JP4412578B2 - Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof - Google Patents

Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP4412578B2
JP4412578B2 JP2003131883A JP2003131883A JP4412578B2 JP 4412578 B2 JP4412578 B2 JP 4412578B2 JP 2003131883 A JP2003131883 A JP 2003131883A JP 2003131883 A JP2003131883 A JP 2003131883A JP 4412578 B2 JP4412578 B2 JP 4412578B2
Authority
JP
Japan
Prior art keywords
filler
substrate
thermally conductive
heat
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003131883A
Other languages
Japanese (ja)
Other versions
JP2004335872A (en
Inventor
仁昭 伊達
友久 八木
英士 徳平
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2003131883A priority Critical patent/JP4412578B2/en
Publication of JP2004335872A publication Critical patent/JP2004335872A/en
Application granted granted Critical
Publication of JP4412578B2 publication Critical patent/JP4412578B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子などの発熱部品を冷却する際に使用する熱伝導性材料およびそれを用いた熱伝導性接合体とその製造方法に関するものである。
【0002】
【従来の技術】
近年の半導体素子の高速化と高集積化に伴い、半導体素子からの発熱量をいかに制御するかが重要な技術的課題になってきており、その発熱量の制御手段の一つとして、半導体素子にヒートシンクを取り付けて放熱させる手法が採られている。しかし、半導体素子とヒートシンクをそのまま接触させるのみでは、それらの接合界面に空隙が生じることから、熱伝導性が低下する原因となる。そこで、この空隙を埋めて接合界面の熱抵抗を低減して熱伝導性を向上させるために、半導体素子とヒートシンクとの間に、熱伝導性材料を介在させることが行われている。
【0003】
熱的接続に使用される代表的な熱伝導性材料としては、放熱グリースと呼ばれるペーストタイプのもの、放熱シートあるいは熱伝導性シートと呼ばれるシートタイプのものなどがある。これらは、一般的に熱伝導性の良い無機フィラーをベースとなる樹脂に分散させ、ペースト状あるいはシート状としたものである。しかし、従来使用されている熱伝導性材料の熱伝導率は、大きくても3W/m・K程度である。このため、発熱量の大きい半導体素子などの発熱体を冷却するためには、現在の熱伝導性材料では不十分である。
【0004】
一方、接合材料として最も一般的なはんだは、金属材料の持つ優れた熱伝導性を有する。しかし実際には、はんだ接合時に高温で加熱する必要があり、熱応力によって半導体素子の接合部や、半導体素子と放熱体との接続信頼性が低下してしまうという問題があり、熱伝導性材料として使用することが困難である。
【0005】
また、他の熱伝導性材料として、接着剤中にAgなどのフィラーを分散させた導電性接着剤があるが、フィラー表面を樹脂が覆っているため、金属フィラー自体の優れた熱伝導性を活かせず、熱抵抗を低減しにくいという問題がある。
【0006】
これらを改善する方法として、樹脂中に低融点金属および金属フィラーを混合させた熱伝導性材料が提案されている(例えば、特許文献1、特許文献2参照。)。これらは樹脂中に分散された金属フィラーが、低融点金属によって形成された金属網を介して融着されることにより熱抵抗を低減するものである。
【0007】
図4は、この従来の熱伝導性材料を使用した熱伝導性接合体の接続部の硬化前の模式断面図Aと、硬化後の模式断面図Bである。図4において、発熱体であるLSIチップ41と、放熱体である放熱板42との間には、熱伝導性材料43配置されている。熱伝導性材料43は、樹脂44、金属フィラー45、および低融点金属46から構成されている。
【0008】
【特許文献1】
特開平6−196884号公報
【0009】
【特許文献2】
特開2002−3829号公報
【0010】
【発明が解決しようとする課題】
しかし、図4Bに示すように、樹脂44中に低融点金属46および金属フィラー45を混合した材料では、樹脂44中の低融点金属46は加熱により溶融するものの、金属フィラー45の表面は樹脂44で覆われているため、溶融した低融点金属46と金属フィラー45との融着が起こりにくいという問題があった。また、仮に一部の金属フィラー45同士が、低融点金属46によって形成された金属網を介して融着した場合でも、発熱体や放熱体などの被着体との接合界面には、接合材料中の樹脂層が接するため、接合界面における熱抵抗が低減しにくいという問題があった。
【0011】
そこで、本発明は、高い熱伝導性を有し、接続信頼性をも良好な熱伝導性材料およびそれを用いた熱伝導性接合体とその製造方法を提供する。
【0012】
【課題を解決するための手段】
本発明は、熱硬化性樹脂と熱伝導性フィラーとを含む熱伝導性材料であって、前記熱硬化性樹脂が、有機酸を含み、前記熱伝導性フィラーが、前記熱硬化性樹脂の硬化温度より高い融点を有する第1のフィラーと、前記熱硬化性樹脂の硬化温度より低い融点を有する第2のフィラーとを含むことを特徴とする熱伝導性材料を提供する。
【0013】
また、本発明は、第1の基板と、第2の基板とが、熱伝導性材料を介して接合している熱伝導性接合体であって、前記熱伝導性材料として、前記本発明の熱伝導性材料を用いることを特徴とする熱伝導性接合体を提供する。
【0014】
また、本発明は、第1の基板および第2の基板から選ばれる少なくとも一方に、前記本発明の熱伝導性材料を塗布し、前記第1の基板と前記第2の基板とを、前記熱伝導性材料を介して密着させた後、加熱することにより、前記第1の基板と前記第2の基板とを接合することを特徴とする熱伝導性接合体の製造方法を提供する。
【0015】
【発明の実施の形態】
先ず、本発明の熱伝導性材料の実施の形態を説明する。
【0016】
本発明の熱伝導性材料の一例は、ベース樹脂である熱硬化性樹脂と熱伝導性フィラーとを含み、上記熱硬化性樹脂は有機酸を含み、上記熱伝導性フィラーは、上記熱硬化性樹脂の硬化温度より高い融点を有する第1のフィラーと、上記熱硬化性樹脂の硬化温度より低い融点を有する第2のフィラーとを含む熱伝導性材料である。
【0017】
熱伝導性材料に有機酸を含有させることにより、上記第1のフィラーと上記第2のフィラーとの接触面が清浄化(活性化)され相互の濡れ性が向上し、第1のフィラーと第2のフィラー同士の融着が促進されるともに、被着体と熱伝導性材料との濡れ性も良好となり、その結果、放熱経路における熱抵抗を大幅に低減することが可能となる。
【0018】
また、上記熱伝導性フィラーが、熱硬化性樹脂の硬化温度より低い融点を有する第2のフィラーを含むことにより、熱硬化性樹脂が硬化する前に第2のフィラーが溶融し、第1のフィラーと第2のフィラーとの融着を行うことができる。また、上記熱伝導性フィラーが、熱硬化性樹脂の硬化温度より高い融点を有する第1のフィラーを含むことにより、熱硬化性樹脂の硬化後も第1のフィラーがその形態を維持できるため、他の部材との接触点の数が増加せず、熱抵抗が増加しない。
【0019】
また、熱硬化性樹脂と熱伝導性フィラーとを含む熱伝導性材料としたため、従来のはんだ接合の問題点であった接合後の熱応力を低減できる。即ち、接合温度を低くでき、しかも樹脂系材料をベースとするために弾性率が低くなり、その結果、熱応力の低減が可能となる。
【0020】
上記有機酸としては、無水こはく酸、ステアリン酸、グルタミン酸、オレイン酸、サリチル酸、アジピン酸、クエン酸などのうち少なくとも一種類を使用できるが、無水こはく酸を使用することがより好ましい。上記有機酸の中で無水こはく酸は、熱硬化性樹脂の硬化剤である酸無水物に溶解し、熱伝導性材料の粘度を上昇させずに使用できるため、フィラー同士および被着体と熱伝導性材料との濡れ性をより向上できるからである。
【0021】
