E) apply | coated to at least one part of the outer peripheral side surface of a porous metal layer (A) and / or a semiconductor element (S). . 実施例、比較例で使用された焼結炉の断面を示す概念図である。It is a conceptual diagram which shows the cross section of the sintering furnace used by the Example and the comparative example.

以下に本発明の〔1〕半導体装置、及び〔2〕その製造方法について説明する。
〔1〕半導体装置
本発明の半導体装置は、基板(K)またはリードフレーム(L)に設けられたパッド部(P)と、半導体素子(S)の金属層とが、多孔質状金属層(C)を介して接合され、該半導体素子(S)と他の電極端子(T)間とが金属製ワイヤで接続され、かつ前記パッド部(P)、多孔質状金属層(C)、半導体素子(S)、被覆樹脂部(I)、及び半導体素子(S)と電極端子(T)間を接続する金属製ワイヤが封止樹脂(H)で封止されている半導体装置であって、
前記多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部被覆樹脂部(I)が配置され、かつ、前記被覆樹脂部(I)前記封止樹脂(H)との間に界面が存在していることを特徴とする。
[1] A semiconductor device and [2] a manufacturing method thereof according to the present invention will be described below.
[1] Semiconductor Device In the semiconductor device of the present invention, the pad portion (P) provided on the substrate (K) or the lead frame (L) and the metal layer of the semiconductor element (S) are porous metal layers ( C), the semiconductor element (S) and the other electrode terminal (T) are connected by a metal wire, and the pad portion (P), the porous metal layer (C), the semiconductor A semiconductor device in which a metal wire connecting the element (S), the coating resin portion (I), and the semiconductor element (S) and the electrode terminal (T) is sealed with a sealing resin (H),
The porous metal layer (C) at least a portion of the outer peripheral side surface of, and / or at least partially covering the resin portion of the outer peripheral side surface of the semiconductor device (S) (I) is arranged, and the covering resin portion ( An interface is present between I) and the sealing resin (H).

本発明の実施態様である「半導体装置」の典型例は、図1、2に示されている。
図1は、半導体素子(S)14と配線パターン34間が金属製ワイヤ31でワイヤボンディングされている例であり、(a)は半導体素子(S)14の外周側面が被覆樹脂部(I)23で被覆され、(b)は多孔質状金属層(C)16の外周側面が被覆樹脂部(I)23で被覆され、(c)は多孔質状金属層(C)16と半導体素子(S)14の外周側面が被覆樹脂部(I)23で被覆されている。
尚、多孔質状金属層(C)16は、裏面に金属板15を有する基板(K)11のパッド部(P)12上に形成され、封止樹脂(H)32で封止されている。
図2は、半導体素子(S)14とリードフレーム33間が金属製ワイヤ31でワイヤボンディングされている点を除いて図1と同様である。
A typical example of a “semiconductor device” which is an embodiment of the present invention is shown in FIGS.
FIG. 1 is an example in which the semiconductor element (S) 14 and the wiring pattern 34 are wire-bonded with a metal wire 31, and (a) shows the outer peripheral side surface of the semiconductor element (S) 14 as a coating resin portion (I). (B) shows the outer peripheral side surface of the porous metal layer (C) 16 with the coating resin part (I) 23, and (c) shows the porous metal layer (C) 16 and the semiconductor element (C). S) The outer peripheral side surface of 14 is covered with the coating resin portion (I) 23.
The porous metal layer (C) 16 is formed on the pad portion (P) 12 of the substrate (K) 11 having the metal plate 15 on the back surface and sealed with a sealing resin (H) 32. .
FIG. 2 is the same as FIG. 1 except that the semiconductor element (S) 14 and the lead frame 33 are wire-bonded with a metal wire 31.

(1)基板(K)またはリードフレーム(L)
本発明の半導体装置に使用する基板(K)は、セラミックス等の絶縁層の面上に銅板等の導体パターンを形成したDBC(Direct Bonded Copper)基板等が好適に使用できる。尚、セラミックスとしては、アルミナ(Al)、窒化アルミ(AlN)、窒化ケイ素(Si)などが例示できる。基板(K)としては上記DBC以外にリードフレーム(L)も使用することができるが、ここでは基板(K)を用いた場合を中心に説明する。
(1) Board (K) or lead frame (L)
As the substrate (K) used in the semiconductor device of the present invention, a DBC (Direct Bonded Copper) substrate in which a conductor pattern such as a copper plate is formed on the surface of an insulating layer such as ceramics can be suitably used. Examples of ceramics include alumina (Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ). In addition to the DBC, a lead frame (L) can be used as the substrate (K), but here, the case where the substrate (K) is used will be mainly described.

(2)半導体素子(S)
半導体素子(S)は、半導体による電子部品、または電子部品の機能中心部の素子であり、外部接続用電極としての金属層を有する。
(2) Semiconductor element (S)
The semiconductor element (S) is an electronic component made of a semiconductor, or an element at the functional center of the electronic component, and has a metal layer as an external connection electrode.

(3)多孔質状金属層(C)
基板(K)のパッド部(P)と半導体素子(S)間を接合している多孔質状金属層(C)は、例えば、金属微粒子(M)と分散溶液(D)を含む金属微粒子分散材(A)を塗布又はパターニングして、パッド部(P)上に多孔質状金属層前駆体(B)を形成し、更に該前駆体(B)上に半導体素子(S)を搭載した後、該多孔質状金属層前駆体(B)を加熱・焼結して形成される。尚、多孔質状金属層(C)の金属が存在しない部分については、空孔であっても、樹脂が存在していてもよい。以下、金属微粒子(M)と分散溶液(D)を含む金属微粒子分散材(A)、及び多孔質状金属層前駆体(B)について説明する。
(3) Porous metal layer (C)
The porous metal layer (C) joining the pad portion (P) of the substrate (K) and the semiconductor element (S) is, for example, a metal fine particle dispersion containing metal fine particles (M) and a dispersion solution (D). After applying or patterning the material (A) to form the porous metal layer precursor (B) on the pad portion (P) and further mounting the semiconductor element (S) on the precursor (B) The porous metal layer precursor (B) is formed by heating and sintering. In addition, about the part in which the metal of a porous metal layer (C) does not exist, even if it is a void | hole, resin may exist. Hereinafter, the metal fine particle dispersion (A) containing the metal fine particles (M) and the dispersion solution (D) and the porous metal layer precursor (B) will be described.

(3−1)金属微粒子分散材(A)
金属微粒子分散材(A)は、金属微粒子(M)が分散溶液(D)に分散されたものである。この金属微粒子分散材(A)は、液状、ペースト状、固形状であるが、これを多孔質状金属層前駆体(B)としてパッド部(P)と半導体素子(S)間に配置して、加熱・焼結して該金属微粒子(M)を焼結することにより多孔質状金属層(C)を形成させて、パッド部(P)と半導体素子(S)間を接合するために用いられる。
(3-1) Metal fine particle dispersion (A)
The metal fine particle dispersion (A) is obtained by dispersing metal fine particles (M) in a dispersion solution (D). The metal fine particle dispersion material (A) is liquid, paste, or solid, and is disposed between the pad portion (P) and the semiconductor element (S) as a porous metal layer precursor (B). The porous metal layer (C) is formed by sintering the metal fine particles (M) by heating and sintering, and is used for bonding between the pad portion (P) and the semiconductor element (S). It is done.

(3−2)金属微粒子(M)
金属微粒子(M)は、導電性と熱伝導性の高い、焼結性を有する微粒子であり、導電性、加熱処理(焼結性)、市場における入手の容易性等から、例えば金、銀、銅,白金、パラジウム、タングステン、ニッケル、鉄、コバルト、タンタル、ビスマス、鉛、インジウム、錫、亜鉛、チタン、又はアルミニウムが挙げられるが、これらの中でも、銅、金、銀、ニッケル、及びコバルトが好ましく、更にこれらの中でも導電性、熱伝導性、加工性、マイグレーションの防止等の点から銅がより好ましい。
(3-2) Metal fine particles (M)
The metal fine particles (M) are fine particles having high conductivity and thermal conductivity and having sinterability. From the viewpoint of conductivity, heat treatment (sinterability), availability on the market, etc., for example, gold, silver, Examples include copper, platinum, palladium, tungsten, nickel, iron, cobalt, tantalum, bismuth, lead, indium, tin, zinc, titanium, or aluminum. Among these, copper, gold, silver, nickel, and cobalt are included. Among these, copper is more preferable from the viewpoint of conductivity, thermal conductivity, workability, prevention of migration, and the like.

金属微粒子(M)は、導電性と熱伝導性が高く、焼結性を有する微粒子であり、平均一次粒子径がナノサイズのものが好ましい。具体的には、平均一次粒子径が1〜500nmの金属微粒子(M1)が好ましい。金属微粒子(M1)の一次粒子の平均粒子径が1nm以上で焼成により均質な粒子径と空孔を有する多孔質体を形成することが可能になり、一方、500nm以下で精密な導電パターンを形成することができる。
金属微粒子(M)として、平均一次粒子径が1〜500nmの金属微粒子(M1)に、更に平均一次粒子径が0.5〜50μmの金属微粒子(M2)を併用すると、金属微粒子(M2)間に金属微粒子(M1)が分散して安定に存在するので、金属微粒子(M1)の平均一次粒子径との粒子径の差が確保できて、加熱処理する際に金属微粒子(M1)の自由な移動を効果的に抑制することができ、前述の金属微粒子(M1)の分散性と安定性を向上させることができる。金属微粒子(M2)としては、金属微粒子(M1)と同種の金属を使用することが好ましい。
The metal fine particles (M) are fine particles having high electrical conductivity and thermal conductivity and having sinterability, and those having an average primary particle size of nanosize are preferable. Specifically, metal fine particles (M1) having an average primary particle diameter of 1 to 500 nm are preferable. When the average particle size of the primary particles of the metal fine particles (M1) is 1 nm or more, it becomes possible to form a porous body having a uniform particle size and pores by firing, while forming a precise conductive pattern at 500 nm or less. can do.
When the metal fine particles (M2) having an average primary particle diameter of 0.5 to 50 μm are used in combination with the metal fine particles (M1) having an average primary particle diameter of 1 to 500 nm as the metal fine particles (M), Since the metal fine particles (M1) are dispersed and stably present in the metal particles, a difference in particle diameter from the average primary particle diameter of the metal fine particles (M1) can be secured, and the metal fine particles (M1) can be freely dispersed during the heat treatment. The movement can be effectively suppressed, and the dispersibility and stability of the metal fine particles (M1) can be improved. As the metal fine particles (M2), it is preferable to use the same type of metal as the metal fine particles (M1).

ここで、一次粒子の平均粒子径とは、二次粒子を構成する個々の金属微粒子の一次粒子の直径の意味である。該一次粒子径は、電子顕微鏡を用いて測定することができる。また、平均粒子径とは、一次粒子の数平均粒子径を意味する。   Here, the average particle diameter of the primary particles means the diameter of the primary particles of the individual metal fine particles constituting the secondary particles. The primary particle diameter can be measured using an electron microscope. The average particle size means the number average particle size of primary particles.

(3−3)分散溶液(D)
分散溶液(D)には、分子中に2以上のヒドロキシル基を有する1種又は2種以上のアルコールが含有されていることが好ましく、該アルコールの融点は30〜280℃であることがより好ましい。アルコールは、金属微粒子分散材(A)中で金属微粒子(M)を分散させ、かつ、加熱・焼結する際に脱水素化反応を受けて水素ラジカルを発生させて焼結を促進する作用を発揮する。
分散溶液(D)の成分としては、上記アルコール以外に、アミド基を有する有機溶媒、エーテル系化合物、ケトン系化合物、アミン系化合物等を配合することができる。
これらのアルコール以外の分散媒は分散溶液(D)中で併せて30体積%以下となるように配合されることが好ましい。
(3-3) Dispersion solution (D)
The dispersion solution (D) preferably contains one or more alcohols having two or more hydroxyl groups in the molecule, and the melting point of the alcohol is more preferably 30 to 280 ° C. . Alcohol disperses the metal fine particles (M) in the metal fine particle dispersion material (A), and acts to promote sintering by generating hydrogen radicals by receiving a dehydrogenation reaction during heating and sintering. Demonstrate.
As a component of the dispersion solution (D), in addition to the alcohol, an organic solvent having an amide group, an ether compound, a ketone compound, an amine compound, and the like can be blended.
These dispersion media other than alcohol are preferably blended so as to be 30% by volume or less in the dispersion solution (D).

(3−4)多孔質状金属層前駆体(B)
多孔質状金属層前駆体(B)は、金属微粒子分散材(A)をパッド部(P)上、又は樹脂シート(F)上に塗布又はパターニングして形成される形状物である。該多孔質状金属層前駆体(B)は、その後加熱・焼結して多孔質状金属層(C)を形成するので、多孔質状金属層(C)の前駆体である。なお、樹脂シート(F)は、被覆樹脂部(I)の前駆体であって、その融点は金属微粒子分散材(A)の融点以下であるものを用いる。
(3-4) Porous metal layer precursor (B)
The porous metal layer precursor (B) is a shape formed by applying or patterning the fine metal particle dispersion material (A) on the pad portion (P) or the resin sheet (F). Since the porous metal layer precursor (B) is then heated and sintered to form the porous metal layer (C), it is a precursor of the porous metal layer (C). The resin sheet (F) is a precursor of the coating resin part (I), and has a melting point equal to or lower than the melting point of the metal fine particle dispersion (A).

