JP4949209B2 - Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition - Google Patents

Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition Download PDF

Info

Publication number
JP4949209B2
JP4949209B2 JP2007303254A JP2007303254A JP4949209B2 JP 4949209 B2 JP4949209 B2 JP 4949209B2 JP 2007303254 A JP2007303254 A JP 2007303254A JP 2007303254 A JP2007303254 A JP 2007303254A JP 4949209 B2 JP4949209 B2 JP 4949209B2
Authority
JP
Japan
Prior art keywords
silica
spherical
alumina
fine particles
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007303254A
Other languages
Japanese (ja)
Other versions
JP2009126741A (en
Inventor
広泰 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2007303254A priority Critical patent/JP4949209B2/en
Publication of JP2009126741A publication Critical patent/JP2009126741A/en
Application granted granted Critical
Publication of JP4949209B2 publication Critical patent/JP4949209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、核となる非球状アルミナ−シリカ複合微粒子の表面に複数の疣状突起を有してなる非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルおよびその製造方法に関するものである。また、本発明は、該非球状シリカゾルを含む研磨用組成物に関するものである。   The present invention relates to a non-spherical silica sol in which non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface of non-spherical alumina-silica composite fine particles serving as a nucleus are dispersed in a dispersion medium, and a method for producing the same. . The present invention also relates to a polishing composition containing the non-spherical silica sol.

非球状シリカ微粒子が溶媒に分散してなる非球状シリカゾルのうち、非球状シリカ微粒子が球状以外の形状からなる非球状シリカゾルとしては、鎖状、数珠状または長球状のものが知られている。この様な非球状シリカゾルは、例えば、各種研磨剤として使用されている。   Among non-spherical silica sols in which non-spherical silica fine particles are dispersed in a solvent, chain-like, beaded, or oval spherical ones are known as non-spherical silica sols having non-spherical silica fine particles having a shape other than spherical. Such non-spherical silica sols are used as various abrasives, for example.

異形粒子を含む非球状シリカゾルの製造方法としては、特開平1−317115号公報(特許文献1)に、画像解析法による測定粒子径(D1)と窒素ガス吸着法による測定粒子径(D2)の比D1/D2が5以上であり、D1は40〜500ミリミクロン、そして電子顕微鏡観察による5〜40ミリミクロンの範囲内の一様な太さで一平面内のみの伸長を有する細長い形状の非晶質コロイダルシリカ粒子が液状媒体中に分散されてなる非球状シリカゾルの製造方法として、(a)所定の活性珪酸のコロイド水溶液に、水溶性のカルシウム塩またはマグネシウム塩などを含有する水溶液を、所定量添加し、混合する工程、(b) 更に、アル
カリ金属酸化物、水溶性有機塩基又はそれらの水溶性珪酸塩をSiO2/M2O(但し、Mは上記アルカリ金属原子又は有機塩基の分子を表わす。)モル比として20〜200となるように加
えて混合する工程、(c)前工程によって得られた混合物を60〜150℃で0.5〜40時間加熱する工程からなる製造方法が開示されている。
As a method for producing non-spherical silica sol containing irregular particles, JP-A to 1-317115 (Patent Document 1), particle diameter measured by the image analysis method particle diameter measured by (D 1) and the nitrogen gas adsorption method (D 2 ) Ratio D 1 / D 2 is 5 or more, D 1 is 40-500 millimicrons, and stretched only in one plane with uniform thickness in the range of 5-40 millimicrons by electron microscope observation As a method for producing a non-spherical silica sol in which amorphous colloidal silica particles having an elongated shape are dispersed in a liquid medium, (a) a predetermined colloidal aqueous solution of active silicic acid contains a water-soluble calcium salt or magnesium salt (B) Further, an alkali metal oxide, a water-soluble organic base or a water-soluble silicate thereof is added to SiO 2 / M 2 O (where M is the alkali metal atom) Or of organic base A production method comprising a step of adding and mixing so that the molar ratio is 20 to 200, and (c) heating the mixture obtained in the previous step at 60 to 150 ° C. for 0.5 to 40 hours. Has been.

特開平4−65314号公報(特許文献2)には、画像解析法による測定粒子径(D1ミリミクロン)と窒素ガス吸着法による測定粒子径(D2ミリミクロン)の比D1/D2が3以上
5未満であって、このD1は40〜500ミリミクロンであり、そして電子顕微鏡観察による5
ミリミクロンより大きいが100ミリミクロン以下の範囲内の一様な太さで一平面内のみの
伸長を有する細長い形状の非晶質コロイダルシリカ粒子が液状媒体中に分散されてなるSiO2濃度50重量%以下の安定な非球状シリカゾルの製造方法として、細長い形状の非球状シリカゾルに活性珪酸の水溶液の添加を始めると、原料ゾルのコロイダルシリカ粒子の崩壊が起らずに、元の細長い形状の粒子表面上に、加えられた活性珪酸がシロキサン結合を介して沈積することによって太さの増大した細長い形状のコロイダルシリカが得られることについて開示されている。
Japanese Patent Laid-Open No. 4-65314 (Patent Document 2) describes a ratio D 1 / D 2 between a particle diameter measured by an image analysis method (D 1 millimicron) and a particle diameter measured by a nitrogen gas adsorption method (D 2 millimicron). Is less than 3 and less than 5, and this D 1 is 40 to 500 millimicrons and 5 by electron microscopy.
A SiO 2 concentration of 50 wt% formed by dispersing amorphous colloidal silica particles with a uniform thickness within the range of less than 100 mm but less than 100 mm and having an extension in only one plane in a liquid medium. % Of a stable non-spherical silica sol, when the addition of an aqueous solution of active silicic acid to an elongated non-spherical silica sol is started, the colloidal silica particles of the raw material sol do not collapse and the original elongated particles It is disclosed that elongated colloidal silica of increased thickness is obtained by depositing added active silicic acid on the surface via siloxane bonds.

特開平4−187512号公報(特許文献3)には、SiO2として0.05〜5.0wt%のアルカリ金属珪酸塩水溶液に、珪酸液を添加して混合液のSiO2/M2O(モル比、Mはアル
カリ金属又は第4級アンモニウム)を30〜60とした後に、Ca,Mg,Al,In,Ti,Z
r,Sn,Si,Sb,Fe,Cuおよび希土類金属からなる群から選ばれた1種または2種
以上の金属の化合物を添加し(添加時期は、前記珪酸液添加の前または添加中でも良い)、 この混合液を60℃以上の任意の温度で一定時間維持し、更に珪酸液を添加して反応液
中のSiO2/M2O(モル比)を60〜100としてなる実質的に鎖状形状の非球状シリカ微粒子が分散したゾルの製造方法が開示されている。
The JP-A 4-187512 (Patent Document 3), the alkali metal silicate aqueous solution 0.05~5.0Wt% as SiO 2, SiO 2 / M 2 O of the mixture by adding silicic acid solution (molar ratio, M is an alkali metal or quaternary ammonium), and is set to 30 to 60, and then Ca, Mg, Al, In, Ti, Z
Add a compound of one or more metals selected from the group consisting of r, Sn, Si, Sb, Fe, Cu and rare earth metals (addition time may be before or during addition of the silicic acid solution) This mixed solution is maintained at an arbitrary temperature of 60 ° C. or higher for a certain period of time, and a silicic acid solution is further added to make the SiO 2 / M 2 O (molar ratio) in the reaction solution substantially 60 to 100 A method for producing a sol in which shaped non-spherical silica fine particles are dispersed is disclosed.

特許第3441142号公報(特許文献4)には、電子顕微鏡写真の画像解析により求められる7〜1000nmの長径と 0.3〜0.8 の短径/長径比を有するコロイダルシリカ粒子の数が全粒子中50%以上を占めるシリカの安定なゾルからなる半導体ウェーハーの研磨剤
が提案されている。
In Japanese Patent No. 3441142 (Patent Document 4), the number of colloidal silica particles having a major axis of 7 to 1000 nm and a minor axis / major axis ratio of 0.3 to 0.8 determined by image analysis of an electron micrograph is 50% of all particles. A semiconductor wafer polishing agent made of a stable sol of silica occupying the above has been proposed.

特開平7−118008号公報(特許文献5)には、活性珪酸のコロイド水溶液に、水溶性のカルシウム塩、マグネシウム塩又はこれらの混合物の水溶液を添加し、得られた水溶液にアルカリ性物質を加え、得られた混合物の一部を60℃以上に加熱してヒール液とし、残部をフィード液として、当該ヒール液に当該フィード液を添加し、当該添加の間に、水を蒸発させる事によりSiO2濃度6〜30重量%まで濃縮することよりなる細長い
形状の非球状シリカゾルの製造法が開示されている。
In JP-A-7-118008 (Patent Document 5), an aqueous solution of a water-soluble calcium salt, magnesium salt or a mixture thereof is added to an aqueous colloidal solution of active silicic acid, and an alkaline substance is added to the obtained aqueous solution. A part of the obtained mixture is heated to 60 ° C. or more to obtain a heel liquid, the remainder is used as a feed liquid, the feed liquid is added to the heel liquid, and water is evaporated during the addition to evaporate SiO 2. A method for producing an elongated non-spherical silica sol comprising concentrating to a concentration of 6 to 30% by weight is disclosed.

特開平8−279480号公報(特許文献6)には、(1)珪酸アルカリ水溶液を鉱酸で
中和しアルカリ性物質を添加して加熱熟成する方法、(2)珪酸アルカリ水溶液を陽イオン
交換処理して得られる活性珪酸にアルカリ性物質を添加して加熱熟成する方法、(3)エチ
ルシリケート等のアルコキシシランを加水分解して得られる活性珪酸を加熱熟成する方法、または、(4)シリカ微粉末を水性媒体中で直接に分散する方法等によって製造されるコ
ロイダルシリカ水溶液は、通常、4〜1,000nm(ナノメートル)、好ましくは7〜
500nmの粒子径を有するコロイド状シリカ粒子が水性媒体に分散したものであり、SiO2 として0.5〜50重量%、好ましくは0.5〜30重量%の濃度を有する。上記シリカ粒子の粒子形状は、球状、いびつ状、偏平状、板状、細長い形状、繊維状等が挙げられることが記載されている。
In JP-A-8-279480 (Patent Document 6), (1) a method in which an alkali silicate aqueous solution is neutralized with mineral acid, an alkaline substance is added and heat-aged, and (2) the alkali silicate aqueous solution is subjected to cation exchange treatment. A method of heating and aging by adding an alkaline substance to the obtained active silicic acid, (3) a method of heating and aging the active silicic acid obtained by hydrolyzing alkoxysilane such as ethyl silicate, or (4) fine silica powder Colloidal silica aqueous solution produced by a method of directly dispersing in an aqueous medium is usually 4 to 1,000 nm (nanometer), preferably 7 to
Colloidal silica particles having a particle diameter of 500 nm are dispersed in an aqueous medium and have a concentration of 0.5 to 50% by weight, preferably 0.5 to 30% by weight as SiO 2 . It is described that the particle shape of the silica particles includes a spherical shape, a distorted shape, a flat shape, a plate shape, an elongated shape, and a fibrous shape.

特開平11−214338号公報(特許文献7)には、コロイダルシリカ粒子を主材とした研磨材を用いるシリコンウェハーの研磨方法であって、蒸留により精製した珪酸メチルを、メタノール溶媒中でアンモニア又はアンモニアとアンモニウム塩を触媒として水と反応させることにより得られるコロイダルシリカ粒子を用い、且つ該コロイダルシリカ粒子の長径/短径比が、1.4以上であることを特徴とするシリコンウェハーの研磨方法が提案されている。   Japanese Patent Laid-Open No. 11-214338 (Patent Document 7) discloses a silicon wafer polishing method using an abrasive mainly composed of colloidal silica particles, in which methyl silicate purified by distillation is converted into ammonia or methanol in a methanol solvent. A method for polishing a silicon wafer, characterized by using colloidal silica particles obtained by reacting with ammonia and ammonium salt as a catalyst, and having a major axis / minor axis ratio of 1.4 or more. Has been proposed.

国際公開番号WO00/15552(特許文献8)には、平均粒子径10〜80nmの球状コロイダルシリカ粒子とこの球状コロイダルシリカ粒子を接合する金属酸化物含有シリカからなり、画像解析法による測定粒子径(D1)と球状コロイダルシリカ粒子の平均
粒子径(窒素吸着法による測定粒子径/D2)の比D1/D2が3以上であって、このD1は50〜500nmであり、球状コロイダルシリカ粒子が一平面内のみにつながった数珠状コロイダルシリカ粒子が分散されてなる非球状シリカゾルが記載されている。
International Publication No. WO00 / 15552 (Patent Document 8) is composed of spherical colloidal silica particles having an average particle diameter of 10 to 80 nm and metal oxide-containing silica that joins the spherical colloidal silica particles. The ratio D 1 / D 2 of D 1 ) to the average particle diameter of spherical colloidal silica particles (measured particle diameter by nitrogen adsorption method / D 2 ) is 3 or more, and this D 1 is 50 to 500 nm. A non-spherical silica sol in which beaded colloidal silica particles in which silica particles are connected only in one plane is dispersed is described.

また、その製造方法として、(a)所定の活性珪酸のコロイド水溶液又は酸性非球状シリカゾルに、水溶性金属塩の水溶液を、前記コロイド水溶液又は酸性非球状シリカゾルのSiO2に対して、金属酸化物として1〜10重量%となる量を加えて混合液1を調製す
る工程、(b)前記混合液1に、平均粒子径10〜80nm、pH2〜6の酸性球状非球状シリカゾルを、この酸性球状非球状シリカゾルに由来するシリカ含量(A)とこの混合液1に由来するシリカ含量(B)の比A/B(重量比)が5〜100、かつ、この酸性球状非球状シリカゾルとこの混合液1との混合により得られる混合液2の全シリカ含量(A+B)が混合液2においてSiO2濃度5〜40重量%となる量加えて混合する工程、お
よび、(c)得られた混合液2にアルカリ金属水酸化物、水溶性有機塩基又は水溶性珪酸塩をpHが7〜11となるように加えて混合し、加熱する工程からなる前記非球状シリカゾルの製造方法が記載されている。
Further, as a production method thereof, (a) an aqueous solution of a water-soluble metal salt is added to a predetermined colloidal aqueous solution of active silicic acid or an acidic non-spherical silica sol, and a metal oxide with respect to SiO 2 of the colloidal aqueous solution or acidic non-spherical silica sol. (B) A step of preparing a mixed solution 1 by adding an amount of 1 to 10% by weight, (b) An acidic spherical non-spherical silica sol having an average particle size of 10 to 80 nm and a pH of 2 to 6 is added to the mixed solution 1 The ratio A / B (weight ratio) of the silica content (A) derived from the non-spherical silica sol and the silica content (B) derived from the mixed solution 1 is 5 to 100, and the acidic spherical non-spherical silica sol and the mixed solution A step of adding and mixing the total silica content (A + B) of the mixed solution 2 obtained by mixing with 1 to an SiO 2 concentration of 5 to 40% by weight in the mixed solution 2, and (c) the obtained mixed solution 2 In There is described a method for producing the non-spherical silica sol comprising a step of adding an alkali metal hydroxide, a water-soluble organic base or a water-soluble silicate so as to have a pH of 7 to 11, mixing and heating.

特開2001−11433号公報(特許文献9)には、SiO2として0.5〜10重
量%を含有し、かつ、pHが2〜6である、活性珪酸のコロイド水溶液に、水溶性のII価又はIII価の金属の塩を単独又は混合して含有する水溶液を、同活性珪酸のコロイド水溶
液のSiO2に対して、金属酸化物(II価の金属の塩の場合はMOとし、III価の金属の塩
の場合はM23とする。但し、MはII価又はIII価の金属原子を表し、Oは酸素原子を表
す。)として1〜10重量%となる量を加えて混合し、得られた混合液(1)に、平均粒子径10〜120nm、pH2〜6の酸性球状非球状シリカゾルを、この酸性球状非球状シリカゾルに由来するシリカ含量(A)とこの混合液(1)に由来するシリカ含量(B)の比A/B(重量比)が5〜100、かつ、この酸性球状非球状シリカゾルとこの混合液(1)との混合により得られる混合液(2)の全シリカ含量(A+B)が混合液(2)においてSiO2濃度5〜40重量%となるように加えて混合し混合液(2)にアルカリ金
属水酸化物等をpHが7〜11となるように加えて混合し、得られた混合液(3)を100〜200℃で0.5〜50時間加熱する数珠状の非球状シリカゾルの製造方法が記載されている。
JP-A-2001-11433 (Patent Document 9) describes a water-soluble II in an aqueous colloidal solution of active silicic acid containing 0.5 to 10% by weight as SiO 2 and having a pH of 2 to 6. an aqueous solution containing valence or III valent metal salt singly or as a mixture thereof, with respect to SiO 2 colloid solution having the same active silicic acid in the case of the metal oxide (II valent metal salt and MO, the III In the case of a metal salt of M 2 O 3 , M represents a II or III valent metal atom, and O represents an oxygen atom). Then, an acidic spherical non-spherical silica sol having an average particle diameter of 10 to 120 nm and a pH of 2 to 6 is added to the obtained mixed liquid (1), and the silica content (A) derived from the acidic spherical non-spherical silica sol and the mixed liquid (1 The ratio A / B (weight ratio) of the silica content (B) derived from One, a SiO 2 concentration of 5 to 40 wt% in the total silica content of the acidic spherical non-spherical silica sol and the mixture (1) and the resulting mixture by mixing (2) (A + B) is a mixture (2) The mixture (2) was mixed with an alkali metal hydroxide or the like so as to have a pH of 7 to 11, and the resulting mixture (3) was mixed at 100 to 200 ° C. with 0.5. A method for producing a beaded non-spherical silica sol heated for ˜50 hours is described.

特開2001−48520号公報(特許文献10)には、シリカ濃度1〜8モル/リットル、酸濃度0.0018〜0.18モル/リットルで水濃度2〜30モル/リットルの範囲の組成で、溶剤を使用しないでアルキルシリケートを酸触媒で加水分解した後、シリカ濃度が0.2〜1.5モル/リットルの範囲となるように水で希釈し、次いでpHが7以上となるようにアルカリ触媒を加え加熱して珪酸の重合を進行させて、電子顕微鏡観察による太さ方向の平均直径が5〜100nmであり、長さがその1.5〜50倍の長さの
細長い形状の非晶質シリカ粒子が液状分散体中に分散されている非球状シリカゾルの製造方法が記載されている。
Japanese Patent Laid-Open No. 2001-48520 (Patent Document 10) describes a composition having a silica concentration of 1 to 8 mol / liter, an acid concentration of 0.0018 to 0.18 mol / liter, and a water concentration of 2 to 30 mol / liter. The alkyl silicate is hydrolyzed with an acid catalyst without using a solvent, diluted with water so that the silica concentration is in the range of 0.2 to 1.5 mol / liter, and then the pH is 7 or more. An alkali catalyst is added and heated to advance the polymerization of silicic acid, and the average diameter in the thickness direction by electron microscope observation is 5 to 100 nm, and the length is 1.5 to 50 times that of a long and thin shape. A method for producing a non-spherical silica sol in which crystalline silica particles are dispersed in a liquid dispersion is described.

