JP5860587B2 - Polishing silica sol, polishing composition, and method for producing polishing silica sol - Google Patents

Polishing silica sol, polishing composition, and method for producing polishing silica sol Download PDF

Info

Publication number
JP5860587B2
JP5860587B2 JP2010262683A JP2010262683A JP5860587B2 JP 5860587 B2 JP5860587 B2 JP 5860587B2 JP 2010262683 A JP2010262683 A JP 2010262683A JP 2010262683 A JP2010262683 A JP 2010262683A JP 5860587 B2 JP5860587 B2 JP 5860587B2
Authority
JP
Japan
Prior art keywords
silica
silica sol
polishing
fine particles
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010262683A
Other languages
Japanese (ja)
Other versions
JP2012111869A (en
Inventor
祐二 俵迫
祐二 俵迫
西田 広泰
広泰 西田
達也 向井
達也 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2010262683A priority Critical patent/JP5860587B2/en
Publication of JP2012111869A publication Critical patent/JP2012111869A/en
Application granted granted Critical
Publication of JP5860587B2 publication Critical patent/JP5860587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ガラス製ハードディスク、半導体ウエハ、アルミナ製ハードディスクなどを研磨するために好適な研磨用シリカゾル、研磨用組成物及び研磨用シリカゾルの製造方法に関するものである。   The present invention relates to a polishing silica sol suitable for polishing glass hard disks, semiconductor wafers, alumina hard disks, and the like, a polishing composition, and a method for producing a polishing silica sol.

半導体基板、配線基板などの半導体デバイス、アルミナ製ハードディスク、ガラス製ハードディスクまたは光学材料などにおいては、これらの表面状態が、半導体特性または光学特性に影響する。このためこれらの部品の表面や端面は極めて高精度に研磨されることが要求される。従来、このような部材の研磨処理方法として、例えば、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、線上痕などの傷が少ない極めて高精度の表面を得る方法がとられてきている。   In a semiconductor device such as a semiconductor substrate or a wiring substrate, an alumina hard disk, a glass hard disk, or an optical material, these surface states affect semiconductor characteristics or optical characteristics. For this reason, it is required that the surfaces and end faces of these parts be polished with extremely high accuracy. Conventionally, as a method for polishing such a member, for example, after performing a relatively rough primary polishing process, a precise secondary polishing process is performed to obtain a highly accurate surface with few scratches such as line marks. The way to get has been taken.

この2次研磨のような仕上げ研磨用には、シリカゾルを含む研磨用組成物が使用されている。例えば、特許文献1には、平均粒子径が10〜100nmの真球状のコロイダルシリカを分散させた研磨材を用いて二酸化シリコン膜を研磨する例が記載されている。特許文献2には、長径が7〜1000nmで(短径/長径)=0.3〜0.7である特殊な形状のコロイダルシリカが半導体ウエハ研磨に適していることが記載されている。特許文献3には、研磨剤粒子として優れた性能を示す板状酸化アルミニウム粒子が記載されている。しかしながら、この種の公知の板状酸化アルミニウム粒子は、粒子径がサブミクロンサイズと大きく、粗研磨用途には適しているが、仕上げ研磨のような精密研磨用としては不適である。   A polishing composition containing silica sol is used for finish polishing such as this secondary polishing. For example, Patent Document 1 describes an example in which a silicon dioxide film is polished using an abrasive in which true spherical colloidal silica having an average particle diameter of 10 to 100 nm is dispersed. Patent Document 2 describes that colloidal silica having a special shape having a major axis of 7 to 1000 nm (minor axis / major axis) = 0.3 to 0.7 is suitable for semiconductor wafer polishing. Patent Document 3 describes plate-like aluminum oxide particles that exhibit excellent performance as abrasive particles. However, this type of known plate-like aluminum oxide particles has a large particle size of submicron and is suitable for rough polishing applications, but is not suitable for precision polishing such as finish polishing.

一方、1次研磨のような高い研磨速度を要求される研磨処理用の研磨材として、また2次の仕上げ研磨用の研磨材として、酸化セリウム粒子が知られている。例えば特許文献4には、酸化セリウム粒子の水分散体を使ったSiO絶縁膜の研磨例が開示されている。酸化セリウム粒子は、上記のシリカ系やアルミナ系の研磨剤粒子に比べて硬度は低いが、優れた研磨速度と仕上げ研磨特性を示す。すなわち、従来の研磨剤粒子と異なり、その化学的性質を利用することにより、他の研磨材では得られない、優れた研磨速度や仕上げ研磨性を示す。しかし、その反面、粒子径、粒度分布制御が難しく、また輸入に頼り、産出国も限られるため供給不安や価格高騰が続きその代替材料の開発が求められている。 On the other hand, cerium oxide particles are known as an abrasive for polishing treatment that requires a high polishing rate such as primary polishing, and as an abrasive for secondary finish polishing. For example, Patent Document 4 discloses an example of polishing an SiO 2 insulating film using an aqueous dispersion of cerium oxide particles. The cerium oxide particles have a lower hardness than the above silica-based and alumina-based abrasive particles, but exhibit excellent polishing speed and finish polishing characteristics. That is, unlike conventional abrasive particles, by utilizing its chemical properties, it exhibits an excellent polishing rate and finish polishability that cannot be obtained with other abrasives. However, on the other hand, it is difficult to control the particle size and particle size distribution, and it relies on imports and the number of producing countries is limited.

酸化セリウム系研磨材に、他の研磨剤粒子を混合して使用することも知られている。例えば特許文献5には、酸化セリウム粒子とコロイダルシリカ粒子を混合使用する例が開示されている。この場合、酸化セリウム粒子とコロイダルシリカの中間の特性は得られるものの、本質的に前記の問題を解決するには至っていない。また、2種類以上の研磨粒子を混合して研磨用組成物(スラリー)とした場合、粒子の媒体中での分散性や沈降性が異なるため、スラリーとしての安定性が低下する傾向がある。また、シリカと酸化セリウム粒子の混合物を使用して研磨力を高くするためには、粒子径の大きな粒子を使用することが有効である。この場合、高レートの研磨力が得られる反面、スクラッチが多数発生し、表面を精密に仕上げることが難しくなる。また、研磨粒子が大きいことから、研磨粒子の経過時間による沈降速度が速く、研磨液中の研磨粒子の濃度勾配が起こりやすい。従って、研磨前に混合攪拌を行う必要があり、研磨液としての保存安定性が悪いという問題がある。   It is also known to use other abrasive particles mixed with a cerium oxide-based abrasive. For example, Patent Document 5 discloses an example in which cerium oxide particles and colloidal silica particles are mixed and used. In this case, although an intermediate characteristic between cerium oxide particles and colloidal silica can be obtained, the above problem has not been essentially solved. Further, when two or more kinds of abrasive particles are mixed to obtain a polishing composition (slurry), the dispersibility and sedimentation properties of the particles in the medium are different, and thus the stability as a slurry tends to be lowered. In order to increase the polishing power using a mixture of silica and cerium oxide particles, it is effective to use particles having a large particle diameter. In this case, while a high rate of polishing power can be obtained, many scratches are generated, and it is difficult to finish the surface precisely. Further, since the abrasive particles are large, the settling rate due to the elapsed time of the abrasive particles is high, and the concentration gradient of the abrasive particles in the polishing liquid is likely to occur. Therefore, it is necessary to perform mixing and stirring before polishing, and there is a problem that storage stability as a polishing liquid is poor.

特開平8−267356号公報JP-A-8-267356 特開平7−221059号公報Japanese Patent Laid-Open No. 7-221059 特開平1−109082号公報Japanese Patent Laid-Open No. 1-109082 特開平9−270402号公報JP-A-9-270402 特開平9−132770号公報JP-A-9-132770

以上に検討してきたように、ガラス基材などの研磨材として広く使用されているセリアと代替可能なシリカ系研磨材が求められているが、従来の異形化や大粒子化では精密研磨の性能に限界があった。   As discussed above, there is a need for silica-based abrasives that can replace ceria, which is widely used as an abrasive for glass substrates, etc. There was a limit.

本発明は、このような事情を鑑みてなされたものであり、研磨速度が高く、精密研磨に適した研磨用シリカゾル、研磨用組成物及び研磨用シリカゾルの製造方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object thereof is to provide a polishing silica sol having a high polishing rate and suitable for precision polishing, a polishing composition, and a method for producing a polishing silica sol. .

本発明に係る研磨用シリカゾルは、動的光散乱法により測定される平均粒子径が5〜300nmの範囲にある非球状シリカ微粒子を分散媒に分散してなり、固形分濃度が10〜60質量%のシリカゾルであって、
29Si−NMRスペクトル測定時のケミカルシフト−73〜−120ppmのピーク面積におけるQ4の面積が88%以上、91%以下、Q3の面積が8%以上、11%以下であることと、
前記非球状シリカ微粒子を動的光散乱法により測定した平均粒子径を[A]とし、窒素吸着法により測定した平均粒子径[B]とするとき、当該非球状シリカ微粒子のA/Bの値が2.0〜5.0の範囲にあることと、を特徴としている。
但し、前記ケミカルシフトは、テトラメチルシランを基準物質とし、Q4は−100〜−120ppmの範囲のピークであり、Q3は−82〜−100ppmの範囲のピークである。
The polishing silica sol according to the present invention is obtained by dispersing non-spherical silica fine particles having an average particle diameter in the range of 5 to 300 nm measured by a dynamic light scattering method in a dispersion medium, and a solid content concentration of 10 to 60 mass. % Silica sol,
29 The chemical shift at the time of Si-NMR spectrum measurement The area of Q4 in the peak area of −73 to −120 ppm is 88% or more and 91% or less, the area of Q3 is 8% or more and 11% or less ,
When the average particle diameter of the non-spherical silica fine particles measured by the dynamic light scattering method is [A] and the average particle diameter [B] measured by the nitrogen adsorption method is A / B value of the non-spherical silica fine particles. Is in the range of 2.0 to 5.0 .
However, the chemical shift uses tetramethylsilane as a reference substance, Q4 is a peak in the range of −100 to −120 ppm, and Q3 is a peak in the range of −82 to −100 ppm.

前記研磨用シリカゾルは以下の特徴を備えていてもよい。
(a)次の特徴を有する前記の研磨用シリカゾル。
1)前記シリカゾルのSiO/MOH(Mは、Na、Kまたは第4級アミン)で定義されるモル比の値が100〜420であり、
2)前記シリカゾルのSiO/X(Xは、SO 2−、Cl、NO またはPO 3−)で定義されるモル比の値が400〜1000ある。
)前記非球状シリカ微粒子の表面電荷密度の絶対値が0.3〜1.3[μeq/m]の範囲にあること。
The polishing silica sol may have the following characteristics.
(A ) The polishing silica sol having the following characteristics.
1) The value of the molar ratio defined by SiO 2 / MOH (M is Na, K or quaternary amine) of the silica sol is 100 to 420,
2) The silica sol has a molar ratio of 400 to 1000 defined by SiO 2 / X (X is SO 4 2− , Cl , NO 3 or PO 4 3− ).
( B ) The absolute value of the surface charge density of the non-spherical silica fine particles is in the range of 0.3 to 1.3 [μeq / m 2 ].

また、他の発明に係わる研磨用組成物は、上述の各研磨用シリカゾルと、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる添加剤群より選ばれる1種以上の添加剤とを含むことを特徴とする。   Further, the polishing composition according to another invention is one kind selected from the above-described polishing silica sol and an additive group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer. It contains the above additive, It is characterized by the above-mentioned.

次いで本発明の研磨用シリカゾルの製造方法は、ケイ酸アルカリ塩と無機酸とを混合して、混合溶液のpHを3〜7の範囲に調整し、シリカヒドロゲルを含む溶液を調整する工程と、
この工程で得られた溶液に含まれる塩を洗浄して除去する工程と、
塩が除去された後の前記シリカヒドロゲルにアルカリ溶液を添加して得られた溶液を60〜100℃の温度範囲に保持しながら攪拌し、当該シリカヒドロゲルを解膠させて非球状シリカ微粒子を含むシリカゾルを得る工程と、
この工程で得られたシリカゾルを含む溶液を130〜300℃の温度範囲、0.13〜0.30MPaの圧力範囲で保持して第1の水熱処理を行い、非球状シリカ微粒子を成長させる工程と、
前記第1の水熱処理にて成長させた非球状シリカ微粒子を含むシリカゾルにアルカリ種と陰イオン種とを添加し、130〜300℃の温度範囲、0.13〜0.30MPaの圧力範囲で保持して第2の水熱処理を行い、シリカ粒子中のシラノール基の縮合を進行させる工程と、を含み、
前記第2の水熱処理工程におけるアルカリ種及び陰イオン種の添加量が、以下の1)、2)の条件を満たすことを特徴とする。
1)前記アルカリ種がNaOH、KOH、第四級アミンからなるアルカリ種群から選択され、前記シリカゾル中のシリカに対するアルカリ種のモル比をSiO /MOH(Mは、Na、Kまたは第4級アミン)で表したとき、このモル比の値が100〜420であり、
2)前記陰イオン種がSO 2− 、Cl 、NO またはPO 3− からなる陰イオン種群から選択され、前記シリカゾル中のシリカに対する陰イオン種のモル比をSiO /X(Xは、SO 2− 、Cl 、NO またはPO 3− )で表したとき、このモル比の値が400〜1000であること。
Next, the method for producing a polishing silica sol of the present invention comprises mixing an alkali silicate and an inorganic acid, adjusting the pH of the mixed solution to a range of 3 to 7, and adjusting a solution containing silica hydrogel;
Washing and removing the salt contained in the solution obtained in this step;
The solution obtained by adding an alkali solution to the silica hydrogel after the salt has been removed is stirred while maintaining the temperature range of 60 to 100 ° C., and the silica hydrogel is peptized to contain non-spherical silica fine particles. Obtaining a silica sol;
Holding the solution containing the silica sol obtained in this step in a temperature range of 130 to 300 ° C. and a pressure range of 0.13 to 0.30 MPa to perform a first hydrothermal treatment to grow non-spherical silica fine particles; ,
An alkali species and an anion species are added to a silica sol containing non-spherical silica fine particles grown by the first hydrothermal treatment, and maintained at a temperature range of 130 to 300 ° C. and a pressure range of 0.13 to 0.30 MPa. to perform a second hydrothermal treatment, viewed contains a step to advance the condensation of silanol groups in the silica particles, and
The addition amount of alkali species and anion species in the second hydrothermal treatment step satisfies the following conditions 1) and 2) .
1) The alkali species is selected from the group of alkali species consisting of NaOH, KOH and quaternary amine, and the molar ratio of alkali species to silica in the silica sol is SiO 2 / MOH (M is Na, K or quaternary amine). ), The molar ratio value is 100 to 420,
2) The anionic species is selected from the group of anionic species consisting of SO 4 2− , Cl , NO 3 or PO 4 3−, and the molar ratio of the anionic species to silica in the silica sol is SiO 2 / X ( When X is represented by SO 4 2− , Cl , NO 3 or PO 4 3− ), the molar ratio value is 400 to 1000.