なお、無水こはく酸以外の上記有機酸は、熱硬化性樹脂に粉末の状態で混合して用いる必要があるため、熱伝導性材料の粘度が上昇する。
【0022】
上記無水こはく酸の含有量としては、熱硬化性樹脂100重量部に対して、10重量部〜20重量部が好ましい。この範囲内であれば、無水こはく酸が熱硬化性樹脂に完全に溶解し、フィラー同士および被着体と熱伝導性材料との濡れ性も十分付与できるからである。
【0023】
上記熱硬化性樹脂の主剤としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、フラン樹脂、アルキド樹脂、不飽和ポリエステル、ジアクリルフタレート樹脂、ケイ素樹脂、ポリウレタンなどを使用することができる。中でもエポキシ樹脂が特に好ましい。金属や無機物質との接着性が良好で、電気絶縁性も有しているからである。
【0024】
エポキシ樹脂としては、例えば、固形タイプまたは液状タイプの、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、ナフタレン型エポキシ、臭素化エポキシ、フェノールノボラック型エポキシ、クレゾールノボラック型エポキシ、ビフェニル型エポキシなどを用いることができる。また、その硬化剤としては、イミダゾール系硬化剤、酸無水物硬化剤、アミン系硬化剤、フェノール系硬化剤などを用いることができる。イミダゾール系硬化剤としては、例えば、2−フェニル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2,4−ジアミノ−6−[2−メチルイミダゾール−(1)]−エチル−S−トリアジン、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾールなどを用いることができる。酸無水物硬化剤としては、例えば、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ハイミック酸、テトラブロモ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物などを用いることができる。アミン系硬化剤としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、メンセンジアミン、イソホロンジアミン、メタキシレンジアミン、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルフォンなどを用いることができる。
【0025】
上記第2のフィラーは、上記熱硬化性樹脂の硬化温度より低い融点を有する必要があり、熱硬化性樹脂としてエポキシ樹脂を使用した場合には、200℃以下の融点を持つ金属フィラーを使用できる。例えば、In−Sn−Bi合金(融点:60℃)、In−Sn合金(融点:117℃)、Sn−Bi合金(融点:138℃)、Sn−Pb合金(融点:183℃)などからなる金属フィラーを使用できる。
【0026】
上記第1のフィラーとしては、上記熱硬化性樹脂の硬化温度より高い融点を有する必要があり、Sn(融点:232℃)、Ag(融点:962℃)およびCu(融点:1083℃)から選ばれるいずれかの金属、またはSn、AgおよびCuから選ばれるいずれかの金属の表面に他の金属を被覆した金属、またはアルミナ、シリカ、窒化アルミニウムおよび窒化ホウ素から選ばれるいずれかに金属を被覆した無機物などからなるフィラーを使用できる。上記被覆する金属としては、Cu、またはSn−Bi合金(融点:138℃)、Sn−Pb合金(融点:183℃)などのはんだを使用できる。
【0027】
また、上記第1のフィラーの粒子径は、50μm〜300μmであることが好ましく、50μm〜200μmがより好ましい。この範囲内であれば、第1のフィラーと他の部材との接触点の数が少なくなるため、熱抵抗をより減少できるからである。この範囲内でも特に、第1の基板と第2の基板との接合部厚さ(接合時の熱伝導性材料の厚さ)にほぼ等しい粒子径を選択するのがより好ましい。これにより、第1の基板と第2の基板とが第1のフィラーを介して最少接触点で接触することができるので、熱抵抗をさらに減少させることができるからである。
【0028】
また、上記第1のフィラーは、表面を金属で被覆したダイヤモンドであることが好ましい。ダイヤモンドは優れた熱伝導性を有し、またダイヤモンドを金属で被覆することにより、第1のフィラーと第2のフィラーとの融着性が向上するからである。ダイヤモンドに被覆する金属としては、Cu、またはSn−Bi合金、Sn−Pb合金などのはんだを使用できる。
【0029】
また、熱伝導性フィラーの分散性を向上させるために、熱硬化性樹脂にカップリング剤を添加することができる。このようなカップリング剤としては、チタネート系カップリング剤、シラン系カップリング剤、シリコーン系カップリング剤などが使用できる。
【0030】
次に、本発明の熱伝導性接合体およびその製造方法の実施の形態を図面に基づき説明する。図1は、本発明の熱伝導性材料を使用した熱伝導性接合体の接続部の硬化前の模式断面図Aと、硬化後の模式断面図Bである。図1において、第1の基板1(例えば、発熱体)と、第2の基板2(例えば、放熱体)との間には、熱伝導性材料3が配置されている。熱伝導性材料3は、熱硬化性樹脂4、第1のフィラー(例えば、金属フィラー)5、および第2のフィラー(例えば、低融点金属)6から構成されている。
【0031】
本発明の熱伝導性接合体の製造方法の一例は、第1の基板1および第2の基板2から選ばれる少なくとも一方に、上述した本発明の熱伝導性材料3を塗布し、第1の基板1と第2の基板2とを、熱伝導性材料3を介して密着させた後、加熱することにより、第1の基板1と第2の基板2とを接合するものである。
【0032】
第1の基板1と第2の基板2とを、熱伝導性材料3を介して密着させて加熱することにより、第2のフィラー6が先ず溶融して第1のフィラー5と融着し、その後に熱硬化性樹脂4が硬化する。
【0033】
上記熱伝導性材料3は有機酸を含有しているので、第1のフィラー5と第2のフィラー6との接触面が清浄化(活性化)されて相互の濡れ性が向上し、図1Bに示すように、第1のフィラー5と第2のフィラー6同士の融着が促進されるともに、被着体である第1の基板1、第2の基板2と熱伝導性材料3との濡れ性も良好となり、その結果、放熱経路における熱抵抗を大幅に低減することが可能となる。即ち、第1の基板1、第2の基板2および第1のフィラー5が、それぞれ第2のフィラー6により接続されて放熱経路の熱抵抗が大幅に低減できる。
【0034】
また、第2のフィラー6が、熱硬化性樹脂4の硬化温度より低い融点を有しているため、熱硬化性樹脂4が硬化する前に第2のフィラー6が溶融し、第1のフィラー5と第2のフィラー6との融着を行うことができる。また、第1のフィラー5が、熱硬化性樹脂4の硬化温度より高い融点を有しているので、図1Bに示すように、熱硬化性樹脂4の硬化後も第1のフィラー5がその形態を維持できるため、他の部材との接触点の数が増加せず、熱抵抗が増加しない。
【0035】
加熱温度は、ベース樹脂である熱硬化性樹脂4の特性に依存するが、熱硬化性樹脂4としてエポキシ樹脂を使用した場合は通常150℃〜200℃の範囲である。
【0036】
第1の基板1は、例えば半導体素子であるLSIチップなどの発熱体であり、第2の基板2は、例えばヒートシンクなどの放熱体である。
【0037】
【実施例】
以下、実施例に基づき本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0038】
(実施例1)
下記に示す材料・手順で本実施例の熱伝導性材料を作製した。
【0039】
先ず、旭電化社製の酸無水物硬化剤“KRM−291−5”(品番)100重量部に対して、有機酸である無水こはく酸をそれぞれ、5重量部、10重量部、20重量部、30重量部溶解させて4種類の溶液を調製した。この溶液に対して、それぞれエポキシ樹脂の主剤として大日本インキ社製のビスフェノールF型エポキシ“EXA−830LVP”(品番)50重量部と同社製のナフタレン型エポキシ“HP−4032D”(品番)50重量部、硬化促進剤として四国化成社製のイミダゾール“1M2EZ”(品番)0.5重量部、およびカップリング剤である信越化学社製の“KBM−403”(品番)1重量部と“A−166”(品番)1重量部とを混合し、4種類のベース樹脂を作製した。
【0040】
次に、ベース樹脂とフィラーの総量に対して、フィラーの割合が50体積%となるようにベース樹脂にフィラーを添加して混合した。フィラーとしては、エポキシ樹脂の硬化温度(150℃〜200℃)より高い融点を有する第1のフィラーとして平均粒子径100μmのCu(融点:1083℃)、エポキシ樹脂の硬化温度より低い融点を有する第2のフィラーとして平均粒子径20μm〜40μmの42Sn−58Bi合金(融点:138℃)を用い、これらの配合比率(重量比)を第1のフィラー/第2のフィラー=2/8とした。