特開2001−150334号公報(特許文献11)には、水ガラスなどのアルカリ金属珪酸塩の水溶液を脱陽イオン処理することにより得られるSiO2濃度2〜6重量%程
度の活性珪酸の酸性水溶液に、アルカリ土類金属、例えば、Ca、Mg、Baなどの塩をその
酸化物換算で上記活性珪酸のSiO2に対し 100〜1500ppmの重量比で添加し、更にこの液中SiO2/M2O (M は、アルカリ金属原子、NH4 又は第4級アンモニウム
基を表す。) モル比が20〜150となる量の同アルカリ物質を添加することにより得られる液を当初ヒール液とし、同様にして得られる2〜6重量%のSiO2濃度と20〜1
50 のSiO2/M2O (M は、上記に同じ。) モル比を有する活性珪酸水溶液をチャージ液として、60〜150℃で前記当初ヒール液に前記チャージ液を、1時間当たり、チャージ液SiO2/当初ヒール液SiO2の重量比として0.05〜1.0 の速度で、液か
ら水を蒸発除去しながら(又はせずに)、添加してなる歪な形状を有する非球状シリカゾルの製造方法が記載されている。
JP 2001-150334 A (Patent Document 11) discloses an acidic aqueous solution of activated silicic acid having a SiO 2 concentration of about 2 to 6% by weight obtained by decation treatment of an aqueous solution of an alkali metal silicate such as water glass. In addition, an alkaline earth metal, for example, a salt of Ca, Mg, Ba or the like is added in a weight ratio of 100 to 1500 ppm with respect to SiO 2 of the above active silicic acid in terms of its oxide, and further SiO 2 / M 2 in this solution. O (M represents an alkali metal atom, NH 4 or a quaternary ammonium group.) The liquid obtained by adding the same alkaline substance in an amount that the molar ratio is 20 to 150 is initially used as the heel liquid. 2 to 6% by weight of SiO 2 concentration and 20 to 1
50 SiO 2 / M 2 O (M is the same as above) An active silicic acid aqueous solution having a molar ratio is used as a charge liquid, and the charge liquid is charged to the initial heel liquid at 60 to 150 ° C. per hour. Non-spherical silica sol having a distorted shape formed by adding (or without) evaporating and removing water from the liquid at a rate of 0.05 to 1.0 as a weight ratio of SiO 2 / initial heel liquid SiO 2 The manufacturing method is described.

特開2003−133267号公報(特許文献12)には、ディッシング(過研磨)を抑制し、基板表面を平坦に研磨することができる研磨用粒子として、平均粒子径が5〜300nmの範囲にある1次粒子が2個以上結合した異形粒子群を含むことを特徴とする研磨用粒子、特には研磨用粒子中の全1次粒子の粒子数に占める、前記異形粒子群を構成する1次粒子の粒子数が5〜100%の範囲にある研磨用粒子が有効であることについて記載がある。   In JP-A-2003-133267 (Patent Document 12), the average particle diameter is in the range of 5 to 300 nm as polishing particles capable of suppressing dishing (overpolishing) and polishing the substrate surface flatly. Abrasive particles comprising a group of irregularly shaped particles in which two or more primary particles are bonded, and in particular, the primary particles constituting the irregularly shaped particle group in the total number of primary particles in the abrasive particles There is a description that abrasive particles having a particle number of 5 to 100% are effective.

特開2004−288732号公報(特許文献13)には、非真球状コロイダルシリカ、酸化剤および有機酸を含有し、残部が水であることを特徴とする半導体研磨用スラリーについて開示されており、その中で、非真球状コロイダルシリカの(長径/短径)が1.2〜5.0のものが提案されており、特開2004−311652号公報(特許文献14)にも同様な非真球状コロイダルシリカが開示されている。   JP 2004-288732 A (Patent Document 13) discloses a slurry for semiconductor polishing characterized by containing non-spherical colloidal silica, an oxidizing agent and an organic acid, and the balance being water. Among them, non-spherical colloidal silica (major axis / minor axis) having a major axis / minor axis of 1.2 to 5.0 has been proposed, and a similar non-true one is also disclosed in Japanese Patent Application Laid-Open No. 2004-311652 (Patent Document 14). Spherical colloidal silica is disclosed.

また、シリカ−アルミナ被覆された鎖状非球状シリカゾルについて、特開2002−3212号公報(特許文献15)には、(a)SiO2 として0.05〜5.0重量%のアルカリ金属ケイ酸塩水溶液に、ケイ酸液を添加して混合液のSiO2 /M2 O(モル比、Mはアルカリ金属又は第4級アンモニウム)を30〜60とする工程、(b)前記ケイ酸
液添加工程の前、添加工程中または添加工程後に、原子価が2価〜4価の金属の1種または2種以上の金属化合物を添加する工程、(c)該混合液を60℃以上の任意の温度で一定時間維持する工程、(d)次いで該反応液に再びケイ酸液を添加して反応液中のSiO2/M2O(モル比)を60〜200とする工程、(e)さらに該反応液にアルカリ側でアルカリケイ酸塩水溶液とアルカリアルミン酸塩水溶液とを同時に添加する工程、からなるシリカ−アルミナ被覆鎖状非球状シリカゾルの製造方法が開示されている。
Moreover, about chain | strand-shaped non-spherical silica sol coated with silica-alumina, JP-A No. 2002-3212 (Patent Document 15) discloses (a) Alkali metal silicic acid of 0.05 to 5.0% by weight as SiO 2. A step of adding a silicic acid solution to the aqueous salt solution to adjust the SiO 2 / M 2 O (molar ratio, M is an alkali metal or quaternary ammonium) of the mixed solution to 30 to 60, (b) addition of the silicic acid solution Before the step, during the addition step or after the addition step, a step of adding one or two or more metal compounds having a valence of 2 to 4; (c) A step of maintaining at a temperature for a certain period of time, (d) a step of adding a silicic acid solution to the reaction solution again to adjust SiO 2 / M 2 O (molar ratio) in the reaction solution to 60 to 200, (e) further Alkaline silicate aqueous solution and alkali Adding the Riarumin salt solution simultaneously, silica consists - method for producing alumina coated linear non-spherical silica sol is disclosed.

シリカ系微粒子の表面に突起状構造を有する例として、特開平3−257010号公報(特許文献16)には、シリカ粒子表面に電子顕微鏡で観察して、0.2〜5μmのサイズの連続的な凹凸状の突起を有し、平均粒子径が5〜100μm、BET法比表面積が20m2/g以下、且つ、細孔容積が、0.1mL/g以下であるシリカ粒子に関する記載
がある。
As an example having a protruding structure on the surface of silica-based fine particles, JP-A-3-257010 (Patent Document 16) discloses a continuous surface having a size of 0.2 to 5 μm as observed on the surface of the silica particles with an electron microscope. There is a description relating to silica particles having irregular projections, an average particle diameter of 5 to 100 μm, a BET specific surface area of 20 m 2 / g or less, and a pore volume of 0.1 mL / g or less.

また、特開2002−38049号公報(特許文献17)には、母体粒子全面に、実質上球状および/または半球状の突起物を有するシリカ系微粒子であって、該突起物が化学結合により母体粒子に結着していることを特徴とするシリカ系微粒子および母体粒子全面に、実質上球状および/または半球状の突起物を有するシリカ系微粒子であって、該突起物が化学結合により母体粒子に結着してなるシリカ系微粒子について記載がある。更に、(A)特定のアルコキシシラン化合物を加水分解、縮合させてポリオルガノシロキサン粒子を生成させる工程、(B)該ポリオルガノシロキサン粒子を、表面吸着剤により表面処理する工程、および(C)上記(B)工程で表面処理されたポリオルガノシロキサン粒子全面に、該アルコキシシラン化合物を用いて突起を形成させる工程、を含むシリカ系微粒子の製造方法について記載がある。   Japanese Patent Application Laid-Open No. 2002-38049 (Patent Document 17) discloses silica-based fine particles having substantially spherical and / or hemispherical protrusions on the entire surface of the base particle, and the protrusion is chemically bonded to the base. Silica-based fine particles having substantially spherical and / or hemispherical protrusions on the entire surface of the silica-based fine particles and the base particles, characterized in that they are bound to the particles, wherein the protrusions are chemically bonded to the base particles. There is a description of silica-based fine particles bound to. Furthermore, (A) a step of hydrolyzing and condensing a specific alkoxysilane compound to produce polyorganosiloxane particles, (B) a step of surface-treating the polyorganosiloxane particles with a surface adsorbent, and (C) the above There is a description of a method for producing silica-based fine particles, including a step of forming protrusions on the entire surface of the polyorganosiloxane particles surface-treated in the step (B) using the alkoxysilane compound.

また、特開2004−35293号公報(特許文献18)には、母体粒子全面に、実質上球状および/または半球状の突起物を有するシリカ系粒子であって、該突起物が化学結合により母体粒子に結着しており、かつ母体粒子と突起物における10%圧縮時の圧縮弾性率が、それぞれ異なることを特徴とするシリカ系粒子が開示されている。   Japanese Patent Application Laid-Open No. 2004-35293 (Patent Document 18) discloses silica-based particles having substantially spherical and / or hemispherical protrusions on the entire surface of the base particle, and the protrusion is chemically bonded to the base. Silica-based particles are disclosed that are bound to particles and have different compressive elastic moduli at 10% compression between the base particles and the protrusions.

しかしながら、特開平3−257010号公報(特許文献16)に記載の粒子は平均粒子径が5〜100μmのシリカのみからなるものであり、特開2002−38049号公報(特許文献17)で開示されるシリカ系粒子は、その平均粒子径が実質的には0.5〜30μのみが開示されており、特開2004−35293号公報(特許文献18)についても同様である。
特開平1−317115号公報 特開平4−65314号公報 特開平4−187512号公報 特許第3441142号公報 特開平7−118008号公報 特開平8−279480号公報 特開平11−214338号公報 国際公開WO00/15552公報 特開2001−11433号公報 特開2001−48520号公報 特開2001−150334号公報 特開2003−133267号公報 特開2004−288732号公報 特開2004−311652号公報 特開2002−3212号公報 特開平3−257010号公報 特開2002−38049号公報 特開2004−35293号公報
However, the particles described in JP-A-3-257010 (Patent Document 16) are composed only of silica having an average particle diameter of 5 to 100 μm, and are disclosed in JP-A-2002-38049 (Patent Document 17). As for the silica-based particles, only an average particle diameter of 0.5 to 30 μm is disclosed, and the same applies to JP-A-2004-35293 (Patent Document 18).
JP-A-1-317115 Japanese Patent Laid-Open No. 4-65314 Japanese Patent Laid-Open No. 4-187512 Japanese Patent No. 3441142 Japanese Patent Laid-Open No. 7-118008 JP-A-8-279480 JP-A-11-214338 International Publication WO00 / 15552 JP 2001-11433 A JP 2001-48520 A JP 2001-150334 A JP 2003-133267 A JP 2004-288732 A JP 2004-311652 A JP 2002-3212 A JP-A-3-257010 JP 2002-38049 A JP 2004-35293 A

本発明は、研磨性等の優れた特性を有する、非球状のアルミナ−シリカ複合微粒子が分散媒に分散してなるアルミナ−シリカ複合ゾルおよびその製造方法を提供することを課題とする。   An object of the present invention is to provide an alumina-silica composite sol having non-spherical alumina-silica composite fine particles dispersed in a dispersion medium and having excellent properties such as polishing properties, and a method for producing the same.

また、該非球状アルミナ−シリカ複合ゾルを含む研磨用組成物を提供することを課題とする。   Another object of the present invention is to provide a polishing composition containing the non-spherical alumina-silica composite sol.

前記課題を解決するための本発明は、
動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m2/gの範囲にあり、表面に複数の疣
状突起を有する非球状アルミナ−シリカ複合微粒子が分散媒に分散してなることを特徴とする非球状アルミナ−シリカ複合ゾルであり、
前記非球状アルミナ−シリカ複合ゾルの、好適な態様として、
前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状アルミナ−シリカ複合微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値を有し、
前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記距離Yの変動係数が5〜50%の範囲にある。
The present invention for solving the above problems is as follows.
The average particle diameter measured by the dynamic light scattering method is in the range of 3 to 150 nm, the short diameter / long diameter ratio is in the range of 0.01 to 0.8, the specific surface area is in the range of 10 to 800 m 2 / g, and the surface A non-spherical alumina-silica composite sol, wherein non-spherical alumina-silica composite fine particles having a plurality of hook-shaped protrusions are dispersed in a dispersion medium,
As a preferred embodiment of the non-spherical alumina-silica composite sol,
On a plane including the long axis of the non-spherical alumina-silica composite fine particle, from any point on the outer edge of the non-spherical alumina-silica composite fine particle, a straight line passing through the point on the outer edge and orthogonal to the long axis; An XY curve was drawn where Y was the distance to the intersection B with the major axis, and X was the distance from one intersection A between the outer edge of the non-spherical alumina-silica composite fine particle to the major axis. The XY curve has a plurality of local maxima,
On a plane including the long axis of the non-spherical alumina-silica composite fine particle, from any point on the outer edge of the non-spherical alumina-silica composite fine particle, a straight line passing through the point on the outer edge and orthogonal to the long axis; When the distance to the intersection B with the long axis is Y, the variation coefficient of the distance Y is in the range of 5 to 50%.

他の発明は、
動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルに、アルミン酸ナトリウムを該非球状シリカ微粒子100質量部に対して、0.1〜2.5質量部を連続的にまたは断続的に添加し、次に熟成させることによりアルミナ被覆非球状シリカ微粒子の分散液を調製し、次に、該アルミナ被覆非球状シリカ微粒子100質量部に対し、0.1〜100質量部に相当するアルカリ金属珪酸塩を添加し、熟成した後、更に珪酸液を連続的にまたは断続的に添加することにより、粒子成長させ、突起を形成させることを特徴とする前記非球状アルミナ−シリカ複合ゾルの製造方法であり、
前記非球状アルミナ−シリカ複合ゾルの製造方法の好適な態様として、
前記珪酸液の使用量が前記アルミナ被覆非球状シリカ微粒子100質量部に対して、シリカ分換算で3〜700質量部の範囲であり、前記珪酸液の添加を2〜24時間かけて連続的にまたは断続的に行う。
Other inventions are:
Nonspherical particles in which nonspherical silica fine particles having an average particle diameter measured by a dynamic light scattering method in the range of 3 to 150 nm and a minor axis / major axis ratio in the range of 0.01 to 0.8 are dispersed in a dispersion medium. Alumina-coated non-spherical silica fine particles are obtained by continuously or intermittently adding 0.1 to 2.5 parts by mass of sodium aluminate to 100 parts by mass of the non-spherical silica fine particles and then aging the silica sol. Next, an alkali metal silicate corresponding to 0.1 to 100 parts by mass is added to 100 parts by mass of the alumina-coated non-spherical silica fine particles, and after aging, the silicic acid solution is continuously added. The method for producing the non-spherical alumina-silica composite sol is characterized in that particles are grown and formed into protrusions by adding them intermittently or intermittently,
As a preferred embodiment of the method for producing the non-spherical alumina-silica composite sol,
The amount of the silicic acid solution used is in the range of 3 to 700 parts by mass in terms of silica relative to 100 parts by mass of the alumina-coated non-spherical silica fine particles, and the addition of the silicic acid solution is continuously performed over 2 to 24 hours. Or do it intermittently.

他の発明は、前記非球状アルミナ−シリカ複合ゾルからなる研磨材である。
また、他の発明は、前記非球状アルミナ−シリカ複合ゾルを含むことを特徴とする研磨用組成物である。
Another invention is an abrasive comprising the non-spherical alumina-silica composite sol.
Another invention is a polishing composition comprising the non-spherical alumina-silica composite sol.

本発明に係る非球状アルミナ−シリカ複合ゾルに含まれる非球状アルミナ−シリカ複合微粒子は、通常の非球状シリカ微粒子とは異なる特異な構造を有することから、充填性、
吸油性、電気特性、光学特性あるいは物理特性に優れる。このため本発明に係る非球状アルミナ−シリカ複合ゾルは、たとえば研磨材および研磨用組成物として有用であり、特に研磨速度の効果において優れる。
The non-spherical alumina-silica composite fine particles contained in the non-spherical alumina-silica composite sol according to the present invention have a unique structure different from ordinary non-spherical silica fine particles.
Excellent oil absorption, electrical properties, optical properties and physical properties. For this reason, the non-spherical alumina-silica composite sol according to the present invention is useful, for example, as an abrasive and a polishing composition, and is particularly excellent in the effect of the polishing rate.

[非球状アルミナ−シリカ複合ゾル]
本発明の非球状アルミナ−シリカ複合ゾルは、動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m2/gの範囲にあり、表面に複数の疣状突起を有する非球状アルミナ−シリカ複
合微粒子が分散媒に分散してなることを特徴とするものである。ここでアルミナ−シリカ複合微粒子とは、アルミナからなる部分と、シリカからなる部分とにより構成される微粒子をいう。
[Non-spherical alumina-silica composite sol]
The non-spherical alumina-silica composite sol of the present invention has an average particle diameter measured by a dynamic light scattering method in a range of 3 to 150 nm, a minor axis / major axis ratio in a range of 0.01 to 0.8, and a specific surface area. The non-spherical alumina-silica composite fine particles having a range of 10 to 800 m 2 / g and having a plurality of hook-shaped protrusions on the surface are dispersed in a dispersion medium. Here, the alumina-silica composite fine particles are fine particles composed of a portion made of alumina and a portion made of silica.

本発明に係る非球状アルミナ−シリカ複合ゾルの分散質である非球状アルミナ−シリカ複合微粒子は、その短径/長径比が0.01〜0.8の範囲にあるものが好適である。この範囲の短径/長径比である場合は、繊維状、柱状、回転楕円体状などの異形状と見做される形状、すなわち球状とは見做されない形状をとるものである。短径/長径比が0.8を超える場合はほぼ球状に近い粒子となる。短径/長径比が0.01未満の場合については、製造が容易でない場合が含まれる。短径/長径比のより好適な範囲は0.1〜0.7であり、より一層好適な範囲は0.12〜0.65である。   The non-spherical alumina-silica composite fine particles that are the dispersoid of the non-spherical alumina-silica composite sol according to the present invention preferably have a minor axis / major axis ratio in the range of 0.01 to 0.8. In the case of the minor axis / major axis ratio in this range, a shape that is regarded as an unusual shape such as a fiber shape, a column shape, or a spheroid shape, that is, a shape that is not regarded as a spherical shape is taken. When the minor axis / major axis ratio exceeds 0.8, the particles are almost spherical. The case where the minor axis / major axis ratio is less than 0.01 includes the case where the production is not easy. A more preferable range of the minor axis / major axis ratio is 0.1 to 0.7, and an even more preferable range is 0.12 to 0.65.