パッド部(P)と半導体素子(S)間を、上述した多孔質状金属層(C)で接合すると、はんだ手段を用いた場合より高密着性、高耐熱性、及び高熱伝導性であり、応力緩和性に優れ、鉛フリー化などの環境問題の配慮が不要である。   When the pad portion (P) and the semiconductor element (S) are joined by the porous metal layer (C) described above, the adhesiveness, the heat resistance, and the heat conductivity are higher than when the solder means is used. Excellent stress relaxation and environmental considerations such as lead-free are unnecessary.

(4)被覆樹脂部(I)
本発明の態様における半導体装置において、被覆樹脂部(I)は、多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部を被覆している。被覆の態様としては図1、2(a)、(b)、(c)に示す通り、半導体素子(S)の外周側面、多孔質状金属層(C)の外周側面、半導体素子(S)と多孔質状金属層(C)の外周側面をそれぞれ被覆する態様がある。この態様には、例えば下記(i)と(ii)の例がある。
(4) Coating resin part (I)
In the semiconductor device according to the aspect of the present invention, the coating resin portion (I) covers at least a part of the outer peripheral side surface of the porous metal layer (C) and / or at least a part of the outer peripheral side surface of the semiconductor element (S). doing. As a covering mode, as shown in FIGS. 1, 2 (a), (b) and (c), the outer peripheral side surface of the semiconductor element (S), the outer peripheral side surface of the porous metal layer (C), the semiconductor element (S) And an outer peripheral side surface of the porous metal layer (C). Examples of this embodiment include the following (i) and (ii).

(i)前記多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部が多孔質状金属層前駆体(B)を加熱・焼結する前に形成された、被覆樹脂部(I)が配置されている。
(ii)金属微粒子分散材(A)中にさらに樹脂(G)を溶解させた多孔質状金属層前駆体(B)を塗布又はパターニング後、加圧下に加熱・焼結する際に樹脂(G)からなるフィレット状物として形成された被覆樹脂部(I)が、前記多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に配置されている。
(I) At least a part of the outer peripheral side surface of the porous metal layer (C) and / or at least a part of the outer peripheral side surface of the semiconductor element (S) is heated and baked on the porous metal layer precursor (B). The covering resin portion (I) formed before being tied is disposed.
(Ii) After applying or patterning the porous metal layer precursor (B) obtained by further dissolving the resin (G) in the fine metal particle dispersion (A), the resin (G The coating resin portion (I) formed as a fillet-like material is at least part of the outer peripheral side surface of the porous metal layer (C) and / or at least part of the outer peripheral side surface of the semiconductor element (S). Is arranged.

この場合、前記多孔質状金属層(C)の外周側面の全表面、及び/又は半導体素子(S)の外周側面の全表面に被覆樹脂部(I)が配置されていることが望ましい。
被覆樹脂部(I)は耐熱性樹脂で形成されていることが望ましい。このような耐熱性樹脂として、ポリイミド系樹脂、ポリアミドイミド系樹脂、フッ素系樹脂、エポキシ系樹脂、又はポリビニルピロリドン系樹脂が挙げられる。
この態様の半導体装置は、被覆樹脂部(I)が多孔質状金属層前駆体(B)を加熱・焼結する前、又は多孔質状金属層前駆体(B)を加熱・焼結する際に形成されるので、半導体素子(S)の側面から金属微粒子等が付着するのを防止でき、特性に優れている。
In this case, it is desirable that the coating resin portion (I) is disposed on the entire outer peripheral side surface of the porous metal layer (C) and / or the entire outer peripheral side surface of the semiconductor element (S).
The covering resin portion (I) is preferably formed of a heat resistant resin. Examples of such heat resistant resins include polyimide resins, polyamideimide resins, fluorine resins, epoxy resins, and polyvinylpyrrolidone resins.
In the semiconductor device of this aspect, before the coating resin part (I) heats and sinters the porous metal layer precursor (B), or when the porous metal layer precursor (B) is heated and sintered. Therefore, metal fine particles and the like can be prevented from adhering from the side surface of the semiconductor element (S), and the characteristics are excellent.

(5)ワイヤボンディング、封止樹脂(H)
半導体素子(S)と他の電極端子(T)間を金属製ワイヤによるワイヤボンディング、パッド部(P)、多孔質状金属層(C)、半導体素子(S)、被覆樹脂部(I)、及び半導体素子(S)と電極端子(T)間を接続する金属製ワイヤの封止樹脂(H)による封止は、一般的な半導体装置と同様の工程で実現される。
(5) Wire bonding, sealing resin (H)
Between the semiconductor element (S) and the other electrode terminal (T), wire bonding with a metal wire, pad part (P), porous metal layer (C), semiconductor element (S), coating resin part (I), The sealing of the metal wire connecting the semiconductor element (S) and the electrode terminal (T) with the sealing resin (H) is realized in the same process as that of a general semiconductor device.

(6)被覆樹脂部(I)と封止樹脂(H)との間に形成される界面
本発明の「半導体装置」において、被覆樹脂部(I)は多孔質状金属層前駆体(B)を加熱・焼結する前、又は多孔質状金属層前駆体(B)を加熱・焼結する際に形成される一方、封止樹脂(H)は、前記多孔質状金属層前駆体(B)の加熱・焼結した後の更にワイヤボンディングした後に、基板(K)上のパッド部(P)、多孔質状金属層(C)、半導体素子(S)、被覆樹脂部(I)、及び金属製ワイヤが配置されている領域に封止樹脂を封入して形成される。従って、封止樹脂(H)は被覆樹脂部(I)が形成された後に形成されるので、封止樹脂(H)と被覆樹脂部(I)間には界面が存在することになる。このような界面は界面が形成される部分の断面を顕微鏡で観察すれば容易に確認することができる。
被覆樹脂部(I)と封止樹脂(H)との間にこのような界面が存在することは、被覆樹脂部(I)が樹脂封止前に形成されたことの可能性の確認になるので、このような界面を有する半導体装置は、半導体素子(S)の側面から金属微粒子等が付着するのを防止でき、特性に優れている。
(6) Interface formed between coating resin part (I) and sealing resin (H) In the “semiconductor device” of the present invention, the coating resin part (I) is a porous metal layer precursor (B). Is formed when the porous metal layer precursor (B) is heated / sintered, while the sealing resin (H) is formed of the porous metal layer precursor (B). ) After further wire bonding after heating / sintering, the pad portion (P) on the substrate (K), the porous metal layer (C), the semiconductor element (S), the coating resin portion (I), and It is formed by encapsulating a sealing resin in a region where a metal wire is disposed. Therefore, since the sealing resin (H) is formed after the coating resin portion (I) is formed, an interface exists between the sealing resin (H) and the coating resin portion (I). Such an interface can be easily confirmed by observing a cross section of a portion where the interface is formed with a microscope.
The presence of such an interface between the coating resin part (I) and the sealing resin (H) confirms the possibility that the coating resin part (I) was formed before resin sealing. Therefore, the semiconductor device having such an interface can prevent metal fine particles and the like from adhering from the side surface of the semiconductor element (S), and has excellent characteristics.

〔2〕本発明の半導体装置の製造する方法
本発明の半導体装置の製造方法は、基板(K)またはリードフレーム(L)に設けられたパッド部(P)上に、金属微粒子(M)と分散溶液(D)を含む金属微粒子分散材(A)からなるペースト状物を塗布又はパターニングして多孔質状金属層前駆体(B)を形成し、更に該前駆体(B)上に半導体素子(S)を搭載した後、該多孔質状金属層前駆体(B)を加熱・焼結して多孔質状金属層(C)を形成することにより、パッド部(P)と半導体素子(S)とを多孔質状金属層(C)を介して接合する工程(接合工程)、
その後該半導体素子(S)と他の電極端子(T)間を金属製ワイヤでワイヤボンディングする工程(ワイヤボンディング工程)、
及び、前記パッド部(P)、多孔質状金属層(C)、半導体素子(S)、被覆樹脂部(I)、及び半導体素子(S)と電極端子(T)間を接続する金属製ワイヤを封止樹脂(H)で封止する工程(モールド工程)、
を含む半導体装置の製造方法であって
前記接合工程において
(i)前記多孔質状金属層前駆体(B)を加熱・焼結する前に、多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を構成する樹脂を被覆することにより、多孔質状金属層前駆体(B)の加熱・焼結後に多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を配置する、又は
(ii)金属微粒子分散材(A)に更に予め樹脂(G)を溶解させておき、多孔質状金属層前駆体(B)を加圧下に加熱・焼結して多孔質状金属層(C)を形成する際に、多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部を樹脂(G)から形成されるフィレット状の被覆樹脂部(I)を配置する、
ことを特徴とする
[2] Method for Manufacturing Semiconductor Device of the Present Invention A method for manufacturing a semiconductor device of the present invention includes a method of manufacturing fine metal particles (M) on a pad (P) provided on a substrate (K) or a lead frame (L). A porous metal layer precursor (B) is formed by applying or patterning a paste made of a metal fine particle dispersion material (A) containing the dispersion solution (D), and a semiconductor element is formed on the precursor (B). After mounting (S), the porous metal layer precursor (B) is heated and sintered to form the porous metal layer (C), whereby the pad portion (P) and the semiconductor element (S) are formed. ) And the porous metal layer (C) (joining step),
Thereafter, a step of wire bonding between the semiconductor element (S) and another electrode terminal (T) with a metal wire (wire bonding step),
The pad portion (P), the porous metal layer (C), the semiconductor element (S), the coating resin portion (I), and the metal wire connecting the semiconductor element (S) and the electrode terminal (T). Sealing with a sealing resin (H) (molding process),
A method of manufacturing a semiconductor device including:
In the bonding step, (i) before heating and sintering the porous metal layer precursor (B), at least a part of the outer peripheral side surface of the porous metal layer precursor (B) and / or a semiconductor element The porous metal layer (C) is heated and sintered after the porous metal layer precursor (B) is heated by coating the resin constituting the coating resin portion (I) on at least a part of the outer peripheral side surface of (S). ) And / or at least a part of the outer peripheral side surface of the semiconductor element (S), or (ii) a resin in advance on the metal fine particle dispersion (A). (G) is dissolved, and when the porous metal layer precursor (B) is heated and sintered under pressure to form the porous metal layer (C), the porous metal layer (C ) And / or at least part of the outer peripheral side surface of the semiconductor element (S). Arranging fillet-like coating resin portion formed of a resin (G) to (I),
It is characterized by that .

上記方法で得られる半導体装置の典型例を図1、2に示す。
図1は、半導体素子(S)14と配線パターン34間が金属製ワイヤ31でワイヤボンディングされている例であり、(a)は半導体素子(S)14の外周側面が被覆樹脂部(I)23で被覆され、(b)は多孔質状金属層(C)16の外周側面が被覆樹脂部(I)23で被覆され、(c)は多孔質状金属層(C)16と半導体素子(S)14の外周側面が被覆樹脂部(I)23で被覆されている。
尚、多孔質状金属層(C)16は、裏面に金属板15を有する基板(K)11のパッド部(P)12上に形成され、封止樹脂(H)32で封止されている。
図2は、半導体素子(S)14とリードフレーム33間が金属製ワイヤ31でワイヤボンディングされている例であり、(a)は半導体素子(S)14の外周側面が被覆樹脂部(I)23で被覆され、(b)は多孔質状金属層(C)16の外周側面が被覆樹脂部(I)23で被覆され、(c)は多孔質状金属層(C)16と半導体素子(S)14の外周側面が被覆樹脂部(I)23で被覆されている。
以下に、第1の態様における、接合工程、ワイヤボンディング工程、及び封止工程について説明する。尚、上記で説明済みの各構成要素も含めて、本発明の半導体装置の製造方法の観点から詳細に説明する。
A typical example of a semiconductor device obtained by the above method is shown in FIGS.
FIG. 1 is an example in which the semiconductor element (S) 14 and the wiring pattern 34 are wire-bonded with a metal wire 31, and (a) shows the outer peripheral side surface of the semiconductor element (S) 14 as a coating resin portion (I). (B) shows the outer peripheral side surface of the porous metal layer (C) 16 with the coating resin part (I) 23, and (c) shows the porous metal layer (C) 16 and the semiconductor element (C). S) The outer peripheral side surface of 14 is covered with the coating resin portion (I) 23.
The porous metal layer (C) 16 is formed on the pad portion (P) 12 of the substrate (K) 11 having the metal plate 15 on the back surface and sealed with a sealing resin (H) 32. .
FIG. 2 shows an example in which the semiconductor element (S) 14 and the lead frame 33 are wire-bonded with a metal wire 31, and (a) shows the outer peripheral side surface of the semiconductor element (S) 14 as a coating resin portion (I). (B) shows the outer peripheral side surface of the porous metal layer (C) 16 with the coating resin part (I) 23, and (c) shows the porous metal layer (C) 16 and the semiconductor element (C). S) The outer peripheral side surface of 14 is covered with the coating resin portion (I) 23.
Hereinafter, the bonding process, the wire bonding process, and the sealing process in the first aspect will be described. In addition, it demonstrates in detail from a viewpoint of the manufacturing method of the semiconductor device of this invention including each component demonstrated above.

〔2−1〕接合工程
接合工程は、基板(K)またはリードフレーム(L)に設けられたパッド部(P)上に、金属微粒子(M)と分散溶液(D)を含む金属微粒子分散材(A)を配置して多孔質状金属層前駆体(B)を形成し、更に該前駆体(B)上に半導体素子(S)を搭載した後、該多孔質状金属層前駆体(B)を加熱・焼結して多孔質状金属層(C)を形成することにより、パッド部(P)と半導体素子(S)とを多孔質状金属層(C)を介して接合する工程である。
[2-1] Bonding process The bonding process includes a metal fine particle dispersion material including metal fine particles (M) and a dispersion solution (D) on a pad portion (P) provided on a substrate (K) or a lead frame (L). (A) is disposed to form a porous metal layer precursor (B), and further a semiconductor element (S) is mounted on the precursor (B), and then the porous metal layer precursor (B) ) Is heated and sintered to form the porous metal layer (C), thereby joining the pad portion (P) and the semiconductor element (S) via the porous metal layer (C). is there.