【0041】
次に図2に示すように、得られたそれぞれの熱伝導性材料を、被着体である2枚の銅板21a、21bで挟み込み、ヒータ22により150℃、1時間の条件で加熱してエポキシ樹脂を硬化させ、熱伝導率の測定用サンプル23を4種類作製した。なお、銅板21a、21bはそれぞれ厚さ2mmのものを使用し、測定用サンプル23の厚さは100μmとした。
【0042】
この各測定用サンプル23を用いて、図2に示す方法で熱伝導率を測定した。図2において、測定用サンプル23を銅板21aを介してヒータ22で加熱し、さらに銅板21bを10℃の冷却水24で冷却し、熱電対25a、25bを用いて銅板21aと銅板21bとの温度差および印加した電流値と電圧値を測定し、下記式より熱伝導率を計算した。その結果を表1に示す。
【0043】
熱伝導率(W/m・K)=熱流(W)/〔(温度差(K)/単位長さ(m))×単位面積(m2)〕
【0044】
【表1】
【0045】
表1から明らかなように、いずれの測定用サンプルも従来の熱伝導性材料の熱伝導率(約3W/m・K)より優れた熱的特性を有していることが分かる。特に、無水こはく酸をそれぞれ10重量部、20重量部添加した測定用サンプル2および3では、いずれも熱伝導率が30W/m・K以上の極めて優れた熱的特性を有することが確認できた。
【0046】
一方、無水こはく酸の添加量が5重量部、30重量部の測定用サンプル1および4では、熱伝導率が20W/m・K程度となった。これは、測定用サンプル1では、熱伝導性材料の濡れ性が多少低下したためと考えられる。また、測定用サンプル4では、熱伝導性材料を調製する際に無水こはく酸がベース樹脂中に析出し、ベース樹脂の安定性が悪かったためと考えられる。
【0047】
なお、無水こはく酸の添加量が5〜20重量部の測定用サンプル1〜3では、熱伝導性材料を調製する際に粘度が上昇することなく、安定したベース樹脂を得ることができた。
【0048】
(実施例2)
無水こはく酸の添加量を10重量部とし、第1のフィラーとして平均粒子径100μmのCuに代えて、平均粒子径100μmのSn(融点:232℃)を用いたこと以外は、実施例1と同様にして実施例2の測定用サンプルを作製した。
【0049】
(実施例3)
無水こはく酸の添加量を10重量部とし、第1のフィラーとして平均粒子径100μmのCuに代えて、平均粒子径100μmのAg(融点:962℃)を用いたこと以外は、実施例1と同様にして実施例3の測定用サンプルを作製した。
【0050】
実施例2および実施例3の測定用サンプルを用いて、実施例1と同様の方法で熱伝導率を測定した。その結果を表2に示す。
【0051】
【表2】
【0052】
表2から明らかなように、実施例2および3の測定用サンプルは、いずれも熱伝導率が30W/m・K以上の優れた熱的特性を有することが確認できた。
【0053】
(実施例4)
下記に示す材料・手順で本実施例の熱伝導性材料を作製した。
【0054】
先ず、旭電化社製の酸無水物硬化剤“KRM−291−5”(品番)100重量部に対して、有機酸である無水こはく酸を10重量部溶解させた溶液を調製した。この溶液に対して、エポキシ樹脂の主剤として大日本インキ社製のビスフェノールF型エポキシ“EXA−830LVP”(品番)50重量部と同社製のナフタレン型エポキシ“HP−4032D”(品番)50重量部、硬化促進剤として四国化成社製のイミダゾール“1M2EZ”(品番)0.5重量部、およびカップリング剤である信越化学社製の“KBM−403”(品番)1重量部と“A−166”(品番)1重量部とを混合してベース樹脂を作製した。
【0055】
次に、ベース樹脂とフィラーの総量に対して、フィラーの割合が50体積%となるようにベース樹脂にフィラーを添加して混合した。フィラーとしては、エポキシ樹脂の硬化温度(150℃〜200℃)より高い融点を有する第1のフィラーとして平均粒子径100μmのCu(融点:1083℃)、エポキシ樹脂の硬化温度より低い融点を有する第2のフィラーとして平均粒子径20μm〜40μmの42Sn−58Bi合金(融点:138℃)を用い、これらの配合比率(重量比)を第1のフィラー/第2のフィラー=2/8とした。
【0056】
次に、図3に示すように、得られた熱伝導性材料31を、エポキシ樹脂基板32に実装されたLSIチップ33(Si半導体チップ、縦15mm、横15mm)と、銅製のヒートシンク34との間に挟み込み、ヒータにより150℃、1時間の条件で加熱してエポキシ樹脂を硬化させ、熱伝導率の測定用サンプルを作製した。なお、図3において、LSIチップ33とエポキシ樹脂基板32との間は、封止樹脂(アンダーフィル)35により封止されている。この測定用サンプルを用いて、実施例1と同様にして初期の熱伝導率を測定したところ34W/m・Kであった。次に、この測定用サンプルを用いて、−65℃〜125℃の間で昇温降温を繰り返す温度サイクル試験を200サイクル行った後、同様にして測定用サンプルの熱伝導率を測定した。その結果、温度サイクル試験後であっても熱伝導率は34W/m・Kとなり、初期の熱的特性を維持していることが確認できた。
【0057】
(比較例1)
無水こはく酸を全く添加しなかったこと以外は、実施例1と同様にして比較例1の測定用サンプルを作製した。
【0058】
(比較例2)
無水こはく酸の添加量を10重量部とし、第1のフィラーを全く用いなかったこと以外は、実施例1と同様にして比較例2の測定用サンプルを作製した。
【0059】
(比較例3)
無水こはく酸の添加量を10重量部とし、第2のフィラーを全く用いず、第1のフィラーとして平均粒子径100μmのCuに代えて、平均粒子径100μmのAgを用いたこと以外は、実施例1と同様にして比較例3の測定用サンプルを作製した。
【0060】
比較例1〜比較例3の測定用サンプルを用いて、実施例1と同様の方法で熱伝導率を測定した。その結果を表3に示す。
【0061】
【表3】
【0062】
表3から明らかなように比較例1〜3の測定用サンプルの熱伝導率は、いずれも実施例1〜3に比べて低い値となった。
【0063】
(比較例4)
実施例4で使用した熱伝導性材料に代えて、63Sn−37Pb共晶はんだ合金を用いたこと以外は、実施例4と同様にして測定用サンプルを作製し、同様にして初期と温度サイクル試験後の熱伝導率を測定した。
【0064】
その結果、初期の測定用サンプルの接合状態を観察したところ、接合部にクラックが見られ、初期の熱伝導率は10W/m・Kであった。また、温度サイクル試験後の熱伝導率を測定した結果、5W/m・Kであった。これは、はんだ接合時の熱応力によってクラックが発生し、温度サイクルによってクラックが進展したためと考えられる。
【0065】
以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列挙する。
【0066】
(付記1) 熱硬化性樹脂と熱伝導性フィラーとを含む熱伝導性材料であって、
前記熱硬化性樹脂が、有機酸を含み、
前記熱伝導性フィラーが、前記熱硬化性樹脂の硬化温度より高い融点を有する第1のフィラーと、前記熱硬化性樹脂の硬化温度より低い融点を有する第2のフィラーとを含むことを特徴とする熱伝導性材料。
【0067】
(付記2) 前記有機酸が、無水こはく酸を含む付記1に記載の熱伝導性材料。
【0068】
(付記3) 前記無水こはく酸の含有量が、前記熱硬化性樹脂100重量部に対して、10重量部以上20重量部以下である付記2に記載の熱伝導性材料。
【0069】
(付記4) 前記熱硬化性樹脂が、エポキシ樹脂である付記1〜3のいずれかに記載の熱伝導性材料。
【0070】
(付記5) 前記第2のフィラーが、In−Sn−Bi合金、In−Sn合金、Sn−Bi合金およびSn−Pb合金から選ばれる少なくとも1種類の合金からなる金属フィラーである付記1〜4のいずれかに記載の熱伝導性材料。
【0071】
(付記6) 前記第1のフィラーの粒子径が、50μm以上300μm以下である付記1〜5のいずれかに記載の熱伝導性材料。
【0072】
(付記7) 前記第1のフィラーが、表面を金属で被覆したダイヤモンドである付記1〜6のいずれかに記載の熱伝導性材料。
【0073】
(付記8) 第1の基板と、第2の基板とが、熱伝導性材料を介して接合している熱伝導性接合体であって、
前記熱伝導性材料として、付記1〜7のいずれかに記載の熱伝導性材料を用いることを特徴とする熱伝導性接合体。
【0074】
(付記9) 前記第1の基板が発熱体であり、前記第2の基板が放熱体である付記8に記載の熱伝導性接合体。
【0075】
(付記10) 第1の基板および第2の基板から選ばれる少なくとも一方に、付記1〜7のいずれかに記載の熱伝導性材料を塗布し、前記第1の基板と前記第2の基板とを、前記熱伝導性材料を介して密着させた後、加熱することにより、前記第1の基板と前記第2の基板とを接合することを特徴とする熱伝導性接合体の製造方法。
【0076】