本発明に係る非球状アルミナ−シリカ複合ゾルは、その分散質である非球状アルミナ−シリカ複合微粒子が、その表面に複数の疣状突起を有する点で、従来の非球状アルミナ−シリカ複合ゾルを始めとする非球状シリカゾルと構造上、異なるものである。この疣状突起の存在により、各種用途、例えば、研磨用途、樹脂または被膜形成用成分の充填材、インク受容層の充填材などの用途において、特異な効果を示すことが可能となる。疣状突起については、例えば、非球状アルミナ−シリカ複合ゾルの電子顕微鏡写真にて確認できるものであり、粒子表面に周辺部位より突出した構造または膨らんだ構造をとるものである。
前記非球状アルミナ−シリカ複合微粒子については、好適には、前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状アルミナ−シリカ複合微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値を有することが望ましい。これについては、非球状アルミナ−シリカ複合微粒子の走査型電子顕微鏡写真(25万倍ないし50万倍)の画像にて、非球状アルミナ−シリカ複合微粒子を通過する直線の中で、最もその非球状アルミナ−シリカ複合微粒子内を通過する距離が長いものを長軸と定め、その長軸の全長を40等分し、当分したそれぞれの地点(点B)と、その点に直交する直線を微粒子の片側に延伸し、微粒子の外縁と交わった点との距離をYとして記録する。また、前記非球状アルミナ−シリカ複合微粒子の外縁と前記長軸との2つの交点のうちの一方の点(点A)と、前記当分したそれぞれの地点(点B)との距離をXとする。前記Yを縦軸、前記Xを横軸とし、各Xに対応するYの値をプロットすることによりX−Y曲線を描き、このX−Y曲線の極大値の個数を計ることができる。本出願においては、非球状アルミナ−シリカ複合微粒子について、この様な測定を粒子50個について実施し、その極大値の個数の平均が2以上であるものについて、その非球状アルミナ−シリカ複合微粒子が、前記複数の極大値を有するものと取り扱うこととした。極大値の個数の求め方に関する概略を図1に示した。なお、極大値の個数については、分析機器による計測により求めても構わない。
The non-spherical alumina-silica composite sol according to the present invention is different from the conventional non-spherical alumina-silica composite sol in that the dispersoid non-spherical alumina-silica composite fine particles have a plurality of hook-shaped protrusions on the surface. It is different in structure from the first non-spherical silica sol. Due to the presence of the hook-shaped protrusions, it is possible to exhibit unique effects in various applications, for example, applications such as polishing, fillers for resin or film forming components, and fillers for ink receiving layers. The hook-shaped protrusions can be confirmed by, for example, an electron micrograph of a non-spherical alumina-silica composite sol, and have a structure protruding from the peripheral portion or a swollen structure on the particle surface.
About the non-spherical alumina-silica composite fine particles, preferably, from any point on the outer edge of the non-spherical alumina-silica composite fine particles on a plane including the long axis of the non-spherical alumina-silica composite fine particles, The distance to the intersection B between the long axis passing through a point on the outer edge and the straight line perpendicular to the major axis is Y, from one intersection A of the outer edge of the non-spherical alumina-silica composite fine particle and the major axis, When an XY curve is drawn with the distance to the intersection B as X, it is desirable that the XY curve has a plurality of maximum values. This is the most nonspherical of the straight lines passing through the non-spherical alumina-silica composite fine particles in the scanning electron micrograph (250,000 to 500,000 times) of the non-spherical alumina-silica composite fine particles. The long axis passing through the alumina-silica composite fine particle is defined as the major axis, the entire length of the major axis is divided into 40 equal parts, and each point (point B) and the straight line perpendicular to that point are divided into the fine particles. Stretching to one side and recording the distance from the point of intersection with the outer edge of the fine particles as Y. In addition, the distance between one point (point A) of the two intersections between the outer edge of the non-spherical alumina-silica composite fine particle and the major axis and the corresponding point (point B) is X. . By plotting the Y value corresponding to each X with the Y as the vertical axis and the X as the horizontal axis, the XY curve can be drawn, and the number of local maximum values of the XY curve can be measured. In the present application, the nonspherical alumina-silica composite fine particles are subjected to such a measurement for 50 particles, and the average of the maximum number of particles is 2 or more. Therefore, it is assumed that the plurality of local maximum values are handled. An outline of how to determine the number of local maximum values is shown in FIG. Note that the number of maximum values may be obtained by measurement with an analytical instrument.

また、前記非球状アルミナ−シリカ複合微粒子については、さらに好適には、微粒子の
長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、距離Yの変動係数が5〜50%の範囲であることが望ましい。本発明における前記微粒子の外縁から長軸までの距離Yの変動係数の算定については、以下の方法により算定した。
1)長軸の中心点(微粒子の長軸を2等分する位置に位置する)をから、同長軸上の片方
の微粒子外縁までの距離(長軸半径M)を計測し、長軸上に、中心点から長軸半径Mの長さについて5%刻みで0〜50%までプロットする。
2)前記各プロットにおいて長軸と直交する直線を引き、この直線が片側の微粒子外縁と交差する点から前記プロットまでの距離Yをそれぞれ測定する。
3)微粒子の外縁から長軸までの距離Yについての変動係数(CV値)については、長軸上において、前記中心点から前記長軸半径Mの0〜10%の範囲、0〜20%の範囲、0〜30%の範囲、0〜40%の範囲、0〜50%の範囲でそれぞれ、距離Yの変動係数(CV値)を算出して5種類の変動係数(CV値)を得て、そのうちの最大の変動係数(CV値)を、その粒子における距離Yについての変動係数(CV値)とする。
4)上記1)〜3)の測定を50個の粒子について実施し、その平均値を、非球状アルミナ−シリカ複合微粒子における距離Yについての変動係数(CV値)とした。 距離Y値の変動係数の求め方の概略を図2に示した。
The non-spherical alumina-silica composite fine particles are more preferably a point on the outer edge from an arbitrary point on the outer edge of the non-spherical alumina-silica composite fine particles on a plane including the long axis of the fine particles. It is preferable that the variation coefficient of the distance Y is in the range of 5 to 50%, where Y is the distance to the intersection B between the straight line passing through the long axis and the long axis. In the present invention, the coefficient of variation of the distance Y from the outer edge of the fine particle to the long axis was calculated by the following method.
1) Measure the distance (major axis radius M) from the center point of the major axis (located at a position that bisects the major axis of the particulate) to one of the outer edges of the particulate on the major axis. Next, the length of the major axis radius M from the center point is plotted in a range of 0 to 50% in 5% increments.
2) A straight line perpendicular to the major axis is drawn in each plot, and the distance Y from the point where the straight line intersects the outer edge of the fine particle on one side to the plot is measured.
3) About the coefficient of variation (CV value) for the distance Y from the outer edge of the fine particle to the long axis, on the long axis, the range of 0 to 10% of the long axis radius M from the center point is 0 to 20%. The variation coefficient (CV value) of distance Y is calculated in each of the range, the range of 0 to 30%, the range of 0 to 40%, and the range of 0 to 50% to obtain five types of variation coefficients (CV values). The maximum coefficient of variation (CV value) among them is defined as the coefficient of variation (CV value) for the distance Y in the particle.
4) The above measurements 1) to 3) were carried out on 50 particles, and the average value was taken as the coefficient of variation (CV value) for the distance Y in the non-spherical alumina-silica composite fine particles. An outline of how to obtain the coefficient of variation of the distance Y value is shown in FIG.

なお、前記距離Yの変動係数(CV値)は、距離Yの変動係数(CV値)[%]=(距離Yの標準偏差(σ)/距離Yの平均値(Ya))×100の関係式から求められる。
前記の通り、非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状アルミナ−シリカ複合微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値をとる場合は、その非球状アルミナ−シリカ複合微粒子が疣状突起を有するものであり、その様な非球状アルミナ−シリカ微粒子において、外縁から長軸までの距離Yについての変動係数(CV値)が、5〜50%の範囲である場合は、粒子の外縁から長軸までの距離Yの長さに有意なばらつきがあることを示すものであり、非球状アルミナ−シリカ微粒子表面に起伏があることを示すこととなる。
The variation coefficient (CV value) of the distance Y is the relationship of the variation coefficient (CV value) [%] of the distance Y = (standard deviation of the distance Y (σ) / average value of the distance Y (Ya)) × 100. It is obtained from the formula.
As described above, from a point on the outer edge of the non-spherical alumina-silica composite fine particle on a plane including the long axis of the non-spherical alumina-silica composite fine particle, the point on the outer edge passes through and is orthogonal to the long axis. XY curve where Y is the distance to the intersection B between the straight line and the major axis, and X is the distance from one intersection A between the outer edge of the non-spherical alumina-silica composite fine particle to the major axis. When the XY curve has a plurality of maximum values, the non-spherical alumina-silica composite fine particles have ridge-like projections. In such non-spherical alumina-silica fine particles, When the coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is in the range of 5 to 50%, there is a significant variation in the length of the distance Y from the outer edge of the particle to the long axis. Indicating and non-spherical Na - and thus indicate that there is undulating silica fine particle surface.

前記極大値の平均個数が2以上であって、外縁から長軸までの距離Yについての変動係数(CV値)が5%未満の場合は、非球状アルミナ−シリカ微粒子表面に起伏はあるものの僅かである場合または実質的に起伏がない場合が含まれる。外縁から長軸までの距離Yについての変動係数(CV値)が、50%以上である場合については調製することが容易ではなく、また、その様な粒子は、構造上、堅牢性に支障がでる場合がある。   When the average number of the maximum values is 2 or more and the coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is less than 5%, the surface of the non-spherical alumina-silica fine particles is slightly undulated. Or a case where there is substantially no undulation. When the coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is 50% or more, it is not easy to prepare, and such particles have a problem in robustness due to the structure. May come out.

外縁から長軸までの距離Yについての変動係数(CV値)については、 より好適には10〜35%の範囲が好ましい。また、一層好適には11〜25%の範囲が望ましい。
本発明に係る非球状アルミナ−シリカ複合ゾルの分散質である非球状アルミナ−シリカ複合微粒子の平均粒子径については、動的光散乱法により測定される平均粒子径において3〜150nmの範囲が望ましい。この範囲の平均粒子径であれば、例えば、前記の各用途において、本発明に係る非球状アルミナ−シリカ複合ゾルの形状に基づく有効な効果を生じ易い。平均粒子径が150nm超える場合、原料の微粒子の大きさにもよるが、一般にビルトアップ工程が進行し過ぎるため疣状突起が平坦化する傾向が強まる。平均粒子径3nm未満の場合については、原料となる非球状アルミナ−シリカ微粒子の調製が容易ではない。
The coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is more preferably in the range of 10 to 35%. Moreover, the range of 11-25% is more preferable.
The average particle size of the non-spherical alumina-silica composite fine particles, which are the dispersoid of the non-spherical alumina-silica composite sol according to the present invention, is preferably in the range of 3 to 150 nm in the average particle size measured by the dynamic light scattering method. . If the average particle diameter is in this range, for example, in each of the above applications, an effective effect based on the shape of the non-spherical alumina-silica composite sol according to the present invention is likely to occur. When the average particle diameter exceeds 150 nm, although depending on the size of the raw material fine particles, the tendency to flatten the hook-shaped projections is generally increased because the built-up process generally proceeds excessively. When the average particle diameter is less than 3 nm, it is not easy to prepare non-spherical alumina-silica fine particles as a raw material.

なお、前記の動的光散乱法による平均粒子径範囲が3〜150nmの範囲にある非球状
アルミナ−シリカ複合微粒子については、画像解析法による長軸の平均径が7〜180nmの範囲にある非球状アルミナ−シリカ複合微粒子が対応する。ここで長軸は、非球状アルミナ−シリカ複合微粒子の最大径を意味する。また、本出願において、画像解析法とは、走査型電子顕微鏡写真(倍率25万倍ないし50万倍)にて、測定した粒子の最大径を意味する。具体的な測定方法については、実施例にて示した。
For the non-spherical alumina-silica composite fine particles having an average particle diameter range of 3 to 150 nm by the dynamic light scattering method, the long axis average diameter by an image analysis method is in the range of 7 to 180 nm. Spherical alumina-silica composite fine particles correspond. Here, the long axis means the maximum diameter of the non-spherical alumina-silica composite fine particles. In the present application, the image analysis method means the maximum diameter of particles measured in a scanning electron micrograph (magnification 250,000 to 500,000 times). Specific measurement methods are shown in the examples.

前記アルミナ−非球状シリカ微粒子が分散する溶媒については、水、有機溶媒、またはこれらの混合溶媒のいずれであっても良い。この様な例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類、エーテル類、エステル類、ケトン類など水溶性の有機溶媒を挙げることができる。
[非球状アルミナ−シリカ複合ゾルの製造方法]
本発明のアルミナ−シリカ複合ゾルの製造方法は、動的光散乱法により測定される平均粒子径が3〜140nmの範囲、短径/長径比が0.01〜0.8の範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルに、アルミン酸ナトリウムを該非球状シリカ微粒子100質量部に対して、0.1〜2.5質量部を連続的にまたは断続的に添加し、次に熟成させることによりアルミナ被覆非球状シリカ微粒子の分散液を調製し、次に、該アルミナ被覆非球状シリカ微粒子100質量部に対し、0.1〜100質量部に相当するアルカリ金属珪酸塩を添加し、熟成した後、更に珪酸液を連続的にまたは断続的に添加することにより、粒子成長させ、突起を形成させる方法である。
原料非球状シリカゾル
本発明のアルミナ−シリカ複合ゾルの製造方法において、原料として使用される非球状シリカゾルとしては、特に制限されることはなく、市販の非球状シリカゾルまたは公知の非球状シリカゾルを使用することができる。その製造方法も、格別限定されるものではない。
The solvent in which the alumina-nonspherical silica fine particles are dispersed may be water, an organic solvent, or a mixed solvent thereof. Examples thereof include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, water-soluble organic solvents such as ethers, esters and ketones.
[Method for producing non-spherical alumina-silica composite sol]
The method for producing an alumina-silica composite sol of the present invention is such that the average particle diameter measured by the dynamic light scattering method is in the range of 3 to 140 nm and the short diameter / long diameter ratio is in the range of 0.01 to 0.8. 0.1 to 2.5 parts by mass of sodium aluminate is continuously or intermittently added to 100 parts by mass of the non-spherical silica fine particles in a non-spherical silica sol in which spherical silica fine particles are dispersed in a dispersion medium. Then, a dispersion of alumina-coated non-spherical silica fine particles is prepared by aging, and then alkali metal silicate corresponding to 0.1 to 100 parts by mass with respect to 100 parts by mass of the alumina-coated non-spherical silica fine particles. Is added, and after aging, a silicic acid solution is added continuously or intermittently to grow particles and form protrusions.
Raw material non-spherical silica sol In the method for producing an alumina-silica composite sol of the present invention, the non-spherical silica sol used as a raw material is not particularly limited, and a commercially available non-spherical silica sol or a known non-spherical silica sol is used. be able to. The manufacturing method is not particularly limited.

公知の非球状シリカゾルの製造方法として、例えば、以下の製造方法を挙げることができるが、これらに限定されるものではない。
水溶性珪酸塩の水溶液に対して珪酸液を添加して、SiO2/M2O[Mはアルカリ金属、第3級アンモニウム、第4級アンモニウムまたはグアニジンから選ばれる](モル比)が30〜65の範囲の混合液を調製し、該混合液に60〜200℃の温度で、再度珪酸液を断続的または連続的に添加することによりシリカゾルを調製し、該シリカゾルをpH7〜9の範囲にて、60〜98℃で加熱することを特徴とする異方形状シリカゾルの製造方法(特開2007−153671参照)
平均粒子径が3〜25nmの範囲にあるシリカ微粒子が分散した、pHが2〜8の範囲にあるシリカゾルに、該シリカゾルのシリカ固形分100重量部に対して、ポリ金属塩化合物を0.01〜70重量部添加し、50〜160℃で加熱することを特徴とする異方形状シリカゾルの製造方法(特開2007−153672参照)
平均粒子径が3〜20nmの範囲にあるシリカゾルを脱陽イオン処理してpH2〜5の範囲に調整し、次いで脱陰イオン処理した後、アルカリ性水溶液を添加してpH7〜9に調整した後、60〜250℃で加熱することを特徴とする異方形状シリカゾルの製造方法(特開2007―145633参照)
珪酸液(a)にアルカリ性水溶液を添加してpHを10.0〜12.0に調整し、60〜150℃の温度条件下、珪酸液(b)と2価以上の水溶性金属塩との混合物を連続的にまたは断続的に添加することを特徴とする異方形状シリカゾルの製造方法(特開2007−153692参照)
次の(1)及び(2)の工程による異方形状シリカゾルの製造方法(WO2007/018069参照)。
(1)珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄することにより、塩類を除去し、SiO2/M2O(M:Na,K,NH3 )のモル比が30〜500となるようにアルカリを添加した後、60〜200℃の範囲に加熱してシリカゾルを得る工程
(2)該シリカゾルをシードゾルとし、必要に応じてアルカリを加え、pH9〜12.5、温度60〜200℃の条件下、珪酸液を連続的にまたは断続的に添加する工程
本発明方法においては、この様な原料の非球状シリカゾルを必要に応じて、純水で希釈してシリカ固形分濃度を2〜40%に調整することが望ましい。
Examples of known methods for producing non-spherical silica sols include, but are not limited to, the following production methods.
A silicic acid solution is added to an aqueous solution of a water-soluble silicate, and SiO 2 / M 2 O [M is selected from alkali metals, tertiary ammonium, quaternary ammonium or guanidine] (molar ratio) is 30 to 30 A mixed solution in the range of 65 is prepared, and a silica sol is prepared by adding the silicic acid solution intermittently or continuously again at a temperature of 60 to 200 ° C., and the silica sol is adjusted to a pH in the range of 7 to 9. The method for producing an anisotropic shaped silica sol characterized by heating at 60 to 98 ° C. (see JP2007-153671)
In a silica sol in which silica fine particles having an average particle diameter in the range of 3 to 25 nm are dispersed and having a pH in the range of 2 to 8, 0.01 parts of the polymetal salt compound is added to 100 parts by weight of the silica solid content of the silica sol. Addition of ˜70 parts by weight and heating at 50 to 160 ° C. (see Japanese Patent Application Laid-Open No. 2007-153672)
Silica sol having an average particle size in the range of 3 to 20 nm is decationized and adjusted to a pH of 2 to 5, then deanionized, and then adjusted to pH 7 to 9 by adding an alkaline aqueous solution. A method for producing an anisotropic shaped silica sol, characterized by heating at 60 to 250 ° C. (see JP2007-145633)
An alkaline aqueous solution is added to the silicic acid solution (a) to adjust the pH to 10.0 to 12.0, and the silicic acid solution (b) and a divalent or higher water-soluble metal salt are heated under a temperature condition of 60 to 150 ° C. A method for producing an anisotropic silica sol, wherein the mixture is added continuously or intermittently (see JP2007-153692A)
A method for producing anisotropic silica sol by the following steps (1) and (2) (see WO2007 / 018069).
(1) The silica hydrogel obtained by neutralizing silicate with an acid is washed to remove salts, and the molar ratio of SiO 2 / M 2 O (M: Na, K, NH 3 ) is 30 to 500. (2) Step of obtaining silica sol by heating in a range of 60 to 200 ° C. after adding alkali so that the pH becomes 9 to 12.5, temperature 60 to The step of adding the silicic acid solution continuously or intermittently under the condition of 200 ° C. In the method of the present invention, the non-spherical silica sol of such raw material is diluted with pure water as necessary to adjust the silica solid content concentration. It is desirable to adjust to 2 to 40%.

原料として使用する非球状シリカゾルについては、特にその短径/長径比が0.01〜0.8の範囲にあるシリカゾルであって、得ようとする非球状アルミナ−シリカ複合ゾルの分散質である非球状アルミナ−シリカ複合微粒子より平均粒子径が小さいものあるいは同等のものが使用される。なお、原料として使用する非球状シリカゾルの分散質である非球状シリカ微粒子については、好適には動的光散乱法による平均粒子径が3〜140nmの範囲にあり、短径/長径比が0.01〜0.8の範囲にあるものが望ましい。また、この様な非球状シリカ微粒子の比表面積については、例えば5〜800m2/gの範囲ある
ものが好ましい。
アルミン酸ナトリウム
本発明製造方法においては、原料の非球状シリカゾルにアルミン酸ナトリウム(NaAlO2)の水溶液を添加して、非球状シリカ微粒子表面にアルミナが概ね斑点状に存在し
てなるアルミナ被覆非球状シリカ微粒子を調製する。
The non-spherical silica sol used as a raw material is a silica sol having a short diameter / long diameter ratio in the range of 0.01 to 0.8, and is a dispersoid of the non-spherical alumina-silica composite sol to be obtained. Those having an average particle diameter smaller than or equivalent to those of non-spherical alumina-silica composite fine particles are used. Note that the non-spherical silica fine particles, which are dispersoids of the non-spherical silica sol used as a raw material, preferably have an average particle diameter in the range of 3 to 140 nm by a dynamic light scattering method, and the minor axis / major axis ratio is 0.00. The thing in the range of 01-0.8 is desirable. In addition, the specific surface area of such non-spherical silica fine particles is preferably in the range of, for example, 5 to 800 m 2 / g.
Sodium aluminate In the production method of the present invention, an alumina-coated non-spherical structure in which an aqueous solution of sodium aluminate (NaAlO 2 ) is added to a raw non-spherical silica sol, and alumina is present in the form of spots on the non-spherical silica fine particles. Silica fine particles are prepared.

アルミン酸ナトリウム(固形分濃度)は、原料非球状シリカゾルに含まれる非球状シリカ微粒子100質量部に対して、0.1〜2.5質量部の範囲、好適には0.1〜2.0質量部の範囲で使用される。アルミン酸ナトリウムの使用量がこの範囲にある場合は、非球状シリカ微粒子の表面がアルミナで完全に被覆されず、概ねアルミナで斑点状に被覆される模様である。このようなアルミナ被覆非球状シリカ微粒子の表面は、次式(1)のような化学構造を形成するものと推測される。   Sodium aluminate (solid content concentration) is in the range of 0.1 to 2.5 parts by weight, preferably 0.1 to 2.0 parts by weight with respect to 100 parts by weight of the nonspherical silica fine particles contained in the raw material nonspherical silica sol. Used in the range of parts by mass. When the amount of sodium aluminate used is in this range, the surface of the non-spherical silica fine particles is not completely covered with alumina, and is almost covered with alumina. The surface of such alumina-coated non-spherical silica fine particles is presumed to form a chemical structure represented by the following formula (1).

ここで、Al原子付近は、Si原子付近より、水溶性が高いため、後工程の粒子成長の際に粒子成長の基点となり、非球状シリカ微粒子表面に複数の突起状部分が形成される。このような製造過程を経て、本発明のアルミナ−シリカ複合微粒子となると考えられる。 Here, the vicinity of the Al atom is higher in water solubility than the vicinity of the Si atom, so that it becomes a starting point of particle growth during the subsequent particle growth, and a plurality of protruding portions are formed on the surface of the non-spherical silica fine particles. It is considered that the alumina-silica composite fine particles of the present invention are obtained through such a manufacturing process.

アルミン酸ナトリウム水溶液を添加する際の温度は、10〜30℃が望ましく、より好ましくは10℃〜28℃の範囲が推奨される。
30℃を超える場合は、アルミン酸ナトリウムの核生成が生じ、後の熟成工程でシリカ−アルミナの被覆が形成され難い。10℃未満では、非球状シリカ微粒子表面へのアルミン酸ナトリウムの反応が低調であるため、アルミナによる斑点状の被覆が形成され難い。
The temperature at which the sodium aluminate aqueous solution is added is desirably 10 to 30 ° C, and more preferably 10 to 28 ° C is recommended.
When it exceeds 30 ° C., nucleation of sodium aluminate occurs, and it is difficult to form a silica-alumina coating in the subsequent aging step. When the temperature is less than 10 ° C., the reaction of sodium aluminate on the surface of the non-spherical silica fine particles is low, so that it is difficult to form a spot-like coating with alumina.

アルミン酸ナトリウム水溶液の添加については、10分〜10時間かけて、連続的にまたは断続的に添加することが必要である。アルミン酸ナトリウム水溶液を連続的に添加する場合は、所定の添加時間内においてアルミン酸ナトリウム水溶液を均等ないしは均等に相当する割合で添加することが望ましい。また、アルミン酸ナトリウムを断続的に添加する場合も、添加時間内において、アルミン酸ナトリウム水溶液を均等量ずつ、ないしはそれに相当する量毎に添加することが望ましい。   Regarding the addition of the sodium aluminate aqueous solution, it is necessary to add continuously or intermittently over 10 minutes to 10 hours. When the sodium aluminate aqueous solution is continuously added, it is desirable to add the sodium aluminate aqueous solution in an equal or equivalent proportion within a predetermined addition time. Also, when sodium aluminate is intermittently added, it is desirable to add the sodium aluminate aqueous solution in an equal amount or in an equivalent amount within the addition time.

アルミン酸ナトリウム水溶液の添加必要量の全量または必要量の大半を一度に添加した場合、非球状シリカ微粒子表面へのアルミナの被覆が偏在する場合などがあり、斑点状の被覆を形成することが容易ではなくなるため、結局、目的とするアルミナ−シリカ複合微
粒子が得にくくなる。
When all of the required amount of sodium aluminate aqueous solution or most of the required amount is added all at once, the surface of the non-spherical silica fine particles may be unevenly distributed, making it easy to form a spot-like coating. Therefore, it becomes difficult to obtain the target alumina-silica composite fine particles.

なお、通常、原料非球状シリカゾルにアルミン酸ナトリウム水溶液を添加する際には、原料非球状シリカゾルを充分に攪拌しながら行う。
原料非球状シリカゾルにアルミン酸ナトリウム水溶液を添加した後は、粒子表面にシリカ−アルミナの不均一層を形成させるために熟成を行うことが必要である。
Usually, when adding the sodium aluminate aqueous solution to the raw material non-spherical silica sol, the raw material non-spherical silica sol is sufficiently stirred.
After adding the sodium aluminate aqueous solution to the raw material non-spherical silica sol, it is necessary to perform aging in order to form a heterogeneous layer of silica-alumina on the particle surface.

熟成条件としては60〜98℃で1〜7時間行なうことが必要である。熟成温度が60℃未満では、表面をシリカ−アルミナ層にするための時間を要するため、経済的でない。98℃を超える温度での熟成は必要でない。熟成時間が1時間未満では、シリカ−アルミナ層の形成が充分ではないため、目的とする微粒子が得られない。7時間を越える熟成は、必要でない。
粒子成長工程
得られたアルミナ被覆非球状シリカゾルについて、珪酸液の添加前に、アルカリ金属珪酸塩を添加し、シーデイングを行った後、珪酸液を添加することにより粒子成長を行い、更に熟成させてアルミナ−シリカ複合微粒子が溶媒に分散してなるアルミナ−シリカ複合ゾルを調製する。この粒子成長工程について、以下に述べる。
アルカリ金属珪酸塩
本発明の製造方法においては、前工程で得られたアルミナ被覆非球状シリカゾルに、アルカリ金属珪酸塩を添加する。アルカリ金属珪酸塩が加えられていることで、次いで粒子成長用の珪酸液を加える際に、分散媒中に溶解したSiO2 濃度が予め高く設定されため、核粒子であるアルミナ被覆非球状シリカ微粒子への珪酸の析出が早くなる。
As aging conditions, it is necessary to carry out at 60 to 98 ° C. for 1 to 7 hours. If the aging temperature is less than 60 ° C., it takes time to make the surface a silica-alumina layer, which is not economical. Aging at temperatures above 98 ° C is not necessary. If the aging time is less than 1 hour, the formation of the silica-alumina layer is not sufficient, and the desired fine particles cannot be obtained. Aging over 7 hours is not necessary.
For the alumina-coated non-spherical silica sol obtained in the particle growth process, before adding the silicic acid solution, add an alkali metal silicate, perform seeding, then grow the particles by adding the silicic acid solution, and further aged An alumina-silica composite sol in which alumina-silica composite fine particles are dispersed in a solvent is prepared. This particle growth process will be described below.
Alkali Metal Silicate In the production method of the present invention, an alkali metal silicate is added to the alumina-coated non-spherical silica sol obtained in the previous step. Since the alkali metal silicate is added, the concentration of SiO 2 dissolved in the dispersion medium is set high in advance when adding the silica solution for particle growth, so the alumina-coated non-spherical silica fine particles that are the core particles Precipitation of silicic acid on the surface is accelerated.

アルカリ金属珪酸塩としては、珪酸ナトリウム(水硝子)、珪酸カリウム、珪酸リチウムなどがあり、第3級アンモニウム珪酸塩としては珪酸トリエタノールアミン、第4級アンモニウム珪酸塩としては、珪酸テトラメタノールアンモニウム、珪酸テトラエタノールアンモニウムなどが使用される。通常、これらのアルカリ金属珪酸塩は水溶液の形態で使用される。   Examples of the alkali metal silicate include sodium silicate (water glass), potassium silicate, and lithium silicate. The tertiary ammonium silicate includes triethanolamine silicate, the quaternary ammonium silicate includes tetramethanol ammonium silicate, For example, tetraethanolammonium silicate is used. Usually, these alkali metal silicates are used in the form of an aqueous solution.

アルミナ被覆非球状シリカゾルへのアルカリ金属珪酸塩の添加は、通常、室温〜99℃の範囲で行われるが、好ましくは、室温で行なわれる。
アルミナ被覆非球状シリカゾルへのアルカリ金属珪酸塩の添加量については、アルミナ被覆粒子連結型シリカ微粒子100質量部に対し、0.1〜100質量部であり、アルカリ金属珪酸塩添加後において、シリカ固形分濃度が、1〜10質量%となるようにアルカリ金属珪酸塩を添加することが好ましい。
熟成(シーデイング)
アルミナ被覆非球状シリカゾルに対して、アルカリ金属珪酸塩を添加後、75〜98℃にて、10分〜1時間程度攪拌を継続することにより熟成(シーデイング)を行う。熟成することにより粒子の緻密化または均一化を高めることができる。
珪酸液
本発明の製造方法において使用される珪酸液とは、水溶性珪酸塩を脱アルカリすることにより調製されるものであり、通常は珪酸塩の水溶液を陽イオン交換樹脂で処理するなどの方法で脱アルカリして得られる珪酸の低重合物の水溶液である。この種の珪酸液は、通常、pHは2〜4、SiO2濃度約10質量%以下、好ましくは2〜7質量%のものが、
常温でのゲル化が生じ難く、比較的安定であり、実用的な原料として使用される。
The addition of the alkali metal silicate to the alumina-coated non-spherical silica sol is usually performed at room temperature to 99 ° C., but preferably at room temperature.
The addition amount of the alkali metal silicate to the alumina-coated non-spherical silica sol is 0.1 to 100 parts by mass with respect to 100 parts by mass of the alumina-coated particle-linked silica fine particles. It is preferable to add the alkali metal silicate so that the partial concentration is 1 to 10% by mass.
Aging
After adding the alkali metal silicate to the alumina-coated non-spherical silica sol, aging is performed by continuing stirring at 75 to 98 ° C. for about 10 minutes to 1 hour. Aging can increase the densification or homogenization of the particles.
Silicic acid solution The silicic acid solution used in the production method of the present invention is prepared by dealkalizing a water-soluble silicate, and usually a method of treating an aqueous silicate solution with a cation exchange resin. This is an aqueous solution of a low-polymerized silicic acid obtained by dealkalization at 1. This type of silicic acid solution usually has a pH of 2 to 4 and a SiO 2 concentration of about 10% by mass or less, preferably 2 to 7% by mass.
Gelation at normal temperature hardly occurs, it is relatively stable, and is used as a practical raw material.

このような珪酸液の添加速度は、核粒子の平均粒子径や分散液中の濃度によって異なるが、核粒子以外に微粒子が発生しない範囲で添加することが好ましい。また、珪酸液の添加は所望の平均粒子径のアルミナ−シリカ複合微粒子が得られるまで、1回であるいは複数回繰り返して添加することができる。   The addition speed of such a silicic acid solution varies depending on the average particle diameter of the core particles and the concentration in the dispersion, but is preferably added within a range where fine particles other than the core particles are not generated. Further, the silicic acid solution can be added once or repeatedly until alumina-silica composite fine particles having a desired average particle diameter are obtained.

このような珪酸液を70〜99℃にて、2〜24時間かけて、連続的にまたは断続的に添加する。添加温度が70℃未満では粒子成長に過度に時間を要したり、粒子成長自体が進行しない場合がある。99℃を超えると沸騰するため、粒子成長が阻害される場合がある。添加時間については、一度に全量添加することは適切ではなく、上記範囲の時間をかけて連続的にまたは断続的に添加することにより、粒子成長が行なわれる。   Such a silicic acid solution is continuously or intermittently added at 70 to 99 ° C. over 2 to 24 hours. When the addition temperature is less than 70 ° C., excessive time may be required for particle growth, or particle growth itself may not proceed. If it exceeds 99 ° C., it boils, and thus particle growth may be inhibited. Regarding the addition time, it is not appropriate to add the whole amount at once, and particle growth is performed by adding continuously or intermittently over the time in the above range.

珪酸液を添加した後、必要に応じて70〜99℃の温度範囲で0. 5〜5時間熟成することができる。このような熟成を行うと、得られるアルミナ−シリカ複合微粒子中のNaイオン含有量がさらに減少することがあり、また粒子径分布がより均一になる傾向がある。さらに必要に応じて、限外濾過膜などを用いて過剰のイオンを除去し、所望の濃度に濃縮または希釈してアルミナ−シリカ複合微粒子分散液を得ることができる。また、限外濾過膜法、蒸留法などで水溶媒を前記した有機溶媒に溶媒置換したアルミナ−シリカ複合微粒子分散液を得ることもできる。
[研磨材および研磨用組成物]
本発明の非球状アルミナ−シリカ複合ゾルは、それ自体で研磨材として適用可能なものであり、更には、他の成分(研磨促進剤等)と共に通常の研磨用組成物を構成することも可能である。
After adding the silicic acid solution, it can be aged in the temperature range of 70 to 99 ° C. for 0.5 to 5 hours as necessary. When such aging is performed, the content of Na ions in the resulting alumina-silica composite fine particles may be further reduced, and the particle size distribution tends to be more uniform. Further, if necessary, excess ions can be removed using an ultrafiltration membrane or the like, and concentrated or diluted to a desired concentration to obtain an alumina-silica composite fine particle dispersion. In addition, an alumina-silica composite fine particle dispersion in which an aqueous solvent is substituted with the above organic solvent by an ultrafiltration membrane method, a distillation method, or the like can also be obtained.
[Abrasive and polishing composition]
The non-spherical alumina-silica composite sol of the present invention can be applied as an abrasive by itself, and can also constitute a normal polishing composition together with other components (such as a polishing accelerator). It is.

本発明に係る研磨用組成物は、前記した非球状アルミナ−シリカ複合微粒子が溶媒に分散したものである。溶媒としては通常、水を用いるが、必要に応じてメチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類を用いることができ、他にエーテル類、エステル類、ケトン類など水溶性の有機溶媒を用いることができる。研磨用組成物中の非球状アルミナ−シリカ複合微粒子の濃度は2〜50重量%、さらには5〜30重量%の範囲にあることが好ましい。濃度が2重量%未満の場合は、基材や絶縁膜の種類によっては濃度が低すぎて研磨速度が遅く生産性が問題となることがある。シリカ粒子の濃度が50重量%を越えると研磨材の安定性が不充分となり、研磨速度や研磨効率がさらに向上することもなく、また研磨処理のために分散液を供給する工程で乾燥物が生成して付着することがあり傷(スクラッチ)発生の原因となることがある。   The polishing composition according to the present invention is such that the above-mentioned non-spherical alumina-silica composite fine particles are dispersed in a solvent. As the solvent, water is usually used, but alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol can be used as necessary, and water-soluble organic solvents such as ethers, esters, and ketones are also used. be able to. The concentration of the non-spherical alumina-silica composite fine particles in the polishing composition is preferably 2 to 50% by weight, more preferably 5 to 30% by weight. If the concentration is less than 2% by weight, the concentration may be too low depending on the type of substrate or insulating film, resulting in a slow polishing rate and productivity. If the concentration of silica particles exceeds 50% by weight, the stability of the abrasive will be insufficient, the polishing rate and the polishing efficiency will not be further improved, and the dried product will be removed in the step of supplying the dispersion for polishing treatment. It may be generated and attached, which may cause scratches.

本発明に係る研磨用組成物には、被研磨材の種類によっても異なるが、必要に応じて従来公知の過酸化水素、過酢酸、過酸化尿素などおよびこれらの混合物を添加して用いることができる。このような過酸化水素等を添加して用いると被研磨材が金属の場合には効果的に研磨速度を向上させることができる。また、必要に応じて塩酸、硫酸、硝酸、リン酸、ポリリン酸、アミド硫酸、フッ酸等の酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩およびこれらの混合物などを添加して用いることができる。この場合、複数種の材質の被研磨材を研磨する際に、特定成分の被研磨材の研磨速度を速めたり、遅くすることによって、最終的に平坦な研磨面を得ることができる。   The polishing composition according to the present invention varies depending on the type of the material to be polished, but it may be used by adding a conventionally known hydrogen peroxide, peracetic acid, urea peroxide, or a mixture thereof as necessary. it can. When such hydrogen peroxide or the like is added and used, when the material to be polished is a metal, the polishing rate can be effectively improved. If necessary, add acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, amidosulfuric acid, hydrofluoric acid or the like, or add sodium salt, potassium salt, ammonium salt or a mixture thereof. Can do. In this case, when a plurality of kinds of materials to be polished are polished, a flat polishing surface can be finally obtained by increasing or decreasing the polishing rate of the material to be polished having a specific component.

その他の添加剤として、例えば、金属被研磨材表面に不動態層あるいは溶解抑制層を形成して基材の浸食を防止するためにイミダゾール、ベンゾトリアゾール、ベンゾチアゾールなどを用いることができる。また、上記不動態層を攪乱するためにクエン酸、乳酸、酢酸、シュウ酸、フタル酸、クエン酸等の有機酸あるいはこれらの有機酸塩などの錯体形成材を用いることもできる。有機酸としては、その他に、カルボン酸、有機リン酸、アミノ酸等が挙げられる。カルボン酸の例としては、酢酸、グリコール酸、アスコルビン酸等の一価カルボン酸、蓚酸、酒石酸等の二価カルボン酸、クエン酸等の三価カルボン酸が挙げられ、有機リン酸としては、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等が挙げられる。また、アミノ酸としては、グリシン、アラニン等が挙げられる。これらの中でも、
スクラッチ低減の観点から、無機酸、カルボン酸及び有機リン酸が好ましく、例えば、塩酸、硝酸、硫酸、リン酸、ポリリン酸、グリコール酸、蓚酸、クエン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)が適している。これらpHを調整するための酸として使用可能である。
As other additives, for example, imidazole, benzotriazole, benzothiazole and the like can be used in order to form a passive layer or a dissolution suppressing layer on the surface of the metal polishing material to prevent erosion of the substrate. In order to disturb the passive layer, a complex forming material such as an organic acid such as citric acid, lactic acid, acetic acid, oxalic acid, phthalic acid, citric acid, or an organic acid salt thereof may be used. Other examples of the organic acid include carboxylic acid, organic phosphoric acid, and amino acid. Examples of carboxylic acids include monovalent carboxylic acids such as acetic acid, glycolic acid, and ascorbic acid, divalent carboxylic acids such as succinic acid and tartaric acid, and trivalent carboxylic acids such as citric acid. -Aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and the like. Examples of amino acids include glycine and alanine. Among these,
From the viewpoint of reducing scratches, inorganic acids, carboxylic acids and organic phosphoric acids are preferable. For example, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, glycolic acid, succinic acid, citric acid, aminotri (methylenephosphonic acid), ethylenediaminetetra ( Methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid) are suitable. These acids can be used as an acid for adjusting the pH.

研磨材スラリーの分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤を適宜選択して添加することができる。さらに、上記各添加剤の効果を高めるためなどに必要に応じて酸または塩基を添加して研磨材スラリーのpHを調節することができる。   In order to improve the dispersibility and stability of the abrasive slurry, a cationic, anionic, nonionic or amphoteric surfactant can be appropriately selected and added. Furthermore, the pH of the abrasive slurry can be adjusted by adding an acid or a base as necessary in order to enhance the effect of each additive.