前記シリカゾルの製造方法は、以下の特徴を備えていてもよい。
(d)前記第1の水熱処理は、シリカゾル中のシリカ微粒子の濃度が2〜5重量%の範囲で行われ、前記第2の水熱処理は、シリカゾル中のシリカ微粒子の濃度が10〜20重量%の範囲で行われること
The method for producing the silica sol may have the following characteristics.
(D) The first hydrothermal treatment is performed at a silica fine particle concentration of 2 to 5% by weight in the silica sol, and the second hydrothermal treatment is performed at a silica fine particle concentration of 10 to 20% by weight in the silica sol. % To be done .

本発明によれば、非球状シリカ微粒子中のケイ素原子のシロキサン結合を増やして、当該シリカ微粒子の密度や緻密性を向上させることにより、精密研磨に適し、且つ、高い研磨速度を備えた研磨用シリカゾルを得ることができる。   According to the present invention, by increasing the siloxane bond of silicon atoms in non-spherical silica fine particles and improving the density and denseness of the silica fine particles, it is suitable for precision polishing and has a high polishing rate. A silica sol can be obtained.

[非球状シリカ微粒子]
本発明のシリカゾルは、シリカ微粒子を含んでいる。シリカ微粒子は、例えばケイ酸ナトリウムなどのケイ酸アルカリ塩を酸で中和して得られたシリカヒドロゲル(ゲル状のケイ酸)を解膠し、加熱させることなどにより得られる。シリカヒドロゲル中には必ずしもSiOは含まれていなくてもよく、例えばSi(OH)同士が水素結合で結びついているものなど、多様な構成のケイ酸が含まれる。前記シリカ微粒子は、主として酸素原子を介して2つのケイ素原子がつながったシロキサン結合(Si−O−Si)や、一部水酸基と結合したケイ素原子を含んでいる。
[Non-spherical silica fine particles]
The silica sol of the present invention contains silica fine particles. The silica fine particles can be obtained, for example, by peptizing and heating silica hydrogel (gel silicic acid) obtained by neutralizing an alkali silicate such as sodium silicate with an acid. Silica hydrogel does not necessarily contain SiO 2 , and for example, various types of silicic acid such as those in which Si (OH) 2 are bonded together by hydrogen bonds are included. The silica fine particles mainly contain siloxane bonds (Si—O—Si) in which two silicon atoms are connected via oxygen atoms, and silicon atoms partially bonded to hydroxyl groups.

シロキサン結合及び水酸基を備えたケイ素に着目すると、前記シリカ微粒子は、4つの水酸基と結合したモノマー(Si(OH))(以下、Q0構造という)、1つのシロキサン結合と3つの水酸基と含むオリゴマー(Si−O−Si(OH))(以下、Q1構造という)、2つのシロキサン結合と2つの水酸基と含むオリゴマー((Si−O)−Si(OH))(以下、Q2構造という)、3つのシロキサン結合と1つの水酸基と含むオリゴマー((Si−O)−Si−OH)(以下、Q3構造という)、及び4つのシロキサン結合を含むオリゴマー(Si−(O−Si))(以下、Q4構造という)を含んでいる。 When attention is focused on silicon having a siloxane bond and a hydroxyl group, the silica fine particles are composed of a monomer (Si (OH) 4 ) (hereinafter referred to as Q0 structure) bonded to four hydroxyl groups, an oligomer containing one siloxane bond and three hydroxyl groups. (Si—O—Si (OH) 3 ) (hereinafter referred to as Q1 structure) Oligomer ((Si—O) 2 —Si (OH) 2 ) (hereinafter referred to as Q2 structure) including two siloxane bonds and two hydroxyl groups ) Oligomer containing three siloxane bonds and one hydroxyl group ((Si—O) 3 —Si—OH) (hereinafter referred to as Q3 structure), and oligomer containing four siloxane bonds (Si— (O—Si) 4 (Hereinafter referred to as Q4 structure).

シリカ微粒子に含まれる上述のQ0〜Q4の各構造を含む部分をシロキサン構造部と呼ぶことにすると、シロキサン構造部はQ4構造やQ3構造の含有割合が多くなるほど、ケイ素同士の結合が多くなり、密度が大きく、緻密性の高い、優れた研磨速度を示すシリカ微粒子を得ることができる。ここでQ0構造にはシロキサン結合は含まれていないが、シリコン微粒子の研磨性能を評価する上での説明の便宜上、本明細書中では、Q0構造のモノマーについてもシロキサン構造部に含むものとする。
本発明は、このような考え方に基づいてなされたものであり、シロキサン構造部に含まれるQ4構造の含有割合が、同シロキサン構造部中のケイ素の88mol%以上であり、且つ、Q3構造の含有割合が同11mol%以下であって、Q0〜Q2構造のトータルの含有割合を残部とするものである。
When the portion containing each of the above-described Q0 to Q4 structures contained in the silica fine particles is referred to as a siloxane structure part, as the content ratio of the Q4 structure or the Q3 structure in the siloxane structure part increases, the bonds between silicon increase. Silica fine particles having a high density and high density and exhibiting an excellent polishing rate can be obtained. Here, although the siloxane bond is not included in the Q0 structure, in the present specification, the monomer having the Q0 structure is also included in the siloxane structure portion for the convenience of explanation in evaluating the polishing performance of silicon fine particles.
The present invention was made based on such a concept, and the content ratio of the Q4 structure contained in the siloxane structure part is 88 mol% or more of silicon in the siloxane structure part, and the inclusion of the Q3 structure The ratio is 11 mol% or less, and the total content of the Q0 to Q2 structures is the balance.

Q0〜Q4構造のケイ素の存在比については、29Si−NMR(nuclear magnetic resonance)により、求めることができる。29Siを含むケイ素にて、本発明のシリカ微粒子を含有するシリカゾルを調整し、例えばテトラメチルシランを基準物質として29Si−NMR分析を行うと、前記Q0〜Q2構造のケミカルシフトは、−73.0〜−120.0ppmの領域に現れ る。詳細には、Q0構造のケミカルシフトは−73.0〜−73.5ppmの領域、Q1構造のケミカルシフトは−73.5〜−78.0ppmの領域、Q2構造のケミカルシフトは−78.0〜−82.0ppmの領域、Q3構造のケミカルシフトは−82.0〜−100.0ppmの領域、Q4構造のケミカルシフトは−100.0〜−120.0ppmの領域に、各々現れる。 The abundance ratio of silicon having a Q0 to Q4 structure can be determined by 29 Si-NMR (nuclear magnetic resonance). When silica sol containing silica fine particles of the present invention is prepared with silicon containing 29 Si and 29 Si-NMR analysis is performed using, for example, tetramethylsilane as a reference substance, the chemical shift of the Q0 to Q2 structure is −73. Appears in the range of 0.0 to -120.0 ppm. Specifically, the chemical shift of the Q0 structure is in the region of −73.0 to −73.5 ppm, the chemical shift of the Q1 structure is in the region of −73.5 to −78.0 ppm, and the chemical shift of the Q2 structure is −78.0. In the region of -82.0 ppm, the chemical shift of the Q3 structure appears in the region of -82.0 to -100.0 ppm, and the chemical shift of the Q4 structure appears in the region of -100.0 to -120.0 ppm.

各領域に現れるケミカルシフトの面積は、シロキサン構造部に含まれるQ0〜Q4構造のケイ素のモル数に対応しているので、ケミカルシフトが−73.0−120.0ppmの範囲のピーク面積に対するQ4、Q3構造のケミカルシフトのピーク面積比は、シロキサン構造部に含まれるQ4、Q3構造を持つケイ素のモル比を表している。従って、当該Q4、Q3構造のケミカルシフトのピーク面積比の割合が高いシリコン微粒子は、密度が大きく、優れた研磨速度を示すといえる。   Since the area of the chemical shift appearing in each region corresponds to the number of moles of silicon having a Q0 to Q4 structure contained in the siloxane structure, the Q4 with respect to the peak area having a chemical shift in the range of -73.0-120.0 ppm. The peak area ratio of the chemical shift of the Q3 structure represents the molar ratio of silicon having the Q4 and Q3 structures contained in the siloxane structure. Therefore, it can be said that silicon fine particles having a high ratio of the chemical shift peak area ratio of the Q4 and Q3 structures have a high density and an excellent polishing rate.

この観点から本発明のシリコン微粒子は、テトラメチルシランを基準物質とし、当該シリコン粒子を含むシリカゾルの29Si−NMR分析を行って得られたスペクトル中のケミカルシフト−73.0〜−120.0ppmの範囲のピーク面積に対するQ4の面積が88%以上、Q3の面積が11%以下となっている。これを言い替えると、Q3、Q4構造を持つトータルのケイ素の含有割合が、Q0〜Q4構造全体の88〜100mol%の範囲である一方、Q3単独での含有割合は同じく11mol%を上回らない含有割合となっている。 From this point of view, the silicon fine particles of the present invention have a chemical shift in the spectrum obtained by conducting 29 Si-NMR analysis of silica sol containing tetramethylsilane as a reference substance and containing the silicon particles. The area of Q4 with respect to the peak area in the range is 88% or more and the area of Q3 is 11% or less. In other words, the content ratio of the total silicon having the Q3 and Q4 structures is in the range of 88 to 100 mol% of the entire Q0 to Q4 structure, while the content ratio of Q3 alone does not exceed 11 mol%. It has become.

Q4構造を持つケイ素の含有割合が88mol%を下回ると、シリカ微粒子の密度や緻密性を十分に向上させることができず、研磨速度が小さくなる。一方、Q4構造を持つケイ素の含有割合が88mol%であるとき、Q3構造を持つケイ素の含有割合を11mol%以上とすることは困難である。   When the content ratio of silicon having a Q4 structure is less than 88 mol%, the density and denseness of the silica fine particles cannot be sufficiently improved, and the polishing rate becomes low. On the other hand, when the content ratio of silicon having the Q4 structure is 88 mol%, it is difficult to set the content ratio of silicon having the Q3 structure to 11 mol% or more.

またQ0〜Q2構造を持つケイ素の含有割合は、Q3、Q4構造を持つケイ素の残部であり、特段の限定はない。但し、シロキサン結合の数が少なくなるほど、シロキサン構造部の密度が小さくなり、緻密性が低下するので、例えばQ0やQ1構造はできるだけ少ない方がよい。この点、Q0、Q1構造を持つケイ素は、Q0〜Q4構造を持つケイ素全体の例えば0〜1mo1%に抑え(ケミカルシフト−73.0〜−120.0ppmの範囲のピーク面積に対するQ0、Q1のピーク面積の比が0〜1%)、残部をQ2とすることが好ましい。   Further, the content ratio of silicon having the Q0 to Q2 structure is the remainder of silicon having the Q3 and Q4 structures, and there is no particular limitation. However, the smaller the number of siloxane bonds, the lower the density of the siloxane structure portion and the lower the density, so it is better to have, for example, as few Q0 and Q1 structures as possible. In this respect, silicon having Q0 and Q1 structures is suppressed to, for example, 0 to 1 mo1% of the whole silicon having Q0 to Q4 structures (chemical shifts of Q0 and Q1 with respect to peak areas in the range of −73.0 to −120.0 ppm). It is preferable that the peak area ratio is 0 to 1%) and the balance is Q2.

本発明の研磨シリカゾルは、このような特性を備えたシロキサン構造部を、より多く含んでいる。
また研磨用シリカゾルに含まれるシリカ微粒子の濃度は、10〜60質量%の範囲であることが好ましく、より好ましくは、20〜50質量%の範囲である。シリカ微粒子の濃度が10質量%未満の場合には、研磨速度が小さく、生産性が悪い。60質量%より大きい場合は、研磨速度は大きいが、研磨時に研磨液が乾燥して、凝集粒子が混入し、スクラッチの発生が多くなるなどの傾向がある。
The polishing silica sol of the present invention contains more siloxane structures having such characteristics.
The concentration of the silica fine particles contained in the polishing silica sol is preferably in the range of 10 to 60% by mass, more preferably in the range of 20 to 50% by mass. When the concentration of silica fine particles is less than 10% by mass, the polishing rate is low and the productivity is poor. When it is larger than 60% by mass, the polishing rate is high, but the polishing liquid dries at the time of polishing, and there is a tendency that agglomerated particles are mixed and the generation of scratches increases.

前記非球状シリカ微粒子の粒子径は、シリカゾル中のシリカ微粒子を動的光散乱法で測定したときの平均粒子径が5〜300nmの範囲、より好適には10〜250nmの範囲にあることが好ましい。この平均粒子径が5nmより小さいと、スクラッチは良好であるが、研磨速度が著しく低下し、生産性も悪くなる。また当該平均粒子径が300nmより大きいと、研磨速度は良好であるが、スクラッチの発生が多くなる。   The particle diameter of the non-spherical silica fine particles is preferably in the range of 5 to 300 nm, more preferably in the range of 10 to 250 nm when the fine particles of silica in the silica sol are measured by a dynamic light scattering method. . If this average particle size is smaller than 5 nm, the scratch is good, but the polishing rate is remarkably lowered and the productivity is also deteriorated. When the average particle size is larger than 300 nm, the polishing rate is good, but the generation of scratches increases.

また動的光散乱法による前記非球状シリカ微粒子の平均径を[A]とし、窒素吸着法により測定した平均粒子径を[B]とするとき、「A/B」の値が2.0〜5.0の範囲であることが好ましい。動的光散乱法は、シリカゾル中におけるが非球状シリカ微粒子の拡散係数に基づいて、動力学的な相当径を計測する手法である。一方、窒素吸着法は、非球状シリカ微粒子の表面への窒素ガスの吸着量を計測した結果に基づいて、例えばBET式などを利用して非球状シリカ微粒子の表面積を求め、この表面積に対応する球の相当径を算出する手法である。   When the average diameter of the non-spherical silica fine particles by dynamic light scattering method is [A] and the average particle diameter measured by nitrogen adsorption method is [B], the value of “A / B” is 2.0 to 2.0. A range of 5.0 is preferred. The dynamic light scattering method is a method of measuring a dynamic equivalent diameter based on the diffusion coefficient of non-spherical silica fine particles in silica sol. On the other hand, in the nitrogen adsorption method, the surface area of the non-spherical silica fine particles is obtained by using, for example, the BET equation based on the result of measuring the amount of nitrogen gas adsorbed on the surface of the non-spherical silica fine particles, and this surface area is supported. This is a method for calculating the equivalent diameter of a sphere.

従って、前記「A/B」の値は、非球状シリカ微粒子の表面積基準の相当径に対する動力学的相当径の比を示しており、後述の実施例に示すようにこのA/Bの値が2.0〜5.0の範囲にあるときには、当該非球状シリカ微粒子を含むシリカゾルは良好な研磨性能を発揮できることを把握している。A/Bの値がこの範囲にあるとき、良好な研磨性能を得られる理由は必ずしも明らかでないが、「A/B=1」の場合にはシリカ微粒子が真球に近付き、研磨に適した凹凸が小さくなってしまうので、摩擦係数が小さくなり、研磨効果が少なくなるためではないかと考えられる。一方、A/Bの値が大きくなりすぎると、シリカ微粒子の球形からずれすぎて、いびつな形状になってしまい、研磨の際に粒子自体の強度が弱く、破壊されやすくなるなどの理由から、十分な研磨性能を発揮できなくなってしまう可能性もある。こうした観点から、A/Bの値が2.0〜5.0の範囲にある非球状シリカ粒子は、研磨に適した凹凸を備えているのではないかと推察できる。   Therefore, the value of “A / B” indicates the ratio of the dynamic equivalent diameter to the equivalent diameter of the non-spherical silica fine particles based on the surface area. As shown in the examples described later, the value of A / B is When it is in the range of 2.0 to 5.0, it is understood that the silica sol containing the non-spherical silica fine particles can exhibit good polishing performance. The reason why good polishing performance can be obtained when the value of A / B is within this range is not necessarily clear, but in the case of “A / B = 1”, the silica fine particles are close to the true sphere, and unevenness suitable for polishing. This is considered to be because the friction coefficient is reduced and the polishing effect is reduced. On the other hand, if the value of A / B becomes too large, the silica particles become too distorted from the spherical shape, resulting in an irregular shape, the strength of the particles themselves is weak during polishing, and they are easily destroyed. There is also a possibility that sufficient polishing performance cannot be exhibited. From this point of view, it can be inferred that the non-spherical silica particles having an A / B value in the range of 2.0 to 5.0 may have irregularities suitable for polishing.

以上に説明した特性を備えた非球状シリカ微粒子を分散させる分散媒としては、当該シリカ微粒子を分散させる能力を備え、研磨処理に供することができれば性状や種類などの制限はない。例えば、水、可溶性有機物のアルコール、グリコールなどを挙げることができる。   The dispersion medium for dispersing the non-spherical silica fine particles having the characteristics described above is not limited in terms of properties and types as long as it has the ability to disperse the silica fine particles and can be subjected to polishing treatment. For example, water, soluble organic alcohol, glycol and the like can be mentioned.

上述の非球状シリカ微粒子を含み、シリカゾルを形成する分散媒中には、当該シリカゾルの製造時に添加されるアルカリ種や陰イオン種に起因する物質が含まれていてもよい。シリカゾルの製造の際に添加されるアルカリ種としては、NaOH、KOH、第4級アミンなどを挙げることができる。第4級アミンの具体例としては、テトラメチルアンモニウムハイドロオキサイド(以下、TMAHという)などが挙げられる。これらシリカゾル原料に添加されたアルカリ種が製品のシリカゾル中に含まれていると、pHは高く、安定性が高いという効果がある。   The dispersion medium containing the above-mentioned non-spherical silica fine particles and forming a silica sol may contain substances originating from alkali species or anionic species added during the production of the silica sol. Examples of the alkali species added during the production of silica sol include NaOH, KOH, and quaternary amine. Specific examples of the quaternary amine include tetramethylammonium hydroxide (hereinafter referred to as TMAH). When the alkali species added to the silica sol raw material is contained in the silica sol of the product, there is an effect that the pH is high and the stability is high.

シリカゾル中における、これらのアルカリ種の含有量は、シリカゾル中のケイ素をSiOにモル換算し、アルカリ種をその陽イオンの水酸化物MOH(Mは、Na、Kまたは第4級アミン)にモル換算したとき、SiO/MOHで表されるモル比が100〜420の範囲にあることが好ましい。SiO/MOHが100未満の場合には、pHが高くなり、シリカ粒子の溶解が大きくなり、不安定となるという不具合があり、420を上回るとpHが低下し、長期安定性が損なわれるなどのおそれがある。 The content of these alkali species in the silica sol is calculated by converting the silicon in the silica sol to SiO 2 in terms of mole, and converting the alkali species into the hydroxide hydroxide MOH (M is Na, K or a quaternary amine). When converted to mole, the molar ratio represented by SiO 2 / MOH is preferably in the range of 100 to 420. When SiO 2 / MOH is less than 100, there is a problem that the pH becomes high and the dissolution of silica particles becomes large and becomes unstable, and when it exceeds 420, the pH decreases and the long-term stability is impaired. There is a risk.

またシリカゾルの製造の際に添加される陰イオン種としては、SO 2−、Cl、NO またはPO 3−などを挙げることができる。これらシリカゾル原料に添加された陰イオン種が製品のシリカゾル中に含まれていると、シリカ分散液の粘度が低くなり、研磨布等の目詰まりを低減できるという効果がある。 Examples of the anionic species added during the production of silica sol include SO 4 2− , Cl , NO 3 or PO 4 3− . When the anionic species added to the silica sol raw material is contained in the silica sol of the product, the viscosity of the silica dispersion is lowered, and there is an effect that clogging of the polishing cloth and the like can be reduced.

シリカゾル中における、これらの陰イオン種の含有量は、シリカゾル中のケイ素をSiOにモル換算し、陰イオン種のモル数をXで表したとき、SiO/Xで表されるモル比が400〜1000の範囲にあることが好ましい。SiO/Xが400未満の場合には、pHが低くなり。不安定となるという不具合があり、1000を上回ると粘度が高くなり、シリカ粒子の移動速度が小さくなり、研磨能率が小さくなる等のおそれがある。 The content of these anionic species in the silica sol is such that when the silicon in the silica sol is converted into SiO 2 by mole and the number of moles of the anionic species is represented by X, the molar ratio represented by SiO 2 / X is It is preferable to be in the range of 400-1000. When SiO 2 / X is less than 400, the pH is lowered. There is a problem that it becomes unstable. If it exceeds 1000, the viscosity increases, the moving speed of the silica particles decreases, and the polishing efficiency may decrease.

但し、本実施の形態に係わるシリカゾルは、各種アルカリ種や陰イオン種を含み、非球状シリカ微粒子を成長させた溶液を分散媒とする場合に限定されるものではなく、非球状シリカ微粒子を成長させた溶液から当該シリカ微粒子を固液分離し、これを別の分散媒に分散させたものについても本発明の技術的範囲に含まれている。
シリカゾル中における非球状シリカ微粒子の表面電荷密度は、絶対値として0.3〜1.3[μeq/m]の範囲にあることが好ましい。表面電荷密度の絶対値が0.3[μeq/m]よりも小さくなると非球状シリカ微粒子が凝集してしまうおそれがある一方、5〜300nmの粒径範囲では表面電荷密度の絶対値を1.3[μeq/m]より大きくすることは困難である。
However, the silica sol according to the present embodiment is not limited to the case where the dispersion medium contains various alkali species and anion species and the non-spherical silica fine particles are grown, and the non-spherical silica fine particles are grown. Those obtained by subjecting the silica fine particles to solid-liquid separation from the solution thus prepared and dispersing them in another dispersion medium are also included in the technical scope of the present invention.
The surface charge density of the non-spherical silica fine particles in the silica sol is preferably in the range of 0.3 to 1.3 [μeq / m 2 ] as an absolute value. When the absolute value of the surface charge density is smaller than 0.3 [μeq / m 2 ], the non-spherical silica fine particles may be aggregated. On the other hand, in the particle size range of 5 to 300 nm, the absolute value of the surface charge density is set to 1. It is difficult to make it larger than 3 [μeq / m 2 ].

[研磨用組成物]
上述の非球状シリカ微粒子を含むシリカゾルには、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる添加剤群より選ばれる1種以上の添加剤を添加して研磨用組成物としてもよい。
[Polishing composition]
The silica sol containing the above-mentioned non-spherical silica fine particles is polished by adding one or more additives selected from the group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer. It may be a composition for use.

研磨促進剤の例としては、研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸などの酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩およびこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。   As examples of polishing accelerators, other examples of polishing accelerators include acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid, and hydrofluoric acid, or sodium salts, potassium salts, ammonium salts, and mixtures thereof. And so on. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished consisting of composite components, the polishing rate is accelerated for a specific component of the material to be polished, thereby finally achieving flat polishing. You can get a plane.

界面活性剤は研磨用組成物の分散性や安定性を向上させる役割を果たし、脂肪族アミン塩、脂肪族4級アンモニウム塩などのカチオン系、カルボン酸塩、スルホン酸塩などのアニオン系、ポリオキシエチレンアルキルやグリセリンエステルのポリオキシエチレンエーテルなどのノニオン系、カルボキシベタイン型やスルホベタイン型などの両性系の界面活性剤などを添加することができる。界面活性剤はいずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。また界面活性剤と同様の効果を奏する添加剤として、グリセリンエステル、ソルビタンエステルなどの親水性化合物を添加してもよい。   Surfactants play a role in improving the dispersibility and stability of the polishing composition, and include cationic systems such as aliphatic amine salts and aliphatic quaternary ammonium salts, anionic systems such as carboxylates and sulfonates, Nonionic surfactants such as oxyethylene alkyl and glycerol ester polyoxyethylene ether, amphoteric surfactants such as carboxybetaine type and sulfobetaine type can be added. Any of the surfactants has an action of reducing the contact angle with the surface to be polished, and has an action of promoting uniform polishing. Moreover, you may add hydrophilic compounds, such as glycerol ester and sorbitan ester, as an additive which show | plays the effect similar to surfactant.

複素環化合物は、被研磨基材に金属が含まれる場合に、金属に不動態層または溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で添加される。「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾールなどを挙げることができる。   The heterocyclic compound is added for the purpose of suppressing the erosion of the substrate to be polished by forming a passive layer or a dissolution inhibiting layer on the metal when the substrate to be polished contains a metal. A “heterocyclic compound” is a compound having a heterocyclic ring containing one or more heteroatoms. A hetero atom means an atom other than a carbon atom or a hydrogen atom. A heterocycle means a cyclic compound having at least one heteroatom. A heteroatom means only those atoms that form part of a heterocyclic ring system, either external to the ring system, separated from the ring system by at least one non-conjugated single bond, Atoms that are part of a further substituent of are not meant. Preferred examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. Examples of the heterocyclic compound include imidazole and benzotriazole.

pH調整剤は、上述の各種添加剤の添加効果を高めることを目的として、研磨用組成物のpHを調節するために必要に応じて添加される酸や塩である。研磨用組成物をpH7以上に調整するpH調整剤としては、アルカリ性の水酸化ナトリウムやアンモニア水などが使用され、pHを7未満に調整するときは、乳酸、クエン酸などの酸が使用される。   The pH adjuster is an acid or salt added as necessary to adjust the pH of the polishing composition for the purpose of enhancing the effect of adding the various additives described above. As a pH adjuster for adjusting the polishing composition to pH 7 or more, alkaline sodium hydroxide, aqueous ammonia, or the like is used. When adjusting the pH to less than 7, acids such as lactic acid and citric acid are used. .

pH緩衝剤は研磨用組成物のpH値を一定に保持する役割を果たし、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウムなどを使用することができる。   The pH buffer serves to keep the pH value of the polishing composition constant, and for example, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and the like can be used.

[製造方法]
以上に述べてきた特徴を備えるシリカゾルの製造方法の一例について説明する。
はじめにシリカ微粒子の原料であるケイ酸アルカリ塩を水溶液に溶解する。ケイ酸アルカリ塩の水溶液の濃度は、SiO換算で1〜10重量%、さらには2〜8重量%に調製することが好ましい。SiOとしてのケイ素の含有量が1重量%未満の場合は、ケイ酸の重合(ゲル化)が不充分となり、硫酸ナトリウムなどの塩洗浄の際に、ろ布からのシリカ流出が多く、SiOの収率が低くなるという問題がある。他方、この濃度がSiOとして10重量%を越えると、水溶液を均一に中和することができずケイ酸の重合が不均一となり、最終的に得られる非球状シリカ微粒子の大きさのばらつきが増大する。
[Production method]
An example of a method for producing a silica sol having the characteristics described above will be described.
First, an alkali silicate salt, which is a raw material for silica fine particles, is dissolved in an aqueous solution. The concentration of the alkali silicate aqueous solution is preferably adjusted to 1 to 10% by weight, more preferably 2 to 8% by weight in terms of SiO 2 . When the content of silicon as SiO 2 is less than 1% by weight, the polymerization (gelation) of silicic acid is insufficient, and the silica outflow from the filter cloth is large at the time of salt washing such as sodium sulfate. There is a problem that the yield of 2 is low. On the other hand, if this concentration exceeds 10% by weight as SiO 2 , the aqueous solution cannot be neutralized uniformly, and the silicic acid polymerization becomes non-uniform, resulting in variations in the size of the non-spherical silica fine particles finally obtained. Increase.

濃度調製されたケイ酸塩水溶液には、pHが3〜7の範囲となるように塩酸、硫酸、硝酸などの無機酸(鉱酸)を添加して、ケイ酸を中和することによりシリカヒドロゲルを含む溶液が得られる。均一なヒドロゲルを得るためには、中和後の当該溶液のpHは3〜7の範囲にあることが好ましい。中和後の溶液のpHが3未満の場合は、ヒドロゲル構造が十分に発達せず、洗浄時にろ布からシリカが溶出し易い。これに対して溶液のpHが7を超える場合は、ヒドロゲル中で一部シロキサン結合が起こり、当該ヒドロゲルを解膠させる後段の処理の際に、目標粒子径を持つシリカ微粒子へとシリカゲルが解膠しにくくなるという欠点がある。   Silica hydrogel is obtained by neutralizing silicic acid by adding inorganic acid (mineral acid) such as hydrochloric acid, sulfuric acid, nitric acid, etc. so that the pH is in the range of 3-7 to the prepared silicate aqueous solution. A solution containing is obtained. In order to obtain a uniform hydrogel, the pH of the solution after neutralization is preferably in the range of 3-7. When the pH of the solution after neutralization is less than 3, the hydrogel structure does not sufficiently develop, and silica is easily eluted from the filter cloth during washing. On the other hand, when the pH of the solution exceeds 7, a part of siloxane bond occurs in the hydrogel, and the silica gel is peptized into silica fine particles having the target particle size during the subsequent treatment for peptizing the hydrogel. There is a drawback that it is difficult to do.

こうして、ケイ酸アルカリ塩の水溶液を酸で中和し、シリカヒドロゲルを得た後、好適には、15〜35℃の温度範囲にて、最大10時間程度静置して熟成を行う。熟成時間については、通常は10分〜3時間の範囲が推奨される。   Thus, after neutralizing the aqueous solution of an alkali silicate salt with an acid to obtain a silica hydrogel, it is preferably allowed to stand at a temperature range of 15 to 35 ° C. for about 10 hours for aging. Regarding the aging time, a range of 10 minutes to 3 hours is usually recommended.

熟成後のシリカヒドロゲルは純水またはアンモニア水などにより洗浄し、中和により生成した塩類を除去する。シリカヒドロゲルの洗浄は、例えばオリバーフィルターなどのろ過機に、シリカヒドロゲルを含む溶液を供給し、しかる後、洗浄液を連続供給することなどにより行われる。例えば、ケイ酸アルカリ塩としてケイ酸ナトリウムを使用し、硫酸を用いて中和を行った場合には、硫酸ナトリウムが生成する。この場合に、洗浄後の硫酸ナトリウムの濃度は、望ましくは、シリカヒドロゲルに含まれるSiOとしての固形分に対して、0.05重量%以下とすることが好ましい。硫酸ナトリウムの含有量がこの範囲であれば、解膠に必要とする時間が短く、生産性への影響も少ない。これに対して、硫酸ナトリウムの濃度が高くなると、ゾル粒子の負電位が小さくなって、解膠が不十分になり凝集体が残存して安定なゾル液を得ることが出来ない。ここでシリカヒドロゲルに他の種類の塩が含まれる場合であっても、硫酸ナトリウムの場合と同様の理由により、洗浄後のシリカヒドロゲル中における塩の含有量は、SiOとしての固形分に対して0.05重量%以下であることが好ましい。 The aged silica hydrogel is washed with pure water or ammonia water to remove salts generated by neutralization. The silica hydrogel is washed by supplying a solution containing the silica hydrogel to a filter such as an Oliver filter, and then continuously supplying the washing liquid. For example, when sodium silicate is used as the alkali silicate salt and neutralization is performed using sulfuric acid, sodium sulfate is generated. In this case, the concentration of sodium sulfate after washing is desirably 0.05% by weight or less with respect to the solid content as SiO 2 contained in the silica hydrogel. When the content of sodium sulfate is within this range, the time required for peptization is short and the influence on productivity is small. On the other hand, when the concentration of sodium sulfate is increased, the negative potential of the sol particles is decreased, the peptization is insufficient, and the aggregate remains and a stable sol solution cannot be obtained. Here, even if the silica hydrogel contains other types of salts, the salt content in the silica hydrogel after washing is based on the solid content as SiO 2 for the same reason as in the case of sodium sulfate. It is preferably 0.05% by weight or less.

洗浄が終了したシリカヒドロゲルには、アルカリ溶液が加えられ、シリカヒドロゲルを解膠させてシリカゾルを得る。具体的な操作手順の例としては、シリカヒドロゲルに水を添加して、攪拌機にて攪拌することによりスラリー状態のシリカヒドロゲルの分散液を調製し、これに適量のアルカリを加えて攪拌することによりシリカヒドロゲルの解膠が行われる。   An alkali solution is added to the silica hydrogel that has been washed, and the silica hydrogel is peptized to obtain a silica sol. As an example of a specific operation procedure, by adding water to a silica hydrogel and stirring with a stirrer, a slurry-like silica hydrogel dispersion is prepared, and an appropriate amount of alkali is added thereto and stirred. Silica hydrogel peptization takes place.

分散液に添加されるアルカリとしては、KOH、NaOHなどのアルカリ金属水酸化物や水酸化アンモニウム、さらにはアミン水溶液などを用いることができる。アルカリの添加量は、アルカリ添加後のシリカヒドロゲル分散液のpHが5〜11の範囲となるように調整される。pHが5未満の場合には、分散液が高粘度化するため、安定なシリカゾルが得にくくなる。pHが11を超えると、シリカが溶解しやすくなり、目的の粒子径を維持できないばかりか、部分的に凝集した粒子が得られやすく、特に高濃度領域で不安定となり易い。   As the alkali added to the dispersion, alkali metal hydroxides such as KOH and NaOH, ammonium hydroxide, and an aqueous amine solution can be used. The amount of alkali added is adjusted so that the pH of the silica hydrogel dispersion after alkali addition is in the range of 5-11. When the pH is less than 5, the dispersion becomes highly viscous, and it becomes difficult to obtain a stable silica sol. When the pH exceeds 11, the silica is easily dissolved and the target particle diameter cannot be maintained, and partially agglomerated particles are likely to be obtained, which is likely to be unstable particularly in a high concentration region.

上記シリカヒドロゲルをアルカリで解膠する際の温度は60〜100℃の範囲が好ましく、70〜95℃の範囲にあることがさらに好ましい。温度が60℃未満の場合は、十分に均一な解膠ができないことがある。温度が100℃を超えると、得られるシリカ微粒子の形状が球状となり易い傾向がある。アルカリをシリカヒドロゲルに添加してから、60〜100℃の温度範囲で、通常は10分〜3時間程度攪拌することにより、シリカヒドロゲルの解膠が行われる。   The temperature at which the silica hydrogel is peptized with an alkali is preferably in the range of 60 to 100 ° C, and more preferably in the range of 70 to 95 ° C. When the temperature is less than 60 ° C., sufficiently uniform peptization may not be possible. When the temperature exceeds 100 ° C., the shape of the silica fine particles obtained tends to be spherical. After the alkali is added to the silica hydrogel, the silica hydrogel is peptized by stirring in the temperature range of 60 to 100 ° C., usually for about 10 minutes to 3 hours.

解膠を行う際のシリカヒドロゲルの分散液の濃度は、分散液に対するSiOの含有量が好ましくは0.5〜10重量%、さらに好ましくは3〜7重量%の範囲が推奨される。この濃度が0.5重量%未満の場合は、分散液に溶解してしまうシリカの割合が増加し、得られるシリカ微粒子の平均粒子径が小さくなるため、次の工程で行う粒子成長の際の粒子成長速度が著しく遅くなる傾向がある。また、この濃度がSiOとして10重量%を越えると、解膠して得られるシリカ微粒子の平均粒子径が不均一となりやすい。 The concentration of the dispersion liquid of the silica hydrogel in performing peptization, the content of SiO 2 is preferably 0.5 to 10 wt%, more preferably recommended range of 3 to 7 wt% with respect to the dispersion. When this concentration is less than 0.5% by weight, the proportion of silica dissolved in the dispersion increases, and the average particle size of the silica fine particles obtained decreases, so that during the particle growth performed in the next step The grain growth rate tends to be significantly slower. On the other hand, if this concentration exceeds 10% by weight as SiO 2 , the average particle diameter of silica fine particles obtained by peptization tends to be non-uniform.

このようにしてシリカヒドロゲルを解膠させ、シリカ微粒子を含むシリカゾルが得られたら、シリカ微粒子を成長させ、安定化させる目的で当該シリカゾルを130〜300℃の温度範囲、より好ましくは150〜200℃の温度範囲、0.13〜0.30MPa(ゲージ圧)の圧力範囲、より好ましくは0.15〜0.20MPaの圧力範囲で10分〜6時間加熱し、1回目の水熱処理(第1の水熱処理)を行う。この結果、分散液中のシリカの成長は、溶解速度の差で小さい粒子が溶解し、大きい粒子の上に成長(オストワルド熟成)したり、粒子内部に存在するシラノ−ル基(-Si-OH)の更なる縮合反応により、非球状シリカ微粒子が成長する。第1の水熱処理を開始する際におけるシリカゾル中のシリカ微粒子の濃度は、スラリー液の輸送のし易さなどを考慮し、分散液の2〜5重量%の範囲内で行うことが好ましい。   When the silica hydrogel is peptized in this way to obtain a silica sol containing silica fine particles, the silica sol is grown in the temperature range of 130 to 300 ° C., more preferably 150 to 200 ° C. for the purpose of growing and stabilizing the silica fine particles. In the temperature range of 0.13 to 0.30 MPa (gauge pressure), more preferably in the pressure range of 0.15 to 0.20 MPa for 10 minutes to 6 hours, and the first hydrothermal treatment (first Hydrothermal treatment is performed. As a result, the silica in the dispersion grows by dissolving the small particles due to the difference in dissolution rate, growing on the large particles (Ostwald ripening), or silanol groups (—Si—OH) existing inside the particles. ) Grows non-spherical silica fine particles. The concentration of the silica fine particles in the silica sol at the start of the first hydrothermal treatment is preferably within the range of 2 to 5% by weight of the dispersion in consideration of the ease of transport of the slurry liquid.

そして動的光散乱法により測定される非球状シリカ微粒子の平均粒子径が5〜300nmの範囲の所望の値となったら、水熱処理を終える。得られたシリカゾルは、水などの新たな分散媒を加えつつ限外ろ過膜でシリカゾルのろ過を行うことで洗浄を行い、しかる後、分散媒の供給を停止して、ろ過を継続することで非球状シリカ微粒子の濃度を10〜20重量%の範囲内の例えば10〜16質量%に調整する。シリカ微粒子が所望の平均粒子径となるタイミングは、水熱処理の温度、圧力をパラメーターとして、処理時間と粒子径との関係を予め把握しておくことなどにより特定できる。   When the average particle diameter of the non-spherical silica fine particles measured by the dynamic light scattering method reaches a desired value in the range of 5 to 300 nm, the hydrothermal treatment is finished. The resulting silica sol is washed by filtering the silica sol with an ultrafiltration membrane while adding a new dispersion medium such as water, and then the supply of the dispersion medium is stopped and the filtration is continued. The concentration of the non-spherical silica fine particles is adjusted to, for example, 10 to 16% by mass within the range of 10 to 20% by weight. The timing at which the silica fine particles have a desired average particle diameter can be specified by grasping the relationship between the treatment time and the particle diameter in advance using the temperature and pressure of hydrothermal treatment as parameters.

第1の水熱処理を終えて得られたシリカゾルには、所望の平均粒子径を有する非球状シリカ微粒子が含まれているが、当該シリカ微粒子にはNaやKなどの不純物が含まれており、またシロキサン構造部中のQ4構造やQ3構造の含有割合も少ない。そこで本実施の形態では、非球状シリカ微粒子を成長させた後のシリカゾルに対して2回目の水熱処理(第2の水熱処理)を行うことによりシリカ微粒子からの不純物の除去と、シロキサン結合を発達させることによりQ4構造やQ3構造の含有割合を増加させる操作を行う。   The silica sol obtained by finishing the first hydrothermal treatment contains non-spherical silica fine particles having a desired average particle diameter, and the silica fine particles contain impurities such as Na and K. In addition, the content ratio of the Q4 structure and the Q3 structure in the siloxane structure is small. Therefore, in this embodiment, the silica sol after the growth of the non-spherical silica fine particles is subjected to the second hydrothermal treatment (second hydrothermal treatment) to remove impurities from the silica fine particles and develop siloxane bonds. To increase the content ratio of the Q4 structure and the Q3 structure.

第2の水熱処理においては、第1の水熱処理にて非球状シリカ微粒子を成長させ、洗浄、濃度調整を行って10〜16重量%の濃度に調製したシリカゾルに対し、アルカリ種及び陰イオン種を添加する。第2の水熱処理においてアルカリ種はシリカ微粒子中のシロキサン結合を発達させて、シロキサン構造部内のQ4構造やQ3構造の割合を増加させる役割を果たす。また陰イオンは、Na等の陽イオンと塩を形成し、シリカ微粒子表面の水和層を薄くさせ、第2の水熱処理中でのシリカ粒子の成長速度を促進させ、シリカ微粒子の形状を非球状に保つ役割を果たす。   In the second hydrothermal treatment, non-spherical silica fine particles are grown in the first hydrothermal treatment, washed, and subjected to concentration adjustment to the silica sol prepared to a concentration of 10 to 16% by weight. Add. In the second hydrothermal treatment, the alkali species develops a siloxane bond in the silica fine particles and plays a role of increasing the ratio of the Q4 structure or the Q3 structure in the siloxane structure. The anion also forms a salt with a cation such as Na, thins the hydrated layer on the surface of the silica fine particles, accelerates the growth rate of the silica particles during the second hydrothermal treatment, Plays the role of keeping it spherical.

第2の水熱処理に際してシリカゾルに添加されるアルカリ種は、NaOH、KOH、第4級アミンなどからなるアルカリ種群から選択される。第4級アミンの具体例としては、テトラメチルアンモニウムハイドロオキサイド(以下、TMAHという)などが挙げられる。   The alkali species added to the silica sol in the second hydrothermal treatment is selected from the alkali species group consisting of NaOH, KOH, quaternary amines and the like. Specific examples of the quaternary amine include tetramethylammonium hydroxide (hereinafter referred to as TMAH).

第2の水熱処理の際に添加されるアルカリ種の添加量としては、シリカゾル中のケイ素をSiOにモル換算し、アルカリ種をその陽イオンの酸化物MOH(Mは、Na、Kまたは第4級アミン)にモル換算したとき、SiO/MOHで表されるモル比が100〜420の範囲にあることが好ましい。SiO/MOHが100未満の場合には、溶媒へのシリカの溶解度が大きくなり、限外ろ過膜などを利用した濃縮の際に溶解したシリカのろ水への流出量が多くなって収率が悪くなる。またシリカ微粒子中のシロキサン結合が発達せず低分子のシリカが多くなって濃縮時にシリカ微粒子数が一定容積で多いために、粘度が高くなるばかりでなく、粒子の衝突頻度も多くなり、凝集するおそれがある。反対にSiO/MOHが420を超えると、分散媒のpHが低くなりすぎ、SiOが生成されてしまうことなどによりシロキサン結合の発達が阻害される。 The amount of the alkali species added during the second hydrothermal treatment is as follows: silicon in the silica sol is converted into SiO 2 in terms of mole, and the alkali species is converted to its cation oxide MOH (M is Na, K or second). When converted to a quaternary amine), the molar ratio represented by SiO 2 / MOH is preferably in the range of 100 to 420. When SiO 2 / MOH is less than 100, the solubility of silica in the solvent is increased, and the amount of the silica dissolved during the concentration using an ultrafiltration membrane or the like flows out into the filtrate to increase the yield. Becomes worse. In addition, the silica particles in the silica particles do not develop and the amount of low-molecular silica increases, and the number of silica particles is large at a constant volume during concentration, which not only increases the viscosity, but also increases the frequency of particle collision and agglomerates. There is a fear. On the other hand, if SiO 2 / MOH exceeds 420, the pH of the dispersion medium becomes too low, and SiO 2 is generated, which inhibits the development of siloxane bonds.

一方、第2の水熱処理の際にシリカゾルに添加される陰イオン種は、SO 2−、Cl、NO またはPO 3−などからなる陰イオン種群から選択される。シリカゾルへの陰イオン種の添加量は、シリカゾル中のケイ素をSiOにモル換算し、陰イオン種のモル数をXで表したとき、SiO/Xで表されるモル比が400〜1000の範囲にあることが好ましい。SiO/Xが400未満の場合には、シリカゾルのpHが低くなり、ゼータ電位が小さくなるため、水熱処理の際にシリカ微粒子が凝集しやすくなる。一方、SiO/Xが1000を超えると、シリカの溶解度が増加してシリカ微粒子の平均粒子径が小さくなってしまったり、シリカゾルの粘度が高くなって安定なシリカゾルが得られなくなったりしてしまう。陰イオンの添加は、例えばこれらの陰イオンを含む酸や塩を溶解させた溶液を添加することなどによりって行われる。 On the other hand, the anionic species added to the silica sol in the second hydrothermal treatment is selected from the group of anionic species consisting of SO 4 2− , Cl , NO 3 or PO 4 3− . The amount of the anionic species added to the silica sol is such that when the silicon in the silica sol is converted into SiO 2 by mole and the number of moles of the anionic species is represented by X, the molar ratio represented by SiO 2 / X is 400 to 1000. It is preferable that it exists in the range. When SiO 2 / X is less than 400, the silica sol has a low pH and a low zeta potential, so that the silica fine particles tend to aggregate during the hydrothermal treatment. On the other hand, when SiO 2 / X exceeds 1000, the silica solubility increases and the average particle size of the silica fine particles decreases, or the viscosity of the silica sol increases and a stable silica sol cannot be obtained. . Anions are added by, for example, adding a solution in which an acid or salt containing these anions is dissolved.

所定量のアルカリ種及び陰イオン種が添加されたシリカゾルは、例えば130〜300℃の温度範囲、より好ましくは150〜200℃の温度範囲、0.13〜0.30MPa(ゲージ圧)の圧力範囲、より好ましくは0.15〜0.20MPaの圧力範囲で0.5〜10時間加熱し、第2の水熱処理が行われる。この結果、シリカ粒子中に含まれる不純物が分散媒中に溶出すると共に、シラノール基同士の縮合反応が進行し、シロキサン結合が発達して、シロキサン構造部のQ3構造、Q4構造の含有割合が増加する。この結果、密度が大きく、緻密性の高い、研磨に適したシリカ微粒子を得ることができる。   The silica sol to which a predetermined amount of alkali species and anionic species are added is, for example, a temperature range of 130 to 300 ° C., more preferably a temperature range of 150 to 200 ° C., and a pressure range of 0.13 to 0.30 MPa (gauge pressure). More preferably, the second hydrothermal treatment is performed by heating in the pressure range of 0.15 to 0.20 MPa for 0.5 to 10 hours. As a result, the impurities contained in the silica particles are eluted in the dispersion medium, the condensation reaction between silanol groups proceeds, the siloxane bond is developed, and the content ratio of the Q3 structure and Q4 structure of the siloxane structure portion increases. To do. As a result, it is possible to obtain silica fine particles having a high density and high density and suitable for polishing.

第2水熱処理を終えるタイミングは、水熱処理の温度、圧力をパラメーターとして、処理時間とシロキサン構造部中のQ3構造、Q4構造の含有割合との関係を予め把握しておくことなどにより決定できる。
また第2の水熱処理を開始する際におけるシリカゾル中のシリカ微粒子の濃度は、分散液の10〜20重量%の範囲内で行うことが好ましい。シリカ微粒子の濃度が10重量%を下回ると、アルカリ種を添加した分散媒中に再溶解するシリカ微粒子の量が多くなり、収率が悪くなる。反対にシリカ微粒子の濃度が20重量%を超えると、処理容器へのスケールの付着量が多くなり、シリカ粒子の収率が悪くなるばかりか、シリカ微粒子の凝集も進行してしまう。
The timing of finishing the second hydrothermal treatment can be determined by grasping in advance the relationship between the treatment time and the content ratio of the Q3 structure and Q4 structure in the siloxane structure part, using the temperature and pressure of the hydrothermal treatment as parameters.
Further, the concentration of the silica fine particles in the silica sol at the start of the second hydrothermal treatment is preferably performed within a range of 10 to 20% by weight of the dispersion. When the concentration of the silica fine particles is less than 10% by weight, the amount of the silica fine particles re-dissolved in the dispersion medium to which the alkali species is added increases, resulting in a poor yield. On the other hand, when the concentration of the silica fine particles exceeds 20% by weight, the amount of scale attached to the processing container increases and not only the yield of the silica particles deteriorates but also the aggregation of the silica fine particles proceeds.

以上に説明した要領にて第2の水熱処理を終えたら、ロータリーエバポレータなどを用いてシリカゾルを、固形分濃度が10〜60質量%の範囲内の例えば30〜32質量%に濃縮し、実施の形態に係わるシリカゾルを得る。また第2の水熱処理を終えたあとのシリカゾルを固液分離して、得られた固形分を別の分散媒に分散させて調製したシリカゾルについても本発明の技術的範囲に含まれることはもちろんである。   When the second hydrothermal treatment is completed as described above, the silica sol is concentrated to, for example, 30 to 32% by mass within a range of 10 to 60% by mass using a rotary evaporator or the like. A silica sol according to the morphology is obtained. Further, it is a matter of course that the silica sol prepared by solid-liquid separation of the silica sol after the second hydrothermal treatment and dispersing the obtained solid content in another dispersion medium is also included in the technical scope of the present invention. It is.

本実施の形態に係わるシリカゾルによれば以下の効果がある。非球状シリカ微粒子中のケイ素原子のシロキサン結合を増やして、当該シリカ微粒子の密度や緻密性を向上させることにより、精密研磨に適し、且つ、高い研磨速度を備えた研磨用シリカゾルを得ることができる。当該研磨用シリカゾルは高い研磨レートを有するため、従来のガラス基材特にガラス製ハードディスクの研磨に用いられていたセリアの代替研磨材として利用することができる。本研磨用シリカゾルや研磨用組成物は、ガラス製ハードディスク、半導体ウエハ、などの研磨用途に好適に使用することができる。   The silica sol according to the present embodiment has the following effects. By increasing the siloxane bond of the silicon atom in the non-spherical silica fine particles and improving the density and denseness of the silica fine particles, it is possible to obtain a polishing silica sol suitable for precision polishing and having a high polishing rate. . Since the polishing silica sol has a high polishing rate, it can be used as an alternative polishing material for ceria which has been used for polishing conventional glass substrates, particularly glass hard disks. The polishing silica sol and polishing composition can be suitably used for polishing applications such as glass hard disks and semiconductor wafers.

また第2の水熱処理は、例えば市販の非球状シリカ微粒子を含むシリカゾルに対して行ってもよい。この場合には、前記市販のシリカゾルに、上述のアルカリ種や陰イオン種を所定量添加し、第2の水熱処理を行って、シリカ微粒子中のシロキサン構造部に含まれるシラノール基を縮合させることにより、非球状シリカ微粒子を研磨用に好適な性状に改質することができる。このような改質を行って、29Si−NMRスペクトル測定時のケミカルシフト−73.0〜−120.0ppmのピーク面積におけるQ4構造部の面積を88%以上、Q3構造部の面積を11%以下としたシリカ微粒子を含むシリカゾルについても本発明の技術的範囲に含まれていることは勿論である。 The second hydrothermal treatment may be performed on a silica sol containing commercially available non-spherical silica fine particles, for example. In this case, a predetermined amount of the above-mentioned alkali species or anionic species is added to the commercially available silica sol, and a second hydrothermal treatment is performed to condense the silanol groups contained in the siloxane structure in the silica fine particles. Thus, the non-spherical silica fine particles can be modified into properties suitable for polishing. By performing such modification, the area of the Q4 structure portion is 88% or more and the area of the Q3 structure portion is 11% at the peak area of chemical shift of −73.0 to −120.0 ppm at the time of 29 Si-NMR spectrum measurement. Of course, the following silica sol containing silica fine particles is also included in the technical scope of the present invention.

[評価方法]
各例の研磨用シリカゾルの評価方法について以下に記す。
[1]29Si−NMR
専用ガラスセルに各例に係わる研磨用シリカゾルを入れ、基準物質としてテトラメチルシランを5重量%添加し、NMR装置(日本電子(株)製JNM−EX270型、解析ソフト;日本電子(株)製Excalibur)にて、シングルパルスノンデカップリング法にて29Si−NMRのスペクトルを得た。得られたNMRスペクトルのケミカルシフト−73.0〜−120.0ppmの範囲にあるピークのトータルの面積Sをシロキサン構造部(Q0構造〜Q4構造)のピーク面積とし、ケミカルシフトが−100.0〜−120.0ppmの範囲をQ4構造のピークの面積(S)、同じく−82.0〜−100.0ppmの範囲をQ3構造のピーク面積(S)とした。各構造のピークの面積の比率は、(S/S)×100[%](i=3または4)により計算した。
[Evaluation method]
The evaluation method of the polishing silica sol in each example is described below.
[1] 29 Si-NMR
The silica sol for polishing according to each example is put in a dedicated glass cell, 5% by weight of tetramethylsilane is added as a reference material, and NMR apparatus (JNM-EX270 type, analysis software; manufactured by JEOL Ltd .; manufactured by JEOL Ltd.) Excalibur), a 29 Si-NMR spectrum was obtained by a single pulse non-decoupling method. The resulting total area S T peaks in the range of chemical shift -73.0~-120.0ppm NMR spectra and peak area of the siloxane structure portion (Q0 structure ~Q4 structure), the chemical shift of -100. The range of 0 to −120.0 ppm was defined as the peak area (S 4 ) of the Q4 structure, and the range of −82.0 to −100.0 ppm was also defined as the peak area (S 3 ) of the Q3 structure. The ratio of the peak area of each structure was calculated by (S i / S T ) × 100 [%] (i = 3 or 4).

[2]動的光散乱法による平均粒子径の測定
シリカゾルを0.58%アンモニア水にて希釈して、シリカ微粒子の固形分濃度を1重量%に調製し、当該シリカゾルを10mm角のプラスチックセルに充填して、レーザーパーティクルアナライザー(大塚電子株式会社製、レーザー粒径解析システム:LP−510モデルPAR−III、測定原理:動的光散乱法、測定角度90°、受光素子:光電子倍増管2インチ、測定範囲:3nm〜5μm、光源:He-Neレーザー(5mW、632.8nm)を用いて平均粒子径A[nm]を計測した。セル内のシリカゾルは、25℃に調整した。
[2] Measurement of average particle size by dynamic light scattering method
The silica sol is diluted with 0.58% aqueous ammonia to adjust the solid content concentration of the silica fine particles to 1% by weight. The silica sol is filled in a 10 mm square plastic cell, and a laser particle analyzer (manufactured by Otsuka Electronics Co., Ltd.). Laser particle size analysis system: LP-510 model PAR-III, measurement principle: dynamic light scattering method, measurement angle 90 °, light receiving element: photomultiplier tube 2 inches, measurement range: 3 nm to 5 μm, light source: He—Ne The average particle diameter A [nm] was measured using a laser (5 mW, 632.8 nm) The silica sol in the cell was adjusted to 25 ° C.

[3]窒素吸着法による平均粒子径の測定
シリカゾル50mlをHNOでpHを3.5に調整し、1−プロパノールを40ml加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成して測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いて窒素吸着法(BET法)を用いて、窒素の吸着量から、BET1点法により比表面積を算出した。
[3] Measurement of average particle size by nitrogen adsorption method
A sample prepared by adjusting 50 mL of silica sol to 3.5 with HNO 3 , adding 40 mL of 1-propanol, and drying at 110 ° C. for 16 hours was pulverized in a mortar and then calcined at 500 ° C. for 1 hour in a muffle furnace. A sample was prepared. And the specific surface area was computed by the BET 1 point method from the adsorption amount of nitrogen using the nitrogen adsorption method (BET method) using the specific surface area measuring apparatus (The product made from Yuasa Ionics, model number multisorb 12).

比表面積測定装置では、焼成後の試料0.5gを測定セルに取り、窒素30v%/ヘリウム70v%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させた。次いで、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により試料中のシリカ微粒子の比表面積SAを算出した。また、平均粒子径B[nm]は、下記(1)式より求めた。
B=6000/(ρ×SA) … (1)
但し、 ρ:試料の密度(シリカでは2.2[g/cm]を用いた)
SA:試料の比表面積[m/g]
In the specific surface area measuring apparatus, 0.5 g of the baked sample is placed in a measurement cell, degassed for 20 minutes at 300 ° C. in a mixed gas stream of nitrogen 30 v% / helium 70 v%, and the sample is mixed with the above mixed gas. Liquid nitrogen temperature was maintained in an air stream, and nitrogen was adsorbed on the sample in an equilibrium manner. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area SA of the silica fine particles in the sample was calculated using a calibration curve prepared in advance. Moreover, the average particle diameter B [nm] was calculated | required from the following (1) formula.
B = 6000 / (ρ × SA) (1)
Where ρ: density of the sample (2.2 [g / cm 3 ] was used for silica)
SA: specific surface area of the sample [m 2 / g]

[4]研磨試験
(1)被研磨基板
被研磨基板として、ハードディスク用アルミノシリケート製ガラス基板を使用した。このハードディスク用アルミノシリケート製ガラス基板は、ドーナツ形状の基板である(外径65mmΦ/内径20mmΦ−厚さ0.635mm)。なお、この基板は一次研磨済みで、表面粗さ(RA)は0.3nmであった。
[4] Polishing test
(1) Substrate to be polished
As the substrate to be polished, a glass substrate made of aluminosilicate for hard disk was used. This glass substrate made of aluminosilicate for a hard disk is a donut-shaped substrate (outer diameter 65 mmΦ / inner diameter 20 mmΦ−thickness 0.635 mm). This substrate was first polished and the surface roughness (RA) was 0.3 nm.

(2)研磨試験
上記被研磨基板を研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッド(ニッタ・ハース社製「ポリテックス」)を使用し、基板荷重0.05MPA、テーブル回転速度30rpmで、固形分濃度が15重量%の研磨用シリカゾルを20g/分の速度で5分間供給して研磨を行った。
(2) Polishing test
The substrate to be polished is set in a polishing apparatus (Nano Factor Co., Ltd .: NF300), and a polishing pad ("Polytex" manufactured by Nitta Haas) is used, with a substrate load of 0.05 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying a polishing silica sol having a solid content concentration of 15 wt% at a rate of 20 g / min for 5 minutes.

(3)研磨速度比
研磨前後の研磨基板の重量差と研磨時間より、研磨速度を算出した。比較例5のCataloid SI-80Pの研磨速度を1.0として研磨速度比を算出した。
(3) Polishing rate ratio
The polishing rate was calculated from the difference in weight of the polishing substrate before and after polishing and the polishing time. The polishing rate ratio was calculated by setting the polishing rate of the Cataloid SI-80P of Comparative Example 5 to 1.0.

(4)粒子の基材残り
粒子の基材残りについては、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Micro−MAX)を使用し、15にて目視で前面観察し、65.97cmに相当する研磨処理された基板表面に存在する白色のシミ状の欠陥がない場合を良(○)、かなりの面積の白色のシミが観察される場合を不可(×)、それらの間のものを(△)と評価した。
(4) Particle Substrate Remaining For the particle substrate remaining, the front surface was visually observed at 15 using an ultra fine defect / visualization macro apparatus (manufactured by VISION PSYTEC, product name: Micro-MAX), 65 where there is no white stain-like defects good present in polished substrate surface corresponding to .97cm 2 (○), when the disabled (×), thereof is white stain significant area is observed Those in between were evaluated as (Δ).

(5)スクラッチ(線状痕)の測定
スクラッチの発生状況については、アルミニウムディスク用基板を(2)に記載の方法で研磨処理した後、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Micro−MAX)を使用し、Zoom15にて全面観察し、65.97cmに相当する研磨処理された基板表面に存在する100μm以上の長さのスクラッチ(線状痕)の個数を数えて合計した。スクラッチの数が3個以下の場合を良(○)、4〜20個の場合を可(△)、20個以上の場合を不可(×)と評価した。
(5) Measurement of scratches (linear marks)
Regarding the occurrence of scratches, after polishing the aluminum disk substrate by the method described in (2), using an ultra fine defect / visualization macro apparatus (product name: Micro-MAX, manufactured by VISION PSYTEC), Zoom 15 The number of scratches (linear traces) having a length of 100 μm or more present on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled. The case where the number of scratches was 3 or less was evaluated as good (◯), the case where it was 4 to 20 was acceptable (Δ), and the case where it was 20 or more was evaluated as impossible (×).

(実施例1)
ケイ酸ナトリウム462.5gを水に溶解し、SiO換算で24重量%のケイ酸ナトリウム水溶液を調整した後、pHが4.5となるように25重量%の硫酸を添加してシリカヒドロゲルを含む溶液を得る。シリカヒドロゲル溶液は、恒温槽で21℃の温度に維持し、5.75時間静置して熟成を行った後、シリカヒドロゲルに含まれるSiOとしてのケイ素に対し、硫酸ナトリウムの含有量が0.05重量%となるまで純水で洗浄する([SiO]/[SO 2−]のモル比で6208に相当)。洗浄が終了したシリカヒドロゲルの分散液のpHが10.5となるようにアルカリ溶液として15重量%のアンモニア水を加え([SiO]/[NH]のモル比で1に相当)、スラリー状の分散液を攪拌機にて攪拌しながら95℃に維持し、4時間保持してシリカヒドロゲルの解膠をさせてシリカ微粒子を含むシリカゾルを得た。分散液中のシリカヒドロゲルの濃度は、SiOの含有量として3重量%であった。
Example 1
After dissolving 462.5 g of sodium silicate in water and preparing a 24 wt% sodium silicate aqueous solution in terms of SiO 2 , 25 wt% sulfuric acid was added so that the pH was 4.5, and silica hydrogel was added. A solution containing is obtained. The silica hydrogel solution is maintained at a temperature of 21 ° C. in a thermostatic bath and left to stand for 5.75 hours for aging, and then the content of sodium sulfate is 0 with respect to silicon as SiO 2 contained in the silica hydrogel. Wash with pure water until the content becomes 0.05% by weight (corresponding to a molar ratio of [SiO 2 ] / [SO 4 2− ] of 6208). 15% by weight ammonia water was added as an alkaline solution (corresponding to a molar ratio of [SiO 2 ] / [NH 3 ] corresponding to 1) so that the pH of the silica hydrogel dispersion after washing was 10.5. The resulting dispersion was maintained at 95 ° C. while stirring with a stirrer and held for 4 hours to peptize the silica hydrogel to obtain a silica sol containing silica fine particles. The concentration of silica hydrogel in the dispersion was 3% by weight as the SiO 2 content.

得られたシリカゾルは、オートクレーブ内で温度150℃、圧力0.15MPaの条件下で1.3時間加熱し(第1の水熱処理)、シリカ微粒子の平均粒子径を17nm(窒素吸着法で計測)まで成長させた。電子顕微鏡で観察したシリカ微粒子の外観形状は非球状であった。次いで第1の水熱処理を実施した後の3.3Lのシリカゾルに、650mLの純水を供給して洗浄を行いながら限外ろ過膜でSiO換算の濃度を15重量%に調整し、アルカリ種として5重量%のNaOHを14.8mL添加し、5重量%の硫酸をSO 2−の陰イオン種源として5.3mL添加した。「SiO/NaOH」のモル比は360であり、「SiO/SO 2−」のモル比は611であった。アルカリ種、陰イオン種が添加されたシリカゾルをオートクレーブ内で温度160℃、圧力0.16MPaの条件下で1時間加熱し(第2の水熱処理)、シリカ微粒子中の不純物の除去、シラノール基の縮合を行った。 The obtained silica sol was heated in an autoclave at a temperature of 150 ° C. and a pressure of 0.15 MPa for 1.3 hours (first hydrothermal treatment), and the average particle size of silica fine particles was 17 nm (measured by a nitrogen adsorption method). Grown up to. The appearance of the silica fine particles observed with an electron microscope was non-spherical. Subsequently, 650 mL of pure water was supplied to 3.3 L of silica sol after the first hydrothermal treatment was performed, and the concentration in terms of SiO 2 was adjusted to 15% by weight with an ultrafiltration membrane while washing. 14.8 mL of 5 wt% NaOH was added, and 5.3 mL of 5 wt% sulfuric acid was added as a source of SO 4 2− anionic species. The molar ratio of “SiO 2 / NaOH” was 360, and the molar ratio of “SiO 2 / SO 4 2− ” was 611. The silica sol to which alkali species and anion species are added is heated in an autoclave at a temperature of 160 ° C. and a pressure of 0.16 MPa for 1 hour (second hydrothermal treatment) to remove impurities in the silica fine particles and to remove silanol groups. Condensation was performed.

得られたシリカゾルは、ロータリーエバポレータにて固形分の濃度が30重量%となるよう研磨用シリカゾルを調整した。この研磨用シリカゾル667mLに対し、イオン交換水を添加してシリカ濃度として9重量%に調整し、pH調整剤として5重量%のNaOHをpHが10.5になるように添加して研磨用組成物を調製し、研磨試験に供した。(実施例1)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。   The obtained silica sol was prepared by adjusting a polishing silica sol so that the solid content would be 30% by weight using a rotary evaporator. To 667 mL of this polishing silica sol, ion-exchanged water is added to adjust the silica concentration to 9% by weight, and 5% by weight NaOH is added as a pH adjusting agent so that the pH becomes 10.5. A product was prepared and subjected to a polishing test. The production conditions of the silica sol relating to (Example 1) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(実施例2)
第2の水熱処理にてアルカリ種として添加するNaOHの量を33.73mLに変更して「SiO/NaOH」のモル比を158とし、処理時間を6時間とした点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(実施例2)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Example 2)
The amount of NaOH added as an alkali species in the second hydrothermal treatment was changed to 33.73 mL, the molar ratio of “SiO 2 / NaOH” was 158, and the treatment time was 6 hours (Examples) A polishing silica sol and a polishing composition were prepared under the same conditions as in 1). The production conditions of the silica sol relating to (Example 2) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(実施例3)
第2の水熱処理においてアルカリ種として添加するNaOHの量を33.73mLに変更して「SiO/NaOH」のモル比を158とした点と、陰イオン種をNO に変更するため、陰イオン種源として5重量%の硝酸を0.34mL添加した点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(実施例2)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Example 3)
In order to change the amount of NaOH added as an alkali species in the second hydrothermal treatment to 33.73 mL and change the molar ratio of “SiO 2 / NaOH” to 158, and to change the anionic species to NO 3 , A polishing silica sol and a polishing composition were prepared under the same conditions as in Example 1, except that 0.34 mL of 5 wt% nitric acid was added as an anion seed source. The production conditions of the silica sol relating to (Example 2) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(実施例4)
第2の水熱処理においてアルカリ種として添加するNaOHの量を33.73mLに変更して「SiO/NaOH」のモル比を158とした点と、陰イオン種をClに変更するため、陰イオン種源として5重量%の塩酸を2mL添加した点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(実施例3)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
Example 4
In the second hydrothermal treatment, the amount of NaOH added as an alkali species was changed to 33.73 mL to change the molar ratio of “SiO 2 / NaOH” to 158, and the anion species was changed to Cl , A polishing silica sol and a polishing composition were prepared under the same conditions as in Example 1, except that 2 mL of 5 wt% hydrochloric acid was added as an ion species source. The production conditions of the silica sol relating to (Example 3) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(実施例5)
第2の水熱処理にてアルカリ種として添加するNaOHの量を17.8mLに変更して「SiO/NaOH」のモル比を300とし、その処理温度を200℃とした点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(実施例5)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Example 5)
The amount of NaOH added as an alkali species in the second hydrothermal treatment was changed to 17.8 mL, the molar ratio of “SiO 2 / NaOH” was set to 300, and the processing temperature was set to 200 ° C. A polishing silica sol and a polishing composition were prepared under the same conditions as in Example 1). The production conditions of the silica sol relating to (Example 5) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(実施例6)
第2の水熱処理において添加するアルカリ種を5重量%、23.7mLのKOHに変更して「SiO/KOH」のモル比を158とした点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(実施例6)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Example 6)
The same conditions as in Example 1 except that the alkali species added in the second hydrothermal treatment was changed to 5 wt%, 23.7 mL of KOH, and the molar ratio of “SiO 2 / KOH” was 158. A polishing silica sol and a polishing composition were prepared. The production conditions of the silica sol relating to (Example 6) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(実施例7)
第2の水熱処理において添加するアルカリ種を第4級アミンである5重量%、38.4mLのTMAHに変更して「SiO/TMAH」のモル比を158とした点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。但し、(TMAH)は、「[(CHN]OH」を示す。(実施例7)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Example 7)
Except that the alkali species added in the second hydrothermal treatment was changed to 5 wt%, which is a quaternary amine, 38.4 mL of TMAH and the molar ratio of “SiO 2 / TMAH” was changed to 158 (Examples) A polishing silica sol and a polishing composition were prepared under the same conditions as in 1). However, (TMAH) indicates “[(CH 3 ) 4 N] + OH ”. The production conditions of the silica sol relating to (Example 7) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(実施例8)
熟成後の洗浄時に、シリカヒドロゲルに含まれるSiOに対して、硫酸ナトリウムの含有量が0.05重量%となるまで純水で洗浄し、[SiO]/[SO 2−]のモル比を611にした点と、シリカヒドロゲルを解膠させる際に添加するアルカリ溶液を5重量%のNaOH溶液に変更した点([SiO]/[NaOH]のモル比の値が158)と、第1の水熱処理において処理温度を160℃、処理圧力を0.16MPaとし、シリカ微粒子の平均粒子径が21nmとなるまで成長させた点と、第2の水熱処理にてアルカリ種として添加するNaOHの量を23mLに変更して「SiO/NaOH」のモル比を158とした点と、第2の水熱処理を6時間行った点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(実施例8)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Example 8)
At the time of washing after ripening, washing with pure water until the content of sodium sulfate is 0.05% by weight with respect to SiO 2 contained in the silica hydrogel, the mole of [SiO 2 ] / [SO 4 2− ] A point where the ratio was 611, a point where the alkaline solution added when the silica hydrogel was peptized was changed to a 5 wt% NaOH solution (the value of the molar ratio of [SiO 2 ] / [NaOH] was 158), In the first hydrothermal treatment, the treatment temperature was 160 ° C., the treatment pressure was 0.16 MPa, the silica particles were grown until the average particle size was 21 nm, and NaOH added as an alkali species in the second hydrothermal treatment. For the polishing under the same conditions as in Example 1, except that the amount of slag was changed to 23 mL and the molar ratio of “SiO 2 / NaOH” was changed to 158 and the second hydrothermal treatment was performed for 6 hours. Silica sol and A polishing composition was prepared. The production conditions of the silica sol relating to (Example 8) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(比較例1)
第2の水熱処理にて陰イオン種として添加する硫酸の量を1.3mLに変更して「SiO/SO 2−」のモル比が2500とした点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(比較例1)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Comparative Example 1)
(Example 1) except that the amount of sulfuric acid added as an anionic species in the second hydrothermal treatment was changed to 1.3 mL and the molar ratio of “SiO 2 / SO 4 2− ” was 2500. A polishing silica sol and a polishing composition were prepared under the same conditions. The manufacturing conditions of the silica sol concerning (Comparative Example 1) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(比較例2)
第2の水熱処理にてアルカリ種として添加するNaOHの量を66.7mLに変更して「SiO/NaOH」のモル比を80とした点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(比較例2)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Comparative Example 2)
Under the same conditions as in Example 1, except that the amount of NaOH added as an alkali species in the second hydrothermal treatment was changed to 66.7 mL and the molar ratio of “SiO 2 / NaOH” was 80. A polishing silica sol and a polishing composition were prepared. The manufacturing conditions of the silica sol relating to (Comparative Example 2) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(比較例3)
第1の水熱処理後のシリカゾルに、「SiO/NaOH」のモル比を158となるようにNaOHを添加し、「SiO/SO 2−」のモル比が611となるように硫酸を添加した後、加熱処理を行わず、第2の水熱処理を実施しなかった点以外は(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(比較例3)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Comparative Example 3)
To the silica sol after the first hydrothermal treatment, NaOH is added so that the molar ratio of “SiO 2 / NaOH” is 158, and sulfuric acid is added so that the molar ratio of “SiO 2 / SO 4 2− ” is 611. After the addition, a polishing silica sol and a polishing composition were prepared under the same conditions as in (Example 1) except that the heat treatment was not performed and the second hydrothermal treatment was not performed. The manufacturing conditions of the silica sol concerning (Comparative Example 3) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(比較例4)
市販のシリカゾル(日揮触媒化成社製、Cataloid SI-80P、SiOとしての濃度;3重量%、シリカ微粒子形状;球形、平均粒子径;80nm)に、「SiO/NaOH」のモル比が246となるようにNaOHを添加し、「SiO/Cl」のモル比が400となるように塩酸を添加した後、(実施例1)と同様の条件で第2の水熱処理に相当する加熱処理を行い、研磨用シリカゾル及び研磨用組成物を調製した。(比較例4)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Comparative Example 4)
The molar ratio of “SiO 2 / NaOH” is 246 in a commercially available silica sol (manufactured by JGC Catalysts & Chemicals, Cataloid SI-80P, concentration as SiO 2 ; 3 wt%, silica fine particle shape; sphere, average particle diameter; 80 nm). NaOH was added so that the molar ratio of “SiO 2 / Cl ” was 400, and then heating corresponding to the second hydrothermal treatment was performed under the same conditions as in Example 1. Processing was performed to prepare a polishing silica sol and a polishing composition. The manufacturing conditions of the silica sol concerning (Comparative Example 4) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(比較例5)
アルカリ種(NaOH)及び陰イオン種(Cl)の添加後に加熱処理を行わなかった点以外は、(比較例4)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(比較例5)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Comparative Example 5)
A polishing silica sol and a polishing composition were prepared under the same conditions as in (Comparative Example 4) except that the heat treatment was not performed after the addition of the alkali species (NaOH) and the anionic species (Cl ). The manufacturing conditions of the silica sol concerning (Comparative Example 5) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(比較例6)
熟成後の洗浄時に、シリカヒドロゲルに含まれるSiOに対して、硫酸ナトリウムの含有量が0.05重量%となるまで純水で洗浄し、[SiO]/[SO 2−]のモル比を611にした点と、第1の水熱処理を温度160℃、圧力0.16MPaの条件下にて3時間行い、平均粒子径20nmの非球形シリカ微粒子を含むシリカゾル得た点と、第1の水熱処理の後にアルカリ種として添加するNaOHの量を33.73mLに変更して「SiO/NaOH」のモル比を158とし、その後、第2の水熱処理は行わなかった点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(比較例6)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。
(Comparative Example 6)
At the time of washing after ripening, washing with pure water until the content of sodium sulfate is 0.05% by weight with respect to SiO 2 contained in the silica hydrogel, the mole of [SiO 2 ] / [SO 4 2− ] The first hydrothermal treatment was performed for 3 hours under the conditions of a temperature of 160 ° C. and a pressure of 0.16 MPa to obtain a silica sol containing non-spherical silica fine particles having an average particle diameter of 20 nm; The amount of NaOH added as an alkali species after hydrothermal treatment is changed to 33.73 mL so that the molar ratio of “SiO 2 / NaOH” is 158, and then the second hydrothermal treatment is not performed. A polishing silica sol and a polishing composition were prepared under the same conditions as in Example 1). The manufacturing conditions of the silica sol concerning (Comparative Example 6) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).

(比較例7)
第1の水熱処理の後にアルカリ種として添加するNaOHの量を33.73mLに変更して「SiO/NaOH」のモル比を158とし、その後、第2の水熱処理は行わなかった点以外は、(実施例1)と同様の条件で研磨用シリカゾル及び研磨用組成物を調製した。(比較例7)に係わるシリカゾルの製造条件を(表1)に示し、得られたシリカゾルの物性及び研磨試験の結果を(表2)に示す。







(Comparative Example 7)
The amount of NaOH added as an alkali species after the first hydrothermal treatment was changed to 33.73 mL to change the molar ratio of “SiO 2 / NaOH” to 158, and then the second hydrothermal treatment was not performed. A polishing silica sol and a polishing composition were prepared under the same conditions as in Example 1. The production conditions of the silica sol relating to (Comparative Example 7) are shown in (Table 1), and the physical properties of the obtained silica sol and the results of the polishing test are shown in (Table 2).







Figure 0005860587
Figure 0005860587

Figure 0005860587
Figure 0005860587

(表2)に示した(実施例1〜8)の結果によれば、第1の水熱処理を行った後に、所定量のアルカリ種と陰イオン種を添加して第2の水熱処理を行ったシリカゾルは、ケミカルシフト−73.0〜−120.0ppmの範囲にあるピークのトータルの面積に対するQ4構造のピークの面積の比率が88%以上の範囲内の89%〜91%となっており、Q3構造のピークの面積の比率が11%以下の範囲内の8〜10%になっている。また窒素吸着法により測定した平均粒子径[B]に対する、非球状シリカ微粒子を動的光散乱法により測定した平均粒子径を[A]の比「A/B」の値は、2.0〜5.0の範囲内の2.2〜4.1となった。このときいずれの実施例についても研磨速度比は比較例に比べて高くなり、表面製粒子の基材残り、スクラッチの評価結果も良好であった。   According to the results of (Examples 1 to 8) shown in (Table 2), after performing the first hydrothermal treatment, the second hydrothermal treatment is performed by adding a predetermined amount of alkali species and anionic species. In the silica sol, the ratio of the peak area of the Q4 structure to the total area of peaks in the chemical shift range of -73.0 to -120.0 ppm is 89% to 91% within the range of 88% or more. The ratio of the peak area of the Q3 structure is 8 to 10% within a range of 11% or less. In addition, the ratio of the average particle diameter [A] of the non-spherical silica fine particles measured by the dynamic light scattering method to the average particle diameter [B] measured by the nitrogen adsorption method [A / B] is 2.0 to It was 2.2 to 4.1 within the range of 5.0. At this time, the polishing rate ratio was higher in all examples than in the comparative example, and the evaluation results of the remaining base material for surface particles and scratches were good.

これに対して(比較例1)のようにアルカリ種の添加量が過大な場合、(比較例2)のように陰イオン種の添加量が過小の場合は、研磨速度比が実施例に比べて相対的に小さく、表面性粒子の基材残りやスクラッチについてもいずれかの評価項目がやや劣った。   On the other hand, when the addition amount of the alkali species is excessive as in (Comparative Example 1), or when the addition amount of the anionic species is excessively small as in (Comparative Example 2), the polishing rate ratio is higher than that in the example. Some of the evaluation items were slightly inferior with respect to the remaining base material of the surface particles and scratches.

また(比較例3、6、7)の如く第2の水熱処理を行わない場合には、Q4構造のピークの面積の比率が86%と低く、Q3構造のピークの面積の比率が13%と高くなり、研磨速度比が小さくなると共に、表面性粒子の基材残りの評価が悪かった。
このほか、市販の球状のシリカ微粒子を含むシリカゾルを用いた場合は、(比較例4)のように第2の水熱処理を行っても、(比較例5)のようにこれを行わなくても研磨速度比は小さかった。
When the second hydrothermal treatment is not performed as in (Comparative Examples 3, 6, and 7), the ratio of the peak area of the Q4 structure is as low as 86%, and the ratio of the peak area of the Q3 structure is 13%. As the polishing rate increased and the polishing rate ratio decreased, the evaluation of the remaining base material of the surface property particles was bad.
In addition, when a silica sol containing commercially available spherical silica fine particles is used, even if the second hydrothermal treatment is performed as in (Comparative Example 4), it is not necessary to perform this as in (Comparative Example 5). The polishing rate ratio was small.

以上のことから、第1の水熱処理を行って非球状シリカ微粒子を成長させた後、所定量のアルカリ種と陰イオン種とを添加して第2の水熱処理を行い、シラノール基の縮合を進行させることにより、シリカ微粒子のケミカルシフト−73.0〜−120.0ppmの範囲にあるピークのトータルの面積に対するQ4構造のピークの面積の比率を88%以上、Q3構造のピークの面積の比率を11%以下に調整することが可能であることが分かる。そして、この要件を備えたシリカ微粒子を分散させた研磨用シリカゾルは、良好な研磨特性を備えていることが確認できた。   From the above, after the first hydrothermal treatment is performed to grow the non-spherical silica fine particles, a predetermined amount of alkali species and anionic species are added and the second hydrothermal treatment is performed to condense the silanol groups. By proceeding, the ratio of the peak area of the Q4 structure to the total area of the peak in the range of the chemical shift of 73.0 to -120.0 ppm of silica fine particles is 88% or more, and the ratio of the peak area of the Q3 structure It can be seen that it can be adjusted to 11% or less. It was confirmed that the polishing silica sol in which silica fine particles having this requirement were dispersed had good polishing characteristics.

Claims (6)

動的光散乱法により測定される平均粒子径が5〜300nmの範囲にある非球状シリカ微粒子を分散媒に分散してなり、固形分濃度が10〜60質量%のシリカゾルであって、
29Si−NMRスペクトル測定時のケミカルシフト−73〜−120ppmのピーク面積におけるQ4の面積が88%以上、91%以下、Q3の面積が8%以上、11%以下であることと、
前記非球状シリカ微粒子を動的光散乱法により測定した平均粒子径を[A]とし、窒素吸着法により測定した平均粒子径[B]とするとき、当該非球状シリカ微粒子のA/Bの値が2.0〜5.0の範囲にあることと、を特徴とする研磨用シリカゾル。
但し、前記ケミカルシフトは、テトラメチルシランを基準物質とし、Q4は−100〜−120ppmの範囲のピークであり、Q3は−82〜−100ppmの範囲のピークである。
A non-spherical silica fine particle having an average particle diameter measured by a dynamic light scattering method in a range of 5 to 300 nm is dispersed in a dispersion medium, and a silica sol having a solid content concentration of 10 to 60% by mass,
29 The chemical shift at the time of Si-NMR spectrum measurement The area of Q4 in the peak area of −73 to −120 ppm is 88% or more and 91% or less, the area of Q3 is 8% or more and 11% or less ,
When the average particle diameter of the non-spherical silica fine particles measured by the dynamic light scattering method is [A] and the average particle diameter [B] measured by the nitrogen adsorption method is A / B value of the non-spherical silica fine particles. Is a silica sol for polishing, characterized by being in the range of 2.0 to 5.0 .
However, the chemical shift uses tetramethylsilane as a reference substance, Q4 is a peak in the range of −100 to −120 ppm, and Q3 is a peak in the range of −82 to −100 ppm.
次の特徴を有する請求項記載の研磨用シリカゾル。
1)前記シリカゾルのSiO/MOH(Mは、Na、Kまたは第4級アミン)で定義されるモル比の値が100〜420
2)前記シリカゾルのSiO/X(Xは、SO 2−、Cl、NO またはPO 3−)で定義されるモル比の値が400〜1000
Abrasive silica sol of claim 1 having the following characteristics.
1) The value of the molar ratio defined by SiO 2 / MOH (M is Na, K or quaternary amine) of the silica sol is 100 to 420.
2) The value of the molar ratio defined by SiO 2 / X (X is SO 4 2− , Cl , NO 3 or PO 4 3− ) of the silica sol is 400 to 1000.
前記非球状シリカ微粒子の表面電荷密度の絶対値が0.3〜1.3[μeq/m]の範囲にあることを特徴とする請求項1または請求項2記載の研磨用シリカゾル。 The non-spherical absolute value of the surface charge density of the silica fine particles 0.3~1.3 [μeq / m 2] according to claim 1 or claim 2 abrasive silica sol, wherein in the range of. 請求項1〜請求項のいずれかに記載の研磨用シリカゾルと、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる添加剤群より選ばれる1種以上の添加剤とを含むことを特徴とする研磨用組成物。 One or more kinds of additives selected from the group consisting of the silica sol for polishing according to any one of claims 1 to 3 and an additive group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer. Polishing composition characterized by including an agent. ケイ酸アルカリ塩と無機酸とを混合して、混合溶液のpHを3〜7の範囲に調整し、シリカヒドロゲルを含む溶液を調整する工程と、
この工程で得られた溶液に含まれる塩を洗浄して除去する工程と、
塩が除去された後の前記シリカヒドロゲルにアルカリ溶液を添加して得られた溶液を60〜100℃の温度範囲に保持しながら攪拌し、当該シリカヒドロゲルを解膠させて非球状シリカ微粒子を含むシリカゾルを得る工程と、
この工程で得られたシリカゾルを含む溶液を130〜300℃の温度範囲、0.13〜0.30MPaの圧力範囲で保持して第1の水熱処理を行い、非球状シリカ微粒子を成長させる工程と、
前記第1の水熱処理にて成長させた非球状シリカ微粒子を含むシリカゾルにアルカリ種と陰イオン種とを添加し、130〜300℃の温度範囲、0.13〜0.30MPaの圧力範囲で保持して第2の水熱処理を行い、シリカ粒子中のシラノール基の縮合を進行させる工程と、を含み、
前記第2の水熱処理工程におけるアルカリ種及び陰イオン種の添加量が、以下の1)、2)の条件を満たすことを特徴とする研磨用シリカゾルの製造方法。
1)前記アルカリ種がNaOH、KOH、第四級アミンからなるアルカリ種群から選択され、前記シリカゾル中のシリカに対するアルカリ種のモル比をSiO /MOH(Mは、Na、Kまたは第4級アミン)で表したとき、このモル比の値が100〜420である
2)前記陰イオン種がSO 2− 、Cl 、NO またはPO 3− からなる陰イオン種群から選択され、前記シリカゾル中のシリカに対する陰イオン種のモル比をSiO /X(Xは、SO 2− 、Cl 、NO またはPO 3− )で表したとき、このモル比の値が400〜1000であること
Mixing an alkali silicate and an inorganic acid, adjusting the pH of the mixed solution to a range of 3 to 7, and preparing a solution containing silica hydrogel;
Washing and removing the salt contained in the solution obtained in this step;
The solution obtained by adding an alkali solution to the silica hydrogel after the salt has been removed is stirred while maintaining the temperature range of 60 to 100 ° C., and the silica hydrogel is peptized to contain non-spherical silica fine particles. Obtaining a silica sol;
Holding the solution containing the silica sol obtained in this step in a temperature range of 130 to 300 ° C. and a pressure range of 0.13 to 0.30 MPa to perform a first hydrothermal treatment to grow non-spherical silica fine particles; ,
An alkali species and an anion species are added to a silica sol containing non-spherical silica fine particles grown by the first hydrothermal treatment, and maintained at a temperature range of 130 to 300 ° C. and a pressure range of 0.13 to 0.30 MPa. to perform a second hydrothermal treatment, viewed contains a step to advance the condensation of silanol groups in the silica particles, and
A method for producing a polishing silica sol, wherein the addition amount of alkali species and anion species in the second hydrothermal treatment step satisfies the following conditions 1) and 2) .
1) The alkali species is selected from the group of alkali species consisting of NaOH, KOH and quaternary amine, and the molar ratio of alkali species to silica in the silica sol is SiO 2 / MOH (M is Na, K or quaternary amine). ), The molar ratio value is 100 to 420.
2) The anionic species is selected from the group of anionic species consisting of SO 4 2− , Cl , NO 3 or PO 4 3−, and the molar ratio of the anionic species to silica in the silica sol is SiO 2 / X ( When X is represented by SO 4 2− , Cl , NO 3 or PO 4 3− ), the molar ratio value is 400 to 1000.
前記第1の水熱処理は、シリカゾル中のシリカ微粒子の濃度が2〜5重量%の範囲で行われ、前記第2の水熱処理は、シリカゾル中のシリカ微粒子の濃度が10〜20重量%の範囲で行われることを特徴とする請求項に記載の研磨用シリカゾルの製造方法。 The first hydrothermal treatment is performed in a range of 2 to 5% by weight of silica fine particles in the silica sol, and the second hydrothermal treatment is in a range of 10 to 20% by weight of silica fine particles in the silica sol. The method for producing a polishing silica sol according to claim 5 , wherein
JP2010262683A 2010-11-25 2010-11-25 Polishing silica sol, polishing composition, and method for producing polishing silica sol Active JP5860587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010262683A JP5860587B2 (en) 2010-11-25 2010-11-25 Polishing silica sol, polishing composition, and method for producing polishing silica sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010262683A JP5860587B2 (en) 2010-11-25 2010-11-25 Polishing silica sol, polishing composition, and method for producing polishing silica sol

Publications (2)

Publication Number Publication Date
JP2012111869A JP2012111869A (en) 2012-06-14
JP5860587B2 true JP5860587B2 (en) 2016-02-16

Family

ID=46496445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010262683A Active JP5860587B2 (en) 2010-11-25 2010-11-25 Polishing silica sol, polishing composition, and method for producing polishing silica sol

Country Status (1)

Country Link
JP (1) JP5860587B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088088A1 (en) 2016-11-14 2018-05-17 日揮触媒化成株式会社 Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion
CN110922897A (en) * 2019-11-18 2020-03-27 宁波日晟新材料有限公司 Low-haze nondestructive polishing solution for silicon compound and preparation method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6092623B2 (en) * 2012-12-28 2017-03-08 花王株式会社 Manufacturing method of magnetic disk substrate
CN103896287B (en) * 2012-12-28 2016-04-13 上海新安纳电子科技有限公司 A kind of aspherical silicon dioxide gel and preparation method thereof
MY189765A (en) * 2013-04-17 2022-03-03 Silbond Corp Colloidal sol and method of making same
JP6081317B2 (en) * 2013-08-20 2017-02-15 花王株式会社 Manufacturing method of magnetic disk substrate
US10173901B2 (en) 2013-12-12 2019-01-08 Nissan Chemical Industries, Ltd. Silica particles, manufacturing method for the same, and silica sol
CA2979303A1 (en) * 2014-03-11 2015-09-17 Les Innovations Materium Inc. Processes for preparing silica-carbon allotrope composite materials and using same
JP6495095B2 (en) * 2014-05-20 2019-04-03 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP6316680B2 (en) * 2014-06-30 2018-04-25 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP6394372B2 (en) * 2014-12-25 2018-09-26 Dic株式会社 Silica structure and method for producing the same
JP5979340B1 (en) * 2015-02-10 2016-08-24 堺化学工業株式会社 Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
JPWO2018012173A1 (en) * 2016-07-15 2019-05-30 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and polishing method
WO2018012176A1 (en) * 2016-07-15 2018-01-18 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and polishing method
MX2021003111A (en) 2018-09-18 2021-05-13 Nissan Chemical Corp Silica-based additive for cementing composition, cementing composition, and cementing method.
JP7211147B2 (en) * 2019-02-21 2023-01-24 三菱ケミカル株式会社 Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
KR102510019B1 (en) * 2020-10-06 2023-03-13 에스케이엔펄스 주식회사 Polishing pad and preparing method of semiconductor device using the same
KR102245260B1 (en) * 2020-10-06 2021-04-26 에스케이씨솔믹스 주식회사 Polishing pad and preparing method of semiconductor device using the same
EP3967452A1 (en) * 2020-09-07 2022-03-16 SKC Solmics Co., Ltd. Polishing pad and method of fabricating semiconductor device using the same
JP7460844B1 (en) 2022-11-08 2024-04-02 花王株式会社 Polishing composition for magnetic disk substrates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226516A (en) * 2001-11-27 2003-08-12 Mitsubishi Chemicals Corp Silica and method for producing the same
JP4462605B2 (en) * 2002-08-30 2010-05-12 花王株式会社 Aqueous silica dispersion
JP4803630B2 (en) * 2003-05-21 2011-10-26 扶桑化学工業株式会社 Method for producing high purity hydrophobic organic solvent-dispersed silica sol
JP4314077B2 (en) * 2003-06-30 2009-08-12 三菱化学株式会社 Silica and production method thereof
JP4916768B2 (en) * 2006-05-19 2012-04-18 水澤化学工業株式会社 High purity amorphous silica and method for producing the same
US9550683B2 (en) * 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JP5602358B2 (en) * 2007-11-30 2014-10-08 日揮触媒化成株式会社 Non-spherical silica sol, method for producing the same, and polishing composition
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JP2010192904A (en) * 2010-03-01 2010-09-02 Jgc Catalysts & Chemicals Ltd Composition for polishing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088088A1 (en) 2016-11-14 2018-05-17 日揮触媒化成株式会社 Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion
CN110922897A (en) * 2019-11-18 2020-03-27 宁波日晟新材料有限公司 Low-haze nondestructive polishing solution for silicon compound and preparation method thereof
CN110922897B (en) * 2019-11-18 2024-03-08 宁波日晟新材料有限公司 Low-haze nondestructive polishing solution for silicon compound and preparation method thereof

Also Published As

Publication number Publication date
JP2012111869A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5860587B2 (en) Polishing silica sol, polishing composition, and method for producing polishing silica sol
JP5127452B2 (en) Method for producing deformed silica sol
TWI541335B (en) Silicon wafer polishing composition
JP5155185B2 (en) Method for producing colloidal silica
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
JP6259182B2 (en) Polishing liquid for primary polishing of magnetic disk substrate with nickel phosphorus plating
JP5615529B2 (en) Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition
JP2009161371A (en) Silica sol and manufacturing method thereof
TWI723085B (en) Polishing liquid composition for magnetic disk substrate
KR20070089610A (en) Composition for grinding
JP7234536B2 (en) Method for producing silica sol
JPWO2011158718A1 (en) Polishing liquid for semiconductor substrate and method for manufacturing semiconductor wafer
JP2017190363A (en) Polishing liquid composition for sapphire plate
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
JP6646436B2 (en) Method for producing silica dispersion
JP4949209B2 (en) Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition
JPWO2019098257A1 (en) Dispersion liquid of silica particles and its manufacturing method
WO2016060113A1 (en) Polishing liquid composition for sapphire plate
JP2010095568A (en) Silica sol for polishing, composition for polishing, and method for producing silica sol for polishing
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP7038031B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
CN113773806A (en) Nano silicon dioxide abrasive material and preparation method and application thereof
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP2013227168A (en) Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
JP2003297778A (en) Composition for polishing and method for modifying the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5860587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250