(付記11) 前記第1の基板が発熱体であり、前記第2の基板が放熱体である付記10に記載の熱伝導性接合体の製造方法。
【0077】
【発明の効果】
以上説明したように本発明は、高い熱伝導性を有し、接続信頼性をも良好な熱伝導性材料およびそれを用いた熱伝導性接合体とその製造方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の熱伝導性材料を使用した熱伝導性接合体の接続部の硬化前の模式断面図Aと、硬化後の模式断面図Bである。
【図2】 熱伝導率の測定方法を示す断面図である。
【図3】 実施例4で作製した測定用サンプルの断面図である。
【図4】 従来の熱伝導性材料を使用した熱伝導性接合体の接続部の硬化前の模式断面図Aと、硬化後の模式断面図Bである。
【符号の説明】
1 第1の基板
2 第2の基板
3 熱伝導性材料
4 熱硬化性樹脂
5 第1のフィラー
6 第2のフィラー
21a、21b 銅板
22 ヒータ
23 測定用サンプル
24 冷却水
25a、25b 熱電対
31 熱伝導性材料
32 エポキシ樹脂基板
33 LSIチップ
34 ヒートシンク
35 封止樹脂
41 LSIチップ
42 放熱板
43 熱伝導性材料
44 樹脂
45 金属フィラー
46 低融点金属
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat conductive material used when cooling a heat-generating component such as a semiconductor element, a heat conductive joint using the material, and a method for manufacturing the heat conductive material.
[0002]
[Prior art]
With the recent increase in the speed and integration of semiconductor elements, how to control the amount of heat generated from the semiconductor elements has become an important technical issue. As one means for controlling the amount of generated heat, semiconductor elements A method of attaching a heat sink to heat radiation is adopted. However, if the semiconductor element and the heat sink are merely brought into contact with each other as they are, voids are formed at the joint interface between them, which causes a decrease in thermal conductivity. Therefore, in order to fill this gap and reduce the thermal resistance at the bonding interface to improve the thermal conductivity, a thermal conductive material is interposed between the semiconductor element and the heat sink.
[0003]
Typical thermal conductive materials used for thermal connection include a paste type material called a heat radiation grease, a sheet type material called a heat radiation sheet or a heat conductive sheet, and the like. In general, an inorganic filler having good thermal conductivity is dispersed in a base resin to form a paste or a sheet. However, the heat conductivity of the heat conductive material conventionally used is about 3 W / m · K at most. For this reason, in order to cool heat generating bodies, such as a semiconductor element with a large emitted-heat amount, the present heat conductive material is inadequate.
[0004]
On the other hand, the most common solder as a joining material has excellent thermal conductivity of a metal material. However, in actuality, it is necessary to heat at a high temperature when soldering, and there is a problem that the reliability of connection between the semiconductor element and the connection between the semiconductor element and the heat sink decreases due to thermal stress. Difficult to use as.
[0005]
In addition, as another heat conductive material, there is a conductive adhesive in which a filler such as Ag is dispersed in an adhesive. However, since the filler surface covers the resin, the excellent heat conductivity of the metal filler itself is obtained. There is a problem that it is difficult to reduce heat resistance.
[0006]
As a method for improving these, a heat conductive material in which a low melting point metal and a metal filler are mixed in a resin has been proposed (see, for example, Patent Document 1 and Patent Document 2). In these, the metal filler dispersed in the resin is fused through a metal network formed of a low melting point metal, thereby reducing the thermal resistance.
[0007]
FIG. 4 is a schematic cross-sectional view A before curing and a schematic cross-sectional view B after curing of the connecting portion of the thermally conductive joined body using the conventional thermally conductive material. In FIG. 4, a heat conductive material 43 is disposed between an LSI chip 41 as a heat generator and a heat sink 42 as a heat radiator. The heat conductive material 43 is composed of a resin 44, a metal filler 45, and a low melting point metal 46.