好適な態様1
動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m2/gの範囲にある非球状アルミナ−
シリカ微粒子が分散媒に分散してなる非球状アルミナ−シリカ複合ゾルにおいて、該非球状アルミナ−シリカ複合微粒子が表面に複数の疣状突起を有するものであり、更に前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状アルミナ−シリカ複合微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値を有することを特徴とする非球状アルミナ−シリカ複合ゾル。
Preferred embodiment 1
Non-spherical shape in which the average particle diameter measured by the dynamic light scattering method is in the range of 3 to 150 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. Alumina
In a non-spherical alumina-silica composite sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical alumina-silica composite fine particles have a plurality of hook-shaped protrusions on the surface. On a plane including the long axis, a distance from an arbitrary point on the outer edge of the non-spherical alumina-silica composite fine particle to an intersection B of the straight line passing through the point on the outer edge and orthogonal to the long axis Y, and when the XY curve is drawn with the distance from one intersection A between the outer edge of the non-spherical alumina-silica composite fine particles and the long axis to the intersection B as X, the XY curve is A non-spherical alumina-silica composite sol having a plurality of maximum values.

好適な態様2
動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m2/gの範囲にある非球状複合シリカ
微粒子が分散媒に分散してなる非球状アルミナ−シリカ複合ゾルにおいて、該非球状アルミナ−シリカ複合微粒子が表面に複数の疣状突起を有するものであり、前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの長さをY、前記非球状複合シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値を有するものであって、更に前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記Yの変動係数が5〜50%の範囲にあることを特徴とする非球状アルミナ−シリカ複合ゾル。
Preferred embodiment 2
Non-spherical shape in which the average particle diameter measured by the dynamic light scattering method is in the range of 3 to 150 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. In a non-spherical alumina-silica composite sol in which composite silica fine particles are dispersed in a dispersion medium, the non-spherical alumina-silica composite fine particles have a plurality of hook-shaped protrusions on the surface, and the non-spherical alumina-silica composite fine particles The length from an arbitrary point on the outer edge of the non-spherical alumina-silica composite fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the major axis on a plane including the major axis. When the XY curve is drawn with X being the distance from one intersection A between the outer edge of the non-spherical composite silica fine particle and the major axis to X, the X-Y curve is plural. It has a local maximum of Further, on a plane including the long axis of the non-spherical alumina-silica composite fine particle, a straight line passing through a point on the outer edge and perpendicular to the long axis from any point on the outer edge of the non-spherical alumina-silica composite fine particle A non-spherical alumina-silica composite sol in which the coefficient of variation of Y is in the range of 5 to 50%, where Y is the distance to the intersection B with the major axis.

好適な態様3
動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m2/gの範囲にある非球状アルミナ−
シリカ複合微粒子が分散媒に分散してなる非球状アルミナ−シリカ複合ゾルにおいて、該非球状アルミナ−シリカ複合微粒子が表面に複数の疣状突起を有するものであり、更に前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状アルミナ−シリカ複合微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値を有することを特徴とする非球状アルミナ−シリカ複合ゾルを含む研磨用組成物。
Preferred embodiment 3
Non-spherical shape in which the average particle diameter measured by the dynamic light scattering method is in the range of 3 to 150 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. Alumina
In a non-spherical alumina-silica composite sol in which silica composite fine particles are dispersed in a dispersion medium, the non-spherical alumina-silica composite fine particles have a plurality of hook-shaped protrusions on the surface, and the non-spherical alumina-silica composite fine particles From an arbitrary point on the outer edge of the non-spherical alumina-silica composite fine particle to a crossing point B between the straight line passing through the point on the outer edge and perpendicular to the major axis, on the plane including the major axis When the XY curve is drawn with the distance Y being the distance from one intersection A between the outer edge of the non-spherical alumina-silica composite fine particle and the long axis to the intersection B, the XY curve Has a plurality of maximum values, a polishing composition containing a non-spherical alumina-silica composite sol.

好適な態様4
動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m2/gの範囲にある非球状アルミナ−
シリカ複合微粒子が分散媒に分散してなる非球状アルミナ−シリカ複合ゾルにおいて、該非球状アルミナ−シリカ複合微粒子が表面に複数の疣状突起を有するものであり、前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状アルミナ−シリカ複合微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値を有するものであって、更に前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記距離Yの変動係数が5〜50%の範囲にあることを特徴とする非球状アルミナ−シリカ複合ゾルを含むことを特徴とする研磨用組成物。
Preferred embodiment 4
Non-spherical shape in which the average particle diameter measured by the dynamic light scattering method is in the range of 3 to 150 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. Alumina
In the non-spherical alumina-silica composite sol in which the silica composite fine particles are dispersed in a dispersion medium, the non-spherical alumina-silica composite fine particles have a plurality of hook-shaped protrusions on the surface. On a plane including the long axis, a distance from an arbitrary point on the outer edge of the non-spherical alumina-silica composite fine particle to an intersection B of the straight line passing through the point on the outer edge and orthogonal to the long axis Y, and when the XY curve is drawn with the distance from one intersection A between the outer edge of the non-spherical alumina-silica composite fine particles and the long axis to the intersection B as X, the XY curve is The outer edge has a plurality of maximum values, and further, from an arbitrary point on the outer edge of the non-spherical alumina-silica composite fine particle on a plane including the long axis of the non-spherical alumina-silica composite fine particle. The variation coefficient of the distance Y is in the range of 5 to 50%, where Y is the distance to the intersection point B between the long axis and the straight line passing through the point and the long axis. A polishing composition comprising a spherical alumina-silica composite sol.

好適な態様5
動的光散乱法により測定される長軸の平均値が7〜180nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m2/gの範囲にある非球状複合シリ
カ微粒子が分散媒に分散してなる非球状アルミナ−シリカ複合ゾルにおいて、該非球状アルミナ−シリカ複合微粒子が表面に複数の疣状突起を有するものであり、前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状複合シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値を有するものであって、更に前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記Yの変動係数が5〜50%の範囲にあることを特徴とする非球状アルミナ−シリカ複合ゾル。
Preferred embodiment 5
The average value of major axis measured by dynamic light scattering method is in the range of 7 to 180 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. In a non-spherical alumina-silica composite sol in which non-spherical composite silica fine particles are dispersed in a dispersion medium, the non-spherical alumina-silica composite fine particles have a plurality of hook-shaped projections on the surface, and the non-spherical alumina-silica composite From an arbitrary point on the outer edge of the non-spherical alumina-silica composite fine particle to an intersection B of the straight line passing through the point on the outer edge and perpendicular to the long axis on a plane including the long axis of the fine particle When the XY curve is drawn with the distance from one intersection point A between the outer edge of the non-spherical composite silica fine particles and the long axis as X, and the distance from the intersection point B as X, the XY curve is Have multiple maxima Further, on a plane including the major axis of the non-spherical alumina-silica composite fine particles, from any point on the outer edge of the non-spherical alumina-silica composite fine particles, passing through the point on the outer edge and orthogonal to the major axis. A non-spherical alumina-silica composite sol, wherein the variation coefficient of Y is in the range of 5 to 50%, where Y is the distance to the intersection B of the straight line and the long axis.

[実施例および比較例で用いた分析方法]
以下に本発明の好適な実施例を述べるが、実施例および比較例における各種特性の測定方法については、特に断りの無い限り、以下に記す通り実施した。また、その結果については表1に記した。
[1]動的光散乱法による平均粒子径測定
動的光散乱法により測定される平均粒子径については、レーザー光による動的光散乱法により、粒子径分布測定装置(Particle Sizing Systems社製:NICOMP MODEL380)を用いて平均粒子径を測定した。
[2]粒子の外縁から長軸までの距離Yの極大値個数の測定方法
非球状シリカ微粒子の走査型電子顕微鏡写真(25万倍ないし50万倍)の画像にて、非球状シリカ微粒子の長軸を定め、長軸の全長を40等分し、当分したそれぞれの地点(点B)と、その点に直交する直線を微粒子の片側に延伸し、微粒子の外縁と交わった点との距離をYとして記録する。また、前記非球状シリカ微粒子の外縁と前記長軸との2つの交点のうちの一方点(点A)と、前記当分したそれぞれの地点(点B)との長さをXとする。前記Yを縦軸、前記Xを横軸とし、各Xに対応するYの値をプロットすることによりX−Y曲線を描き、このX−Y曲線の極大値の個数を計ることができる。本出願においては、非球状シリカ微粒子について、この様な測定を粒子50個について実施し、その極大値の個数の平均をとり、粒子の外縁から長軸までの距離Yの極大値個数とした。
[3]粒子の外縁から長軸までの距離Yの変動係数(CV値)の算定方法
本発明における前記微粒子の外縁から長軸までの距離Yの変動係数の測定については、以
下の方法により算定した。
1) 長軸の中心点から片方の微粒子外縁までの距離(長軸半径M)を計測し、長軸上に、中心点から長軸半径Mについて5%刻みで0〜50%までプロットする。
2) 前記各プロットにおいて長軸と直交する直線を引き、この直線が片側の微粒子外縁と交差する点から前記プロットまでの距離Yをそれぞれ測定する。
3) 微粒子の外縁から長軸までの距離Yについての変動係数(CV値)については、長軸上において、前記中心点から前記長軸半径Mの0〜10%の範囲、0〜20%の範囲、0〜30%の範囲、0〜40%の範囲、0〜50%の範囲でそれぞれの変動係数(CV値)を算出して5種類の変動係数(CV値)を得て、そのうちの最大の変動係数(CV値)を、その粒子における距離Yについての変動係数(CV値)とする。
4) 上記1)〜3)の測定を50個の粒子について実施し、その平均値を、非球状シリカ微粒子における距離Yについての変動係数(CV値)として採用する。
[4]シアーズ法による比表面積測定
1)SiO2として1.5gに相当する試料をビーカーに採取してから、恒温反応槽(2
5℃)に移し、純水を加えて液量を90mlにする。(以下の操作は、25℃に保持した恒温反応槽中にて行った。)
2)pH3.6になるように0.1モル/L塩酸水溶液を加える。
3)塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌する。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下して、pH4.0に調整する。
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7〜9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとして、検量線を作る。
6)次の式(2)からSiO21.5g当たりのpH4.0〜9.0までに要する0.1
モル/L水酸化ナトリウム溶液の消費量V(ml)を求め、後記式(3)に従って比表面積SA[m2/g]を求める。
[Analysis methods used in Examples and Comparative Examples]
Hereinafter, preferred examples of the present invention will be described. The measurement methods of various characteristics in the examples and comparative examples were carried out as described below unless otherwise specified. The results are shown in Table 1.
[1] Average particle diameter measurement by dynamic light scattering method About the average particle diameter measured by the dynamic light scattering method, a particle size distribution measuring apparatus (manufactured by Particle Sizing Systems, Inc .: The average particle size was measured using NICOMP MODEL380).
[2] Method for measuring the maximum number of distances Y from the outer edge of the particle to the long axis The length of the nonspherical silica fine particles in the image of a scanning electron micrograph (250,000 to 500,000 times) of the nonspherical silica fine particles Set the axis, divide the entire length of the major axis into 40 equal parts, and draw the distance between each point (point B) for the time being and the point intersecting the outer edge of the fine particle by extending a straight line perpendicular to that point to one side of the fine particle Record as Y. Further, let X be the length of one point (point A) of the two intersections between the outer edge of the non-spherical silica fine particle and the long axis, and the corresponding point (point B). By plotting the Y value corresponding to each X with the Y as the vertical axis and the X as the horizontal axis, the XY curve can be drawn, and the number of local maximum values of the XY curve can be measured. In the present application, such a measurement was performed for 50 particles of non-spherical silica fine particles, and the average of the number of local maximum values was taken as the maximum number of distances Y from the outer edge of the particle to the major axis.
[3] Method for calculating the coefficient of variation (CV value) of the distance Y from the outer edge of the particle to the long axis The measurement of the coefficient of variation of the distance Y from the outer edge of the fine particle to the long axis in the present invention is calculated by the following method. did.
1) The distance (major axis radius M) from the center point of the major axis to the outer edge of one fine particle is measured, and plotted from 0 to 50% in increments of 5% from the center point to the major axis radius M on the major axis.
2) A straight line perpendicular to the major axis is drawn in each plot, and the distance Y from the point where this straight line intersects the outer edge of the fine particle on one side to the plot is measured.
3) Regarding the coefficient of variation (CV value) for the distance Y from the outer edge of the fine particle to the long axis, on the long axis, the range of 0 to 10% of the long axis radius M from the center point is 0 to 20%. Each variation coefficient (CV value) is calculated in the range, 0-30% range, 0-40% range, 0-50% range to obtain five types of variation coefficients (CV value), of which The maximum variation coefficient (CV value) is defined as the variation coefficient (CV value) for the distance Y in the particle.
4) The above measurements 1) to 3) are performed on 50 particles, and the average value is adopted as the coefficient of variation (CV value) for the distance Y in the non-spherical silica fine particles.
[4] Specific surface area measurement by Sears method 1) A sample corresponding to 1.5 g as SiO 2 was collected in a beaker, and then a constant temperature reactor (2
5 ° C.) and add pure water to make the volume 90 ml. (The following operations were performed in a constant temperature reaction tank maintained at 25 ° C.)
2) Add 0.1 mol / L hydrochloric acid aqueous solution so that pH becomes 3.6.
3) Add 30 g of sodium chloride, dilute to 150 ml with pure water and stir for 10 minutes.
4) A pH electrode is set, and 0.1 mol / L sodium hydroxide solution is added dropwise with stirring to adjust the pH to 4.0.
5) The sample adjusted to pH 4.0 was titrated with 0.1 mol / L sodium hydroxide solution, and the titer and pH value in the range of pH 8.7 to 9.3 were recorded at 4 points or more. A calibration curve is prepared, where X is the titer of 1 mol / L sodium hydroxide solution and Y is the pH value at that time.
6) 0.1 required for pH 4.0 to 9.0 per 1.5 g of SiO 2 from the following formula (2)
The consumption amount V (ml) of the mol / L sodium hydroxide solution is obtained, and the specific surface area SA [m 2 / g] is obtained according to the following formula (3).

また、平均粒子径D1(nm)は、式(4)から求める。
V=(A×f×100×1.5)/(W×C) ・・・ (2)
SA=29.0V−28 ・・・ (3)
D1=6000/(ρ×SA) ・・・ (4)
(ここで、ρは粒子の密度(g/cm3)を表す。 シリカの場合は2.2を代入する。

但し、上記式(2)における記号の意味は次の通りである。
A:SiO21.5g当たりpH4.0〜9.0までに要する0.1モル/L水酸化ナト
リウム溶液の滴定量(ml)
f :0.1モル/L水酸化ナトリウム溶液の力価
C :試料のSiO2濃度(%)
W :試料採取量(g)
[5]BET法(窒素吸着法)による比表面積測定
非球状シリカゾル50mlをHNO3でpH3.5に調整し、1−プロパノール40m
lを加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いて窒素吸着法(BET法)を用いて、窒素の吸着量から、BET1点法により比表面積を算出した。 具体的には、試料0.5gを測定セルに取り、窒素30v%/ヘリウム70v%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、非球状シリカゾルの比表面積を算出した。また、得られた比表面積(SA)を前記式(4)に代入して平均粒子径
D1を求めた。
[6]画像解析法による非球状アルミナ−シリカ複合微粒子の長軸の平均値測定
走査型電子顕微鏡(株式会社日立製作所製、H−800)により、非球状アルミナ−シリカ複合ゾルを倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定した。この測定を任意の50個の粒子について行い、その平均値を長軸の平均値とした。
[7]短径/長径比の測定方法
走査型電子顕微鏡(株式会社日立製作所製、H−800)により、試料非球状シリカゾルを倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とした。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とした。そして、比(DS/DL)を求めた。この測定を任意の50個の粒子について行い、その平均値を短径/長径比とした。なお、ひとつの粒子について、長軸を複数設定可能な場合は、対応する複数の短径長さの平均値を求め、短径の長さ(DS)とした。
[8]アルミナ被覆非球状シリカ微粒子分散液の固形分測定
試料(アルミナ被覆非球状シリカ微粒子分散液)2gをルツボにて蒸発乾固し、得られた固形物を1000℃にて1時間焼成後、デシケーターに入れ冷却して秤量する。これらの重量差よりアルミナ被覆非球状シリカ微粒子の含有量を求めた。
[9]アルミニウム基板に対する研磨特性の評価方法
研磨用スラリーの調製
試料シリカゾルをシリカ濃度20質量%に調整し、H22、HEDP(1−ヒドロキシエチリデン−1,1−ジスルホン酸)および超純水を加えて、シリカ9重量%、H220.5重量%、1−ヒドロキシエチリデン−1,1−ジスルホン酸0.5重量%の研磨用スラリーを調製し、さらに必要に応じてHNO3を加えて、pH2の研磨用スラリーを調製
した。
被研磨基板
被研磨基板として、アルミニウムデイスク用基板を使用した。このアルミニウムデイスク用基板は、アルミニウム基板にNi−Pを10μmの厚さに無電解メッキ(Ni88%とP12%の組成の硬質Ni−Pメッキ層)をした基板(95mmΦ/25mmΦ−1.27mmt)を使用した。なお、この基板は一次研磨済みで、表面粗さ(Ra)は0.17nmであった。
研磨試験
上記被研磨基板を、研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッド(ロデール社製「アポロン」)を使用し、基板荷重0.05MPa、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度で5分間供給して研磨を行った。
Further, the average particle diameter D1 (nm) is obtained from the equation (4).
V = (A × f × 100 × 1.5) / (W × C) (2)
SA = 29.0V-28 (3)
D1 = 6000 / (ρ × SA) (4)
(Where ρ represents the particle density (g / cm 3 ). In the case of silica, 2.2 is substituted.
)
However, the meanings of the symbols in the above formula (2) are as follows.
A: Titration amount of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 (ml)
f: Potency of 0.1 mol / L sodium hydroxide solution C: SiO 2 concentration of sample (%)
W: Sampling amount (g)
[5] Specific surface area measurement by BET method (nitrogen adsorption method) 50 ml of non-spherical silica sol was adjusted to pH 3.5 with HNO 3 and 1-propanol 40 m
1 was added, and the sample dried at 110 ° C. for 16 hours was pulverized in a mortar and then baked in a muffle furnace at 500 ° C. for 1 hour to obtain a measurement sample. And the specific surface area was computed by the BET 1 point method from the adsorption amount of nitrogen using the nitrogen adsorption method (BET method) using the specific surface area measuring apparatus (The product made from Yuasa Ionics, model number multisorb 12). Specifically, 0.5 g of a sample is taken in a measurement cell, degassed for 20 minutes at 300 ° C. in a mixed gas stream of nitrogen 30 v% / helium 70 v%, and then the sample is liquidized in the mixed gas stream. Keep nitrogen temperature and allow nitrogen to equilibrate to sample. Next, the sample temperature was gradually raised to room temperature while flowing the above mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area of the non-spherical silica sol was calculated using a calibration curve prepared in advance. Further, the obtained specific surface area (SA) was substituted into the formula (4) to determine the average particle diameter D1.
[6] Measurement of average value of major axis of non-spherical alumina-silica composite fine particles by image analysis method Using a scanning electron microscope (H-800, manufactured by Hitachi, Ltd.), the magnification of non-spherical alumina-silica composite sol is 250,000 times. In a photograph projection view obtained by taking a photograph at (or 500,000 times), the maximum diameter of the particles was taken as the major axis, and the length was measured. This measurement was performed on arbitrary 50 particles, and the average value was taken as the average value of the major axis.
[7] Measuring method of ratio of minor axis / major axis Obtained by photographing a sample non-spherical silica sol at a magnification of 250,000 times (or 500,000 times) with a scanning electron microscope (H-800, manufactured by Hitachi, Ltd.) In the photograph projection view, the maximum diameter of the particles was taken as the major axis, the length was measured, and the value was taken as the major diameter (DL). Further, a point that bisects the major axis on the major axis was determined, two points where a straight line perpendicular to the major axis intersected with the outer edge of the particle were determined, and a distance between the two points was measured to obtain a minor axis (DS). And ratio (DS / DL) was calculated | required. This measurement was performed on any 50 particles, and the average value was defined as the minor axis / major axis ratio. When a plurality of major axes can be set for one particle, an average value of a plurality of corresponding minor axis lengths was obtained and used as the minor axis length (DS).
[8] Solid content measurement of alumina-coated non-spherical silica fine particle dispersion 2 g of sample (alumina-coated non-spherical silica fine particle dispersion) was evaporated to dryness with a crucible, and the obtained solid was calcined at 1000 ° C. for 1 hour. Place in a desiccator, cool and weigh. The content of the alumina-coated non-spherical silica fine particles was determined from these weight differences.
[9] Evaluation method of polishing characteristics for aluminum substrate
Preparation of polishing slurry Sample silica sol was adjusted to a silica concentration of 20% by mass, H 2 O 2 , HEDP (1-hydroxyethylidene-1,1-disulfonic acid) and ultrapure water were added, and 9 wt% silica, H A polishing slurry of 0.5% by weight of 2 O 2 and 0.5% by weight of 1-hydroxyethylidene-1,1-disulfonic acid was prepared, and HNO 3 was further added as necessary to prepare a polishing slurry having a pH of 2. Prepared.
Polishing substrate An aluminum disk substrate was used as the polishing substrate. This aluminum disk substrate is a substrate (95 mmΦ / 25 mmΦ-1.27 mmt) obtained by electrolessly plating Ni-P to a thickness of 10 μm (a hard Ni-P plating layer having a composition of Ni88% and P12%) on an aluminum substrate. It was used. This substrate was first polished and the surface roughness (Ra) was 0.17 nm.
Polishing test The above substrate to be polished is set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), and a polishing pad (“Apollon” manufactured by Rodel) is used and polished at a substrate load of 0.05 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 5 minutes at a rate of 20 g / min.

研磨前後の被研磨基材の重量変化を求めて研磨速度〔nm/分〕を計算した。
スクラッチ(線状痕)の測定
スクラッチの発生状況については、アルミニウムディスク用基板を上記と同様に研磨処理した後、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Micro−MAX)を使用し、Zoom15にて全面観察し、65.97cm2に相当
する研磨処理された基板表面のスクラッチ(線状痕)の個数を数えて合計した。
[10]ガラス基板に対する研磨特性の評価方法
研磨用スラリーの調製
試料シリカゾルをシリカ濃度20質量%に調整し、更に超純水および5質量%水酸化ナトリウム水溶液を加えて、シリカ9重量%、pH10.5の研磨用スラリーを調製した。被研磨基板
被研磨基板として、65mmφの強化ガラス製のハードディスク用ガラス基板を使用した。このハードディスク用ガラス基板は、一次研磨済みであり、表面粗さは最大で0.2
1μmである。
研磨試験
上記被研磨基板を、研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッド(ロデール社製「アポロン」)を使用し、基板荷重0.18MPa、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度10分間供給して研磨を行った。
The change in weight of the substrate to be polished before and after polishing was determined to calculate the polishing rate [nm / min].
Measurement of scratches (line marks) Regarding the occurrence of scratches, after polishing an aluminum disk substrate in the same manner as described above, an ultra-fine defect / visualization macro device (manufactured by VISION PSYTEC, product name: Micro-MAX) The entire surface was observed with a Zoom 15, and the number of scratches (linear traces) on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled.
[10] Evaluation method of polishing characteristics for glass substrate
Preparation of Polishing Slurry The sample silica sol was adjusted to a silica concentration of 20% by mass, and ultrapure water and a 5% by mass sodium hydroxide aqueous solution were added to prepare a polishing slurry of 9% silica by weight and pH 10.5. Polished substrate A glass substrate for hard disk made of 65 mmφ tempered glass was used as the substrate to be polished. This glass substrate for hard disk has been ground and has a surface roughness of 0.2
1 μm.
Polishing test The above substrate to be polished was set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), and a polishing pad (“Apollon” manufactured by Rodel) was used and polished at a substrate load of 0.18 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 10 minutes at a rate of 20 g / min.

研磨前後の被研磨基材の重量変化を求めて研磨速度〔nm/分〕を計算した。
スクラッチ(線状痕)の測定
スクラッチの発生状況については、ガラス基板を上記と同様に研磨処理した後、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Micro−MAX)を使用し、Zoom1にて全面観察し、65.97cm2に相当する研磨処理された
基板表面のスクラッチ(線状痕)の個数を数えて合計した。
[合成例1]
The change in weight of the substrate to be polished before and after polishing was determined to calculate the polishing rate [nm / min].
Measurement of scratches (line marks) Regarding the occurrence of scratches, after polishing the glass substrate in the same manner as described above, an ultrafine defect / visualization macro apparatus (product name: Micro-MAX, manufactured by VISION PSYTEC) was used. The entire surface was observed with Zoom 1, and the number of scratches (linear traces) on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled.
[Synthesis Example 1]

還流器および攪拌機付セパラブルフラスコにSiO2濃度24重量%の珪酸ナトリウム
水溶液(SiO2/Na2Oモル比3)18.7g入れ、さらに水837gを添加して、珪酸ナトリウム水溶液855gを調製した。 次に、この珪酸ナトリウム水溶液に、SiO2濃度4.82重量%の珪酸ナトリウム(SiO2/Na2Oモル比3)を陽イオン交換樹
脂塔に通すことにより得られたSiO2濃度4.82重量%の珪酸液(pH2.3、Si
2/Na2Oモル比=1200)を1,067g添加することにより珪酸液と珪酸ナトリ
ウム水溶液からなる混合液(SiO2/Na2Oモル比35)を得た。
18.7 g of a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio 3) having a SiO 2 concentration of 24 wt% was placed in a separable flask equipped with a reflux condenser and a stirrer, and 837 g of water was further added to prepare 855 g of an aqueous sodium silicate solution. . Next, sodium silicate (SiO 2 / Na 2 O molar ratio: 3) having a SiO 2 concentration of 4.82% by weight was passed through the cation exchange resin tower through this sodium silicate aqueous solution to obtain a SiO 2 concentration of 4.82. Wt% silicic acid solution (pH 2.3, Si
By adding 1,067 g of O 2 / Na 2 O molar ratio = 1200), a mixed liquid (SiO 2 / Na 2 O molar ratio 35) composed of a silicic acid solution and a sodium silicate aqueous solution was obtained.

得られた液を加温し、98℃の温度で30分間熟成した。その後、さら98℃に保持した状態で、この液に前記珪酸液と同じ組成の珪酸液1,162gを4時間かけて添加して
、pH8.9の非球状シリカゾルを得た。この非球状シリカゾルのSiO2/Na2Oモル比は76だった。
The resulting liquid was heated and aged at 98 ° C. for 30 minutes. Thereafter, 1,162 g of a silicic acid solution having the same composition as that of the silicic acid solution was added to this solution over a period of 4 hours, and a non-spherical silica sol having a pH of 8.9 was obtained. This non-spherical silica sol had a SiO 2 / Na 2 O molar ratio of 76.

この非球状シリカゾルのpHが8.5になるように2.5%硫酸水溶液を加え、90℃にて8時間加熱した後、エバポレーターにてSiO2濃度20重量%まで濃縮して非球状
シリカゾルを調製した。
After adding 2.5% sulfuric acid aqueous solution so that the pH of this non-spherical silica sol becomes 8.5 and heating at 90 ° C. for 8 hours, the non-spherical silica sol is concentrated by an evaporator to a SiO 2 concentration of 20% by weight. Prepared.

この非球状シリカゾルに含まれる非球状シリカ微粒子についてのBET法により測定される比表面積から算定される平均粒子径は12nm、動的光散乱法による平均粒子径は 34nmだった。また、この非球状シリカ微粒子の短径/長径比は、0.45、比表面積は220m2/gとなった。
[合成例2]
The average particle size calculated from the specific surface area measured by the BET method for the non-spherical silica fine particles contained in the non-spherical silica sol was 12 nm, and the average particle size by the dynamic light scattering method was 34 nm. Further, the minor diameter / major diameter ratio of the non-spherical silica fine particles was 0.45, and the specific surface area was 220 m 2 / g.
[Synthesis Example 2]

シリカゾル(触媒化成工業株式会社製:カタロイドS−30L、BET法により測定された平均粒子径:15nm、比表面積:182m2/g、SiO2濃度:30重量%)の100gについて、pHが2.3になるまで、強酸性陽イオン交換樹脂SK1BH(三菱化
学社製)0.4Lに空間速度3.1で通液を繰り返した。次に、強塩基性イオン交換樹脂
SANUPC(三菱化学社製)0.4Lに空間速度3.1で通液させ、pHを5.6とした後、pHが7.8になるようにアルカリ性水溶液として5%アンモニア水溶液5.4gを添加した。そして、90℃にて30時間加熱を行なった。この非球状シリカゾルをエバポレーターにてSiO2濃度20重量%まで濃縮して非球状シリカゾルを調製した。
About 100 g of silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Cataloid S-30L, average particle diameter measured by BET method: 15 nm, specific surface area: 182 m 2 / g, SiO 2 concentration: 30 wt%), the pH is 2. Until 3, the liquid was repeatedly passed through 0.4 L of strongly acidic cation exchange resin SK1BH (manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.1. Next, a strong basic ion exchange resin SANUPC (manufactured by Mitsubishi Chemical Corporation) was passed through 0.4 L at a space velocity of 3.1 to adjust the pH to 5.6, and then an alkaline aqueous solution so that the pH became 7.8. As a result, 5.4 g of a 5% aqueous ammonia solution was added. And it heated at 90 degreeC for 30 hours. This non-spherical silica sol was concentrated to an SiO 2 concentration of 20% by weight with an evaporator to prepare a non-spherical silica sol.

この非球状シリカゾルのBET法により測定された平均粒子径は15nm、動的光散乱法による平均粒子径は42nmとなった。また、この非球状シリカゾルの短径/長径比は0.4、比表面積は180m2/gとなった。
[合成例3]
The average particle size of this non-spherical silica sol measured by the BET method was 15 nm, and the average particle size by the dynamic light scattering method was 42 nm. Further, the non-spherical silica sol had a minor axis / major axis ratio of 0.4 and a specific surface area of 180 m 2 / g.
[Synthesis Example 3]

SiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)をイオン交換水で希釈して、SiO2濃度が5重量%の珪酸ナトリウム水溶液(pH11
.3)を1Kg調製した。
A sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio: 3.1) having a SiO 2 concentration of 24% by weight was diluted with ion-exchanged water to obtain a sodium silicate aqueous solution (pH 11) having a SiO 2 concentration of 5% by weight.
. 3 kg of 3) was prepared.

この珪酸ソーダ水溶液のpHが6.5になるように、硫酸を加えて中和し、常温で1時間保持して、シリカヒドロゲルを調製した。このシリカヒドロゲルをオリバーフィルターにて28%アンモニア水溶液(SiO2固形分の約120倍相当量)で充分に洗浄し、塩
類を除去した。洗浄後の硫酸ナトリウム濃度は、SiO2固形分に対して、0.01%未
満だった。
Sulfuric acid was added to neutralize this sodium silicate aqueous solution so that the pH was 6.5, and the mixture was kept at room temperature for 1 hour to prepare a silica hydrogel. This silica hydrogel was thoroughly washed with an Oliver filter with a 28% aqueous ammonia solution (corresponding to about 120 times the SiO 2 solid content) to remove salts. The sodium sulfate concentration after washing was less than 0.01% based on the SiO 2 solid content.

得られたシリカヒドロゲルを純水に分散し(シリカ濃度3重量%)、強力攪拌機にて流動性のあるスラリー状態としたシリカヒドロゲル分散液とし、これに濃度5重量%のNaOH水溶液と28%アンモニア水の1:1混合物ををSiO2/Na2Oモル比が75となるように添加し、160℃で1時間加熱した。 The obtained silica hydrogel was dispersed in pure water (silica concentration: 3% by weight) to prepare a silica hydrogel dispersion in a fluid slurry state with a strong stirrer. This was added to a 5% by weight NaOH aqueous solution and 28% ammonia. A 1: 1 mixture of water was added to a SiO 2 / Na 2 O molar ratio of 75 and heated at 160 ° C. for 1 hour.

次に、上記非球状シリカゾル2.09kgに、24%珪酸ナトリウムを0.81kgおよび純水10.93kgを加えて、シードゾル13.83kg(pH11.2)を調製した。このシードゾルの動的光散乱法により測定される平均粒子径は17nmであった。   Next, 0.81 kg of 24% sodium silicate and 10.93 kg of pure water were added to 2.09 kg of the non-spherical silica sol to prepare 13.83 kg (pH 11.2) of seed sol. The average particle size of the seed sol measured by the dynamic light scattering method was 17 nm.

次にこのシードゾルを90℃に維持しながら、これに後記するSiO2濃度4.5重量
%の珪酸液117.2Kgを10時間かけて添加した。 添加終了後、室温まで冷却させ、得られた非球状シリカゾルを限外濾過膜でSiO2濃度20重量%まで濃縮した。
Next, while maintaining the seed sol at 90 ° C., 117.2 kg of a silicic acid solution having a SiO 2 concentration of 4.5% by weight described later was added thereto over 10 hours. After completion of the addition, the mixture was cooled to room temperature, and the obtained non-spherical silica sol was concentrated to an SiO 2 concentration of 20% by weight using an ultrafiltration membrane.

この非球状シリカゾルのBET法により測定された平均粒子径は50nm、動的光散乱法による平均粒子径ば150nmとなった。また、この非球状シリカゾルの短径/長径比は0.3、比表面積は50m2/gとなった。
[合成例4]
The average particle size of this non-spherical silica sol measured by the BET method was 50 nm, and the average particle size by the dynamic light scattering method was 150 nm. Further, the non-spherical silica sol had a minor axis / major axis ratio of 0.3 and a specific surface area of 50 m 2 / g.
[Synthesis Example 4]

還流器および攪拌機付セパラブルフラスコに、SiO2濃度が24重量%でNa2O濃度が8.16重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比3)18.7g入れ、さらに水895gを添加して、珪酸ナトリウム水溶液914gを調製した。 18.7 g of a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio 3) having a SiO 2 concentration of 24% by weight and a Na 2 O concentration of 8.16% by weight is placed in a separable flask equipped with a reflux condenser and a stirrer, and water 895g was added and 914g of sodium silicate aqueous solution was prepared.

次に、この珪酸ナトリウム水溶液に、SiO2濃度4.82重量%の珪酸ナトリウム(
SiO2/Na2Oモル比3)を陽イオン交換樹脂塔に通すことにより得られたSiO2
度4.82重量%の珪酸液(pH2.3、SiO2/Na2Oモル比=1,200)を、3
5℃の温度条件下、1,900g添加することにより、珪酸液と珪酸ナトリウム水溶液か
らなる混合液(SiO2/Na2Oモル比60)を得た。
Next, this aqueous solution of sodium silicate was mixed with sodium silicate having a SiO 2 concentration of 4.82% by weight (
A silicic acid solution having a SiO 2 concentration of 4.82% by weight (pH 2.3, SiO 2 / Na 2 O molar ratio = 1) obtained by passing SiO 2 / Na 2 O molar ratio 3) through a cation exchange resin tower. 200) to 3
By adding 1,900 g under a temperature condition of 5 ° C., a mixed solution (SiO 2 / Na 2 O molar ratio 60) composed of a silicic acid solution and a sodium silicate aqueous solution was obtained.

得られた混合液を加温し、80℃の温度で30分間熟成した。80℃に保持した状態で、この液に前記珪酸液と同じ組成の珪酸液329gを2時間かけて添加して、pH8.7の非球状シリカゾルを得た。この非球状シリカゾルのSiO2/Na2Oモル比は76だった。 The resulting mixture was warmed and aged at 80 ° C. for 30 minutes. While maintaining the temperature at 80 ° C., 329 g of a silicic acid solution having the same composition as that of the silicic acid solution was added to this solution over 2 hours to obtain a non-spherical silica sol having a pH of 8.7. This non-spherical silica sol had a SiO 2 / Na 2 O molar ratio of 76.

この非球状シリカゾルを70℃にて12時間加熱した後、エバポレーターにてSiO2
濃度20重量%まで濃縮した。
この非球状シリカゾルのBET法により測定された比表面積から換算された平均粒子径は6nm、動的光散乱法による平均粒子径は18nmだった。また、短径/長径比の値は0.15、比表面積は455m2/gとなった。
After heating this non-spherical silica sol at 70 ° C. for 12 hours, SiO 2 was evaporated with an evaporator.
Concentrated to a concentration of 20% by weight.
The average particle diameter of this non-spherical silica sol converted from the specific surface area measured by the BET method was 6 nm, and the average particle diameter by the dynamic light scattering method was 18 nm. Further, the value of the ratio of minor axis / major axis was 0.15, and the specific surface area was 455 m 2 / g.

合成例1の方法で調製した非球状シリカゾル(動的光散乱法による平均粒子径34nm、短径/長径比0.45、比表面積220m2/g)に純水を加えて、シリカ濃度15.
4重量%に調整した。
Pure water was added to the non-spherical silica sol prepared by the method of Synthesis Example 1 (average particle diameter by dynamic light scattering method: 34 nm, minor axis / major axis ratio: 0.45, specific surface area: 220 m 2 / g) to obtain a silica concentration of 15.
Adjusted to 4 wt%.

この非球状シリカゾル6500gに、12℃にて、アルミン酸ナトリウム[化学式:NaAlO2]の0.9重量%水溶液850g(非球状シリカゾルのシリカ分100質量部
に対して、アルミン酸ナトリウムが0.77質量部に相当)を攪拌しながら4時間かけて均等に連続的に添加した。そして、90℃に昇温して、3時間熟成した。
850 g of a 0.9 wt% aqueous solution of sodium aluminate [chemical formula: NaAlO 2 ] at 12 ° C. was added to 6500 g of this non-spherical silica sol (0.77% sodium aluminate with respect to 100 parts by mass of silica content of the non-spherical silica sol). (Corresponding to parts by mass) was continuously added uniformly over 4 hours with stirring. And it heated up to 90 degreeC and age | cure | ripened for 3 hours.

得られたアルミナ被覆非球状シリカ微粒子の分散液について前記[6]の固形分測定方法により固形分(アルミナ被覆非球状シリカ微粒子)の含有量を測定したところ13.7重量%であった。このアルミナ被覆非球状シリカ微粒子水溶液1199gに純水を加えて、濃度2.9重量%に調製した。   The content of solid content (alumina-coated non-spherical silica fine particles) of the obtained dispersion of alumina-coated non-spherical silica fine particles was measured by the solid content measurement method of [6], and found to be 13.7% by weight. Pure water was added to 1199 g of this alumina-coated non-spherical silica fine particle aqueous solution to prepare a concentration of 2.9% by weight.

このアルミナ被覆非球状シリカ微粒子の水溶液5586gに、3号水硝子(シリカ濃度24重量%)を27g(アルミナ被覆非球状シリカ微粒子100質量部に対して、シリカ分4.0質量部に相当)添加し、98℃まで昇温した後30分間熟成し、シリカ濃度3重量%の珪酸液4305g(前記熟成終了後のアルミナ被覆非球状シリカ微粒子水溶液のシリカ分100質量部に対して、珪酸液のシリカ分が75.6質量部に相当)を7時間かけて撹拌しながら徐々に連続的に添加した。添加完了後、98℃にて1時間熟成した。   27 g of No. 3 water glass (silica concentration 24 wt%) was added to 5586 g of this alumina-coated non-spherical silica fine particle aqueous solution (corresponding to 4.0 parts by mass of silica with respect to 100 parts by mass of alumina-coated non-spherical silica fine particles). Then, the temperature was raised to 98 ° C., followed by aging for 30 minutes, and 4305 g of a silica solution having a silica concentration of 3% by weight (silica solution silica with respect to 100 parts by mass of silica in the alumina-coated non-spherical silica fine particle aqueous solution after completion of the aging). (Corresponding to 75.6 parts by mass) was gradually and continuously added over 7 hours with stirring. After completion of the addition, the mixture was aged at 98 ° C. for 1 hour.

その後、限外膜(SIP−1013)にて常に液面が一定となるように純水を供給しながら濃縮を行い、水溶液の電導度が一定となるまで行い、その後シリカ濃度が12重量%になるまで濃縮し、次いで30%になるまでロータリーエバポレーターで濃縮した。得られた非球状アルミナ−シリカ複合ゾルの特徴および非球状アルミナ−シリカ複合ゾルの製造条件を表1〜5に記す。   Thereafter, concentration is performed while supplying pure water so that the liquid level is always constant at the outer membrane (SIP-1013) until the electric conductivity of the aqueous solution becomes constant, and then the silica concentration becomes 12% by weight. Concentrated to 30% and then concentrated to 30% on a rotary evaporator. The characteristics of the obtained non-spherical alumina-silica composite sol and the production conditions of the non-spherical alumina-silica composite sol are shown in Tables 1 to 5.

得られた非球状アルミナ−シリカ複合ゾルの走査型電子顕微鏡写真(倍率250000倍)を図3に示す。また、この非球状アルミナ−シリカ複合ゾルについて、前記[9]アルミニウム基板に対する研磨特性の評価方法に従って、評価した結果を表5に記す。(以下、実施例2、4、5および比較例1、3についても同様に[9]アルミニウム基板に対する研磨特性の評価方法による、評価結果を表5に記した。)   A scanning electron micrograph (magnification: 250,000 times) of the obtained non-spherical alumina-silica composite sol is shown in FIG. In addition, Table 5 shows the evaluation results of this non-spherical alumina-silica composite sol according to the above-described [9] Evaluation method of polishing characteristics for aluminum substrate. (Hereinafter, the evaluation results for Examples 2, 4, 5 and Comparative Examples 1 and 3 by the method for evaluating the polishing properties for the aluminum substrate are also shown in Table 5.)

合成例2の方法で調製した非球状シリカゾル(動的光散乱法による平均粒子径42nm、短径/長径比0.4、比表面積180m2/g)に純水を加えて、シリカ濃度15.4
重量%に調整した。
Pure water was added to the non-spherical silica sol prepared by the method of Synthesis Example 2 (average particle diameter 42 nm by dynamic light scattering method, minor diameter / major diameter ratio 0.4, specific surface area 180 m 2 / g) to obtain a silica concentration of 15. 4
Adjusted to wt%.

この非球状シリカゾル6500gに、14℃にて、アルミン酸ナトリウム[化学式:NaAlO2]の0.9重量%水溶液482g(非球状シリカゾルのシリカ分100質量部
に対して、アルミン酸ナトリウム0.43質量部に相当)を攪拌しながら2時間かけて均等に連続的に添加した。そして、90℃に昇温して、3時間熟成した。
482 g of 0.9 wt% aqueous solution of sodium aluminate [chemical formula: NaAlO 2 ] at 14 ° C. in 6500 g of this non-spherical silica sol (0.43 mass of sodium aluminate with respect to 100 mass parts of silica content of the non-spherical silica sol) Was added continuously over a period of 2 hours with stirring. And it heated up to 90 degreeC and age | cure | ripened for 3 hours.

得られたアルミナ被覆非球状シリカ微粒子の分散液について前記[6]の固形分測定方法により固形分(アルミナ被覆非球状シリカ微粒子)の含有量を測定したところ14.4重量%であった。このアルミナ被覆非球状シリカ微粒子水溶液1463gに純水を加えて、濃度2.7重量%に調製した。   The content of solid content (alumina-coated non-spherical silica fine particles) of the obtained dispersion liquid of alumina-coated non-spherical silica fine particles was measured by the solid content measurement method of [6] and found to be 14.4% by weight. Pure water was added to 1463 g of this alumina-coated non-spherical silica fine particle aqueous solution to prepare a concentration of 2.7% by weight.

このアルミナ被覆非球状シリカ微粒子の水溶液7163gに、3号水硝子(シリカ濃度
24重量%)を41g(アルミナ被覆非球状シリカ微粒子100質量部に対して、シリカ分3.7質量部に相当)添加し、98℃まで昇温した後30分熟成し、シリカ濃度3重量%の珪酸液2641g(前記熟成終了後のアルミナ被覆非球状シリカ微粒子水溶液のシリカ分100質量部に対して、珪酸液のシリカ分が32.4質量部に相当)を10時間かけて撹拌しながら徐々に連続的に添加した。添加完了後、98℃にて1時間熟成した。
41 g (corresponding to 3.7 parts by mass of silica with respect to 100 parts by mass of alumina-coated non-spherical silica fine particles) is added to 7163 g of this aqueous solution of alumina-coated non-spherical silica fine particles. Then, the temperature was raised to 98 ° C., followed by aging for 30 minutes, and 2641 g of silica solution having a silica concentration of 3% by weight (silica solution silica with respect to 100 parts by mass of the silica content of the alumina-coated non-spherical silica fine particle aqueous solution after completion of the aging). The amount corresponding to 32.4 parts by mass) was gradually and continuously added over 10 hours with stirring. After completion of the addition, the mixture was aged at 98 ° C. for 1 hour.

その後、限外膜(SIP−1013)にて常に液面が一定となるように純水を供給しながら濃縮を行い、水溶液の電導度が一定となるまで行い、その後シリカ濃度が12重量%になるまで濃縮し、次いで30%になるまでロータリーエバポレーターで濃縮した。得られた非球状アルミナ−シリカ複合ゾルの特徴および非球状アルミナ−シリカ複合ゾルの製造条件を表1〜5に記す。   Thereafter, concentration is performed while supplying pure water so that the liquid level is always constant at the outer membrane (SIP-1013) until the electric conductivity of the aqueous solution becomes constant, and then the silica concentration becomes 12% by weight. Concentrated to 30% and then concentrated to 30% on a rotary evaporator. The characteristics of the obtained non-spherical alumina-silica composite sol and the production conditions of the non-spherical alumina-silica composite sol are shown in Tables 1 to 5.

合成例3の方法で調製した非球状シリカゾル(動的光散乱法による平均粒子径150nm、短径/長径比0.3、比表面積50m2/g)に純水を加えて、シリカ濃度15.4
重量%に調整した。
Pure water is added to the non-spherical silica sol prepared by the method of Synthesis Example 3 (average particle diameter 150 nm by dynamic light scattering method, minor diameter / major diameter ratio 0.3, specific surface area 50 m 2 / g) to obtain a silica concentration of 15. 4
Adjusted to wt%.

この非球状シリカゾル6500gに、25℃にて、アルミン酸ナトリウム[化学式:NaAlO2]の0.9重量%水溶液1488g(非球状シリカゾルのシリカ分100質量
部に対して、アルミン酸ナトリウムが1.34質量部に相当)を攪拌しながら6時間かけて均等に連続的に添加した。そして、90℃に昇温して、3時間熟成した。
1488 g of 0.9 wt% aqueous solution of sodium aluminate [chemical formula: NaAlO 2 ] was added to 6500 g of this non-spherical silica sol at 25 ° C. (Corresponding to parts by mass) was continuously added uniformly over 6 hours with stirring. And it heated up to 90 degreeC and age | cure | ripened for 3 hours.

得られたアルミナ被覆非球状シリカ微粒子の分散液について前記[6]の固形分測定方法により固形分(アルミナ被覆非球状シリカ微粒子)の含有量を測定したところ12.7重量%であった。このアルミナ被覆非球状シリカ微粒子水溶液の882gに純水を加えて、濃度2.8重量%に調製した。   The content of solid content (alumina-coated non-spherical silica fine particles) of the obtained dispersion liquid of alumina-coated non-spherical silica fine particles was measured by the solid content measurement method of [6] and found to be 12.7% by weight. Pure water was added to 882 g of this alumina-coated non-spherical silica fine particle aqueous solution to prepare a concentration of 2.8% by weight.

このアルミナ被覆非球状シリカ微粒子の水溶液4704gに、3号水硝子(シリカ濃度24重量%)を48g(アルミナ被覆非球状シリカ微粒子100質量部に対して、10.1質量部に相当)添加し、87℃まで昇温した後30分熟成し、温度を87℃に維持しながら、シリカ濃度3重量%の珪酸液5961g(前記熟成終了後のアルミナ被覆非球状シリカ微粒子水溶液のシリカ分100質量部に対して、珪酸液のシリカ分が150質量部に相当)を7時間かけて撹拌しながら徐々に連続的に添加した。添加完了後、87℃にて1時間熟成した。   48 g (corresponding to 10.1 parts by mass with respect to 100 parts by mass of the alumina-coated non-spherical silica fine particles) was added to 4704 g of this alumina-coated non-spherical silica fine particle aqueous solution (4704 g), After raising the temperature to 87 ° C. and aging for 30 minutes, maintaining the temperature at 87 ° C., 5961 g of silica solution with a silica concentration of 3% by weight (to 100 parts by mass of silica in the alumina-coated non-spherical silica fine particle aqueous solution after completion of the aging) On the other hand, the silica content of the silicic acid solution corresponds to 150 parts by mass) was gradually and continuously added over 7 hours with stirring. After completion of the addition, the mixture was aged at 87 ° C. for 1 hour.

その後、限外膜(SIP−1013)にて常に液面が一定となるように純水を供給しながら濃縮を行い、水溶液の電導度が一定となるまで行い、その後シリカ濃度が12重量%になるまで濃縮し、次いで30%になるまでロータリーエバポレーターで濃縮した。得られた非球状アルミナ−シリカ複合ゾルの特徴および非球状アルミナ−シリカ複合ゾルの製造条件を表1〜5に記す。   Thereafter, concentration is performed while supplying pure water so that the liquid level is always constant at the outer membrane (SIP-1013) until the electric conductivity of the aqueous solution becomes constant, and then the silica concentration becomes 12% by weight. Concentrated to 30% and then concentrated to 30% on a rotary evaporator. The characteristics of the obtained non-spherical alumina-silica composite sol and the production conditions of the non-spherical alumina-silica composite sol are shown in Tables 1 to 5.

また、得られた非球状アルミナ−シリカ複合ゾルについて、前記[10]ガラス基板に対する研磨特性の評価方法にて研磨特性を評価した結果を表5に記す。(以下、比較例2および4についても同様に[10]ガラス基板に対する研磨特性の評価方法による、評価結果を表5に記した。)   Table 5 shows the results of evaluating the polishing characteristics of the obtained non-spherical alumina-silica composite sol by the above-mentioned [10] Evaluation method of polishing characteristics on glass substrate. (Hereinafter, for Comparative Examples 2 and 4, the evaluation results by the method for evaluating the polishing properties for [10] glass substrate are also shown in Table 5.)

合成例1の方法で調製した非球状シリカゾル(動的光散乱法による平均粒子径34nm、短径/長径比0.45、比表面積220m2/g)に純水を加えて、シリカ濃度15.
4重量%に調整した。
Pure water was added to the non-spherical silica sol prepared by the method of Synthesis Example 1 (average particle diameter by dynamic light scattering method: 34 nm, minor axis / major axis ratio: 0.45, specific surface area: 220 m 2 / g) to obtain a silica concentration of 15.
Adjusted to 4 wt%.

この非球状シリカゾル6500gに、25℃にて、アルミン酸ナトリウム[化学式:NaAlO2]の0.9重量%水溶液142g(非球状シリカゾルのシリカ分100質量部
に対して、アルミン酸ナトリウム0.13質量部に相当)を攪拌しながら30分かけて均等に連続的に添加した。そして、90℃に昇温して、3時間熟成した。
142 g of a 0.9 wt% aqueous solution of sodium aluminate [chemical formula: NaAlO 2 ] at 25 ° C. in 6500 g of this non-spherical silica sol (0.13 mass of sodium aluminate with respect to 100 parts by mass of silica content of the non-spherical silica sol) Was added continuously and uniformly over 30 minutes with stirring. And it heated up to 90 degreeC and age | cure | ripened for 3 hours.

得られたアルミナ被覆非球状シリカ微粒子の分散液について前記[6]の固形分測定方法により固形分(アルミナ被覆非球状シリカ微粒子)の含有量を測定したところ15.1重量%であった。このアルミナ被覆非球状シリカ微粒子水溶液1199gに純水を加えて、濃度2.9重量%に調製した。   The content of solid content (alumina-coated non-spherical silica fine particles) of the obtained dispersion liquid of alumina-coated non-spherical silica fine particles was measured by the solid content measurement method of [6] and found to be 15.1% by weight. Pure water was added to 1199 g of this alumina-coated non-spherical silica fine particle aqueous solution to prepare a concentration of 2.9% by weight.

このアルミナ被覆非球状シリカ微粒子の水溶液6243gに、3号水硝子(シリカ濃度24重量%)を27g(アルミナ被覆非球状シリカ微粒子100質量部に対して、4.0質量部に相当)添加し、98℃まで昇温した後30分熟成し、温度を98℃に維持しながら、シリカ濃度3重量%の珪酸液4305g(前記熟成終了後のアルミナ被覆非球状シリカ微粒子水溶液のシリカ分100質量部に対して、珪酸液のシリカ分が75.6質量部に相当)を7時間かけて撹拌しながら徐々に連続的に添加した。添加完了後、98℃にて1時間熟成した。   27 g (corresponding to 4.0 parts by mass with respect to 100 parts by mass of alumina-coated non-spherical silica fine particles) of No. 3 water glass (silica concentration: 24% by weight) was added to 6243 g of this aqueous solution of alumina-coated non-spherical silica fine particles, After raising the temperature to 98 ° C. and aging for 30 minutes, while maintaining the temperature at 98 ° C., 4305 g of silica solution with a silica concentration of 3% by weight (to 100 parts by mass of silica in the alumina-coated non-spherical silica fine particle aqueous solution after completion of the aging) On the other hand, the silica content of the silicic acid solution was equivalent to 75.6 parts by mass) and gradually added continuously with stirring over 7 hours. After completion of the addition, the mixture was aged at 98 ° C. for 1 hour.

その後、限外膜(SIP−1013)にて常に液面が一定となるように純水を供給しながら濃縮を行い、水溶液の電導度が一定となるまで行い、その後シリカ濃度が12重量%になるまで濃縮し、次いで30%になるまでロータリーエバポレーターで濃縮した。得られた非球状アルミナ−シリカ複合ゾルの特徴および非球状アルミナ−シリカ複合ゾルの製造条件を表1〜5に記す。   Thereafter, concentration is performed while supplying pure water so that the liquid level is always constant at the outer membrane (SIP-1013) until the electric conductivity of the aqueous solution becomes constant, and then the silica concentration becomes 12% by weight. Concentrated to 30% and then concentrated to 30% on a rotary evaporator. The characteristics of the obtained non-spherical alumina-silica composite sol and the production conditions of the non-spherical alumina-silica composite sol are shown in Tables 1 to 5.

合成例4の方法で調製した非球状シリカゾル(動的光散乱法による平均粒子径18nm、短径/長径比0.15、比表面積455m2/g)に純水を加えて、シリカ濃度15.
4重量%に調整した。
Pure water was added to the non-spherical silica sol prepared by the method of Synthesis Example 4 (average particle diameter 18 nm by dynamic light scattering method, minor diameter / major diameter ratio 0.15, specific surface area 455 m 2 / g) to obtain a silica concentration of 15.
Adjusted to 4 wt%.

この非球状シリカゾル6500gに、25℃にて、アルミン酸ナトリウム[化学式:NaAlO2]の0.9重量%水溶液1983g(非球状シリカゾルのシリカ分100質量
部に対して、アルミン酸ナトリウムが1.79質量部に相当)を攪拌しながら8時間かけて均等に連続的に添加した。そして、90℃に昇温して、3時間熟成した。
To 25,000 ° C., 60.9 g of this non-spherical silica sol was 1983 g of a 0.9 wt% aqueous solution of sodium aluminate [chemical formula: NaAlO 2 ] (sodium aluminate was 1.79 with respect to 100 parts by mass of silica content of the non-spherical silica sol. (Corresponding to part by mass) was continuously added uniformly over 8 hours with stirring. And it heated up to 90 degreeC and age | cure | ripened for 3 hours.

得られたアルミナ被覆非球状シリカ微粒子の分散液について前記[6]の固形分測定方法により固形分(アルミナ被覆非球状シリカ微粒子)の含有量を測定したところ12.0重量%であった。このアルミナ被覆非球状シリカ微粒子水溶液1199gに純水を加えて、濃度2.9重量%に調製した。   The content of solid content (alumina-coated non-spherical silica fine particles) of the obtained dispersion of alumina-coated non-spherical silica fine particles was measured by the solid content measurement method of [6], and found to be 12.0% by weight. Pure water was added to 1199 g of this alumina-coated non-spherical silica fine particle aqueous solution to prepare a concentration of 2.9% by weight.

このアルミナ被覆非球状シリカ微粒子の水溶液4552gに、3号水硝子(シリカ濃度24重量%)を22g(アルミナ被覆非球状シリカ微粒子100質量部に対して、6.0質量部に相当)添加し、98℃まで昇温した後30分熟成し、温度を98℃に維持しながら、シリカ濃度3重量%の珪酸液4343g(前記熟成終了後のアルミナ被覆非球状シリカ微粒子水溶液のシリカ分100質量部に対して、珪酸液のシリカ分が75.6質量部に相当)を7時間かけて撹拌しながら徐々に連続的に添加した。添加完了後、98℃にて1時間熟成した。   To 4552 g of this alumina-coated non-spherical silica fine particle aqueous solution, 22 g of No. 3 water glass (silica concentration 24 wt%) was added (corresponding to 6.0 parts by mass with respect to 100 parts by mass of alumina-coated non-spherical silica fine particles), After raising the temperature to 98 ° C. and aging for 30 minutes, while maintaining the temperature at 98 ° C., 4343 g of a silica solution having a silica concentration of 3% by weight (to 100 parts by mass of silica in the alumina-coated non-spherical silica fine particle aqueous solution after completion of the aging) On the other hand, the silica content of the silicic acid solution was equivalent to 75.6 parts by mass) and gradually added continuously with stirring over 7 hours. After completion of the addition, the mixture was aged at 98 ° C. for 1 hour.

その後、限外膜(SIP−1013)にて常に液面が一定となるように純水を供給しながら濃縮を行い、水溶液の電導度が一定となるまで行い、その後シリカ濃度が12重量%
になるまで濃縮し、次いで30%になるまでロータリーエバポレーターで濃縮した。得られた非球状アルミナ−シリカ複合ゾルの特徴および非球状アルミナ−シリカ複合ゾルの製造条件を表1〜5に記す。
[比較例1]
Thereafter, concentration is performed while supplying pure water so that the liquid level is always constant at the outer membrane (SIP-1013), until the conductivity of the aqueous solution becomes constant, and then the silica concentration is 12% by weight.
The solution was concentrated to 30%, and then concentrated to 30% using a rotary evaporator. The characteristics of the obtained non-spherical alumina-silica composite sol and the production conditions of the non-spherical alumina-silica composite sol are shown in Tables 1 to 5.
[Comparative Example 1]

合成例1の方法で調製した非球状シリカゾル(動的光散乱法による平均粒子径34nm、短径/長径比0.45、比表面積220m2/g)に純水を加えて、シリカ濃度2.8
重量%に調整した。
Pure water was added to the non-spherical silica sol prepared by the method of Synthesis Example 1 (average particle diameter by dynamic light scattering method: 34 nm, minor axis / major axis ratio: 0.45, specific surface area: 220 m 2 / g), and the silica concentration was 2. 8
Adjusted to wt%.

この非球状シリカゾル5761gに、3号水硝子(シリカ濃度24重量%)を40g(非球状シリカゾル中の非球状シリカ微粒子100質量部に対して、3号水硝子のシリカ分6.0質量部に相当)添加し、98℃まで昇温した後30分熟成し、温度を98℃に維持しながら、シリカ濃度3重量%の珪酸液4199g(前記非球状シリカゾル中の非球状シリカ微粒子100質量部に対して、珪酸液のシリカ分が75.6質量部に相当)を7時間かけて撹拌しながら徐々に連続的に添加した。添加完了後、98℃にて1時間熟成した。   To 5761 g of this non-spherical silica sol, 40 g of No. 3 water glass (silica concentration 24% by weight) was added to 6.0 parts by mass of silica in No. 3 water glass with respect to 100 parts by mass of non-spherical silica fine particles in the non-spherical silica sol. The mixture was heated to 98 ° C. and aged for 30 minutes. While maintaining the temperature at 98 ° C., 4199 g of a silica solution having a silica concentration of 3% by weight (to 100 parts by mass of the nonspherical silica fine particles in the nonspherical silica sol) On the other hand, the silica content of the silicic acid solution was equivalent to 75.6 parts by mass) and gradually added continuously with stirring over 7 hours. After completion of the addition, the mixture was aged at 98 ° C. for 1 hour.

その後、限外膜(SIP−1013)にて常に液面が一定となるように純水を供給しながら濃縮を行い、水溶液の電導度が一定となるまで行い、その後シリカ濃度が12重量%になるまで濃縮し、次いで30%になるまでロータリーエバポレーターで濃縮した。得られた非球状シリカゾルの特徴およびその製造条件を表1〜5に記す。
[比較例2]
Thereafter, concentration is performed while supplying pure water so that the liquid level is always constant at the outer membrane (SIP-1013) until the electric conductivity of the aqueous solution becomes constant, and then the silica concentration becomes 12% by weight. Concentrated to 30% and then concentrated to 30% on a rotary evaporator. The characteristics of the obtained non-spherical silica sol and the production conditions thereof are shown in Tables 1 to 5.
[Comparative Example 2]

合成例3の方法で調製した非球状シリカゾル(動的光散乱法による平均粒子径150nm、短径/長径比0.3、比表面積50m2/g)に純水を加えて、シリカ濃度2.8重
量%に調整した。
Pure water is added to the non-spherical silica sol prepared by the method of Synthesis Example 3 (average particle diameter 150 nm by dynamic light scattering method, minor diameter / major diameter ratio 0.3, specific surface area 50 m 2 / g) to obtain a silica concentration of 2. Adjusted to 8 wt%.

この非球状シリカゾル3972gに、3号水硝子(シリカ濃度24重量%)を46g(非球状シリカゾル中の非球状シリカ微粒子100質量部に対して、3号水硝子のシリカ分10.1質量部に相当)添加し、98℃まで昇温した後30分熟成し、温度を87℃に維持しながら、シリカ濃度3重量%の珪酸液5983g(前記非球状シリカゾル中の非球状シリカ微粒子100質量部に対して、珪酸液のシリカ分が150質量部に相当)を7時間かけて撹拌しながら徐々に添加した。添加完了後、87℃にて1時間熟成した。   To 3972 g of this non-spherical silica sol, 46 g of No. 3 water glass (silica concentration 24% by weight) was added to 10.1 parts by mass of silica content of No. 3 water glass with respect to 100 parts by mass of non-spherical silica fine particles in the non-spherical silica sol. The mixture was heated to 98 ° C. and then aged for 30 minutes. While maintaining the temperature at 87 ° C., 5983 g of a silica solution having a silica concentration of 3% by weight (100 parts by mass of non-spherical silica fine particles in the non-spherical silica sol) On the other hand, the silica content of the silicic acid solution corresponds to 150 parts by mass) was gradually added over 7 hours with stirring. After completion of the addition, the mixture was aged at 87 ° C. for 1 hour.

その後、限外膜(SIP−1013)にて常に液面が一定となるように純水を供給しながら濃縮を行い、水溶液の電導度が一定となるまで行い、その後シリカ濃度が12重量%になるまで濃縮し、次いで30%になるまでロータリーエバポレーターで濃縮した。得られた非球状シリカゾルの特徴およびその製造条件を表1〜5に記す。また、得られた非球状アルミナ−シリカ複合ゾルについて、前記[10]ガラス基板に対する研磨特性の評価方法にて研磨特性を評価した結果を表5に記す。
[比較例3]
Thereafter, concentration is performed while supplying pure water so that the liquid level is always constant at the outer membrane (SIP-1013) until the electric conductivity of the aqueous solution becomes constant, and then the silica concentration becomes 12% by weight. Concentrated to 30% and then concentrated to 30% on a rotary evaporator. The characteristics of the obtained non-spherical silica sol and the production conditions thereof are shown in Tables 1 to 5. Table 5 shows the results of evaluating the polishing characteristics of the obtained non-spherical alumina-silica composite sol by the above-mentioned [10] Evaluation method of polishing characteristics on glass substrate.
[Comparative Example 3]

合成例1の方法で調製した非球状シリカゾル(動的光散乱法による平均粒子径34nm、短径/長径比0.45、比表面積220m2/g)に純水を加えて、シリカ濃度2.8
重量%に調整した。この非球状シリカゾル6500gに、25℃にて、アルミン酸ナトリウム[化学式:NaAlO2]の0.9重量%水溶液2833g(非球状シリカゾルのシ
リカ分100質量部に対して、アルミン酸ナトリウムが2.55質量部に相当)を攪拌しながら12時間かけて均等に連続的に添加した。そして、90℃に昇温して、3時間熟成した。
Pure water was added to the non-spherical silica sol prepared by the method of Synthesis Example 1 (average particle diameter by dynamic light scattering method: 34 nm, minor axis / major axis ratio: 0.45, specific surface area: 220 m 2 / g), and the silica concentration was 2. 8
Adjusted to wt%. 2833 g of 0.9 wt% aqueous solution of sodium aluminate [chemical formula: NaAlO 2 ] was added to 6500 g of this non-spherical silica sol at 2.5 ° C. (Corresponding to part by mass) was continuously added uniformly over 12 hours with stirring. And it heated up to 90 degreeC and age | cure | ripened for 3 hours.

得られたアルミナ被覆非球状シリカ微粒子の分散液について前記[6]の固形分測定方
法により固形分(アルミナ被覆非球状シリカ微粒子)の含有量を測定したところ11.0重量%であった。このアルミナ被覆非球状シリカ微粒子水溶液1494gに純水を加えて、濃度2.9重量%に調製した。
When the content of solid content (alumina-coated non-spherical silica fine particles) of the obtained dispersion liquid of alumina-coated non-spherical silica fine particles was measured by the solid content measurement method of [6], it was 11.0% by weight. Pure water was added to 1494 g of this alumina-coated non-spherical silica fine particle aqueous solution to prepare a concentration of 2.9% by weight.

このアルミナ被覆非球状シリカ微粒子の水溶液8483gに、3号水硝子(シリカ濃度24重量%)を41g(アルミナ被覆非球状シリカ微粒子100質量部に対して、6.0質量部に相当)添加し、98℃まで昇温した後30分熟成し、温度を98℃に維持しながら、シリカ濃度3重量%の珪酸液4190g(前記熟成終了後のアルミナ被覆非球状シリカ微粒子水溶液のシリカ分100質量部に対して、珪酸液のシリカ分が75.6質量部に相当)を7時間かけて撹拌しながら徐々に連続的に添加した。添加完了後、98℃にて1時間熟成した。   41 g (corresponding to 6.0 parts by mass with respect to 100 parts by mass of the alumina-coated non-spherical silica fine particles) was added to 8483 g of this alumina-coated non-spherical silica fine particle aqueous solution (8383 g). The temperature was raised to 98 ° C. and then aged for 30 minutes. While maintaining the temperature at 98 ° C., 4190 g of a silica solution having a silica concentration of 3% by weight (to 100 parts by mass of silica in the alumina-coated non-spherical silica fine particle aqueous solution after completion of the aging) On the other hand, the silica content of the silicic acid solution was equivalent to 75.6 parts by mass) and gradually added continuously with stirring over 7 hours. After completion of the addition, the mixture was aged at 98 ° C. for 1 hour.

その後、限外膜(SIP−1013)にて常に液面が一定となるように純水を供給しながら濃縮を行い、水溶液の電導度が一定となるまで行い、その後シリカ濃度が12重量%になるまで濃縮し、次いで30%になるまでロータリーエバポレーターで濃縮した。得られた非球状アルミナ−シリカ複合ゾルゾルの特徴およびその製造条件を表1〜5に記す。[比較例4]   Thereafter, concentration is performed while supplying pure water so that the liquid level is always constant at the outer membrane (SIP-1013) until the electric conductivity of the aqueous solution becomes constant, and then the silica concentration becomes 12% by weight. Concentrated to 30% and then concentrated to 30% on a rotary evaporator. The characteristics of the obtained non-spherical alumina-silica composite sol sol and the production conditions thereof are shown in Tables 1 to 5. [Comparative Example 4]

球状シリカゾル(触媒化成工業株式会社製カタロイドSI−80(動的光散乱法による平均粒子径110nm)をシリカ濃度20質量%に調整し、前記[10]ガラス基板に対する研磨特性の評価方法にて研磨特性を評価した結果を表5に記す。   Spherical silica sol (Cataloid SI-80 manufactured by Catalytic Chemical Industry Co., Ltd. (average particle diameter 110 nm by dynamic light scattering method) was adjusted to a silica concentration of 20% by mass and polished by the above-mentioned [10] Evaluation method of polishing characteristics for glass substrate. The results of evaluating the characteristics are shown in Table 5.

本発明のアルミナ−シリカ複合ゾルは、研磨材および研磨用組成物として有用であり、アルミニウムディスク(アルミニウムまたはその基材上のメッキ層)や半導体多層配線基
板のアルミニウム配線、光ディスクや磁気ディスク用ガラス基板、液晶ディスプレイ用ガラス基板、フォトマスク用ガラス基板、ガラス質材料の鏡面加工などに利用が可能である。また、樹脂成型物やコーテイング被膜の充填剤、化粧料の成分、吸着剤、凝集促進剤、滓下げ剤、増粘剤、土壌硬化剤などとしても利用可能である。
The alumina-silica composite sol of the present invention is useful as an abrasive and a polishing composition. The aluminum disk (aluminum or a plating layer on the substrate thereof), aluminum wiring of a semiconductor multilayer wiring board, glass for optical disks and magnetic disks. It can be used for substrates, glass substrates for liquid crystal displays, glass substrates for photomasks, mirror finishing of glassy materials, and the like. It can also be used as a filler for resin moldings and coating films, cosmetic ingredients, adsorbents, coagulation promoters, suspending agents, thickeners, soil hardeners, and the like.

極大値個数の求め方の概略図Schematic diagram of how to find the maximum value 距離Yの変動係数についての求め方の概略図Schematic of how to find the coefficient of variation of distance Y 実施例1で調製された非球状アルミナ−シリカ複合ゾルの走査型電子顕微鏡写真(倍率:250,000倍)Scanning electron micrograph of the non-spherical alumina-silica composite sol prepared in Example 1 (magnification: 250,000 times)

Claims (7)

動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m2/gの範囲にあり、表面に複数の疣
状突起を有する非球状アルミナ−シリカ複合微粒子が分散媒に分散してなることを特徴とする非球状アルミナ−シリカ複合ゾル。
The average particle diameter measured by the dynamic light scattering method is in the range of 3 to 150 nm, the short diameter / long diameter ratio is in the range of 0.01 to 0.8, the specific surface area is in the range of 10 to 800 m 2 / g, and the surface A non-spherical alumina-silica composite sol, wherein non-spherical alumina-silica composite fine particles having a plurality of hook-shaped protrusions are dispersed in a dispersion medium.
前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、
前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状アルミナ−シリカ複合微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX−Y曲線を描いた場合に、該X−Y曲線が複数の極大値を有することを特徴とする請求項1記載の非球状アルミナ−シリカ複合ゾル。
On the plane containing the long axis of the non-spherical alumina-silica composite fine particles,
The distance from an arbitrary point on the outer edge of the non-spherical alumina-silica composite fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the long axis is Y, and the non-spherical alumina- When an XY curve is drawn with a distance from one intersection A between the outer edge of the silica composite fine particle and the major axis to the intersection B as X, the XY curve has a plurality of maximum values. The non-spherical alumina-silica composite sol according to claim 1.
前記非球状アルミナ−シリカ複合微粒子の長軸を含む平面上において、前記非球状アルミナ−シリカ複合微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記距離Yの変動係数が5〜50%の範囲にあることを特徴とする請求項1または請求項2記載の非球状アルミナ−シリカ複合ゾル。   On a plane including the long axis of the non-spherical alumina-silica composite fine particle, from any point on the outer edge of the non-spherical alumina-silica composite fine particle, a straight line passing through the point on the outer edge and orthogonal to the long axis; The non-spherical alumina-silica according to claim 1 or 2, wherein when the distance to the intersection B with the long axis is Y, the variation coefficient of the distance Y is in the range of 5 to 50%. Composite sol. 動的光散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルに、アルミン酸ナトリウムを該非球状シリカ微粒子100質量部に対して、0.1〜2.5質量部を連続的にまたは断続的に添加し、次に熟成させることによりアルミナ被覆非球状シリカ微粒子の分散液を調製し、次に、該アルミナ被覆非球状シリカ微粒子100質量部に対し、0.1〜100質量部に相当するアルカリ金属珪酸塩を添加し、熟成した後、更に珪酸液を連続的にまたは断続的に添加することにより、粒子成長させ、突起を形成させることを特徴とする請求項1、請求項2または請求項3の何れかに記載の非球状アルミナ−シリカ複合ゾルの製造方法。   Nonspherical particles in which nonspherical silica fine particles having an average particle diameter measured by a dynamic light scattering method in the range of 3 to 150 nm and a minor axis / major axis ratio in the range of 0.01 to 0.8 are dispersed in a dispersion medium. Alumina-coated non-spherical silica fine particles are obtained by continuously or intermittently adding 0.1 to 2.5 parts by mass of sodium aluminate to 100 parts by mass of the non-spherical silica fine particles and then aging the silica sol. Next, an alkali metal silicate corresponding to 0.1 to 100 parts by mass is added to 100 parts by mass of the alumina-coated non-spherical silica fine particles, and after aging, the silicic acid solution is continuously added. 4. The production of a non-spherical alumina-silica composite sol according to any one of claims 1, 2 and 3, wherein particles are grown to form protrusions by being added intermittently or intermittently. Direction . 前記珪酸液の使用量が前記アルミナ被覆非球状シリカ微粒子100質量部に対して、シリカ分換算で3〜700質量部の範囲であり、前記珪酸液の添加を2〜24時間かけて連続的にまたは断続的に行うことを特徴とする請求項4記載の非球状アルミナ−シリカ複合ゾルの製造方法。     The amount of the silicic acid solution used is in the range of 3 to 700 parts by mass in terms of silica relative to 100 parts by mass of the alumina-coated non-spherical silica fine particles, and the addition of the silicic acid solution is continuously performed over 2 to 24 hours. 5. The method for producing a non-spherical alumina-silica composite sol according to claim 4, wherein the method is carried out intermittently. 請求項1、請求項2または請求項3の何れかに記載の非球状アルミナ−シリカ複合ゾルからなる研磨材。   An abrasive comprising the non-spherical alumina-silica composite sol according to claim 1, claim 2 or claim 3. 請求項1、請求項2または請求項3の何れかに記載の非球状アルミナ−シリカ複合ゾルを含むことを特徴とする研磨用組成物。   A polishing composition comprising the non-spherical alumina-silica composite sol according to claim 1, claim 2 or claim 3.
JP2007303254A 2007-11-22 2007-11-22 Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition Active JP4949209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007303254A JP4949209B2 (en) 2007-11-22 2007-11-22 Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007303254A JP4949209B2 (en) 2007-11-22 2007-11-22 Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition

Publications (2)

Publication Number Publication Date
JP2009126741A JP2009126741A (en) 2009-06-11
JP4949209B2 true JP4949209B2 (en) 2012-06-06

Family

ID=40818033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303254A Active JP4949209B2 (en) 2007-11-22 2007-11-22 Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition

Country Status (1)

Country Link
JP (1) JP4949209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155180A (en) * 2007-12-27 2009-07-16 Jgc Catalysts & Chemicals Ltd Particle-linked alumina-silica composite sol and method for manufacturing the same
WO2018088088A1 (en) 2016-11-14 2018-05-17 日揮触媒化成株式会社 Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615529B2 (en) * 2009-11-16 2014-10-29 日揮触媒化成株式会社 Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition
JP6727759B2 (en) * 2015-04-09 2020-07-22 サムスン エレクトロニクス カンパニー リミテッド External additive for toner and toner
JP7470079B2 (en) 2021-03-31 2024-04-17 日揮触媒化成株式会社 Method for producing a dispersion of spinous alumina-silica composite fine particles
CN114605923A (en) * 2022-03-22 2022-06-10 深圳清华大学研究院 Large-size silicon edge polishing solution and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182212A (en) * 1987-01-20 1988-07-27 Mizusawa Ind Chem Ltd Spherical particle of amorphous silica or silica-alumina and their production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155180A (en) * 2007-12-27 2009-07-16 Jgc Catalysts & Chemicals Ltd Particle-linked alumina-silica composite sol and method for manufacturing the same
WO2018088088A1 (en) 2016-11-14 2018-05-17 日揮触媒化成株式会社 Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion

Also Published As

Publication number Publication date
JP2009126741A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5602358B2 (en) Non-spherical silica sol, method for producing the same, and polishing composition
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
JP5587957B2 (en) Konpira sugar-like sol
JP5127452B2 (en) Method for producing deformed silica sol
JP2009137791A (en) Non-spherical combined silica sol and method for producing the same
JP4907317B2 (en) Kinpe sugar-like inorganic oxide sol, method for producing the same, and abrasive containing the sol
JP5564461B2 (en) Polishing composition
JP4949209B2 (en) Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition
JP4911960B2 (en) Method for producing anisotropic silica sol
JP2009078935A (en) "konpeito" (pointed sugar candy ball)-like composite silica sol
JP6259182B2 (en) Polishing liquid for primary polishing of magnetic disk substrate with nickel phosphorus plating
JP4911961B2 (en) Method for producing anisotropic silica sol
JP2011104694A (en) Inorganic oxide particulate dispersion liquid, polishing particle dispersion liquid, and polishing composition
JP4911955B2 (en) Method for producing anisotropic silica sol
JP6207345B2 (en) Method for producing silica particles
JP4979930B2 (en) Method for producing anisotropic silica sol
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP5421006B2 (en) Particle-linked silica sol and method for producing the same
JP2009078936A (en) Method for preparing "konpeito" (pointed sugar candy ball)-like composite silica sol
JP2009091197A (en) Warty-surfaced sphere-form inorganic oxide sol, method for producing same, and abrasive containing the sol
JP7482699B2 (en) Method for producing irregular silica particle dispersion
JP7470079B2 (en) Method for producing a dispersion of spinous alumina-silica composite fine particles
JP7455623B2 (en) Particle-linked silica fine particle dispersion and its manufacturing method, and polishing abrasive dispersion
JP5646143B2 (en) Flaky composite silica fine particle dispersion and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4949209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250