(1)基板(K)またはリードフレーム(L)
本発明の半導体装置に使用する基板(K)は、セラミックス等の絶縁層の面上に銅板等の導体パターンを形成したDBC基板等が好適に使用できる。尚、セラミックスとしては、アルミナ(Al)、窒化アルミ(AlN)、窒化ケイ素(Si)などが例示できる。基板(K)としては上記DBC以外にリードフレーム(L)も使用することができるが、ここでは基板(K)を用いた場合を中心に説明する。
(1) Board (K) or lead frame (L)
As the substrate (K) used in the semiconductor device of the present invention, a DBC substrate or the like in which a conductor pattern such as a copper plate is formed on the surface of an insulating layer such as ceramics can be suitably used. Examples of ceramics include alumina (Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ). In addition to the DBC, a lead frame (L) can be used as the substrate (K), but here, the case where the substrate (K) is used will be mainly described.

(2)半導体素子(S)
半導体素子(S)は、半導体による電子部品、または電子部品の機能中心部の素子であり、外部接続用電極としての金属層を有する。
(2) Semiconductor element (S)
The semiconductor element (S) is an electronic component made of a semiconductor, or an element at the functional center of the electronic component, and has a metal layer as an external connection electrode.

(3)金属微粒子分散材(A)
金属微粒子分散材(A)は、金属微粒子(M)が分散溶液(D)に分散された金属微粒子分散材(A)からなる、ペースト状の多孔質状金属層前駆体(B)をパッド部(P)と半導体素子(S)間に配置して、加熱・焼結して該金属微粒子(M)を焼結することにより多孔質状金属層(C)を形成させて、パッド部(P)と半導体素子(S)間を接合するものである。
(3) Metal fine particle dispersion (A)
The metal fine particle dispersion material (A) is a pad-shaped porous metal layer precursor (B) made of the metal fine particle dispersion material (A) in which the metal fine particles (M) are dispersed in the dispersion solution (D). (P) and the semiconductor element (S) are disposed, and the metal fine particles (M) are sintered by heating and sintering to form the porous metal layer (C), and the pad portion (P ) And the semiconductor element (S).

(3−1)金属微粒子(M)
金属微粒子(M)は、導電性と熱伝導性の高い、焼結性を有する微粒子であり、導電性、加熱処理(焼結性)、市場における入手の容易性等から、例えば金、銀、銅,白金、パラジウム、タングステン、ニッケル、鉄、コバルト、タンタル、ビスマス、鉛、インジウム、錫、亜鉛、チタン、又はアルミニウムが挙げられるが、これらの中でも、銅、金、銀、ニッケル、及びコバルトが好ましく、更にこれらの中でも導電性、熱伝導性、加工性、マイグレーションの防止、コスト低減等の点から銅が特に好ましい。
(3-1) Metal fine particles (M)
The metal fine particles (M) are fine particles having high conductivity and thermal conductivity and having sinterability. From the viewpoint of conductivity, heat treatment (sinterability), availability on the market, etc., for example, gold, silver, Examples include copper, platinum, palladium, tungsten, nickel, iron, cobalt, tantalum, bismuth, lead, indium, tin, zinc, titanium, or aluminum. Among these, copper, gold, silver, nickel, and cobalt are included. Among these, copper is particularly preferable from the viewpoints of conductivity, thermal conductivity, workability, prevention of migration, cost reduction, and the like.

金属微粒子(M)は、導電性と熱伝導性が高く、焼結性を有する微粒子であり、平均一次粒子径がナノサイズのものが好ましい。具体的には、平均一次粒子径が1〜500nmの金属微粒子(M1)が好ましい。金属微粒子(M1)の一次粒子の平均粒子径が1nm以上で焼成により均質な粒子径と空孔を有する多孔質体を形成することが可能になり、一方、500nm以下で精密な導電パターンを形成することができる。金属微粒子(M1)の一次粒子の平均粒子径は5〜200nmであることが、より好ましい。
金属微粒子(M)として、平均一次粒子径が1〜500nmの金属微粒子(M1)に、更に平均一次粒子径が0.5〜50μmの金属微粒子(M2)を併用すると、金属微粒子(M2)間に金属微粒子(M1)が分散して安定に存在するので、金属微粒子(M1)の平均一次粒子径との粒子径の差が確保できて、加熱処理する際に金属微粒子(M1)の自由な移動を効果的に抑制することができ、前述の金属微粒子(M1)の分散性と安定性を向上させることができる。金属微粒子(M2)としては、金属微粒子(M1)に記載したと同種の金属粒子を使用することが好ましい。
The metal fine particles (M) are fine particles having high electrical conductivity and thermal conductivity and having sinterability, and those having an average primary particle size of nanosize are preferable. Specifically, metal fine particles (M1) having an average primary particle diameter of 1 to 500 nm are preferable. When the average particle size of the primary particles of the metal fine particles (M1) is 1 nm or more, it becomes possible to form a porous body having a uniform particle size and pores by firing, while forming a precise conductive pattern at 500 nm or less. can do. The average particle diameter of the primary particles of the metal fine particles (M1) is more preferably 5 to 200 nm.
When the metal fine particles (M2) having an average primary particle diameter of 0.5 to 50 μm are used in combination with the metal fine particles (M1) having an average primary particle diameter of 1 to 500 nm as the metal fine particles (M), Since the metal fine particles (M1) are dispersed and stably present in the metal particles, a difference in particle diameter from the average primary particle diameter of the metal fine particles (M1) can be secured, and the metal fine particles (M1) can be freely dispersed during the heat treatment. The movement can be effectively suppressed, and the dispersibility and stability of the metal fine particles (M1) can be improved. As the metal fine particles (M2), it is preferable to use the same kind of metal particles as described in the metal fine particles (M1).

ここで、一次粒子の平均粒子径とは、二次粒子を構成する個々の金属微粒子の一次粒子の直径の意味である。該一次粒子径は、電子顕微鏡を用いて測定することができる。また、平均粒子径とは、一次粒子の数平均粒子径を意味する。
金属微粒子(M)は、はんだペーストの場合と異なり、少なくとも1種以上の高純度金属微粒子をそのまま使用することができるので、接合強度と導電性に優れる接合体を得ることが可能になる。一般にはんだペーストの場合、実装対象である基板の銅パッド部分の酸化を取り除くためにフラックス(有機成分)を含有しており、更に金属材料に含まれる不純物として少量ではあるがAl、Zn、Cd、As等の金属が含まれることが多い。
Here, the average particle diameter of the primary particles means the diameter of the primary particles of the individual metal fine particles constituting the secondary particles. The primary particle diameter can be measured using an electron microscope. The average particle size means the number average particle size of primary particles.
Unlike the case of the solder paste, the metal fine particles (M) can use at least one kind of high-purity metal fine particles as they are, so that it is possible to obtain a bonded body having excellent bonding strength and conductivity. In general, in the case of a solder paste, it contains a flux (organic component) in order to remove the oxidation of the copper pad portion of the substrate to be mounted, and further, Al, Zn, Cd, Often contains metals such as As.

(3−2)分散溶液(D)
分散溶液(D)には、分子中に2以上のヒドロキシル基を有する1種又は2種以上のポリオールが含有されていることが好ましく、該ポリオールの融点は30〜280℃であることがより好ましい。
ポリオールは、金属微粒子分散材(A)中で金属微粒子(M)を分散させ、かつ、加熱・焼結する際に脱水素化反応を受けて水素ラジカルを発生させて焼結を促進する作用を発揮する。
このようなポリオールとしては、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオール、トレイトール、エリトリトール、ペンタエリスリトール、ペンチトール、キシリトール、リビトール、アラビトール、ヘキシトール、マンニトール、ソルビトール、ズルシトール、グリセルアルデヒド、ジオキシアセトン、トレオース、エリトルロース、エリトロース、アラビノース、リボース、リブロース、キシロース、キシルロース、リキソース、グルコース、フルクトース、マンノース、イドース、ソルボース、グロース、タロース、タガトース、ガラクトース、アロース、アルトロース、ラクトース、キシロース、アラビノース、イソマルトース、グルコヘプトース、ヘプトース、マルトトリオース、ラクツロース、及びトレハロースから選択される1種又は2種以上が例示できる。
分散溶液(D)の成分としては、上記ポリオール以外に、アルコール、アミド基を有する化合物、エーテル系化合物、ケトン系化合物、アミン系化合物等を配合することができる。
これらのポリオール以外の分散媒は分散溶液(D)中で併せて30体積%以下となるように配合されることが好ましい。
(3-2) Dispersion solution (D)
The dispersion solution (D) preferably contains one or more polyols having two or more hydroxyl groups in the molecule, and the melting point of the polyol is more preferably 30 to 280 ° C. .
The polyol has the effect of promoting the sintering by dispersing the metal fine particles (M) in the metal fine particle dispersion (A) and generating a hydrogen radical by receiving a dehydrogenation reaction when heating and sintering. Demonstrate.
Examples of such polyols include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2-butene. -1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3-propane Diol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1,2,4-butanetriol, threitol, erythritol, pentaerythritol, pentitol, xylitol, ribitol, arabitol, hexitol, mannitol, Sorbitol, Zulu Toll, glyceraldehyde, dioxyacetone, threose, erythrulose, erythrose, arabinose, ribose, ribulose, xylose, xylulose, lyxose, glucose, fructose, mannose, idose, sorbose, gulose, talose, tagatose, galactose, allose, altrose , Lactose, xylose, arabinose, isomaltose, glucoheptose, heptose, maltotriose, lactulose, and trehalose.
As a component of the dispersion solution (D), in addition to the polyol, alcohol, a compound having an amide group, an ether compound, a ketone compound, an amine compound, and the like can be blended.
It is preferable to mix | blend dispersion media other than these polyols in a dispersion solution (D) so that it may become 30 volume% or less collectively.

(4)多孔質状金属層前駆体(B)
多孔質状金属層前駆体(B)は、金属微粒子分散材(A)をパッド部(P)上、又は樹脂シート(F)上に塗布又はパターニングして形成される形状物である。該多孔質状金属層前駆体(B)は、その後加熱・焼結して多孔質状金属層(C)を形成するので、多孔質状金属層(C)の前駆体である。
(4) Porous metal layer precursor (B)
The porous metal layer precursor (B) is a shape formed by applying or patterning the fine metal particle dispersion material (A) on the pad portion (P) or the resin sheet (F). Since the porous metal layer precursor (B) is then heated and sintered to form the porous metal layer (C), it is a precursor of the porous metal layer (C).

(5)多孔質状金属層前駆体(B)の加熱・焼結前の被覆樹脂部(I)の形成方法
接合工程において、多孔質状金属層前駆体(B)の形成後、該多孔質状金属層前駆体(B)の加熱・焼結前に、多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を配置することができる。この場合、半導体素子(S)の特性を向上するためには多孔質状金属層前駆体(B)及び/又は半導体素子(S)の外周側面の全表面に被覆樹脂部(I)を配置する
(5) Method for forming coating resin portion (I) before heating / sintering of porous metal layer precursor (B) In the joining step, after forming porous metal layer precursor (B), the porous Before heating / sintering of the metal-like metal layer precursor (B), at least part of the outer peripheral side surface of the porous metal layer precursor (B) and / or at least part of the outer peripheral side surface of the semiconductor element (S) Coating resin part (I) can be arrange | positioned. In this case, in order to improve the characteristics of the semiconductor element (S), the coating resin portion (I) is disposed on the entire surface of the outer peripheral side surface of the porous metal layer precursor (B) and / or the semiconductor element (S). .

該被覆方法として、下記の実施形態1〜3(図3〜5にそれぞれ示す)が挙げられるが本発明における、多孔質状金属層前駆体(B)の加熱・焼結前の被覆樹脂部(I)の形成方法はこれらの例示に限定されるものではない。
実施形態1〜3における操作の主な特徴は下記の通りである。
実施形態1:多孔質状金属層前駆体(B)及び/又は半導体素子(S)の外周側面の少なくとも一部に樹脂溶液(E)を塗布する。
実施形態2:多孔質状金属層前駆体(B)と半導体素子(S)間に樹脂シート(F)を配置する。
実施形態3:パッド部(P)と多孔質状金属層前駆体(B)間に樹脂シート(F)を配置する。以下、実施形態1〜3について説明する。
Examples of the coating method include the following Embodiments 1 to 3 (shown in FIGS. 3 to 5), respectively, but in the present invention, the coating resin portion before heating / sintering of the porous metal layer precursor (B) ( The formation method of I) is not limited to these examples.
The main features of the operations in Embodiments 1 to 3 are as follows.
Embodiment 1: A resin solution (E) is apply | coated to at least one part of the outer peripheral side surface of a porous metal layer precursor (B) and / or a semiconductor element (S).
Embodiment 2: A resin sheet (F) is disposed between the porous metal layer precursor (B) and the semiconductor element (S).
Embodiment 3: A resin sheet (F) is arrange | positioned between a pad part (P) and a porous metal layer precursor (B). Hereinafter, Embodiments 1 to 3 will be described.

(5−1)実施形態1
実施形態1は、パッド部(P)上に塗布又はパターニングされた多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に樹脂溶液(E)を塗布して、該樹脂溶液(E)に含有されていた溶剤を除去、又は加熱硬化させて多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を配置する方法である。
実施形態1は、図3(a)から(c)に示す工程(実施形態1−1)と、図3(d)から(f)と、(d)から(h)に示す工程(実施形態1−2)が挙げられる。
(5-1) Embodiment 1
In the first embodiment, at least a part of the outer peripheral side surface of the porous metal layer precursor (B) applied or patterned on the pad portion (P) and / or at least a part of the outer peripheral side surface of the semiconductor element (S). The resin solution (E) is applied to the resin solution, and the solvent contained in the resin solution (E) is removed or heated and cured to at least a part of the outer peripheral side surface of the porous metal layer precursor (B), and This is a method of disposing the coating resin portion (I) on at least a part of the outer peripheral side surface of the semiconductor element (S).
In the first embodiment, the steps shown in FIGS. 3A to 3C (embodiment 1-1), the steps shown in FIGS. 3D to 3F, and the steps shown in FIGS. 1-2).

(イ)実施形態1−1
図3に示す通り、基板(K)11のパッド部(P)12上に、金属微粒子分散材(A)からなるペースト状物を塗布又はパターニングして多孔質状金属層前駆体(B)13を形成し、更に該前駆体(B)上に、基板面の平行方向の外形形状が該前駆体(B)よりも小さい半導体素子(S)14を搭載して(a)に示す形状物を得る。次に半導体素子(S)14の外周側面に樹脂溶液(E)21を塗布して(b)に示す形状物を得る。
その後、該樹脂溶液(E)中の溶剤を蒸発させるか、又は該樹脂溶液(E)を該前駆体(B)の焼結温度よりも低い温度で加熱、硬化させて、半導体素子(S)の外周側面が被覆樹脂部(I)23で被覆された形状物を得る。
更に、該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結され、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合された(c)に示す形状物を得る。
この場合、上記(b)に示す形状物において、樹脂溶液(E)21を多孔質状金属層前駆体(B)13と半導体素子(S)14の双方の外周側面に塗布しておき、後述する図4(e)に示すような形状物を得ることも可能である。
(A) Embodiment 1-1
As shown in FIG. 3, a porous metal layer precursor (B) 13 is formed by applying or patterning a paste-like material made of a metal fine particle dispersion material (A) on a pad portion (P) 12 of a substrate (K) 11. Further, a semiconductor element (S) 14 whose outer shape in the parallel direction of the substrate surface is smaller than that of the precursor (B) is mounted on the precursor (B), and the shape shown in (a) is formed. obtain. Next, the resin solution (E) 21 is applied to the outer peripheral side surface of the semiconductor element (S) 14 to obtain the shape shown in FIG.
Thereafter, the solvent in the resin solution (E) is evaporated, or the resin solution (E) is heated and cured at a temperature lower than the sintering temperature of the precursor (B) to obtain a semiconductor element (S). A shaped product whose outer peripheral side surface is coated with the coating resin portion (I) 23 is obtained.
Further, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, and the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion ( P) The shape shown in (c) joined to 12 is obtained.
In this case, in the shape shown in (b) above, the resin solution (E) 21 is applied to the outer peripheral side surfaces of both the porous metal layer precursor (B) 13 and the semiconductor element (S) 14, and will be described later. It is also possible to obtain a shape as shown in FIG.

(ロ)実施形態1−2
(i)図3に示す(d)、(e)、(f)の工程
基板(K)のパッド部(P)12上に、上記(イ)に記載したと同様に塗布又はパターニングにより、多孔質状金属層前駆体(B)13を形成し、更に該前駆体(B)13上に、基板面の平行方向の外形形状が該前駆体(B)とほぼ同様の半導体素子(S)14を搭載して(d)に示す形状物を得る。次に該前駆体(B)の外周側面に樹脂溶液(E)を塗布して(e)に示す形状物を得る。
その後、該樹脂溶液(E)中の溶剤を蒸発させるか、又は該樹脂溶液(E)を該前駆体(B)の焼結温度よりも低い温度で加熱、硬化させて、該前駆体(B)の外周側面に被覆樹脂部(I)が配置された形状物を得る。
更に、該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結され、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合された(f)に示す形状物を得る。
(ii)図3に示す(d)、(g)、(h)の工程
(d)に示す形状物に、多孔質状金属層前駆体(B)13及び半導体素子(S)14の外周側面に樹脂溶液(E)21を塗布して(g)に示す形状物を得る。
その後、該樹脂溶液(E)中の溶剤を蒸発させるか、又は該樹脂溶液(E)を該前駆体(B)の焼結温度よりも低い温度で加熱、硬化させて、多孔質状金属層前駆体(B)と半導体素子(S)の外周側面に被覆樹脂部(I)が配置された形状物を得る。
更に、該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結され、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合された(h)に示す形状物を得る。
(B) Embodiment 1-2
(I) Steps (d), (e), and (f) shown in FIG. 3 On the pad portion (P) 12 of the substrate (K), a porous layer is formed by coating or patterning in the same manner as described in (a) above. A solid metal layer precursor (B) 13 is formed, and further, on the precursor (B) 13, a semiconductor element (S) 14 having an outer shape in the parallel direction of the substrate surface substantially the same as that of the precursor (B). To obtain the shape shown in (d). Next, the resin solution (E) is applied to the outer peripheral side surface of the precursor (B) to obtain the shape shown in (e).
Thereafter, the solvent in the resin solution (E) is evaporated, or the resin solution (E) is heated and cured at a temperature lower than the sintering temperature of the precursor (B), so that the precursor (B ) Is obtained on the outer peripheral side surface of the coating resin portion (I).
Further, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, and the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion ( P) The shape shown in (f) joined to 12 is obtained.
(Ii) Steps (d), (g), and (h) shown in FIG. 3 In the shape shown in (d), the outer peripheral side surfaces of the porous metal layer precursor (B) 13 and the semiconductor element (S) 14 A resin solution (E) 21 is applied to obtain a shaped product shown in (g).
Thereafter, the solvent in the resin solution (E) is evaporated, or the resin solution (E) is heated and cured at a temperature lower than the sintering temperature of the precursor (B) to form a porous metal layer. A shaped product in which the coating resin portion (I) is disposed on the outer peripheral side surfaces of the precursor (B) and the semiconductor element (S) is obtained.
Further, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, and the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion ( P) The shape shown in (h) joined to 12 is obtained.

(5−2)実施形態2
実施形態2は、パッド部(P)上に塗布又はパターニングされた多孔質状金属層前駆体(B)上に樹脂シート(F)を配置し、更に該樹脂シート(F)上に半導体素子(S)を搭載して、半導体素子(S)の上部側から加圧下に加熱することにより樹脂シート(F)を溶融して、該前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部を樹脂シート(F)で被覆後、樹脂シート(F)に含有されていた溶剤を除去、又は加熱硬化させて多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を配置する方法である。
実施形態2は、図4(a)から(d)、(a)から(e)に示す工程(実施形態2−1)と、図4(f)から(i)に示す工程(実施形態2−2)が挙げられる。
(5-2) Embodiment 2
Embodiment 2 arrange | positions the resin sheet (F) on the porous metal layer precursor (B) apply | coated or patterned on the pad part (P), and also a semiconductor element (F) on this resin sheet (F). S) is mounted and the resin sheet (F) is melted by heating under pressure from the upper side of the semiconductor element (S), and / or at least a part of the outer peripheral side surface of the precursor (B), and / or After covering at least a part of the outer peripheral side surface of the semiconductor element (S) with the resin sheet (F), the solvent contained in the resin sheet (F) is removed or cured by heating to form a porous metal layer precursor (B ) And / or at least part of the outer peripheral side surface of the semiconductor element (S).
Embodiment 2 includes steps (embodiments 2-1) shown in FIGS. 4 (a) to (d) and (a) to (e) and steps shown in FIGS. 4 (f) to (i) (embodiment 2). -2).

(イ)実施形態2−1
(i)図4(a)から(d)の工程
基板(K)11のパッド部(P)12上に、塗布又はパターニングにより多孔質状金属層前駆体(B)13を形成して(a)に示す形状物を得る。該前駆体(B)上に、基板面の平行方向の外形形状が該前駆体(B)より大きい樹脂シート(F)22を配置させて(b)に示す形状物を得る。
次に、該樹脂シート(F)22上に、基板面の平行方向の外形形状が該前駆体(B)よりも小さい半導体素子(S)14を搭載して(c)に示す形状物を得る。
次に、該樹脂シート(F)を加熱して、半導体素子(S)の外周側面を樹脂シート(F)からなる樹脂で被覆する。この場合、例えば、半導体素子(S)の外側からガイド(例えば半割り円筒状物を2つ組み合わせたガイド)で押し付けて、半導体素子(S)の外周側面を樹脂シート(F)からなる樹脂で被覆することが可能である。
更に該樹脂シート(F)中の溶剤を蒸発させるか、又は該樹脂シート(F)を該前駆体(B)の焼結温度よりも低い温度で加熱、硬化させて、半導体素子(S)の外周側面に被覆樹脂部(I)が配置された形状物を得る。
更に、該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結され、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合された(d)に示す形状物を得る。
(A) Embodiment 2-1.
(I) A porous metal layer precursor (B) 13 is formed on the pad portion (P) 12 of the process substrate (K) 11 of FIGS. 4A to 4D by coating or patterning (a ) Is obtained. On the precursor (B), a resin sheet (F) 22 whose outer shape in the parallel direction of the substrate surface is larger than that of the precursor (B) is disposed to obtain a shape shown in (b).
Next, on the resin sheet (F) 22, a semiconductor element (S) 14 whose outer shape in the parallel direction of the substrate surface is smaller than that of the precursor (B) is mounted to obtain the shape shown in (c). .
Next, this resin sheet (F) is heated and the outer peripheral side surface of a semiconductor element (S) is coat | covered with resin which consists of a resin sheet (F). In this case, for example, the outer side surface of the semiconductor element (S) is pressed with a resin made of a resin sheet (F) by pressing it from the outside of the semiconductor element (S) with a guide (for example, a guide combining two halved cylindrical objects). It is possible to coat.
Further, the solvent in the resin sheet (F) is evaporated, or the resin sheet (F) is heated and cured at a temperature lower than the sintering temperature of the precursor (B), so that the semiconductor element (S) A shaped product in which the coating resin portion (I) is arranged on the outer peripheral side surface is obtained.
Further, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, and the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion ( P) The shape shown in (d) joined to 12 is obtained.

(ii)図4(a)から(e)の工程
図4(a)から(c)までの工程は、上記(i)と同様である。
次に、該樹脂シート(F)22を加熱して、必要に応じて前記ガイド等を用いて多孔質状金属層前駆体(B)と半導体素子(S)の外周側面を樹脂シート(F)からなる樹脂で被覆する。
更に該樹脂シート(F)中の溶剤を蒸発させるか、又は樹脂シート(F)からなる樹脂を該前駆体(B)の焼結温度よりも低い温度で加熱、硬化させて、該前駆体(B)及び半導体素子(S)の外周側面に被覆樹脂部(I)が配置された形状物を得る。
更に、該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結され、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合された(e)に示す形状物を得る。
(Ii) Steps of FIGS. 4A to 4E The steps of FIGS. 4A to 4C are the same as (i) above.
Next, the resin sheet (F) 22 is heated, and if necessary, the outer peripheral side surfaces of the porous metal layer precursor (B) and the semiconductor element (S) are bonded to the resin sheet (F) using the guide or the like. It coats with the resin which consists of.
Further, the solvent in the resin sheet (F) is evaporated, or the resin composed of the resin sheet (F) is heated and cured at a temperature lower than the sintering temperature of the precursor (B), and the precursor ( B) and a shaped article in which the coating resin portion (I) is arranged on the outer peripheral side surfaces of the semiconductor element (S) are obtained.
Further, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, and the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion ( P) The shape shown in (e) joined to 12 is obtained.

(ロ)実施形態2−2
(i)図4(f)から(i)の工程
基板(K)11のパッド部(P)12上に、塗布又はパターニングにより多孔質状金属層前駆体(B)13を形成して(f)に示す形状物を得る。該前駆体(B)13上に、基板面の平行方向の外形形状が該前駆体(B)より大きい樹脂シート(F)22を配置させて(g)に示す形状物を得る。該樹脂シート(F)22上に半導体素子(S)14を搭載して(h)に示す形状物を得る。
次に、該樹脂シート(F)中の溶剤を蒸発させるか、又は樹脂シート(F)からなる樹脂を該前駆体(B)の焼結温度よりも低い温度で加熱、硬化させて、必要に応じて前記ガイド等を用いることにより、該前駆体(B)13と半導体素子(S)14の外周側面を樹脂シート(F)からなる樹脂で被覆された形状物を得る。
更に、該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結され、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合された(j)に示す形状物を得る。
(B) Embodiment 2-2
(I) Steps from FIG. 4 (f) to (i) A porous metal layer precursor (B) 13 is formed on the pad portion (P) 12 of the substrate (K) 11 by coating or patterning (f) ) Is obtained. On the precursor (B) 13, a resin sheet (F) 22 whose outer shape in the parallel direction of the substrate surface is larger than the precursor (B) is arranged to obtain a shaped product shown in (g). The semiconductor element (S) 14 is mounted on the resin sheet (F) 22 to obtain a shape shown in (h).
Next, the solvent in the resin sheet (F) is evaporated, or the resin composed of the resin sheet (F) is heated and cured at a temperature lower than the sintering temperature of the precursor (B), and necessary. Accordingly, by using the guide or the like, a shaped product in which the outer peripheral side surfaces of the precursor (B) 13 and the semiconductor element (S) 14 are covered with the resin made of the resin sheet (F) is obtained.
Further, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, and the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion ( P) The shape shown in (j) joined to 12 is obtained.

(5−3)実施形態3
実施形態3は、パッド部(P)上に、樹脂シート(F)を配置し、該樹脂シート(F)上に塗布又はパターニングされた多孔質状金属層前駆体(B)上に半導体素子(S)を搭載して、半導体素子(S)の上部側から加圧下に加熱することにより樹脂シート(F)を溶融して、多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部を樹脂シート(F)で被覆後、樹脂シート(F)に含有されていた溶剤を除去、又は加熱硬化させて多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を配置する方法である。
実施形態3は、図5(a)から(e)、(a)から(f)に示す工程が挙げられる。
(5-3) Embodiment 3
Embodiment 3 arrange | positions a resin sheet (F) on a pad part (P), and applies a semiconductor element (B) on the porous metal layer precursor (B) apply | coated or patterned on this resin sheet (F). S) is mounted, and the resin sheet (F) is melted by heating under pressure from the upper side of the semiconductor element (S), so that at least a part of the outer peripheral side surface of the porous metal layer precursor (B) And / or after covering at least part of the outer peripheral side surface of the semiconductor element (S) with the resin sheet (F), the solvent contained in the resin sheet (F) is removed or cured by heating to form a porous metal layer. In this method, the coating resin portion (I) is disposed on at least a part of the outer peripheral side surface of the precursor (B) and / or at least a part of the outer peripheral side surface of the semiconductor element (S).
Embodiment 3 includes the steps shown in FIGS. 5A to 5E and FIGS. 5A to 5F.

(i)図5(a)から(e)の工程
図5(a)に示す基板(K)11のパッド部(P)12上に、基板面の平行方向の外形形状が多孔質状金属層前駆体(B)より大きい樹脂シート(F)22を配置させて(b)に示す形状物を得る。前記樹脂シート(F)22上に塗布又はパターニングにより多孔質状金属層前駆体(B)13を形成して(c)に示す形状物を得る。該前駆体(B)上に、基板面の平行方向の外形形状が該前駆体(B)とほぼ同様である半導体素子(S)14を搭載して(d)に示す形状物を得る。
次に、該樹脂シート(F)を加熱して、必要に応じて前記ガイド等を用いて、該前駆体(B)の外周側面を樹脂シート(F)からなる樹脂で被覆する。
更に該樹脂シート(F)中の溶剤を蒸発させるか、又は樹脂シート(F)からなる樹脂を該前駆体(B)の焼結温度よりも低い温度で加熱、硬化させて、該前駆体(B)の外周側面に被覆樹脂部(I)が配置された形状物を得る。
更に、該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結され、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合された(e)に示す形状物を得る。
(I) Steps of FIGS. 5A to 5E On the pad portion (P) 12 of the substrate (K) 11 shown in FIG. 5A, the outer shape in the parallel direction of the substrate surface is a porous metal layer. A resin sheet (F) 22 that is larger than the precursor (B) is disposed to obtain a shape shown in (b). A porous metal layer precursor (B) 13 is formed on the resin sheet (F) 22 by coating or patterning to obtain a shape shown in (c). On the precursor (B), a semiconductor element (S) 14 having an outer shape in the parallel direction of the substrate surface that is substantially the same as that of the precursor (B) is mounted to obtain the shape shown in (d).
Next, the resin sheet (F) is heated, and if necessary, the outer peripheral side surface of the precursor (B) is coated with a resin made of the resin sheet (F) using the guide or the like.
Further, the solvent in the resin sheet (F) is evaporated, or the resin composed of the resin sheet (F) is heated and cured at a temperature lower than the sintering temperature of the precursor (B), and the precursor ( A shaped product in which the coating resin portion (I) is arranged on the outer peripheral side surface of B) is obtained.
Further, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, and the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion ( P) The shape shown in (e) joined to 12 is obtained.

(ii)図5(a)から(f)の工程
図5(a)から(d)までの工程は、上記(i)と同様である。
次に、該樹脂シート(F)22を加熱して、必要に応じて前記ガイド等を用いて、該前駆体(B)13と半導体素子(S)14の外周側面を樹脂シート(F)からなる樹脂で被覆する。その後、該樹脂シート(F)に含有されていた溶剤を蒸発させるか、又は樹脂シート(F)からなる樹脂を該前駆体(B)の焼結温度よりも低い温度で加熱、硬化させて、該前駆体(B)及び半導体素子(S)の外周側面に被覆樹脂部(I)が配置された形状物を得る。
更に、該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結され、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合された(f)に示す形状物を得る。
(Ii) Steps of FIGS. 5A to 5F The steps of FIGS. 5A to 5D are the same as (i) above.
Next, the resin sheet (F) 22 is heated, and the outer peripheral side surfaces of the precursor (B) 13 and the semiconductor element (S) 14 are removed from the resin sheet (F) using the guide or the like as necessary. Cover with resin. Thereafter, the solvent contained in the resin sheet (F) is evaporated, or the resin comprising the resin sheet (F) is heated and cured at a temperature lower than the sintering temperature of the precursor (B), A shaped product in which the coating resin portion (I) is arranged on the outer peripheral side surfaces of the precursor (B) and the semiconductor element (S) is obtained.
Further, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, and the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion ( P) The shape shown in (f) joined to 12 is obtained.

(6)被覆樹脂部(I)の形成材料
被覆樹脂部(I)を形成する材料としては、耐熱性樹脂であることが望ましい。該耐熱性樹脂としてはポリイミド系樹脂、ポリアミドイミド系樹脂、フッ素樹脂、エポキシ系樹脂、及びポリビニルピロリドン系樹脂から選択される1種又は2種以上が挙げられるが、これらに限定されるものではない。
尚、ポリビニルピロリドン系樹脂は、ポリビニルピロリドンを不溶化処理することにより形成される架橋ポリビニルピロリドンとして使用することがより望ましい。該不溶化処理は、γ線、電子線、加熱、化学的方法等の公知の方法で実施することができる。例えば、加熱の場合、ポリビニルピロリドンの熱分解温度などを考慮する必要があるが、150〜200℃が好ましく、160〜180℃が更に好ましい。処理時間は、1〜6時間程度が好ましい。
(6) Forming material of covering resin part (I) As a material which forms covering resin part (I), it is desirable that it is a heat resistant resin. Examples of the heat resistant resin include, but are not limited to, one or more selected from polyimide resins, polyamideimide resins, fluororesins, epoxy resins, and polyvinylpyrrolidone resins. .
The polyvinyl pyrrolidone resin is more preferably used as a crosslinked polyvinyl pyrrolidone formed by insolubilizing polyvinyl pyrrolidone. This insolubilization process can be implemented by well-known methods, such as a gamma ray, an electron beam, a heating, a chemical method. For example, in the case of heating, although it is necessary to consider the thermal decomposition temperature of polyvinylpyrrolidone, 150-200 degreeC is preferable and 160-180 degreeC is still more preferable. The treatment time is preferably about 1 to 6 hours.

被覆樹脂部(I)の形成方法は、前述の(i)樹脂溶液(E)と(ii)樹脂シート(F)、及び後述する(iii)樹脂(G)等から形成することができるがこれらに限定されるものではない。
(i)樹脂溶液(E)
樹脂溶液(E)として、プレポリマー溶液(E1)、高粘度の樹脂溶液(E2)を使用できる。熱硬化性樹脂のプレポリマー溶液(E1)を多孔質状金属層前駆体(B)、及び/又は半導体素子(S)の外周側面の少なくとも一部に付着させた後に、プレヒートして硬化させ被覆樹脂部(I)を形成する。
プレポリマー溶液(E1)の成分としては、1分子中に2個以上のエポキシ基を有するエポキシ樹脂系、ポリイミドプレポリマー溶液等が挙げられる。1分子中に2個以上のエポキシ基を有するエポキシ樹脂系としてはグルシジルエーテルタイプ、グルシジルアミンタイプ、グルシジルエステルタイプ、オレフィン酸化(脂環式)タイプ等が使用できる。
The coating resin part (I) can be formed from the above-mentioned (i) resin solution (E) and (ii) resin sheet (F), (iii) resin (G) described later, etc. It is not limited to.
(I) Resin solution (E)
As the resin solution (E), a prepolymer solution (E1) or a highly viscous resin solution (E2) can be used. A prepolymer solution (E1) of a thermosetting resin is attached to at least a part of the outer peripheral side surface of the porous metal layer precursor (B) and / or the semiconductor element (S), and then preheated to be cured and coated. Resin part (I) is formed.
Examples of the component of the prepolymer solution (E1) include an epoxy resin system having two or more epoxy groups in one molecule and a polyimide prepolymer solution. As an epoxy resin system having two or more epoxy groups in one molecule, a glycidyl ether type, a glycidyl amine type, a glycidyl ester type, an olefin oxidation (alicyclic) type, or the like can be used.

ポリイミドプレポリマー溶液としては、ジアミン成分とテトラカルボン酸二無水物成分から得られるプレポリマー及び/又はこれらの混合物を有機溶媒に溶解して得られる。
これらのプレポリマー溶液は、プレヒートにより硬化させることができる。有機溶媒としては酸無水物類とジアミン類のいずれか一方又は双方を溶解するものであり、具体的にはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、クレゾール、ジメチルスルホキシド、N−メチル−2−ピから選択される1種又は2種以上を組み合わせで用いることができる。その他、シリコン樹脂、アミドイミド樹脂、マレイミド樹脂等のプレポリマーを使用することが可能であり、また、耐熱性樹脂を溶媒に溶解させて高粘度の樹脂液を使用することも可能である。
The polyimide prepolymer solution is obtained by dissolving a prepolymer obtained from a diamine component and a tetracarboxylic dianhydride component and / or a mixture thereof in an organic solvent.
These prepolymer solutions can be cured by preheating. As an organic solvent, one or both of acid anhydrides and diamines are dissolved. Specifically, N, N-dimethylformamide, N, N-dimethylacetamide, cresol, dimethylsulfoxide, N-methyl One or two or more selected from 2-pi can be used in combination. In addition, it is possible to use a prepolymer such as a silicon resin, an amideimide resin, or a maleimide resin, and it is also possible to use a high-viscosity resin solution by dissolving a heat-resistant resin in a solvent.

(ii)樹脂シート(F)
樹脂シート(F)を形成する成分としては、被覆樹脂部(I)の成分、および金属微粒子分散材(A)の分散溶液(D)と同様の有機溶媒等が挙げられる。
上記樹脂シート(F)を配置して、半導体素子(S)の上部からプレスして、多孔質状金属層前駆体(B)、及び/又は半導体素子(S)の外周側面の少なくとも一部を被覆させた膜、その後被覆樹脂部(I)を形成する。この場合、樹脂シート(F)は、多孔質状金属層前駆体(B)を構成する金属微粒子分散材(A)の融点以下の樹脂(又は樹脂溶液)からなる。
(Ii) Resin sheet (F)
As a component which forms a resin sheet (F), the organic solvent similar to the component of coating resin part (I), the dispersion solution (D) of a metal fine particle dispersion material (A), etc. are mentioned.
The resin sheet (F) is placed and pressed from above the semiconductor element (S), and at least a part of the outer peripheral side surface of the porous metal layer precursor (B) and / or the semiconductor element (S) is formed. The coated film and then the coated resin part (I) are formed. In this case, the resin sheet (F) is made of a resin (or resin solution) having a melting point or less of the metal fine particle dispersion (A) constituting the porous metal layer precursor (B).

(7)多孔質状金属層(C)
多孔質状金属層(C)は、金属微粒子(M)が分散溶液(D)に分散された金属微粒子分散材(A)からなる多孔質状金属層前駆体(B)をパッド部(P)と半導体素子(S)間に配置して、加熱・焼結して該金属微粒子(M)を焼結することにより形成される。該多孔質状金属層(C)が形成されることにより、パッド部(P)と半導体素子(S)間が接合される。
(7) Porous metal layer (C)
In the porous metal layer (C), the porous metal layer precursor (B) made of the metal fine particle dispersion (A) in which the metal fine particles (M) are dispersed in the dispersion solution (D) is used as the pad portion (P). And the semiconductor element (S), and the metal fine particles (M) are sintered by heating and sintering. By forming the porous metal layer (C), the pad portion (P) and the semiconductor element (S) are joined.

多孔質状金属層前駆体(B)を加熱・焼結する際に、前記実施形態1〜3に記載したのとは別に、以下の実施形態4に示すように、多孔質状金属層(C)及び/又は半導体素子(S)の少なくとも一部に被覆樹脂部(I)を配置することができる。
この場合、半導体素子(S)の特性を向上するためには多孔質状金属層(C)及び/又は半導体素子(S)の外周側面の全表面に被覆樹脂部(I)を配置することが好ましい。
When heating and sintering the porous metal layer precursor (B), a porous metal layer (C) as shown in the following embodiment 4 separately from those described in the first to third embodiments. ) And / or the covering resin portion (I) can be disposed on at least a part of the semiconductor element (S).
In this case, in order to improve the characteristics of the semiconductor element (S), the covering resin portion (I) may be disposed on the entire surface of the outer peripheral side surface of the porous metal layer (C) and / or the semiconductor element (S). preferable.

(i)実施形態4
実施形態4は、金属微粒子分散材(A)に更に予め樹脂(G)を溶解させておき、多孔質状金属層前駆体(B)を加圧下に加熱・焼結して多孔質状金属層(C)を形成する際に、多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部を樹脂(G)から形成されるフィレット状に被覆樹脂部(I)を配置することができる。実施形態4を図6を用いて説明する。
図6(a)に示す基板(K)11のパッド部(P)12上に、金属微粒子分散材(A)からなるペースト状物を塗布又はパターニングして多孔質状金属層前駆体(B)13を形成し、更に該前駆体(B)上に、基板面の平行方向の外形形状が該前駆体(B)とほぼ同様の半導体素子(S)14を搭載して図6(a)に示す形状物を得る。次に該形状物は多孔質状金属層前駆体(B)が焼結する温度で加熱・焼結して、半導体素子(S)14が多孔質状金属層(C)16を介してパッド部(P)12に接合され、かつ多孔質状金属層(C)16と半導体素子(S)14がフィレット状に被覆樹脂部(I)が配置された図6(b)に示す形状物を得る。
上記加熱・焼結の際に真空プレス工程で、半導体素子(S)の上面側から加圧(プレス)すると、金属微粒子分散材(F)中から外周側に押し出される現象が生じ、多孔質状金属層(A)の前駆体(B)、及び/又は半導体素子(S)の外周側面の少なくとも一部を被覆するようになる。
この場合、例えば、多孔質状金属層前駆体(B)13と半導体素子(S)14の外側からガイド(例えば半割り円筒状物を2つ組み合わせたガイド)で押し付けて、図6(b)に示すようなフィレット状の被覆樹脂部(I)を形成することも可能である。
(I) Embodiment 4
In the fourth embodiment, the resin (G) is further dissolved in the metal fine particle dispersion (A) in advance, and the porous metal layer precursor (B) is heated and sintered under pressure to obtain a porous metal layer. When forming (C), a fillet in which at least a part of the outer peripheral side surface of the porous metal layer (C) and / or at least a part of the outer peripheral side surface of the semiconductor element (S) is formed from the resin (G). The covering resin portion (I) can be arranged in a shape. A fourth embodiment will be described with reference to FIG.
A porous metal layer precursor (B) is formed by applying or patterning a paste made of the metal fine particle dispersion (A) on the pad portion (P) 12 of the substrate (K) 11 shown in FIG. 13 is further mounted on the precursor (B), and a semiconductor element (S) 14 whose outer shape in the parallel direction of the substrate surface is substantially the same as that of the precursor (B) is mounted on the precursor (B). The shape shown is obtained. Next, the shaped product is heated and sintered at a temperature at which the porous metal layer precursor (B) is sintered, so that the semiconductor element (S) 14 passes through the porous metal layer (C) 16 to the pad portion. (P) 12 is obtained, and the shape shown in FIG. 6B is obtained in which the porous metal layer (C) 16 and the semiconductor element (S) 14 are arranged in a fillet shape with the coating resin portion (I). .
During the heating and sintering, when a pressure is applied (pressed) from the upper surface side of the semiconductor element (S) in the vacuum pressing process, a phenomenon of being extruded from the metal fine particle dispersion material (F) to the outer peripheral side occurs, resulting in a porous state. The precursor (B) of the metal layer (A) and / or at least part of the outer peripheral side surface of the semiconductor element (S) is covered.
In this case, for example, the porous metal layer precursor (B) 13 and the semiconductor element (S) 14 are pressed from the outside with a guide (for example, a guide in which two halved cylindrical objects are combined), and FIG. It is also possible to form a fillet-shaped coating resin portion (I) as shown in FIG.

(ii)被覆樹脂部(I)の形成材料
実施形態4で被覆樹脂部(I)の形成に使用できる樹脂(G)としては、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリテトラフルオロエチレン系樹脂、エポキシ系樹脂、及びポリビニルピロリドン系樹脂から選択される1種又は2種以上が挙げられるが、これらに限定されるものではない。また、金属微粒子分散材(A)中の樹脂(G)の濃度が0.3〜5.0質量%となるように添加することが望ましい。
(Ii) Forming material of covering resin part (I) As resin (G) which can be used for formation of covering resin part (I) in Embodiment 4, polyimide resin, polyamideimide resin, polytetrafluoroethylene resin, Although 1 type, or 2 or more types selected from an epoxy-type resin and polyvinylpyrrolidone-type resin are mentioned, it is not limited to these. Moreover, it is desirable to add so that the density | concentration of resin (G) in metal fine particle dispersion material (A) may be 0.3-5.0 mass%.

〔2−2〕ワイヤボンディング工程
半導体素子(S)と他の電極間を金属製ワイヤによりワイヤボンディングする際に、金属製ワイヤを半導体素子(S)に接合する手段は、超音波振動などによる接合、バンプを介した接合等が挙げられるが、本発明においては、ワイヤボンディングの手段はこれらに限定されない。
尚、図1、2で本発明における半導体装置として、半導体素子(S)14とリードフレーム33、配線パターン34がそれぞれ接合されている例が示されている。
[2-2] Wire Bonding Step When wire bonding is performed between the semiconductor element (S) and another electrode with a metal wire, the means for bonding the metal wire to the semiconductor element (S) is bonding by ultrasonic vibration or the like. Bonding via bumps and the like can be mentioned, but in the present invention, the means for wire bonding is not limited to these.
1 and 2 show an example in which the semiconductor element (S) 14, the lead frame 33, and the wiring pattern 34 are joined as the semiconductor device according to the present invention.

〔2−3〕モールド工程
封止樹脂は、通常、エポキシ樹脂を用いるが、これに限定するものではなく、シリコン樹脂やポリイミド樹脂、アクリル樹脂などを用いることもできる。
また、通常はAl、SiOなどのセラミック粉を添加して用いるが、これに限定するものではなく、AlN、BN、Si、ダイアモンド、SiC、Bなどを添加しても良く、シリコン樹脂やアクリル樹脂などの樹脂製の粉を添加しても良い。
粉形状は、球状を用いることが多いが、これに限定するものではなく、破砕状、粒状、リン片状、凝集体などを用いても良い。粉体の充填量は、必要な流動性や絶縁性や接着性が得られる量が充填されていれば良い。
尚、図1、2で本発明における半導体装置で、パッド部(P)12、多孔質状金属層(C)16、半導体素子(S)14、被覆樹脂部(I)23、及び半導体素子(S)14と電極端子(T)(リードフレーム(33)又は配線パターン(34))間を接続する金属製ワイヤが封止樹脂(H)で封止されている例が示されている。
[2-3] Molding Process Normally, an epoxy resin is used as the sealing resin, but the sealing resin is not limited to this, and a silicon resin, a polyimide resin, an acrylic resin, or the like can also be used.
Usually, ceramic powders such as Al 2 O 3 and SiO 2 are added for use, but the present invention is not limited thereto, and AlN, BN, Si 3 N 4 , diamond, SiC, B 2 O 3 and the like are added. Alternatively, resin powder such as silicon resin or acrylic resin may be added.
The powder shape is often spherical, but is not limited thereto, and a crushed shape, a granular shape, a flake shape, an aggregate, or the like may be used. The filling amount of the powder is not limited as long as necessary fluidity, insulation and adhesiveness are obtained.
1 and 2, in the semiconductor device according to the present invention, the pad portion (P) 12, the porous metal layer (C) 16, the semiconductor element (S) 14, the coating resin portion (I) 23, and the semiconductor element ( An example is shown in which a metal wire connecting between S) 14 and an electrode terminal (T) (lead frame (33) or wiring pattern (34)) is sealed with a sealing resin (H).

次に、実施例により本発明をより具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。実施例、比較例で使用した(1)原材料、(2)装置、及び(3)評価方法を以下に記載する。
(1)原材料
(イ)基板
DBC基板(Cu/アルミナ/Cu)を使用した。Cu板の厚みは0.1mm/セラミック板厚み0.635mm/Cu板の厚み0.1mmである。
Next, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples. The (1) raw materials, (2) equipment, and (3) evaluation methods used in Examples and Comparative Examples are described below.
(1) Raw materials (a) Substrate A DBC substrate (Cu / alumina / Cu) was used. The thickness of the Cu plate is 0.1 mm / ceramic plate thickness 0.635 mm / Cu plate thickness 0.1 mm.

(ロ)金属微粒子分散材
平均一次粒子径20μmの銅微粒子がジエチレングリコール中に80質量%の濃度で分散している銅微粒子分散材を使用した。尚、該金属微粒子分散材には、高分子分散剤としてポリビニルピロリドンが0.3質量%配合されている。
(ハ)半導体素子
半導体素子のサイズは5mm×5mmで厚みは150μmであり、その接合面はNi−Ti−Au合金でメタライズされている。
(ニ)被覆樹脂部を形成する材料
(i)樹脂溶液(実施例1):T693/R3000シリーズ(ナガセケムテックス(株)製)
(ii)樹脂シート(実施例2、3):T693/R6000シリーズ(ナガセエレックス(株)製)
(iii)樹脂(G)として、ポリビニルピロリドンを使用した。
(B) Metal fine particle dispersion material A copper fine particle dispersion material in which copper fine particles having an average primary particle diameter of 20 μm were dispersed in diethylene glycol at a concentration of 80% by mass was used. In addition, 0.3% by mass of polyvinylpyrrolidone as a polymer dispersant is blended in the metal fine particle dispersion.
(C) Semiconductor element The size of the semiconductor element is 5 mm × 5 mm and the thickness is 150 μm, and the joint surface is metallized with a Ni—Ti—Au alloy.
(D) Material for forming the coating resin part (i) Resin solution (Example 1): T693 / R3000 series (manufactured by Nagase ChemteX Corporation)
(Ii) Resin sheet (Examples 2 and 3): T693 / R6000 series (manufactured by Nagase Elex Co., Ltd.)
(Iii) Polyvinylpyrrolidone was used as the resin (G).

(2)装置
図8に示す焼結炉を使用した。該装置を用いて多孔質状金属層前駆体を以下の操作により焼結して多孔質状金属層を形成した。
図8(a)に示す、レイアップ用のプレス板42を用意して、ワーク41をそのプレス板45上にレイアップし、真空プレス機43の下熱盤44上にセットする。その後、図8(b)に示すように、チャンバー45を閉じてチャンバー45内を真空状態にする。そして、図8(c)に示すように、加圧シリンダー46により圧力を加えた状態で、ワーク41を上熱盤47と下熱盤44とで挟持して、加熱する。
これにより、多孔質状金属層前駆体が焼結されて、多孔質状金属層が形成される。
(2) Apparatus The sintering furnace shown in FIG. 8 was used. Using this apparatus, the porous metal layer precursor was sintered by the following operation to form a porous metal layer.
A press plate 42 for layup shown in FIG. 8A is prepared, and the work 41 is laid up on the press plate 45 and set on the lower heating plate 44 of the vacuum press machine 43. Thereafter, as shown in FIG. 8B, the chamber 45 is closed and the inside of the chamber 45 is evacuated. Then, as shown in FIG. 8C, the work 41 is sandwiched between the upper heating plate 47 and the lower heating plate 44 with the pressure applied by the pressure cylinder 46 and heated.
Thereby, a porous metal layer precursor is sintered and a porous metal layer is formed.

(3)評価方法
金属微粒子分散材焼結後におけるCu焼結粒子の半導体素子側面への付着程度をDBC基板と半導体素子間の漏れ電流と遮断電流の測定により評価した。
電流−電圧カーブの測定には、カーブトレーサ(米国アジレント・テクノロジーズ社製、型式:B1505A)を用いた。
半導体素子として、シリコンN型電界効果トランジスター(MOSFET)を使用した。
測定条件は下記の通りである。
オン抵抗:RDS(ON)=2.0Ω
ドレイン・ソース間電圧 VDSS=900V
ドレイン電流(パルス) IDP=15A
許容損失(TC=25℃) P=150W
デバイスをセラミックス基板上にダイボンディングし、
評価サンプルとして樹脂コートしたものと、しないものの2種類をn=50ずつ作成した。
その後、更にワイヤボンディングで基板上のパッドに接続した。
そのパッドにカーブトレーサをつなぎゲート漏れ電流とドレイン遮断電流を測定した。
測定条件と評価基準は下記のとおりである。
(i)ゲート漏れ電流
GS=+−30V,VDS=0Vとして、IGSS 10μAを超えた場合をNGとした。
(ii)ドレイン遮断電流
DS=720V、VGS=0Vとして、IDSS 100μAを超えた場合をNGとした。
(3) Evaluation method The degree of adhesion of the Cu sintered particles to the side surface of the semiconductor element after sintering the fine metal particle dispersion material was evaluated by measuring leakage current and breaking current between the DBC substrate and the semiconductor element.
A curve tracer (manufactured by Agilent Technologies, Inc., model: B1505A) was used for the measurement of the current-voltage curve.
A silicon N-type field effect transistor (MOSFET) was used as the semiconductor element.
The measurement conditions are as follows.
On-resistance: R DS (ON) = 2.0Ω
Drain-source voltage V DSS = 900V
Drain current (pulse) I DP = 15A
Power dissipation (TC = 25 ° C) P D = 150W
Die bonding the device on the ceramic substrate,
Two types, n = 50, were prepared for the evaluation samples, one with and without resin coating.
Thereafter, it was further connected to a pad on the substrate by wire bonding.
A curve tracer was connected to the pad and the gate leakage current and drain cutoff current were measured.
The measurement conditions and evaluation criteria are as follows.
(I) gate leakage current V GS = + - 30V, as V DS = 0V, was NG and if it exceeds I GSS 10μA.
(Ii) The drain cutoff current V DS = 720 V and V GS = 0 V, and the case where I DSS exceeded 100 μA was determined as NG.

[実施例1]
(1)多孔質状金属層前駆体の形成、樹脂溶液の塗布
DBC基板の銅板上に5.5mm×5.5mmで厚みは300μmの金属微粒子分散材を表1に示すに示す面にそれぞれパターニングし、該金属微粒子分散材上に更に半導体素子を搭載した。
多孔質状金属層前駆体と半導体素子の外周側面のそれぞれ少なくとも1つの面の全体に樹脂溶液(T693/R3000シリーズ:ナガセケムテックス(株)製)を厚みが100μmになるように塗布した。なお、外周側面のすべての面に塗布しない場合は、多孔質状金属層前駆体の側面への塗布した場合、直上の半導体素子の側面には極力塗布しないようにした。
[Example 1]
(1) Formation of porous metal layer precursor, application of resin solution A metal fine particle dispersion material having a thickness of 5.5 mm × 5.5 mm and a thickness of 300 μm is patterned on the surface shown in Table 1 on the copper plate of the DBC substrate. A semiconductor element was further mounted on the metal fine particle dispersion.
A resin solution (T693 / R3000 series: manufactured by Nagase ChemteX Corp.) was applied to the whole of at least one of the porous metal layer precursor and the outer peripheral side surface of the semiconductor element so as to have a thickness of 100 μm. In addition, when not apply | coating to all the surfaces of an outer peripheral side surface, when apply | coating to the side surface of a porous metal layer precursor, it applied so that it might not apply as much as possible to the side surface of a semiconductor device immediately above.

(2)多孔質状金属層前駆体の加熱・焼結
前記DBC基板を加熱炉内に配置して、減圧雰囲気下(真空圧力1kPa)で、半導体素子上に厚み30μmの離型材(PTFEシート)を3枚重ねて圧力10MPaで加圧しながら、同時に10℃/minで加熱を開始し、300℃まで昇温後、該温度で20分間保持した。その後、冷却して除荷した。上記焼結により、厚さ100μmの多孔質状金属層が形成されるとともに、半導体素子が該多孔質状金属層を介してDBC基板上の銅板に接合された。
多孔質状金属層と半導体素子の外周側面は樹脂により被覆された状態になっていた。
(3)ワイヤボンディング、モールド
その後、半導体素子と他の電極端子とを金属製ワイヤで接合し、さらにシリコーンゲルを用いて封止し、半導体装置を作製した。
(4)評価
得られた半導体装置の半導体素子と他の電極端子間の電流−電圧カーブから、ゲート漏れ電流とドレイン遮断電流の測定を行った。
表1に評価結果を示す。半導体素子の被覆樹脂部による被覆面は、半導体素子表面の上部側からみて時計方向周りにA、B、C、D面とし、対応する多孔質状金属層の被覆樹脂部による被覆面をa、b、c、d側面として、被覆樹脂部の各被覆パターンごとに各500個のサンプルを評価した。評価結果がNGとなった数を表1に示す。
尚、表1中の評価結果は、[ゲート漏れ電流/ドレイン遮断電流]として表示する。
(2) Heating / sintering of porous metal layer precursor The DBC substrate is placed in a heating furnace, and a release material (PTFE sheet) having a thickness of 30 μm on a semiconductor element in a reduced pressure atmosphere (vacuum pressure 1 kPa). 3 sheets were stacked and pressurized at a pressure of 10 MPa, at the same time, heating was started at 10 ° C./min. Then, it cooled and unloaded. By the sintering, a porous metal layer having a thickness of 100 μm was formed, and the semiconductor element was bonded to the copper plate on the DBC substrate via the porous metal layer.
The outer peripheral side surfaces of the porous metal layer and the semiconductor element were covered with resin.
(3) Wire bonding, molding After that, the semiconductor element and the other electrode terminal were joined with a metal wire, and further sealed with silicone gel to produce a semiconductor device.
(4) Evaluation The gate leakage current and the drain cutoff current were measured from the current-voltage curve between the semiconductor element of the obtained semiconductor device and the other electrode terminals.
Table 1 shows the evaluation results. The coating surface of the semiconductor element with the coating resin portion is A, B, C, D surfaces in the clockwise direction when viewed from the upper side of the semiconductor element surface, and the coating surface with the coating resin portion of the corresponding porous metal layer is a, As the b, c, and d side surfaces, 500 samples were evaluated for each coating pattern of the coating resin portion. Table 1 shows the number of NG evaluation results.
The evaluation results in Table 1 are expressed as [gate leakage current / drain cutoff current].

Figure 0005863323
Figure 0005863323

[実施例2]
(1)多孔質状金属層前駆体の形成、樹脂溶液の塗布
DBC基板の銅板上に5mm×5mmで厚みは300μmの金属微粒子分散材をパターニングして多孔質状金属層前駆体を形成し、該多孔質状金属層前駆体上にサイズ6mm×6mmで厚み100μmの樹脂シート(T693/R6000シリーズ:ナガセエレックス(株)製)を配置し、該樹脂シート上に半導体素子を搭載した。
その後、半導体素子上に厚み30μmの離型材(PTFEシート)を3枚重ねて圧力10MPaで加圧しながら、180℃に加熱して、ペーストと半導体素子の外周側面の全面を、樹脂シートからなる樹脂により被覆した。
(2)多孔質状金属層前駆体の加熱・焼結
前記DBC基板を加熱炉内に配置して、減圧雰囲気下(真空圧力1kPa)で、半導体素子上に厚み30μmの離型材(PTFEシート)を3枚重ねて圧力10MPaで加圧しながら、同時に10℃/minで加熱を開始し、300℃まで昇温後、該温度で20分間保持した。その後、冷却して除荷した。
上記焼結により、厚さ100μmの多孔質状金属層が形成されるとともに、半導体素子が該多孔質状金属層を介してDBC基板上の銅板に接合された。
多孔質状金属層と半導体素子の外周側面は樹脂により被覆された状態になっていた。
[Example 2]
(1) Formation of porous metal layer precursor, application of resin solution On the copper plate of the DBC substrate, a metal fine particle dispersion material having a thickness of 5 mm × 5 mm and a thickness of 300 μm is patterned to form a porous metal layer precursor, A resin sheet (T693 / R6000 series: manufactured by Nagase Elex Co., Ltd.) having a size of 6 mm × 6 mm and a thickness of 100 μm was placed on the porous metal layer precursor, and a semiconductor element was mounted on the resin sheet.
Thereafter, three release materials (PTFE sheets) with a thickness of 30 μm are stacked on the semiconductor element and heated to 180 ° C. while being pressurized at a pressure of 10 MPa, and the entire outer peripheral side surface of the paste and the semiconductor element is made of a resin sheet. Coated.
(2) Heating / sintering of porous metal layer precursor The DBC substrate is placed in a heating furnace, and a release material (PTFE sheet) having a thickness of 30 μm on a semiconductor element in a reduced pressure atmosphere (vacuum pressure 1 kPa). 3 sheets were stacked and pressurized at a pressure of 10 MPa, at the same time, heating was started at 10 ° C./min. Then, it cooled and unloaded.
By the sintering, a porous metal layer having a thickness of 100 μm was formed, and the semiconductor element was bonded to the copper plate on the DBC substrate via the porous metal layer.
The outer peripheral side surfaces of the porous metal layer and the semiconductor element were covered with resin.

(3)ワイヤボンディング、モールド
その後、半導体素子と他の電極端子とを金属製ワイヤで接合し、さらにシリコーンゲルを用いて封止し、半導体装置を作製した。
(4)評価
実施例1と同様に、得られた半導体装置の半導体素子と他の電極端子間の電流−電圧カーブから、ゲート漏れ電流とドレイン遮断電流の測定を行った。500個のサンプルを評価し、ゲート漏れ電流とドレイン遮断電流の評価結果がNGとなった数はゼロであった。
(3) Wire bonding, molding After that, the semiconductor element and the other electrode terminal were joined with a metal wire, and further sealed with silicone gel to produce a semiconductor device.
(4) In the same manner as in Evaluation Example 1, the gate leakage current and the drain cutoff current were measured from the current-voltage curve between the semiconductor element of the obtained semiconductor device and the other electrode terminals. 500 samples were evaluated, and the number of evaluation results of gate leakage current and drain cutoff current being NG was zero.

[実施例3]
(1)多孔質状金属層前駆体の形成、樹脂溶液の塗布
DBC基板の銅板上にサイズ6mm×6mmで厚み100μmの実施例2で使用したのと同様の樹脂シートを配置した。
該樹脂シート上に5mm×5mmで厚みは300μmの金属微粒子分散材をパターニングして多孔質状金属層前駆体を形成し、該多孔質状金属層前駆体上に更に半導体素子を搭載した。
その後、半導体素子上に厚み30μmの離型材(PTFEシート)を3枚重ねて圧力10MPaで加圧しながら、300℃に加熱して、多孔質状金属層と半導体素子の外周側面の全面を、樹脂シートからなる樹脂により被覆した。
(2)多孔質状金属層前駆体の加熱・焼結
前記DBC基板を加熱炉内に配置して、減圧雰囲気下(真空圧力1kPa)で、半導体素子上に厚み30μmの離型材(PTFEシート)を3枚重ねて圧力10MPaで加圧しながら、同時に10℃/minで加熱を開始し、300℃まで昇温後、該温度で20分間保持した。その後、冷却して除荷した。
上記焼結により、厚さ100μmの銅微粒子多孔質状金属層が形成されるとともに、半導体素子が該銅微粒子多孔質状金属層を介してDBC基板上の銅板に接合された。銅微粒子多孔質状金属層と半導体素子の外周側面は樹脂により被覆された状態になっていた。
[Example 3]
(1) Formation of porous metal layer precursor, application of resin solution A resin sheet similar to that used in Example 2 having a size of 6 mm x 6 mm and a thickness of 100 µm was placed on a copper plate of a DBC substrate.
A porous metal layer precursor was formed by patterning a metal fine particle dispersion material having a thickness of 5 mm × 5 mm and a thickness of 300 μm on the resin sheet, and a semiconductor element was further mounted on the porous metal layer precursor.
Thereafter, three release materials (PTFE sheets) having a thickness of 30 μm are stacked on the semiconductor element and heated to 300 ° C. while being pressurized at a pressure of 10 MPa, so that the entire surface of the porous metal layer and the outer peripheral side surface of the semiconductor element are made of resin. It was coated with a resin consisting of a sheet.
(2) Heating / sintering of porous metal layer precursor The DBC substrate is placed in a heating furnace, and a release material (PTFE sheet) having a thickness of 30 μm on a semiconductor element in a reduced pressure atmosphere (vacuum pressure 1 kPa). 3 sheets were stacked and pressurized at a pressure of 10 MPa, at the same time, heating was started at 10 ° C./min. Then, it cooled and unloaded.
By the sintering, a copper fine particle porous metal layer having a thickness of 100 μm was formed, and the semiconductor element was bonded to the copper plate on the DBC substrate through the copper fine particle porous metal layer. The copper fine particle porous metal layer and the outer peripheral side surface of the semiconductor element were covered with resin.

(3)ワイヤボンディング、モールド
その後、半導体素子と他の電極端子とを金属製ワイヤで接合し、さらにシリコーンゲルを用いて封止し、半導体装置を作製した。
(4)評価
実施例1と同様に、得られた半導体装置の半導体素子と他の電極端子間の電流−電圧カーブから、ゲート漏れ電流とドレイン遮断電流の測定を行った。500個のサンプルを評価し、ゲート漏れ電流とドレイン遮断電流の評価結果がNGとなった数はゼロであった。
(3) Wire bonding, molding After that, the semiconductor element and the other electrode terminal were joined with a metal wire, and further sealed with silicone gel to produce a semiconductor device.
(4) In the same manner as in Evaluation Example 1, the gate leakage current and the drain cutoff current were measured from the current-voltage curve between the semiconductor element of the obtained semiconductor device and the other electrode terminals. 500 samples were evaluated, and the number of evaluation results of gate leakage current and drain cutoff current being NG was zero.

[実施例4]
(1)多孔質状金属層前駆体の形成、樹脂溶液の塗布
平均一次粒子径20μmの銅微粒子がジエチレングリコール中に80質量%の濃度で分散している銅微粒子分散材に更に、ポリビニルピロリドンをペースト中の濃度が2質量%になるように溶解して、樹脂含有金属微粒子分散材を調製した。
DBC基板の銅板上に5mm×5mmで厚みは300μmの樹脂含有金属微粒子分散材をパターニングして多孔質状金属層前駆体を形成し、該多孔質状金属層前駆体上に更に半導体素子を搭載した。
(2)多孔質状金属層前駆体の加熱・焼結
前記DBC基板を加熱炉内に配置して、減圧雰囲気下(真空圧力1kPa)で、半導体素子上に厚み30μmのPTFEシートを3枚重ねて圧力10MPaで加圧しながら、同時に10℃/minで加熱を開始し、300℃まで昇温後、該温度で20分間保持した。
その後、冷却して除荷した。
上記焼結により、厚さ100μmの銅微粒子多孔質状金属層が形成されるとともに、半導体素子が該銅微粒子多孔質状金属層を介してDBC基板上の銅板に接合された。銅微粒子多孔質状金属層と半導体素子の外周側面は樹脂により被覆された状態になっていた。
[Example 4]
(1) Formation of porous metal layer precursor, application of resin solution Paste polyvinyl pyrrolidone into a copper fine particle dispersion in which copper fine particles having an average primary particle size of 20 μm are dispersed in diethylene glycol at a concentration of 80% by mass A resin-containing fine metal particle dispersion was prepared by dissolving so that the concentration thereof was 2% by mass.
A porous metal layer precursor is formed by patterning a resin-containing fine metal particle dispersion material having a thickness of 5 mm × 5 mm and a thickness of 300 μm on a copper plate of a DBC substrate, and further a semiconductor element is mounted on the porous metal layer precursor did.
(2) Heating / sintering of porous metal layer precursor The DBC substrate is placed in a heating furnace, and three PTFE sheets with a thickness of 30 μm are stacked on the semiconductor element in a reduced pressure atmosphere (vacuum pressure 1 kPa). At the same time, heating was started at 10 ° C./min while pressurizing at a pressure of 10 MPa, and after raising the temperature to 300 ° C., the temperature was maintained for 20 minutes.
Then, it cooled and unloaded.
By the sintering, a copper fine particle porous metal layer having a thickness of 100 μm was formed, and the semiconductor element was bonded to the copper plate on the DBC substrate through the copper fine particle porous metal layer. The copper fine particle porous metal layer and the outer peripheral side surface of the semiconductor element were covered with resin.

(3)ワイヤボンディング、モールド
その後、半導体素子と他の電極端子とを金属製ワイヤで接合し、さらにシリコーンゲルを用いて封止し、半導体装置を作製した。
(4)評価
実施例1と同様に、得られた半導体装置の半導体素子と他の電極端子間の電流−電圧カーブから、ゲート漏れ電流とドレイン遮断電流の測定を行った。500個のサンプルを評価し、ゲート漏れ電流とドレイン遮断電流の評価結果がNGとなった数はゼロであった。
(3) Wire bonding, molding After that, the semiconductor element and the other electrode terminal were joined with a metal wire, and further sealed with silicone gel to produce a semiconductor device.
(4) In the same manner as in Evaluation Example 1, the gate leakage current and the drain cutoff current were measured from the current-voltage curve between the semiconductor element of the obtained semiconductor device and the other electrode terminals. 500 samples were evaluated, and the number of evaluation results of gate leakage current and drain cutoff current being NG was zero.

[比較例1]
ペーストと半導体素子の外周側面に樹脂溶液を塗布しなかった以外は実施例1に記載したと同様に、(1)多孔質状金属層前駆体の形成、(2)多孔質状金属層前駆体の加熱・焼結、(3)ワイヤボンディング、モールドを行い、半導体装置を作製した。
実施例1と同様に、得られた半導体装置の半導体素子と他の電極端子間の電流−電圧カーブから、ゲート漏れ電流とドレイン遮断電流の測定を行った。
評価結果は下記の通りである。500個のサンプルを評価し、ゲート漏れ電流とドレイン遮断電流の評価結果がNGとなった数は、表1に示される通り、それぞれ5個および3個となった。
[Comparative Example 1]
(1) Formation of porous metal layer precursor, (2) Porous metal layer precursor, as described in Example 1, except that the resin solution was not applied to the outer peripheral side surfaces of the paste and semiconductor element Were heated and sintered, (3) wire bonding and molding were carried out to produce a semiconductor device.
In the same manner as in Example 1, the gate leakage current and the drain cutoff current were measured from the current-voltage curve between the semiconductor element of the obtained semiconductor device and the other electrode terminals.
The evaluation results are as follows. 500 samples were evaluated, and the numbers of evaluation results of gate leakage current and drain cutoff current being NG were 5 and 3, respectively, as shown in Table 1.

11 基板(K)
12 パッド部(P)
13 多孔質状金属層前駆体(B)
14 半導体素子(S)
15 金属板
16 多孔質状金属層(C)
21 樹脂溶液(E)
22 樹脂シート(F)
23 被覆樹脂部(I)
24 樹脂(G)
31 金属製ワイヤ
32 封止樹脂(H)
33 リードフレーム
34 配線パターン
41 ワーク
42 プレス板
43 真空プレス機
44 下熱盤
45 チャンバー
46 加圧シリンダー
47 上熱盤
11 Substrate (K)
12 Pad part (P)
13 Porous metal layer precursor (B)
14 Semiconductor element (S)
15 Metal plate 16 Porous metal layer (C)
21 Resin solution (E)
22 Resin sheet (F)
23 Coating resin part (I)
24 Resin (G)
31 Metal wire 32 Sealing resin (H)
33 Lead frame 34 Wiring pattern 41 Work 42 Press plate 43 Vacuum press machine 44 Lower heating plate 45 Chamber 46 Pressure cylinder 47 Upper heating plate

Claims (5)

基板(K)またはリードフレーム(L)に設けられたパッド部(P)と、半導体素子(S)の金属層とが、多孔質状金属層(C)を介して接合され、
該半導体素子(S)と他の電極端子(T)間とが金属製ワイヤで接続され、
かつ前記パッド部(P)、多孔質状金属層(C)、半導体素子(S)、被覆樹脂部(I)、及び半導体素子(S)と電極端子(T)間を接続する金属製ワイヤが封止樹脂(H)で封止されている半導体装置であって、
前記多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部被覆樹脂部(I)が配置され、かつ、前記被覆樹脂部(I)前記封止樹脂(H)との間に界面が存在していることを特徴とする半導体装置。
The pad portion (P) provided on the substrate (K) or the lead frame (L) and the metal layer of the semiconductor element (S) are joined via the porous metal layer (C),
The semiconductor element (S) and the other electrode terminal (T) are connected with a metal wire,
The pad portion (P), the porous metal layer (C), the semiconductor element (S), the coating resin portion (I), and the metal wire connecting the semiconductor element (S) and the electrode terminal (T) are provided. A semiconductor device sealed with a sealing resin (H),
The porous metal layer (C) at least a portion of the outer peripheral side surface of, and / or at least partially covering the resin portion of the outer peripheral side surface of the semiconductor device (S) (I) is arranged, and the covering resin portion ( A semiconductor device characterized in that an interface exists between I) and the sealing resin (H).
前記多孔質状金属層(C)が、銅、金、銀、ニッケル、及びコバルトの中から選択される1種又は2種以上の元素を含むことを特徴とする、請求項1に記載の半導体装置。   2. The semiconductor according to claim 1, wherein the porous metal layer (C) contains one or more elements selected from copper, gold, silver, nickel, and cobalt. apparatus. 前記被覆樹脂部(I)が耐熱性樹脂から形成されていることを特徴とする、請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the coating resin portion (I) is made of a heat resistant resin. 前記耐熱性樹脂がポリイミド系樹脂、ポリアミドイミド系樹脂、フッ素樹脂、エポキシ系樹脂、又はポリビニルピロリドン系樹脂であることを特徴とする、請求項3に記載の半導体装置。   The semiconductor device according to claim 3, wherein the heat-resistant resin is a polyimide resin, a polyamideimide resin, a fluororesin, an epoxy resin, or a polyvinylpyrrolidone resin. 基板(K)又はリードフレーム(L)に設けられたパッド部(P)上に、金属微粒子(M)と分散溶液(D)を含む金属微粒子分散材(A)からなるペースト状物を塗布又はパターニングして多孔質状金属層前駆体(B)を形成し、次に該前駆体(B)上に半導体素子(S)を搭載した後、該多孔質状金属層前駆体(B)を加熱・焼結して多孔質状金属層(C)を形成することにより、パッド部(P)と半導体素子(S)とを多孔質状金属層(C)を介して接合する工程(接合工程)、
該半導体素子(S)と他の電極端子(T)間を金属製ワイヤでワイヤボンディングする工程(ワイヤボンディング工程)、及び
前記パッド部(P)、多孔質状金属層(C)、半導体素子(S)、被覆樹脂部(I)、及び半導体素子(S)と電極端子(T)間を接続する金属製ワイヤを封止樹脂(H)で封止する工程(モールド工程)
を含む半導体装置の製造方法であって、
前記接合工程において
(i)前記多孔質状金属層前駆体(B)を加熱・焼結する前に、多孔質状金属層前駆体(B)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を構成する樹脂を被覆することにより、多孔質状金属層前駆体(B)の加熱・焼結後に多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部に被覆樹脂部(I)を配置する、又は
(ii)金属微粒子分散材(A)に更に予め樹脂(G)を溶解させておき、多孔質状金属層前駆体(B)を加圧下に加熱・焼結して多孔質状金属層(C)を形成する際に、多孔質状金属層(C)の外周側面の少なくとも一部、及び/又は半導体素子(S)の外周側面の少なくとも一部を樹脂(G)から形成されるフィレット状の被覆樹脂部(I)を配置する、
ことを特徴とする、半導体装置の製造方法。
On the pad (P) provided on the substrate (K) or the lead frame (L), a paste-like material composed of the metal fine particle dispersion (A) containing the metal fine particles (M) and the dispersion solution (D) is applied or After patterning to form a porous metal layer precursor (B), and then mounting a semiconductor element (S) on the precursor (B), heating the porous metal layer precursor (B) A step of bonding the pad portion (P) and the semiconductor element (S) via the porous metal layer (C) by forming a porous metal layer (C) by sintering (bonding step). ,
A step of wire bonding with a metal wire between the semiconductor element (S) and another electrode terminal (T) (wire bonding step), the pad portion (P), the porous metal layer (C), a semiconductor element ( S), sealing resin part (I), and a step of sealing a metal wire connecting between the semiconductor element (S) and the electrode terminal (T) with a sealing resin (H) (molding step) ,
A method of manufacturing a semiconductor device including:
In the bonding step, (i) before heating and sintering the porous metal layer precursor (B), at least a part of the outer peripheral side surface of the porous metal layer precursor (B) and / or a semiconductor element The porous metal layer (C) is heated and sintered after the porous metal layer precursor (B) is heated by coating the resin constituting the coating resin portion (I) on at least a part of the outer peripheral side surface of (S). ) And / or at least a part of the outer peripheral side surface of the semiconductor element (S), or (ii) a resin in advance on the metal fine particle dispersion (A). (G) is dissolved, and when the porous metal layer precursor (B) is heated and sintered under pressure to form the porous metal layer (C), the porous metal layer (C ) And / or at least part of the outer peripheral side surface of the semiconductor element (S). Arranging fillet-like coating resin portion formed of a resin (G) to (I),
A method for manufacturing a semiconductor device.
JP2011175971A 2011-08-11 2011-08-11 Semiconductor device and manufacturing method of semiconductor device Active JP5863323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175971A JP5863323B2 (en) 2011-08-11 2011-08-11 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175971A JP5863323B2 (en) 2011-08-11 2011-08-11 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2013041870A JP2013041870A (en) 2013-02-28
JP5863323B2 true JP5863323B2 (en) 2016-02-16

Family

ID=47890038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175971A Active JP5863323B2 (en) 2011-08-11 2011-08-11 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5863323B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960930A4 (en) * 2013-02-22 2017-07-12 Furukawa Electric Co., Ltd. Connecting structure, and semiconductor device
JP6272676B2 (en) 2013-11-07 2018-01-31 東レエンジニアリング株式会社 Bonding equipment
JP2016081943A (en) * 2014-10-09 2016-05-16 三菱電機株式会社 Semiconductor device, and method of manufacturing the same
JP7175095B2 (en) * 2018-03-28 2022-11-18 三菱電機株式会社 semiconductor equipment
JP7451455B2 (en) 2021-03-19 2024-03-18 株式会社東芝 semiconductor equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218146A (en) * 1982-05-24 1983-12-19 Nec Home Electronics Ltd Resin sealed semiconductor device
JPS59201447A (en) * 1983-04-28 1984-11-15 Toshiba Corp Semiconductor device
JP2734443B2 (en) * 1996-03-19 1998-03-30 日本電気株式会社 Resin-sealed semiconductor device
JP2004128357A (en) * 2002-10-04 2004-04-22 Ebara Corp Electrode arranged substrate and its electrode connection method
JP2006202586A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Bonding method and bonding structure
JP5012239B2 (en) * 2007-06-13 2012-08-29 株式会社デンソー Joining method and joined body

Also Published As

Publication number Publication date
JP2013041870A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5718536B2 (en) Connection structure and semiconductor device
KR101755749B1 (en) Conductive connecting member and manufacturing method of same
KR102222304B1 (en) Conductive adhesive film and dicing die-bonding film using the same
US10590319B2 (en) High performance, thermally conductive surface mount (die attach) adhesives
KR102190150B1 (en) Conductive adhesive film and dicing die-bonding film using the same
JP2013041884A (en) Semiconductor device
CN1819172A (en) Semiconductor device and manufacturing method therefor
JP5863323B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2009131913A2 (en) Thermal interconnect and interface materials, methods of production and uses thereof
JP6989242B2 (en) Connection structure
JP6108987B2 (en) Connection structure
EP3089209B1 (en) Substrate for power module, method for manufacturing same, and power module
JP4507488B2 (en) Bonding material
JP2006059904A (en) Semiconductor device and its manufacturing method
JP4412578B2 (en) Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof
CN109075081B (en) Semiconductor device with a plurality of semiconductor chips
JP6053360B2 (en) Bonding method of electronic parts
WO2016147736A1 (en) Semiconductor device, and method for manufacturing same
EP3203514B1 (en) Substrate for power module with silver underlayer and power module
JP6053386B2 (en) Bonding method of electronic parts
TW202033708A (en) Adhesive for semiconductors, method for producing semiconductor device, and semiconductor device
Sakamoto et al. Thermomechanical reliability of Ag flake paste for die-attached power devices in thermal cycling
Sasaki et al. Development of low-temperature sintering nano-ag pastes using lowering modulus technologies
TWI745572B (en) Electronic parts installation module
TWI733011B (en) Manufacturing method of electronic component mounting module

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130829

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R151 Written notification of patent or utility model registration

Ref document number: 5863323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350