[0008]
[Patent Document 1]
[Patent Document 1] Japanese Patent Laid-open No. Hei 6-196684
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-3829
[Problems to be solved by the invention]
However, as shown in FIG. 4B, in the material in which the low melting point metal 46 and the metal filler 45 are mixed in the resin 44, the low melting point metal 46 in the resin 44 is melted by heating, but the surface of the metal filler 45 is the resin 44. Therefore, there is a problem that fusion between the molten low melting point metal 46 and the metal filler 45 hardly occurs. Even if some of the metal fillers 45 are fused together via a metal network formed of the low melting point metal 46, the bonding material is not bonded to the bonding interface with the adherend such as a heating element or a heat radiating element. Since the resin layer inside is in contact, there is a problem that the thermal resistance at the bonding interface is difficult to reduce.
[0011]
Accordingly, the present invention provides a thermally conductive material having high thermal conductivity and good connection reliability, a thermally conductive joined body using the same, and a method for manufacturing the same.
[0012]
[Means for Solving the Problems]
The present invention is a heat conductive material including a thermosetting resin and a heat conductive filler, wherein the thermosetting resin includes an organic acid, and the heat conductive filler is cured of the thermosetting resin. There is provided a heat conductive material comprising a first filler having a melting point higher than a temperature and a second filler having a melting point lower than the curing temperature of the thermosetting resin.
[0013]
Further, the present invention is a thermally conductive joined body in which a first substrate and a second substrate are joined via a thermally conductive material, and the thermal conductive material of the present invention is used as the thermally conductive material. Provided is a thermally conductive joined body characterized by using a thermally conductive material.
[0014]
In the present invention, the thermally conductive material of the present invention is applied to at least one selected from the first substrate and the second substrate, and the first substrate and the second substrate are bonded to the heat substrate. Provided is a method for manufacturing a thermally conductive joined body, wherein the first substrate and the second substrate are joined by heating after being brought into close contact with a conductive material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, an embodiment of the thermally conductive material of the present invention will be described.
[0016]
An example of the heat conductive material of the present invention includes a thermosetting resin as a base resin and a heat conductive filler, the thermosetting resin includes an organic acid, and the heat conductive filler includes the thermosetting filler. It is a heat conductive material containing the 1st filler which has melting | fusing point higher than the curing temperature of resin, and the 2nd filler which has melting | fusing point lower than the curing temperature of the said thermosetting resin.
[0017]
By including an organic acid in the thermally conductive material, the contact surface between the first filler and the second filler is cleaned (activated), improving the wettability between the first filler and the second filler. The fusion between the two fillers is promoted, and the wettability between the adherend and the heat conductive material is improved, and as a result, the thermal resistance in the heat dissipation path can be greatly reduced.
[0018]
Moreover, when the said heat conductive filler contains the 2nd filler which has melting | fusing point lower than the curing temperature of a thermosetting resin, before a thermosetting resin hardens | cures, a 2nd filler melts and a 1st Fusion between the filler and the second filler can be performed. In addition, since the thermal conductive filler includes the first filler having a melting point higher than the curing temperature of the thermosetting resin, the first filler can maintain its form even after the thermosetting resin is cured. The number of contact points with other members does not increase and the thermal resistance does not increase.
[0019]
Moreover, since it was set as the heat conductive material containing a thermosetting resin and a heat conductive filler, the thermal stress after joining which was a problem of the conventional solder joint can be reduced. That is, the bonding temperature can be lowered and the elastic modulus is lowered because the resin-based material is used as a base, and as a result, the thermal stress can be reduced.
[0020]
As the organic acid, at least one of succinic anhydride, stearic acid, glutamic acid, oleic acid, salicylic acid, adipic acid, citric acid and the like can be used, but it is more preferable to use succinic anhydride. Among the above organic acids, succinic anhydride dissolves in an acid anhydride, which is a curing agent for thermosetting resins, and can be used without increasing the viscosity of the thermally conductive material. This is because the wettability with the conductive material can be further improved.
[0021]
Note that the organic acid other than succinic anhydride needs to be mixed with the thermosetting resin in the form of powder, and thus the viscosity of the thermally conductive material increases.
[0022]
The content of the succinic anhydride is preferably 10 to 20 parts by weight with respect to 100 parts by weight of the thermosetting resin. This is because, within this range, succinic anhydride is completely dissolved in the thermosetting resin, and sufficient wettability between the fillers and between the adherend and the heat conductive material can be imparted.
[0023]
As the main component of the thermosetting resin, epoxy resin, phenol resin, urea resin, melamine resin, furan resin, alkyd resin, unsaturated polyester, diacryl phthalate resin, silicon resin, polyurethane and the like can be used. Of these, epoxy resins are particularly preferred. This is because it has good adhesion to metals and inorganic substances and also has electrical insulation.
[0024]
As the epoxy resin, for example, solid type or liquid type bisphenol A type epoxy, bisphenol F type epoxy, naphthalene type epoxy, brominated epoxy, phenol novolac type epoxy, cresol novolak type epoxy, biphenyl type epoxy or the like may be used. it can. As the curing agent, an imidazole curing agent, an acid anhydride curing agent, an amine curing agent, a phenol curing agent, or the like can be used. Examples of the imidazole curing agent include 2-phenyl-4-methylimidazole, 2-undecylimidazole, 2,4-diamino-6- [2-methylimidazole- (1)]-ethyl-S-triazine, 1 -Cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, etc. are used. be able to. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic anhydride, tetrabromophthalic anhydride, Trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, and the like can be used. As the amine curing agent, for example, diethylenetriamine, triethylenetetramine, mensendiamine, isophoronediamine, metaxylenediamine, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone and the like can be used.
[0025]
The second filler needs to have a melting point lower than the curing temperature of the thermosetting resin. When an epoxy resin is used as the thermosetting resin, a metal filler having a melting point of 200 ° C. or less can be used. . For example, it consists of In—Sn—Bi alloy (melting point: 60 ° C.), In—Sn alloy (melting point: 117 ° C.), Sn—Bi alloy (melting point: 138 ° C.), Sn—Pb alloy (melting point: 183 ° C.), etc. Metal fillers can be used.
[0026]
The first filler needs to have a melting point higher than the curing temperature of the thermosetting resin, and is selected from Sn (melting point: 232 ° C.), Ag (melting point: 962 ° C.) and Cu (melting point: 1083 ° C.). Or any metal selected from the group consisting of Sn, Ag and Cu, or a metal coated with any metal selected from alumina, silica, aluminum nitride and boron nitride. A filler made of an inorganic material or the like can be used. As the metal to be coated, a solder such as Cu, Sn—Bi alloy (melting point: 138 ° C.) or Sn—Pb alloy (melting point: 183 ° C.) can be used.
[0027]
The particle size of the first filler is preferably 50 μm to 300 μm, more preferably 50 μm to 200 μm. This is because within this range, the number of contact points between the first filler and the other member is reduced, so that the thermal resistance can be further reduced. Even within this range, it is more preferable to select a particle diameter substantially equal to the thickness of the junction between the first substrate and the second substrate (the thickness of the thermally conductive material at the time of bonding). This is because the first substrate and the second substrate can be brought into contact with each other at the minimum contact point via the first filler, so that the thermal resistance can be further reduced.
[0028]
The first filler is preferably diamond whose surface is coated with metal. This is because diamond has excellent thermal conductivity, and by covering the diamond with a metal, the fusing property between the first filler and the second filler is improved. As a metal coated on diamond, Cu, or a solder such as Sn—Bi alloy or Sn—Pb alloy can be used.
[0029]
Moreover, in order to improve the dispersibility of a heat conductive filler, a coupling agent can be added to a thermosetting resin. As such a coupling agent, a titanate coupling agent, a silane coupling agent, a silicone coupling agent, or the like can be used.
[0030]
Next, embodiments of the thermally conductive bonded body and the manufacturing method thereof according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view A before curing and a schematic cross-sectional view B after curing of a connection part of a thermally conductive joined body using the thermally conductive material of the present invention. In FIG. 1, a heat conductive material 3 is disposed between a first substrate 1 (for example, a heating element) and a second substrate 2 (for example, a heat radiator). The thermally conductive material 3 includes a thermosetting resin 4, a first filler (for example, a metal filler) 5, and a second filler (for example, a low melting point metal) 6.
[0031]
One example of the method for producing a thermally conductive bonded body according to the present invention is to apply the above-described thermally conductive material 3 of the present invention to at least one selected from the first substrate 1 and the second substrate 2, The first substrate 1 and the second substrate 2 are bonded to each other by heating after the substrate 1 and the second substrate 2 are brought into close contact with each other via the heat conductive material 3.
[0032]
By heating the first substrate 1 and the second substrate 2 in close contact with each other through the heat conductive material 3, the second filler 6 is first melted and fused with the first filler 5, Thereafter, the thermosetting resin 4 is cured.
[0033]
Since the heat conductive material 3 contains an organic acid, the contact surface between the first filler 5 and the second filler 6 is cleaned (activated) to improve the mutual wettability. As shown in FIG. 5, the fusion between the first filler 5 and the second filler 6 is promoted, and the first substrate 1 and the second substrate 2 that are adherends and the heat conductive material 3 are bonded to each other. The wettability is also improved, and as a result, the thermal resistance in the heat dissipation path can be greatly reduced. That is, the first substrate 1, the second substrate 2, and the first filler 5 are connected by the second filler 6, respectively, and the thermal resistance of the heat dissipation path can be greatly reduced.
[0034]
Moreover, since the 2nd filler 6 has melting | fusing point lower than the curing temperature of the thermosetting resin 4, before the thermosetting resin 4 hardens | cures, the 2nd filler 6 fuse | melts and the 1st filler 5 and the second filler 6 can be fused. Moreover, since the 1st filler 5 has melting | fusing point higher than the curing temperature of the thermosetting resin 4, as shown in FIG. Since the form can be maintained, the number of contact points with other members does not increase, and the thermal resistance does not increase.
[0035]
The heating temperature depends on the characteristics of the thermosetting resin 4 as the base resin, but is usually in the range of 150 ° C. to 200 ° C. when an epoxy resin is used as the thermosetting resin 4.
[0036]
The first substrate 1 is a heat generator such as an LSI chip which is a semiconductor element, for example, and the second substrate 2 is a heat radiator such as a heat sink, for example.
[0037]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples.
[0038]
Example 1
A heat conductive material of this example was produced by the following materials and procedures.
[0039]
First, 5 parts by weight, 10 parts by weight, and 20 parts by weight of succinic anhydride, which is an organic acid, per 100 parts by weight of an acid anhydride curing agent “KRM-291-5” (product number) manufactured by Asahi Denka Co., Ltd. , 30 parts by weight were dissolved to prepare four types of solutions. 50 parts by weight of bisphenol F type epoxy “EXA-830LVP” (product number) manufactured by Dainippon Ink and 50% by weight of naphthalene type epoxy “HP-4032D” (product number) manufactured by Dainippon Ink Co., Ltd. Part, 0.5 part by weight of imidazole “1M2EZ” (product number) manufactured by Shikoku Kasei Co., Ltd. as a curing accelerator, and 1 part by weight of “KBM-403” (product number) manufactured by Shin-Etsu Chemical Co., Ltd. as a coupling agent. One type of 166 ″ (product number) was mixed to prepare four types of base resins.
[0040]
Next, the filler was added to the base resin and mixed so that the ratio of the filler was 50% by volume with respect to the total amount of the base resin and the filler. As a filler, Cu having an average particle diameter of 100 μm (melting point: 1083 ° C.) as a first filler having a melting point higher than the curing temperature (150 ° C. to 200 ° C.) of the epoxy resin, and having a melting point lower than the curing temperature of the epoxy resin. A 42Sn-58Bi alloy (melting point: 138 ° C.) having an average particle diameter of 20 μm to 40 μm was used as the filler of No. 2, and the blending ratio (weight ratio) thereof was set to 1st filler / 2nd filler = 2/8.
[0041]
Next, as shown in FIG. 2, each obtained heat conductive material is sandwiched between two copper plates 21a and 21b, which are adherends, and heated by a heater 22 under conditions of 150 ° C. and 1 hour. The resin was cured, and four types of samples 23 for measuring thermal conductivity were produced. The copper plates 21a and 21b each had a thickness of 2 mm, and the thickness of the measurement sample 23 was 100 μm.
[0042]
Using each measurement sample 23, the thermal conductivity was measured by the method shown in FIG. In FIG. 2, the sample 23 for measurement is heated with the heater 22 through the copper plate 21a, the copper plate 21b is further cooled with the cooling water 24 of 10 degreeC, and the temperature of the copper plate 21a and the copper plate 21b using thermocouples 25a and 25b. The difference and the applied current value and voltage value were measured, and the thermal conductivity was calculated from the following formula. The results are shown in Table 1.
[0043]
Thermal conductivity (W / m · K) = heat flow (W) / [(temperature difference (K) / unit length (m)) × unit area (m 2 )]
[0044]
[Table 1]
[0045]
As is apparent from Table 1, it can be seen that all the measurement samples have thermal characteristics superior to the thermal conductivity (about 3 W / m · K) of the conventional thermal conductive material. In particular, it was confirmed that Samples 2 and 3 to which 10 parts by weight and 20 parts by weight of succinic anhydride were added respectively had extremely excellent thermal characteristics with a thermal conductivity of 30 W / m · K or more. .
[0046]
On the other hand, in the measurement samples 1 and 4 in which the addition amount of succinic anhydride was 5 parts by weight and 30 parts by weight, the thermal conductivity was about 20 W / m · K. This is considered to be because the wettability of the heat conductive material was somewhat lowered in the measurement sample 1. Moreover, in the sample 4 for a measurement, when preparing a heat conductive material, succinic anhydride precipitated in the base resin, and it was thought that the stability of the base resin was bad.
[0047]
In addition, in samples 1 to 3 for measurement in which the addition amount of succinic anhydride was 5 to 20 parts by weight, a stable base resin could be obtained without increasing the viscosity when preparing the heat conductive material.
[0048]
(Example 2)
Example 1 except that the amount of succinic anhydride added was 10 parts by weight, and Sn (melting point: 232 ° C.) having an average particle size of 100 μm was used as the first filler instead of Cu having an average particle size of 100 μm. Similarly, a measurement sample of Example 2 was produced.
[0049]
(Example 3)
Example 1 except that the amount of succinic anhydride added was 10 parts by weight, and Ag (melting point: 962 ° C.) having an average particle diameter of 100 μm was used as the first filler instead of Cu having an average particle diameter of 100 μm. Similarly, a measurement sample of Example 3 was produced.
[0050]
Using the measurement samples of Example 2 and Example 3, the thermal conductivity was measured in the same manner as in Example 1. The results are shown in Table 2.
[0051]
[Table 2]
[0052]
As is apparent from Table 2, it was confirmed that the measurement samples of Examples 2 and 3 both had excellent thermal characteristics with a thermal conductivity of 30 W / m · K or more.
[0053]
Example 4
A heat conductive material of this example was produced by the following materials and procedures.
[0054]
First, a solution in which 10 parts by weight of succinic anhydride as an organic acid was dissolved in 100 parts by weight of an acid anhydride curing agent “KRM-291-5” (product number) manufactured by Asahi Denka Co., Ltd. was prepared. For this solution, 50 parts by weight of bisphenol F type epoxy “EXA-830LVP” (product number) manufactured by Dainippon Ink and 50 parts by weight of naphthalene type epoxy “HP-4032D” (product number) manufactured by Dainippon Ink Co., Ltd. As a curing accelerator, 0.5 part by weight of imidazole “1M2EZ” (product number) manufactured by Shikoku Kasei Co., Ltd. and 1 part by weight of “KBM-403” (product number) manufactured by Shin-Etsu Chemical Co., Ltd. as a coupling agent, and “A-166” "(Part No.) 1 part by weight was mixed to prepare a base resin.
[0055]
Next, the filler was added to the base resin and mixed so that the ratio of the filler was 50% by volume with respect to the total amount of the base resin and the filler. As a filler, Cu having an average particle diameter of 100 μm (melting point: 1083 ° C.) as a first filler having a melting point higher than the curing temperature (150 ° C. to 200 ° C.) of the epoxy resin, and having a melting point lower than the curing temperature of the epoxy resin. A 42Sn-58Bi alloy (melting point: 138 ° C.) having an average particle diameter of 20 μm to 40 μm was used as the filler of No. 2, and the blending ratio (weight ratio) thereof was set to 1st filler / 2nd filler = 2/8.
[0056]
Next, as shown in FIG. 3, the obtained heat conductive material 31 is composed of an LSI chip 33 (Si semiconductor chip, 15 mm long, 15 mm wide) mounted on an epoxy resin substrate 32 and a copper heat sink 34. The epoxy resin was cured by being sandwiched between them and heated at 150 ° C. for 1 hour with a heater to prepare a sample for measuring thermal conductivity. In FIG. 3, the LSI chip 33 and the epoxy resin substrate 32 are sealed with a sealing resin (underfill) 35. Using this measurement sample, the initial thermal conductivity was measured in the same manner as in Example 1. As a result, it was 34 W / m · K. Next, using this measurement sample, a temperature cycle test in which the temperature was increased and decreased between -65 ° C. and 125 ° C. was performed 200 cycles, and then the thermal conductivity of the measurement sample was measured in the same manner. As a result, even after the temperature cycle test, the thermal conductivity was 34 W / m · K, and it was confirmed that the initial thermal characteristics were maintained.
[0057]
(Comparative Example 1)
A measurement sample of Comparative Example 1 was produced in the same manner as in Example 1 except that no succinic anhydride was added.
[0058]
(Comparative Example 2)
A measurement sample of Comparative Example 2 was prepared in the same manner as in Example 1 except that the amount of succinic anhydride added was 10 parts by weight and the first filler was not used at all.
[0059]
(Comparative Example 3)
Implementation was performed except that the addition amount of succinic anhydride was 10 parts by weight, no second filler was used, and Ag having an average particle diameter of 100 μm was used as the first filler instead of Cu having an average particle diameter of 100 μm. A measurement sample of Comparative Example 3 was produced in the same manner as Example 1.
[0060]
Using the measurement samples of Comparative Examples 1 to 3, the thermal conductivity was measured in the same manner as in Example 1. The results are shown in Table 3.
[0061]
[Table 3]
[0062]
As is clear from Table 3, the thermal conductivity of the measurement samples of Comparative Examples 1 to 3 was lower than that of Examples 1 to 3.
[0063]
(Comparative Example 4)
A sample for measurement was prepared in the same manner as in Example 4 except that a 63Sn-37Pb eutectic solder alloy was used instead of the heat conductive material used in Example 4, and the initial and temperature cycle tests were similarly performed. The later thermal conductivity was measured.
[0064]
As a result, when the bonding state of the initial measurement sample was observed, cracks were found in the bonded portion, and the initial thermal conductivity was 10 W / m · K. Moreover, it was 5 W / m * K as a result of measuring the heat conductivity after a temperature cycle test. This is presumably because cracks were generated due to thermal stress during solder bonding and the cracks progressed due to the temperature cycle.
[0065]
As a summary of the above, the configurations of the present invention and variations thereof are listed below as supplementary notes.
[0066]
(Appendix 1) A heat conductive material including a thermosetting resin and a heat conductive filler,
The thermosetting resin contains an organic acid,
The thermally conductive filler includes a first filler having a melting point higher than the curing temperature of the thermosetting resin, and a second filler having a melting point lower than the curing temperature of the thermosetting resin. Heat conductive material.
[0067]
(Additional remark 2) The heat conductive material of Additional remark 1 in which the said organic acid contains a succinic anhydride.
[0068]
(Additional remark 3) The heat conductive material of Additional remark 2 whose content of the said succinic anhydride is 10 to 20 weight part with respect to 100 weight part of said thermosetting resins.
[0069]
(Additional remark 4) The heat conductive material in any one of Additional remarks 1-3 whose said thermosetting resin is an epoxy resin.
[0070]
(Additional remark 5) Additional remark 1-4 whose said 2nd filler is a metal filler which consists of at least 1 type of alloy chosen from In-Sn-Bi alloy, In-Sn alloy, Sn-Bi alloy, and Sn-Pb alloy. The heat conductive material in any one of.
[0071]
(Additional remark 6) The heat conductive material in any one of Additional remarks 1-5 whose particle diameter of a said 1st filler is 50 micrometers or more and 300 micrometers or less.
[0072]
(Additional remark 7) The heat conductive material in any one of Additional remarks 1-6 whose said 1st filler is the diamond which coat | covered the surface with the metal.
[0073]
(Additional remark 8) The 1st board | substrate and the 2nd board | substrate are the heat conductive joining bodies joined through the heat conductive material,
As the heat conductive material, a heat conductive material according to any one of appendices 1 to 7 is used.
[0074]
(Additional remark 9) The heat conductive joining body of Additional remark 8 whose said 1st board | substrate is a heat generating body and whose said 2nd board | substrate is a heat radiator.
[0075]
(Additional remark 10) The heat conductive material in any one of Additional remarks 1-7 is apply | coated to at least one chosen from a 1st board | substrate and a 2nd board | substrate, The said 1st board | substrate, a said 2nd board | substrate, A method of manufacturing a thermally conductive joined body, wherein the first substrate and the second substrate are joined together by heating after adhering them through the thermally conductive material.
[0076]
(Additional remark 11) The manufacturing method of the heat conductive joining body of Additional remark 10 whose said 1st board | substrate is a heat generating body and whose said 2nd board | substrate is a heat radiator.
[0077]
【The invention's effect】
As described above, the present invention can provide a thermally conductive material having high thermal conductivity and good connection reliability, a thermally conductive bonded body using the same, and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view A before curing and a schematic cross-sectional view B after curing of a connection part of a thermally conductive joined body using the thermally conductive material of the present invention.
FIG. 2 is a cross-sectional view showing a method for measuring thermal conductivity.
3 is a cross-sectional view of a measurement sample produced in Example 4. FIG.
FIGS. 4A and 4B are a schematic cross-sectional view A before curing and a schematic cross-sectional view B after curing of a connection portion of a thermally conductive joined body using a conventional thermally conductive material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2 2nd board | substrate 3 Thermal conductive material 4 Thermosetting resin 5 1st filler 6 2nd filler 21a, 21b Copper plate 22 Heater 23 Measurement sample 24 Cooling water 25a, 25b Thermocouple 31 Heat Conductive material 32 Epoxy resin substrate 33 LSI chip 34 Heat sink 35 Sealing resin 41 LSI chip 42 Heat sink 43 Thermal conductive material 44 Resin 45 Metal filler 46 Low melting point metal

Claims (5)

  1. 熱硬化性樹脂と熱伝導性フィラーとを含む熱伝導性材料であって、
    前記熱硬化性樹脂が、有機酸を含み、
    前記熱伝導性フィラーが、前記熱硬化性樹脂の硬化温度より高い融点を有する第1のフィラーと、前記熱硬化性樹脂の硬化温度より低い融点を有する第2のフィラーとを含むことを特徴とする熱伝導性材料。
    A thermally conductive material comprising a thermosetting resin and a thermally conductive filler,
    The thermosetting resin contains an organic acid,
    The thermally conductive filler includes a first filler having a melting point higher than the curing temperature of the thermosetting resin, and a second filler having a melting point lower than the curing temperature of the thermosetting resin. Heat conductive material.
  2. 前記有機酸が、無水こはく酸を含む請求項1に記載の熱伝導性材料。The thermally conductive material according to claim 1, wherein the organic acid includes succinic anhydride.
  3. 前記第2のフィラーが、In−Sn−Bi合金、In−Sn合金、Sn−Bi合金およびSn−Pb合金から選ばれる少なくとも1種類の合金からなる金属フィラーである請求項1または2に記載の熱伝導性材料。The said 2nd filler is a metal filler which consists of an at least 1 sort (s) of alloy chosen from an In-Sn-Bi alloy, an In-Sn alloy, a Sn-Bi alloy, and a Sn-Pb alloy. Thermally conductive material.
  4. 第1の基板と、第2の基板とが、熱伝導性材料を介して接合している熱伝導性接合体であって、
    前記熱伝導性材料として、請求項1〜3のいずれかに記載の熱伝導性材料を用いることを特徴とする熱伝導性接合体。
    The first substrate and the second substrate are thermally conductive joined bodies joined via a thermally conductive material,
    The heat conductive material according to any one of claims 1 to 3 is used as the heat conductive material.
  5. 第1の基板および第2の基板から選ばれる少なくとも一方に、請求項1〜3のいずれかに記載の熱伝導性材料を塗布し、前記第1の基板と前記第2の基板とを、前記熱伝導性材料を介して密着させた後、加熱することにより、前記第1の基板と前記第2の基板とを接合することを特徴とする熱伝導性接合体の製造方法。The thermally conductive material according to any one of claims 1 to 3 is applied to at least one selected from a first substrate and a second substrate, and the first substrate and the second substrate are A method of manufacturing a thermally conductive joined body, wherein the first substrate and the second substrate are joined by heating after being in close contact with each other through a thermally conductive material.
JP2003131883A 2003-05-09 2003-05-09 Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof Expired - Fee Related JP4412578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131883A JP4412578B2 (en) 2003-05-09 2003-05-09 Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131883A JP4412578B2 (en) 2003-05-09 2003-05-09 Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004335872A JP2004335872A (en) 2004-11-25
JP4412578B2 true JP4412578B2 (en) 2010-02-10

Family

ID=33506945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131883A Expired - Fee Related JP4412578B2 (en) 2003-05-09 2003-05-09 Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4412578B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006080247A1 (en) * 2005-01-25 2008-06-19 藤倉化成株式会社 Conductive paste
KR100717132B1 (en) * 2005-11-02 2007-05-11 한국과학기술연구원 Hollow diamond shells filled composite materials
KR101056558B1 (en) * 2006-08-28 2011-08-11 가부시키가이샤 무라타 세이사쿠쇼 Conductive Bonding Materials and Electronic Devices
JP2010006847A (en) * 2006-10-23 2010-01-14 Denki Kagaku Kogyo Kk Resin composition
KR101563042B1 (en) * 2009-10-27 2015-10-23 헨켈 아이피 앤드 홀딩 게엠베하 Thermal interface material with epoxidized nutshell oil
WO2011125414A1 (en) * 2010-04-01 2011-10-13 株式会社村田製作所 Electronic component and method for producing same
KR20140012650A (en) * 2011-02-24 2014-02-03 데쿠세리아루즈 가부시키가이샤 Thermally conductive adhesive
KR101677322B1 (en) * 2014-04-16 2016-11-17 주식회사 동부하이텍 Semiconductor package and method of manufacturing the same
EP3187560A4 (en) * 2014-08-29 2018-03-07 Furukawa Electric Co. Ltd. Electrically conductive adhesive composition
KR101758436B1 (en) * 2014-11-14 2017-07-17 삼성에스디아이 주식회사 Composition for forming solar cell electrode and electrode prepared using the same

Also Published As

Publication number Publication date
JP2004335872A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4412578B2 (en) Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof
JP5757359B2 (en) Cu / ceramic bonded body, Cu / ceramic bonded body manufacturing method, and power module substrate
JP4089636B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
JP4828178B2 (en) Conductive adhesive and method for producing article using the conductive adhesive
JP4875386B2 (en) Low stress conductive adhesive
KR100641373B1 (en) Heat transfer sheet, heat transfer structural body and manufacturing method of the heat transfer structural body
US20050056365A1 (en) Thermal interface adhesive
CN107771354A (en) Engineering polymers electron-like material
JPWO2013047137A1 (en) Bonding material, method of manufacturing electronic component, and electronic apparatus
JP5274744B2 (en) Film adhesive and semiconductor device using the same
JP4684439B2 (en) Conductive particles, conductive composition, and method for manufacturing electronic device
WO2014128899A1 (en) Resin-sealed electronic control device
JP2001223227A (en) Resin composition for sealing semiconductor material and semiconductor device
JP2002241617A (en) Thermosetting resin composition and semiconductor device
JP2007189154A (en) Heat conductive bonding material, and packaging method
JP5261263B2 (en) Brazing material and joining method of brazing material
JP5274007B2 (en) Thermally conductive resin sheet and power module using the same
JP5018250B2 (en) Semiconductor device and manufacturing method thereof
JP3178309B2 (en) Conductive epoxy resin composition
JP5863323B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5832731B2 (en) Semiconductor element
JP5699472B2 (en) Solder material, manufacturing method thereof, and manufacturing method of semiconductor device using the same
JPH0636416B2 (en) Conductive adhesive film for fixing semiconductor elements
JPH11297904A (en) Semiconductor device
US20070256783A1 (en) Thermally enhanced adhesive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees