JP7482699B2 - Method for producing irregular silica particle dispersion - Google Patents

Method for producing irregular silica particle dispersion Download PDF

Info

Publication number
JP7482699B2
JP7482699B2 JP2020111744A JP2020111744A JP7482699B2 JP 7482699 B2 JP7482699 B2 JP 7482699B2 JP 2020111744 A JP2020111744 A JP 2020111744A JP 2020111744 A JP2020111744 A JP 2020111744A JP 7482699 B2 JP7482699 B2 JP 7482699B2
Authority
JP
Japan
Prior art keywords
silica
irregular
dispersion
silicic acid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020111744A
Other languages
Japanese (ja)
Other versions
JP2022022601A (en
Inventor
和洋 中山
達也 向井
大輔 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2020111744A priority Critical patent/JP7482699B2/en
Publication of JP2022022601A publication Critical patent/JP2022022601A/en
Application granted granted Critical
Publication of JP7482699B2 publication Critical patent/JP7482699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、異形シリカ粒子分散液の製造方法および異形シリカ粒子分散液に関する。 The present invention relates to a method for producing a dispersion of irregularly shaped silica particles and a dispersion of irregularly shaped silica particles.

研磨用粒子としては、従来、シリカゾルやヒュームドシリカおよびヒュームドアルミナ等が用いられている。半導体の集積回路付基板の製造においては、シリコンウェハー上にアルミニウムの配線を形成し、この上に絶縁膜としてシリカ等の酸化膜を設ける。この場合に配線による凹凸が生じるので、この酸化膜を研磨して平坦化することが行われている。このような基板の研磨において、研磨後の表面は段差や凹凸がなく平坦で、さらにミクロな傷等もなく平滑であること、および高い研磨速度が求められている。 Conventionally, silica sol, fumed silica, fumed alumina, etc. have been used as polishing particles. In the manufacture of semiconductor substrates with integrated circuits, aluminum wiring is formed on a silicon wafer, and an oxide film of silica or the like is provided on top of this as an insulating film. In this case, unevenness is created by the wiring, so this oxide film is polished to flatten it. In polishing such substrates, what is required is a flat surface without steps or unevenness, a smooth surface without microscopic scratches, and a high polishing speed.

化学的機械的研磨(CMP)で使用される研磨材は、通常、研磨用粒子、酸化剤、有機酸等の添加剤および純水等の溶媒から構成されている。研磨用粒子は、シリカおよびアルミナ等の金属酸化物からなる平均粒子径が200nm程度の球状である。酸化剤は、配線・回路用金属の研磨速度を早める。
被研磨材の表面には配線用の溝パターンに起因した段差(凹凸)が存在する場合、主に凸部を研磨除去しながら共面まで研磨し、平坦な研磨面とすることが求められている。しかし、従来の球状の研磨用粒子では共面より上の部分を研磨した際に、凹部の下部にあった配線溝内の回路用金属が共面以下まで研磨される問題(ディッシングと呼ばれている。)があった。このようなディッシング(過研磨)が起きると配線の厚みが減少して配線抵抗が増加したり、また、この上に形成される絶縁膜の平坦性が低下する等の問題が生じる。このため、ディッシングを抑制することが求められている。
近年、研磨用粒子として、従来の球状粒子に代わり、非球状の粒子が提案されている。
The abrasive used in chemical mechanical polishing (CMP) is usually composed of polishing particles, an oxidizing agent, additives such as organic acids, and a solvent such as pure water. The polishing particles are spherical and made of metal oxides such as silica and alumina, with an average particle size of about 200 nm. The oxidizing agent increases the polishing speed of metals for wiring and circuits.
When the surface of the workpiece has steps (unevenness) caused by the wiring groove pattern, it is required to polish the surface to a coplanar surface while mainly removing the convex parts, resulting in a flat polished surface. However, when polishing the part above the coplanar surface with conventional spherical polishing particles, there was a problem (called dishing) in that the metal for the circuit in the wiring groove at the bottom of the concave part was polished to below the coplanar surface. When this dishing (overpolishing) occurs, the thickness of the wiring is reduced, the wiring resistance increases, and the flatness of the insulating film formed on it is reduced. For this reason, it is required to suppress dishing.
In recent years, non-spherical particles have been proposed as abrasive particles in place of conventional spherical particles.

異形粒子を含むシリカゾルの製造方法としては、特許文献1にSiOとして0.05~5.0重量%のアルカリ金属珪酸塩水溶液に、珪酸液を添加して混合液のSiO/MO(モル比、Mはアルカリ金属または第4級アンモニウム)を30~60とした後に、Ca、Mg、Al、In、Ti、Zr、Sn、Si、Sb、Fe、Cuおよび希土類金属からなる群から選ばれた1種または2種以上の金属の化合物を添加し(添加時期は、前記珪酸液添加の前または添加中でも良い)、この混合液を60℃以上の任意の温度で一定時間維持し、更に珪酸液を添加して反応液中のSiO/MO(モル比)を60~100としてなる実質的に異形形状のシリカ粒子が分散したゾルの製法が開示されている。 Patent Document 1 discloses a method for producing a silica sol containing irregularly shaped particles, which involves adding a silicic acid liquid to an aqueous solution of an alkali metal silicate containing 0.05 to 5.0% by weight of SiO2 to adjust the SiO2 / M2O (molar ratio, M is an alkali metal or quaternary ammonium) of the mixed solution to 30 to 60, then adding a compound of one or more metals selected from the group consisting of Ca, Mg, Al, In, Ti, Zr, Sn, Si, Sb, Fe, Cu and rare earth metals (the addition may be made before or during the addition of the silicic acid liquid), maintaining this mixed solution at any temperature of 60°C or higher for a certain period of time, and further adding a silicic acid liquid to adjust the SiO2 / M2O (molar ratio) in the reaction solution to 60 to 100, thereby producing a sol in which substantially irregularly shaped silica particles are dispersed.

特許文献2には、活性珪酸のコロイド水溶液に、水溶性のカルシウム塩、マグネシウム塩またはこれらの混合物の水溶液を添加し、得られた水溶液にアルカリ性物質を加え、得られた混合物の一部を60℃以上に加熱してヒール液とし、残部をフィード液として、当該ヒール液に当該フィード液を添加し、当該添加の間に、水を蒸発させることによりSiO濃度6~30重量%まで濃縮することよりなる細長い形状のシリカゾルの製造法が開示されている。 Patent Document 2 discloses a method for producing an elongated silica sol, which comprises adding an aqueous solution of a water-soluble calcium salt, magnesium salt or a mixture thereof to an aqueous colloidal solution of active silicic acid, adding an alkaline substance to the obtained aqueous solution, heating a part of the obtained mixture to 60° C. or higher to prepare a heel liquid, and the remainder to prepare a feed liquid, adding the feed liquid to the heel liquid, and concentrating the SiO2 concentration to 6 to 30% by weight by evaporating water during the addition.

特許文献3には、SiOとして0.5~10重量%を含有し、かつ、pHが2~6である活性珪酸のコロイド水溶液に、水溶性のII価またはIII価の金属の塩を単独または混合して含有する水溶液を、同活性珪酸のコロイド水溶液のSiOに対して、金属酸化物(II価の金属の塩の場合はMOとし、III価の金属の塩の場合はMとする。但し、MはII価またはIII価の金属原子を表し、Oは酸素原子を表す。) として1~10重量%となる量を加えて混合し、得られた混合液(1)に、平均粒子径10~120nm、pH2~6の酸性球状シリカゾルを、この酸性球状シリカゾルに由来するシリカ含量(A)とこの混合液(1)に由来するシリカ含量(B)の比A/B(重量比)が5~100、かつ、この酸性球状シリカゾルとこの混合液(1)との混合により得られる混合液(2)の全シリカ含量(A+B)が混合液(2)においてSiO濃度5~40重量%となるように加えて混合し混合液(2)にアルカリ金属水酸化物等をpHが7~11となるように加えて混合し、得られた混合液(3)を100~200℃で0.5~50時間加熱してなる数珠状のシリカゾルの製造方法が記載されている。 In Patent Document 3, a colloidal aqueous solution of active silicic acid containing 0.5 to 10% by weight of SiO2 and having a pH of 2 to 6 is treated with an aqueous solution containing a water-soluble salt of a divalent or trivalent metal, either alone or in combination, and the aqueous solution is treated with a metal oxide (MO in the case of a salt of a divalent metal, and M2O3 in the case of a salt of a trivalent metal, where M represents a divalent or trivalent metal atom, and O represents an oxygen atom) relative to the SiO2 of the colloidal aqueous solution of active silicic acid. The method for producing a beaded silica sol is described in the publication, which comprises adding and mixing an acidic spherical silica sol having an average particle size of 10 to 120 nm and a pH of 2 to 6 to the resulting mixed liquid (1) such that the ratio A/B (weight ratio) of the silica content (A) derived from the acidic spherical silica sol to the silica content (B) derived from this mixed liquid (1) is 5 to 100 and the total silica content (A+B) of the mixed liquid (2) obtained by mixing the acidic spherical silica sol with the mixed liquid (1) is 5 to 40% by weight of SiO2 in the mixed liquid (2), adding and mixing an alkali metal hydroxide or the like to the mixed liquid (2) such that the pH is 7 to 11, and heating the resulting mixed liquid (3) at 100 to 200°C for 0.5 to 50 hours.

特許文献4には、SiO濃度1~8モル/リットル、酸濃度0.0018~0.18モル/リットルで水濃度2~30モル/リットルの範囲の組成で、溶剤を使用しないでアルキルシリケートを酸触媒で加水分解した後、SiO濃度が0.2~1.5モル/リットルの範囲となるように水で希釈し、次いでpHが7以上となるようにアルカリ触媒を加え加熱して珪酸の重合を進行させて、電子顕微鏡観察による太さ方向の平均直径が5~100nmであり、長さがその1.5~50倍の長さの細長い形状の非晶質シリカ粒子が液状分散体中に分散されているシリカゾルの製造方法が記載されている。 Patent Document 4 describes a method for producing a silica sol in which an alkyl silicate is hydrolyzed with an acid catalyst without using a solvent, with a composition having a SiO 2 concentration of 1 to 8 mol/L, an acid concentration of 0.0018 to 0.18 mol/L, and a water concentration of 2 to 30 mol/L, and then the SiO 2 concentration is diluted with water to a range of 0.2 to 1.5 mol/L, and then an alkali catalyst is added so that the pH is 7 or more, and the mixture is heated to proceed with polymerization of silicic acid, and amorphous silica particles having an average diameter in the thickness direction of 5 to 100 nm and a length 1.5 to 50 times that diameter are dispersed in a liquid dispersion.

特許文献5には、水ガラス等のアルカリ金属珪酸塩の水溶液を脱陽イオン処理することにより得られるSiO濃度2~6質量%程度の活性珪酸の酸性水溶液に、アルカリ土類金属、例えば、Ca、Mg、Ba等の塩をその酸化物換算で上記活性珪酸のSiOに対し100~1500ppmの重量比に添加し、更にこの液中SiO/MO(Mは、アルカリ金属原子、NHまたは第4級アンモニウム基を表す。)モル比が20~150となる量の同アルカリ物質を添加することにより得られる液を当初ヒール液とし、同様にして得られる2~6質量%のSiO濃度と20~150のSiO/MO(Mは、上記と同じ。)モル比を有する活性珪酸水溶液をチャージ液として、60~150℃で前記当初ヒール液に前記チャージ液を、1時間当たり、チャージ液SiO/当初ヒール液SiOの重量比として0.05~1.0の速度で、液から水を蒸発除去しながら(またはせずに)、添加してなる歪な形状を有するシリカゾルの製造方法が記載されている。 Patent Document 5 describes a method for adding an alkaline earth metal, such as Ca, Mg, Ba, or the like, to an acidic aqueous solution of active silicic acid having an SiO 2 concentration of about 2 to 6 mass %, which is obtained by decationizing an aqueous solution of an alkali metal silicate such as water glass, in a weight ratio of 100 to 1500 ppm in terms of its oxide relative to the SiO 2 of the active silicic acid, and further adding an alkaline substance in an amount such that the SiO 2 /M 2 O (M represents an alkali metal atom, NH 4 , or a quaternary ammonium group) molar ratio in this solution is 20 to 150, to obtain an initial heel liquid, and an active silicic acid aqueous solution obtained in a similar manner and having an SiO 2 concentration of 2 to 6 mass % and an SiO 2 /M 2 O (M is the same as above) molar ratio of 20 to 150 is used as a charge liquid, and the charge liquid is charged into the initial heel liquid at 60 to 150° C. at a rate of charge liquid SiO 2 /initial heel liquid SiO 2 per hour. This publication describes a method for producing a silica sol having a distorted shape, which is obtained by adding water to a liquid at a weight ratio of 0.05 to 1.0 with or without evaporating water from the liquid.

特許文献6には、(1)珪酸アルカリ水溶液を鉱酸で中和しアルカリ性物質を添加して加熱熟成する方法、(2)珪酸アルカリ水溶液を陽イオン交換処理して得られる活性珪酸にアルカリ性物質を添加して加熱熟成する方法、(3)エチルシリケート等のアルコキシシランを加水分解して得られる活性珪酸を加熱熟成する方法、または、(4)シリカ微粉末を水性媒体中で直接に分散する方法等によって製造されるコロイダルシリカ水溶液は、通常、4~1,000nm(ナノメートル)、好ましくは7~500nmの粒子径を有するコロイド状シリカ粒子が水性媒体に分散したものであり、SiOとして0.5~50質量%、好ましくは0.5~30質量%の濃度を有する。上記シリカ粒子の粒子形状は、球状、いびつ状、偏平状、板状、細長い形状および繊維状等が挙げられることが記載されている。 In Patent Document 6, colloidal silica aqueous solutions produced by (1) a method of neutralizing an aqueous solution of alkali silicate with a mineral acid, adding an alkaline substance, and heat-aging, (2) a method of adding an alkaline substance to an activated silicic acid obtained by cation exchange treatment of an aqueous solution of alkali silicate, and heat-aging, (3) a method of heat-aging an activated silicic acid obtained by hydrolyzing an alkoxysilane such as ethyl silicate, or (4) a method of directly dispersing silica fine powder in an aqueous medium, are usually colloidal silica particles having a particle diameter of 4 to 1,000 nm (nanometers), preferably 7 to 500 nm, dispersed in an aqueous medium, and have a concentration of 0.5 to 50 mass %, preferably 0.5 to 30 mass %, as SiO 2. It is described that the particle shape of the silica particles can be spherical, irregular, flat, plate-like, elongated, fibrous, etc.

特許文献7には、互いにボンドによって連結していない球形の、分離したシリカ粒子を含む研磨剤であって、A)寸法5-50nmのシリカ粒子5-95質量%、およびb)寸法50-200nmのシリカ粒子95-5質量%を含む、但し粒子の全体がバイモーダルな粒径分布を有する研磨剤が高い研磨速度を与えることを報告している。 Patent Document 7 reports that an abrasive containing spherical, separate silica particles that are not bonded to each other, containing A) 5-95% by weight of silica particles with a size of 5-50 nm, and b) 95-5% by weight of silica particles with a size of 50-200 nm, where the particles as a whole have a bimodal particle size distribution, provides a high removal rate.

また、特許文献8には、異形度が1.55~4の範囲にあり、動的光散乱法による粒子径分布において30~70nmの粒子径範囲と71~150nmの粒子径範囲に粒子径分布のピークがあり、両ピークの粒子径差が50~100nmの範囲にある研磨用シリカゾルを用いると優れた研磨レートが達成されることを開示している。 Patent Document 8 also discloses that an excellent polishing rate can be achieved by using a polishing silica sol with a degree of irregularity in the range of 1.55 to 4, with peaks in the particle size distribution measured by dynamic light scattering method in the particle size range of 30 to 70 nm and in the particle size range of 71 to 150 nm, and with a particle size difference between the two peaks in the range of 50 to 100 nm.

さらに、特許文献9には、真球度が0.9以上の球状粒子とこの球状粒子に該当しない非球状粒子を所定重量比で含む研磨用組成物は被研磨面が凹凸を有していても研磨後の表面が平坦性に優れ、長時間の研磨に供しても研磨性能の低下が抑制できることを開示している。 Furthermore, Patent Document 9 discloses that a polishing composition containing spherical particles with a sphericity of 0.9 or more and non-spherical particles not corresponding to these spherical particles in a specified weight ratio provides a polished surface with excellent flatness even if the polished surface has irregularities, and suppresses deterioration of polishing performance even when polished for a long period of time.

また、特許文献10には、電子材料用研磨剤等に有用なコロイダルシリカとして、ケイ酸アルカリ水溶液をカチオン交換樹脂に接触させて活性珪酸を調製し、これにカリウムイオンの供給源となる化合物とアルカリ剤として水酸化アルカリ金属あるいは水酸化第4級アンモニウム等を添加してアルカリ性にした後、加熱してシリカ粒子を形成し、続いて加熱下に、アルカリ性を維持しながら、活性珪酸水溶液とアルカリ剤とカリウムイオンの供給源となる化合物を添加してシリカ粒子を成長させ、透過型電子顕微鏡写真観察による長径/短径比が1.2~10のカリウムイオンを含む異形シリカ粒子群が開示されている。 Patent Document 10 discloses colloidal silica useful as an abrasive for electronic materials, which is prepared by contacting an aqueous alkali silicate solution with a cation exchange resin to prepare activated silicic acid, adding a compound that serves as a source of potassium ions and an alkaline agent such as an alkali metal hydroxide or quaternary ammonium hydroxide to the activated silicic acid to make it alkaline, and then heating to form silica particles. Next, while maintaining the alkalinity under heating, an aqueous activated silicic acid solution, an alkaline agent, and a compound that serves as a source of potassium ions are added to grow the silica particles, and a group of irregularly shaped silica particles containing potassium ions with a long axis/short axis ratio of 1.2 to 10 as observed in transmission electron microscope photographs are disclosed.

特許文献11には、平均一次粒子径(D1)が20~100nmの範囲にあるシリカ一次粒子が少なくとも4個以上クラスター化し、平均粒子径(DCL)が40~300nmの範囲にあり、アスペクト比(DL)/(DS)が1.5~5の範囲にあることを特徴とするシリカ粒子の製造方法として、珪酸アルカリ水溶液に酸性珪酸液とハロゲン化アルカリとを、所定のモル比範囲となるように混合して、シリカ粒子の種粒子前駆体分散液とし、続いて加熱熟成させた後、下記式(1)で表されるレイノルズ数(Re)が2000~1,000,000の範囲で撹拌しながら酸性珪酸液を添加してなる製造方法を開示している。
Re=ndρ/μ・・・・・・・(1)
(但し、nは撹拌翼の回転数[S-1]、dは撹拌翼径[m]、ρは分散液の密度[kg/m]、μは分散液の粘度[Pa・s]である)
Patent Document 11 discloses a method for producing silica particles characterized in that at least four or more silica primary particles having an average primary particle diameter (D1) in the range of 20 to 100 nm are clustered together, the average particle diameter (DCL) is in the range of 40 to 300 nm, and the aspect ratio (DL)/(DS) is in the range of 1.5 to 5, which comprises mixing an acidic silicic acid liquid and an alkali halide into an alkali silicate aqueous solution so as to obtain a predetermined molar ratio range to obtain a seed particle precursor dispersion of silica particles, which is then heated and aged, and then the acidic silicic acid liquid is added while stirring at a Reynolds number (Re) represented by the following formula (1) in the range of 2000 to 1,000,000.
Re=nd 2 ρ/μ (1)
(where n is the rotation speed of the impeller [S-1], d is the diameter of the impeller [m], ρ is the density of the dispersion [kg/m 3 ], and μ is the viscosity of the dispersion [Pa·s]).

一般に、比較的大きな粒子径の異形シリカ粒子の製造方法としては、次の様な製造方法が知られている。
1)異形形状の種粒子にシリカ源となる成分を添加し、粒子成長させて異形シリカ粒子を得る方法
2)球状粒子どうしを結合させて粒子連結型シリカ系粒子またはそれに準じた異形シリカ粒子を得る方法
3)シリカ粒子を破砕して異形シリカ粒子を得る方法
ここで、1)の製造方法は、異形度の高い粒子は調製できるものの、比表面積換算粒子径が小さい粒子しか得られないため、研磨用途に適用した場合、研磨速度が低いという課題がある。比表面積換算粒子径の小さな粒子に珪酸等のシリカ源を添加して、大きなサイズに成長させると、粒子成長に従って異形度が低下し、球状に近づくため、所望の異形度の異形シリカ粒子を得ることは容易ではなかった。また、このような異形度の低い粒子を研磨用途に用いた場合、研磨速度が低いという課題がある。
2)の製造方法では、粒子どうしの連結のためにシリカ系以外の成分を必要としており(例えば、特許文献2では酸化カルシウム、酸化マグネシウム、特許文献4ではアルカリ触媒、特許文献5ではアルカリ土類金属、特許文献11では塩化カリウム等)、それらの成分を含んだ異形シリカ粒子を半導体用途の研磨等に適用した場合、汚染の原因となることが懸念される。また、これらのシリカ以外の成分はシリカ粒子の凝集促進剤として機能することで異形化が生じるが、一方でサイズが大きく異形度の高いシリカ粒子を調製しようとした場合、凝集促進剤が多量に必要であるため、凝集反応が進み過ぎ、一部に粗大な凝集体が生じる。このようなシリカゾルを研磨用途に適用した場合、粗大粒子数が多いため、スクラッチが発生し易く、沈降性によって研磨性能が安定しない傾向にある。
3)の製造方法では、粒子径、粒子形状とも均一な異形シリカ粒子を得ることは容易ではなかった。
Generally, the following methods are known for producing irregularly shaped silica particles having a relatively large particle size.
1) A method of adding a component serving as a silica source to seed particles of irregular shape and growing the particles to obtain irregular silica particles; 2) A method of bonding spherical particles together to obtain particle-linked silica-based particles or irregular silica particles similar thereto; 3) A method of crushing silica particles to obtain irregular silica particles. Here, the manufacturing method 1) can prepare particles with a high degree of irregularity, but only particles with a small specific surface area converted particle diameter can be obtained, so when applied to polishing purposes, there is a problem that the polishing speed is low. When a silica source such as silicic acid is added to particles with a small specific surface area converted particle diameter and grown to a large size, the irregularity decreases as the particles grow and approaches sphere, so it is not easy to obtain irregular silica particles with the desired degree of irregularity. In addition, when such particles with a low degree of irregularity are used for polishing purposes, there is a problem that the polishing speed is low.
In the manufacturing method of 2), components other than silica are required to connect the particles together (for example, calcium oxide and magnesium oxide in Patent Document 2, alkali catalyst in Patent Document 4, alkaline earth metal in Patent Document 5, potassium chloride in Patent Document 11, etc.), and there is a concern that irregular silica particles containing these components may cause contamination when used for polishing semiconductors. In addition, these components other than silica function as aggregation promoters for silica particles, causing irregular morphology, but on the other hand, when preparing silica particles with a large size and high irregularity, a large amount of aggregation promoter is required, so the aggregation reaction proceeds too much and coarse aggregates are generated in some parts. When such a silica sol is used for polishing, scratches are likely to occur due to the large number of coarse particles, and the polishing performance tends to be unstable due to sedimentation.
In the manufacturing method 3), it is not easy to obtain irregularly shaped silica particles that are uniform in both particle size and shape.

特開平4-187512号公報Japanese Patent Application Laid-Open No. 4-187512 特開平7-118008号公報Japanese Patent Application Laid-Open No. 7-118008 特開2001-11433号公報JP 2001-11433 A 特開2001-48520号公報JP 2001-48520 A 特開2001-150334号公報JP 2001-150334 A 特開平8-279480号公報Japanese Patent Application Laid-Open No. 8-279480 特表2003-529662号公報JP 2003-529662 A 特開2007-137972号公報JP 2007-137972 A 特開2006-80406号公報JP 2006-80406 A 特開2011-98859号公報JP 2011-98859 A 特開2015-86102号公報JP 2015-86102 A

本発明は、優れた研磨特性を有する比較的粒子径の大きい異形シリカ粒子を含む異形シリカ粒子分散液の製造において、珪酸ナトリウム等の原料に由来するアルカリ土類金属やハロゲン以外にこれらの元素を使用せずに製造する方法を提供することを課題とする。また、本発明は、優れた研磨特性を有する比較的粒子径の大きい異形シリカ粒子を含む異形シリカ粒子分散液を提供することを課題とする。 The present invention aims to provide a method for producing an irregular silica particle dispersion liquid containing irregular silica particles with a relatively large particle size and excellent polishing properties, without using any elements other than alkaline earth metals and halogens derived from raw materials such as sodium silicate. Another objective of the present invention is to provide an irregular silica particle dispersion liquid containing irregular silica particles with a relatively large particle size and excellent polishing properties.

本発明の一態様によれば、下記工程1~下記工程3を含み、かつ、下記条件1を満たすことを特徴とする異形シリカ粒子分散液の製造方法が提供される。
工程1:少なくともNaまたはKを有するアルカリ性化合物を含むアルカリ水溶液に第一酸性珪酸液を混合して、
更に温度50℃以上100℃未満の範囲で加熱熟成することにより、SiO濃度が3質量%以上20質量%以下であり、かつ下記数式(F1-1)で示す条件を満たす前駆体分散液を得る工程
2≦SiO/AO≦15・・・(F1-1)
(ここで、SiOは、前駆体分散液中のシリカのモル数を表し、AOは、前駆体分散液中のNaOおよびKOの合計のモル数を表す。)
工程2:前記工程1で得られた前記前駆体分散液に、第二酸性珪酸液を、下記数式(F2-1)で示す第二添加速度比が、0.1[kg/hr・kg]以上0.6[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満の範囲で加熱熟成することによりシード粒子分散液を得る工程
第二添加速度比[kg/hr・kg]=(第二酸性珪酸液中のシリカ含有量[kg])/(第二酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F2-1)
工程3:前記工程2で得られたシード粒子分散液に、第三酸性珪酸液を、下記数式(F3-1)で示す第三添加速度比が、1.1[kg/hr・kg]以上10[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満の範囲で加熱熟成することにより異形シリカ粒子分散液を得る工程
第三添加速度比[kg/hr・kg] =(第三酸性珪酸液中のシリカ含有量[kg])/(第三酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg]) ・・・(F3-1)
条件1:下記数式(F0-1)で示す条件を満たすこと。
1.9≦[前記第三添加速度比]/[前記第二添加速度比]≦40・・・(F0-1)
According to one aspect of the present invention, there is provided a method for producing a dispersion liquid of irregularly shaped silica particles, comprising the following steps 1 to 3 and satisfying the following condition 1:
Step 1: Mixing a first acidic silicic acid liquid with an alkaline aqueous solution containing an alkaline compound having at least Na or K;
Further, by heating and aging at a temperature in the range of 50° C. or more and less than 100° C., a precursor dispersion liquid having an SiO 2 concentration of 3 mass % or more and 20 mass % or less and satisfying the condition shown in the following mathematical formula (F1-1) is obtained. Step 2≦SiO 2 /A 2 O≦15...(F1-1)
(Here, SiO2 represents the number of moles of silica in the precursor dispersion, and A2O represents the total number of moles of Na2O and K2O in the precursor dispersion.)
Step 2: A step of adding a second acidic silicic acid liquid to the precursor dispersion liquid obtained in step 1 so that a second addition rate ratio represented by the following mathematical formula (F2-1) is in the range of 0.1 [kg/hr kg] to 0.6 [kg/hr kg], and further heating and aging the mixture at a temperature in the range of 50° C. to 100° C. to obtain a seed particle dispersion liquid. Second addition rate ratio [kg/hr kg]=(silica content in the second acidic silicic acid liquid [kg])/(addition time of the second acidic silicic acid liquid [hr])/(silica content in the precursor dispersion liquid [kg])...(F2-1)
Step 3: A step of adding a third acidic silicic acid liquid to the seed particle dispersion obtained in step 2 so that a third addition speed ratio represented by the following mathematical formula (F3-1) is in the range of 1.1 [kg/hr kg] to 10 [kg/hr kg], and further heating and aging the mixture at a temperature in the range of 50° C. to less than 100° C. to obtain an irregularly shaped silica particle dispersion: Third addition speed ratio [kg/hr kg]=(silica content in the third acidic silicic acid liquid [kg])/(addition time of the third acidic silicic acid liquid [hr])/(silica content in the precursor dispersion [kg]) ...(F3-1)
Condition 1: The condition shown in the following formula (F0-1) is satisfied.
1.9≦[the third addition speed ratio]/[the second addition speed ratio]≦40 (F0-1)

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、前記工程3に続いて、下記工程4を含むことが好ましい。
工程4:前記工程3で得られた異形シリカ粒子分散液を濃縮する工程
In the method for producing a dispersion liquid of irregular shaped silica particles according to one embodiment of the present invention, it is preferable to include the following step 4 subsequent to the step 3.
Step 4: Concentrating the irregular shaped silica particle dispersion obtained in step 3

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、更に下記条件2を満たすことが好ましい。
条件2:前記前駆体分散液中において、シリカ1モルあたりに換算したハロゲン元素のモル数(モル/モル比)が0.5%以下であり、かつシリカ1モルあたりに換算したアルカリ土類金属のモル数(モル/モル比)が1000ppm以下であること。
In the method for producing a dispersion liquid of irregular shaped silica particles according to one embodiment of the present invention, it is preferable that the following condition 2 is further satisfied.
Condition 2: In the precursor dispersion, the number of moles of halogen elements converted per 1 mole of silica (mol/mol ratio) is 0.5% or less, and the number of moles of alkaline earth metals converted per 1 mole of silica (mol/mol ratio) is 1000 ppm or less.

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、更に下記条件3を満たすことが好ましい。
条件3:下記数式(F0-2)で示すシリカ含有量比が、10以上100以下の範囲にあること。
シリカ含有量比={(第二酸性珪酸液中のシリカ含有量[kg])+(第三酸性珪酸液中のシリカ含有量[kg])}/(前駆体分散液中のシリカ含有量[kg])・・・(F0-2)
In the method for producing a dispersion liquid of irregular shaped silica particles according to one aspect of the present invention, it is preferable that the following condition 3 is further satisfied.
Condition 3: The silica content ratio represented by the following formula (F0-2) is in the range of 10 or more and 100 or less.
Silica content ratio={(silica content in the second acidic silicic acid liquid [kg])+(silica content in the third acidic silicic acid liquid [kg])}/(silica content in the precursor dispersion liquid [kg]) (F0-2)

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、更に下記条件4を満たすことが好ましい。
条件4:前記異形シリカ粒子分散液におけるSiO/AOモル比が、60以上140以下の範囲にあること。
(ここで、SiOは異形シリカ粒子分散液中のシリカのモル数を表し、AOは異形シリカ粒子分散液中のNaOおよびKOの合計モル数を表す。)
In the method for producing a dispersion liquid of irregular shaped silica particles according to one aspect of the present invention, it is preferable that the following condition 4 is further satisfied.
Condition 4: the SiO 2 /A 2 O molar ratio in the irregular shaped silica particle dispersion is in the range of 60 or more and 140 or less.
(Here, SiO2 represents the number of moles of silica in the irregular silica particle dispersion, and A2O represents the total number of moles of Na2O and K2O in the irregular silica particle dispersion.)

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、前記工程1の前記アルカリ水溶液が、珪酸カリウム水溶液であることが好ましい。 In the method for producing a dispersion of irregularly shaped silica particles according to one aspect of the present invention, the alkaline aqueous solution in step 1 is preferably an aqueous potassium silicate solution.

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、前記工程1の前記アルカリ性化合物が、水酸化カリウムであることが好ましい。 In the method for producing a dispersion of irregularly shaped silica particles according to one embodiment of the present invention, it is preferable that the alkaline compound in step 1 is potassium hydroxide.

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、得られる異形シリカ粒子が、比表面積換算粒子径(D1)10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、かつ(D2)/(D1)の値が1.2以上20以下の範囲にあることが好ましい。 In the manufacturing method of an irregular silica particle dispersion according to one embodiment of the present invention, it is preferable that the obtained irregular silica particles have a specific surface area converted particle diameter (D1) in the range of 10 nm to 200 nm, an average particle diameter (D2) measured by dynamic light scattering in the range of 20 nm to 300 nm, and the value of (D2)/(D1) in the range of 1.2 to 20.

本発明の一態様によれば、比表面積換算粒子径(D1)10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、かつ(D2)/(D1)の値が1.2以上20以下の範囲にあることを特徴とする異形シリカ粒子を含む異形シリカ粒子分散液が提供される。 According to one aspect of the present invention, there is provided an irregular silica particle dispersion liquid containing irregular silica particles characterized in that the specific surface area converted particle diameter (D1) is in the range of 10 nm to 200 nm, the average particle diameter (D2) measured by dynamic light scattering is in the range of 20 nm to 300 nm, and the value of (D2)/(D1) is in the range of 1.2 to 20.

本発明の一態様にかかる異形シリカ粒子分散液において、カリウム化合物を含むことが好ましい。 In one embodiment of the present invention, the irregular shaped silica particle dispersion preferably contains a potassium compound.

本発明によれば、優れた研磨特性を有する比較的粒子径の大きい異形シリカ粒子を含む異形シリカ粒子分散液の製造方法を提供することができ、さらに珪酸ナトリウム等の原料に由来するアルカリ土類金属やハロゲン以外にこれらの元素を使用せずに製造する方法を提供することができる。また、本発明によれば、優れた研磨特性を有する比較的粒子径の大きい異形シリカ粒子分散液を提供することができる。 According to the present invention, it is possible to provide a method for producing an irregular silica particle dispersion liquid containing irregular silica particles with a relatively large particle size and excellent polishing properties, and further to provide a method for producing the same without using any elements other than alkaline earth metals and halogens derived from raw materials such as sodium silicate. In addition, according to the present invention, it is possible to provide an irregular silica particle dispersion liquid with a relatively large particle size and excellent polishing properties.

[異形シリカ粒子分散液の製造方法]
以下、本発明に係る異形シリカ粒子分散液の製造方法について説明する。
本発明に係る異形シリカ粒子分散液の製造方法は、下記の工程1~工程3を含み、かつ、下記条件1を満たすことを特徴としている。
[Method of manufacturing irregular silica particle dispersion]
The method for producing a dispersion of irregular shaped silica particles according to the present invention will be described below.
The method for producing a dispersion liquid of irregular shaped silica particles according to the present invention is characterized by including the following steps 1 to 3 and satisfying the following condition 1.

<工程1>
工程1においては、アルカリ水溶液に第一酸性珪酸液を、以下説明する条件を満たすように添加し、混合して、以下説明する条件を満たす前駆体分散液を得る。
この前駆体分散液の調製にあたっては、例えば、次のように製造することが好ましい。
すなわち、超純水にアルカリ水溶液を添加して均一になるまで撹拌した後、第一酸性珪酸液を添加し、十分に混合する。このアルカリ溶液と第一酸性珪酸液の混合物を50℃以上100℃未満の範囲に昇温し、その温度範囲で15分間以上2時間以下の時間、保持し、前駆体分散液を製造する。第一酸性珪酸液の添加にあたっては、第一酸性珪酸液を連続的に添加することが過度の凝集を防ぐうえで好ましい。
<Step 1>
In step 1, a first acidic silicic acid liquid is added to an alkaline aqueous solution so as to satisfy the conditions described below, and mixed to obtain a precursor dispersion liquid that satisfies the conditions described below.
The precursor dispersion is preferably prepared, for example, as follows.
That is, an alkaline aqueous solution is added to ultrapure water and stirred until homogeneous, and then a first acidic silicic acid liquid is added and mixed thoroughly. The mixture of the alkaline solution and the first acidic silicic acid liquid is heated to a temperature range of 50°C or more and less than 100°C, and is maintained at that temperature range for 15 minutes to 2 hours to produce a precursor dispersion. When adding the first acidic silicic acid liquid, it is preferable to add the first acidic silicic acid liquid continuously to prevent excessive aggregation.

・アルカリ水溶液
アルカリ水溶液は、少なくともNaまたはKを有するアルカリ性化合物を含む。少なくともNaまたはKを有するアルカリ性化合物としては、珪酸ナトリウム、珪酸カリウム、水酸化カリウムおよび水酸化ナトリウム等が挙げられる。珪酸アルカリ化合物としては、1号水ガラス、2号水ガラス、3号水ガラス等の名称で市販されている珪酸ナトリウムまたは珪酸カリウム等が好ましい。また、テトラエチルオルソシリケート(TEOS)、テトラメチルオルソシリケート(TMOS)等の加水分解性有機化合物を過剰のNaOHまたはKOH等を用いて加水分解して得られる珪酸アルカリ水溶液等も好適である。
また、アルカリ水溶液に任意に含まれるアルカリ性化合物としては、珪酸リチウムおよび第4級アンモニウムシリケート、アンモニア、アミン類およびこれらの塩等があげられる。
アルカリ水溶液としては珪酸カリウム水溶液または水酸化カリウム水溶液が好ましい。一般に、電子材用途では、イオン半径が小さいナトリウムイオンは基板等に拡散し易く、不良の原因となりうる。そのため、比較的イオン半径の大きいカリウムイオンが望ましいからである。
アルカリ水溶液のアルカリ性化合物成分の濃度は、特に制限されない。アルカリ性化合物成分の濃度としては、1質量%以上50質量%以下であることが好ましく、5質量%以上25質量%以下であることがより好ましい。
アルカリ水溶液は、ハロゲン化物イオン(塩素イオン等)およびアルカリ土類金属(カルシウムおよびマグネシウム等)を含まないことが好ましい。アルカリ水溶液に含まれるハロゲンイオンは1000ppm以下であり、アルカリ土類金属(マグネシウム等)は100ppm以下であることが好ましい。
Alkaline aqueous solution The alkaline aqueous solution contains an alkaline compound having at least Na or K. Examples of the alkaline compound having at least Na or K include sodium silicate, potassium silicate, potassium hydroxide, and sodium hydroxide. As the alkaline silicate compound, sodium silicate or potassium silicate commercially available under the names of No. 1 water glass, No. 2 water glass, No. 3 water glass, etc. are preferable. In addition, an alkaline silicate aqueous solution obtained by hydrolyzing a hydrolyzable organic compound such as tetraethyl orthosilicate (TEOS) or tetramethyl orthosilicate (TMOS) with excess NaOH or KOH, etc. is also preferable.
Examples of the alkaline compound optionally contained in the alkaline aqueous solution include lithium silicate, quaternary ammonium silicate, ammonia, amines, and salts thereof.
The alkaline aqueous solution is preferably a potassium silicate aqueous solution or a potassium hydroxide aqueous solution. In general, in electronic materials, sodium ions, which have a small ionic radius, tend to diffuse into substrates and the like and can cause defects. Therefore, potassium ions, which have a relatively large ionic radius, are desirable.
The concentration of the alkaline compound component in the alkaline aqueous solution is not particularly limited, but is preferably 1% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 25% by mass or less.
The alkaline aqueous solution preferably does not contain halide ions (such as chloride ions) and alkaline earth metals (such as calcium and magnesium). The alkaline aqueous solution preferably contains 1000 ppm or less of halogen ions and 100 ppm or less of alkaline earth metals (such as magnesium).

・酸性珪酸液
酸性珪酸液としては、珪酸アルカリ(珪酸アルカリ金属および珪酸アンモニウム等)の水溶液を陽イオン交換樹脂で脱アルカリし、得られる酸性珪酸液を使用することが好ましい。酸性珪酸液のSiO濃度は、概ね0.1質量%以上10質量%以下が好ましく、さらには1質量%以上7質量%以下の範囲がより好ましい。pHが概ね1以上5以下のものが好適に使用される。
- Acidic silicic acid solution As the acidic silicic acid solution, it is preferable to use an acidic silicic acid solution obtained by de-alkalinizing an aqueous solution of an alkali silicate (alkali metal silicate, ammonium silicate, etc.) with a cation exchange resin. The SiO2 concentration of the acidic silicic acid solution is preferably about 0.1% by mass to 10% by mass, more preferably 1% by mass to 7% by mass. A solution with a pH of about 1 to 5 is preferably used.

工程1は、所望の異形シード粒子の前駆体分散液を調製する工程である。工程1においては、珪酸アルカリ水溶液を超純水に加え、均一になるまで攪拌した後、第一酸性珪酸液を連続的または断続的に添加し、混合する。混合後は、50℃以上100℃未満に昇温し、15分間以上2時間以下に保持して、加熱熟成することにより、前駆体粒子分散液を得ることができる。混合する際の温度が前記範囲にあれば、工程2、工程3および必要に応じて工程4の後、研磨性能に優れた本発明の異形シリカ粒子分散液を得ることができる。 Step 1 is a step of preparing a precursor dispersion of the desired irregular seed particles. In step 1, an aqueous alkali silicate solution is added to ultrapure water and stirred until uniform, and then a first acidic silicate liquid is added continuously or intermittently and mixed. After mixing, the temperature is raised to 50°C or higher and lower than 100°C, and maintained for 15 minutes to 2 hours or less for heat aging to obtain a precursor particle dispersion. If the temperature during mixing is within the above range, after steps 2, 3, and, if necessary, step 4, a dispersion of irregular silica particles of the present invention with excellent polishing performance can be obtained.

得られる前駆体分散液のSiO濃度は、異形シード粒子の異形度を制御するパラメーターであり、SiOとして3質量%以上20質量%以下であり、3質量%以上15質量%以下であることがより好ましい。前駆体分散液のSiO濃度が3質量%未満の場合は、高い異形度の異形シード粒子が得られにくい傾向にある。前駆体分散液のSiO濃度が20質量%超の場合は、凝集や沈殿が生じ易く、仮に凝集や沈殿が生じない場合でも、反応槽内部にシリカが大量に沈着し、所望サイズの異形シード粒子を得ることができない。前駆体分散液のSiO濃度が前記範囲にあれば、工程2、工程3および必要に応じて工程4の後、研磨性能に優れた本発明の異形シリカ粒子およびその分散液を得ることができる。 The SiO 2 concentration of the obtained precursor dispersion is a parameter that controls the irregularity of the irregular seed particles, and is 3% by mass or more and 20% by mass or less, and more preferably 3% by mass or more and 15% by mass or less as SiO 2. If the SiO 2 concentration of the precursor dispersion is less than 3% by mass, irregular seed particles with a high irregularity tend to be difficult to obtain. If the SiO 2 concentration of the precursor dispersion is more than 20% by mass, aggregation and precipitation are likely to occur, and even if aggregation and precipitation do not occur, a large amount of silica is deposited inside the reaction tank, and irregular seed particles of the desired size cannot be obtained. If the SiO 2 concentration of the precursor dispersion is within the above range, the irregular silica particles of the present invention and their dispersion liquid having excellent polishing performance can be obtained after step 2, step 3, and if necessary, step 4.

得られる前駆体分散液は、下記数式(F1-1)で示す条件を満たす。
2≦SiO/AO≦15・・・(F1-1)
ここで、SiOは、前駆体分散液中のシリカのモル数を表し、AOは、前駆体分散液中のNaOおよびKOの合計のモル数を表す。
前駆体分散液におけるSiO/AO(モル比)は、2以上5以下であることが好ましい。SiO/AO(モル比)がこの範囲にある場合、工程2で凝集や沈殿が生じない分散したシード粒子生成に好適である。
OにおけるKOおよびNaOは、各々、前駆体分散液中に存在するKおよびNaの量を、酸化物に換算したことを意味する。
SiO/AO(モル比)が2未満の前駆体分散液は、前駆体分散液中のアルカリ量が過剰であるため、工程2において、シード粒子分散液を生成させるには、分散液中でのシリカの溶解度が過大となり、適さない。他方、SiO/AO(モル比)が15を超える前駆体分散液を工程2に適用すると、シード粒子が過剰に生成するため、却って所望する粒子成長が生じ難くなる傾向がある。
The obtained precursor dispersion satisfies the condition represented by the following formula (F1-1).
2≦SiO 2 /A 2 O≦15...(F1-1)
Here, SiO2 represents the number of moles of silica in the precursor dispersion, and A2O represents the total number of moles of Na2O and K2O in the precursor dispersion.
The SiO 2 /A 2 O (molar ratio) in the precursor dispersion is preferably from 2 to 5. When the SiO 2 /A 2 O (molar ratio) is within this range, it is suitable for generating dispersed seed particles in step 2 without causing aggregation or precipitation.
K 2 O and Na 2 O in A 2 O mean the amounts of K and Na present in the precursor dispersion, respectively, converted into their oxides.
A precursor dispersion having a SiO2 / A2O (molar ratio) of less than 2 contains an excessive amount of alkali, and therefore the solubility of silica in the dispersion becomes excessively high, making it unsuitable for producing a seed particle dispersion in step 2. On the other hand, when a precursor dispersion having a SiO2 / A2O (molar ratio) of more than 15 is applied to step 2, seed particles are produced in excess, which tends to make it difficult to achieve the desired particle growth.

前駆体分散液のpHは、9以上12.5以下、さらには10以上12以下の範囲にあることが好ましい。
前駆体分散液のpHが9未満の場合は、pHが低すぎるため、工程2において異形シード粒子が生成しないことがある。あるいはシード粒子が生成したとしても、安定性が保たれず凝集したり、工程2で添加する酸性珪酸液が溶解、沈着せずに、凝集やゲル化が生じる場合がある。
他方、前駆体分散液のpHが12.5を超えると、分散液中でのシリカの溶解度が著しく高まり、更にイオン強度も著しく高くなる。このため、工程2において生成するシード粒子が凝集し、凝集により沈殿が生じる場合がある。
The pH of the precursor dispersion is preferably in the range of 9 or more and 12.5 or less, and more preferably 10 or more and 12 or less.
If the pH of the precursor dispersion is less than 9, the pH is too low, so that irregular seed particles may not be generated in step 2. Even if seed particles are generated, they may not maintain stability and may aggregate, or the acidic silicic acid liquid added in step 2 may not dissolve or deposit, causing aggregation or gelation.
On the other hand, if the pH of the precursor dispersion exceeds 12.5, the solubility of silica in the dispersion increases significantly, and the ionic strength also increases significantly, so that the seed particles produced in step 2 may aggregate, which may cause precipitation.

<工程2>
本発明の異形シリカ粒子分散液の製造方法は、異形シリカ粒子分散液を、酸性珪酸液の添加速度が異なる2段階(工程2および工程3)に分けて調製することを特徴とする。
工程2は、工程1で調製した前駆体を所望のサイズおよび異形度を備える異形シード粒子を調製する工程である。工程2においては、工程1で得られた前駆体分散液に、第二酸性珪酸液を、以下説明する条件を満たすように添加し、更に加熱熟成することによりシード粒子分散液を得る。
ここで、前駆体分散液は、SiO濃度が3質量%以上20質量%以下であり、SiO/AO(モル比)が2以上15以下(SiOは、前駆体分散液中のシリカのモル数を表し、AOは、前駆体分散液中のKOおよびNaOの合計のモル数を表す。)である。
<Step 2>
The method for producing an irregular shaped silica particle dispersion of the present invention is characterized in that the irregular shaped silica particle dispersion is prepared in two stages (step 2 and step 3) in which the addition rate of the acidic silicic acid liquid is different.
Step 2 is a step of preparing irregular seed particles having a desired size and irregularity from the precursor prepared in step 1. In step 2, a second acidic silicic acid liquid is added to the precursor dispersion obtained in step 1 so as to satisfy the conditions described below, and the mixture is further heated and aged to obtain a seed particle dispersion.
Here, the precursor dispersion has a SiO2 concentration of 3 mass% or more and 20 mass% or less, and a SiO2 / A2O (molar ratio) of 2 or more and 15 or less ( SiO2 represents the number of moles of silica in the precursor dispersion, and A2O represents the total number of moles of K2O and Na2O in the precursor dispersion).

第二酸性珪酸液は、工程1で用いた第一酸性珪酸液と同様に、珪酸アルカリ水溶液を陽イオン交換樹脂で脱アルカリして得られる酸性珪酸液を使用することが好ましい。酸性珪酸液としてはSiO濃度が概ね0.1質量%以上10質量%以下が好ましく、1質量%以上7質量%以下の範囲がより好ましい。酸性珪酸液のpHは、概ね1以上5以下が好ましい。 The second acidic silicic acid liquid is preferably an acidic silicic acid liquid obtained by de-alkalizing an aqueous alkali silicate solution with a cation exchange resin, similar to the first acidic silicic acid liquid used in step 1. The SiO2 concentration of the acidic silicic acid liquid is preferably about 0.1% by mass to 10% by mass, more preferably 1% by mass to 7% by mass. The pH of the acidic silicic acid liquid is preferably about 1 to 5.

工程2においては、前駆体分散液に酸性珪酸液を連続的または断続的に、下記数式(F2-1)で示す第二添加速度比が、0.1[kg/hr・kg]以上0.6以下[kg/hr・kg]の範囲となるように添加し、混合する。そして、温度50℃以上100℃未満で、加熱熟成することにより、シード粒子分散液を調製する。
第二添加速度比[kg/hr・kg]=(第二酸性珪酸液中のシリカ含有量[kg])/(第二酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F2-1)
In step 2, the acidic silicic acid liquid is added to the precursor dispersion liquid continuously or intermittently so that the second addition rate ratio represented by the following formula (F2-1) is in the range of 0.1 [kg/hr kg] to 0.6 [kg/hr kg], and mixed. Then, the mixture is heated and aged at a temperature of 50° C. or higher and lower than 100° C. to prepare a seed particle dispersion liquid.
Second addition speed ratio [kg/hr kg]=(silica content in second acidic silicic acid liquid [kg])/(addition time of second acidic silicic acid liquid [hr])/(silica content in precursor dispersion liquid [kg]) (F2-1)

第二添加速度比は、前駆体分散液中のシリカ含有量に対する第二酸性珪酸液中のシリカの添加速度を意味し、異形シード粒子のサイズおよび異形度を制御するパラメーターである。第二添加速度比が0.1以上0.6以下の範囲にある場合、生成する核粒子が適度に凝集あるいは会合し平均粒子径の大きな異形シード粒子を得ることができる。さらに核粒子が大きくなるため、シード粒子の比表面積換算径が大きくなるため、好ましい。第二添加速度比が0.1未満の場合は、生成する核サイズはより大きくなるものの、核粒子の凝集あるいは会合が進み過ぎ、粗大な凝集塊が生じ、沈殿物が発生する傾向にある。また、第二添加速度比が0.6を超える場合は、生成した核粒子の凝集あるいは会合が進みにくく、異形シード粒子が得られ難い。仮に異形シード粒子が得られたとしても異形度の低い粒子となる。第二添加速度比は、0.1以上0.5以下であることが好ましい。 The second addition speed ratio means the addition speed of silica in the second acidic silicic acid liquid relative to the silica content in the precursor dispersion liquid, and is a parameter that controls the size and irregularity of the irregular seed particles. When the second addition speed ratio is in the range of 0.1 to 0.6, the core particles generated can be moderately aggregated or associated to obtain irregular seed particles with a large average particle size. Furthermore, since the core particles become larger, the specific surface area equivalent diameter of the seed particles becomes larger, which is preferable. When the second addition speed ratio is less than 0.1, the core size generated becomes larger, but the aggregation or association of the core particles progresses too much, resulting in coarse aggregates and a tendency for precipitation to occur. Also, when the second addition speed ratio exceeds 0.6, the aggregation or association of the generated core particles does not progress easily, making it difficult to obtain irregular seed particles. Even if irregular seed particles are obtained, they will be particles with a low degree of irregularity. The second addition speed ratio is preferably 0.1 to 0.5.

前記のとおり、前駆体分散液に、第二酸性珪酸液を添加した後、更に温度50℃以上100℃未満の範囲で加熱熟成する。この温度範囲で熟成することにより、反応液中に残存する未反応な酸性珪酸液等を溶解させ、粒子表面に沈着させ、反応を完結させることができる。その結果、適切なサイズに成長し、分散した異形シード粒子を得ることができる。
前記加熱熟成の温度は50℃以上99℃以下がより好ましく、60℃以上98℃以下の範囲にあることがさらに好ましい。
かかる温度が50℃未満の場合は、反応液中に残存する未反応な酸性珪酸液が十分に溶解せず、反応液中に残存し、後工程において粒子の凝集を生じる場合がある。
加熱熟成時の温度が100℃以上の場合、反応溶液の沸点であるため、溶媒が蒸発しやすく濃度が上昇し反応の制御が難しく、仮に反応させることができたとしても、核粒子の凝集が進み過ぎ、沈殿が生じやすい。
前記加熱熟成は、保持温度および酸性珪酸液のSiO濃度等によっても異なるが、概ね24時間以内であることが好ましい。
As described above, after the second acidic silicic acid liquid is added to the precursor dispersion liquid, the mixture is further heated and aged at a temperature of 50° C. or more and less than 100° C. By aging in this temperature range, the unreacted acidic silicic acid liquid remaining in the reaction liquid can be dissolved and deposited on the particle surface, completing the reaction. As a result, irregular seed particles that have grown to an appropriate size and are dispersed can be obtained.
The temperature of the heat aging is more preferably in the range of 50°C or higher and 99°C or lower, and further preferably in the range of 60°C or higher and 98°C or lower.
If the temperature is less than 50° C., the unreacted acidic silicic acid solution remaining in the reaction solution will not dissolve sufficiently and will remain in the reaction solution, possibly causing particle aggregation in the subsequent steps.
If the temperature during heating and maturation is 100° C. or higher, this is the boiling point of the reaction solution, so the solvent is likely to evaporate and the concentration increases, making it difficult to control the reaction. Even if the reaction can be carried out, the core particles will tend to aggregate excessively, leading to precipitation.
The heat aging period varies depending on the holding temperature and the SiO2 concentration of the acidic silicic acid solution, but is preferably within about 24 hours.

<工程3>
工程3は、工程2で得た異形シード粒子を所望のサイズに粒子成長させる工程である。工程3においては、工程2で得られたシード粒子分散液に第三酸性珪酸液を、下記数式(F3-1)で示す第三添加速度比が、1.1[kg/hr・kg]以上10[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満で加熱熟成することにより異形シリカ粒子分散液を得る。
第三添加速度比[kg/hr・kg]=(第三酸性珪酸液中のシリカ含有量[kg])/(第三酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F3-1)
ここで第三添加速度比は、前駆体分散液中のシリカ含有量に対する第三酸性珪酸液中のシリカの添加速度を意味する。第三添加速度比が1.1[kg/hr・kg]以上10[kg/hr・kg]以下の範囲にある場合、適切な反応速度とすることができる。このため、添加した酸性珪酸液の溶解と、溶解したシリカの異形シード粒子への沈着が生じ、工程2で得られた異形シード粒子を所望のサイズに粒子成長させることができるため、好ましい。第三添加速度比が1.1[kg/hr・kg]未満の場合は、酸性珪酸の添加速度が著しく遅くなる。このため、異形シード粒子の粒子成長させることができるものの、生産効率が悪く、経済性が悪い。第三添加速度比が10[kg/hr・kg]を超える場合は、酸性珪酸液の添加速度が著しく高いため、酸性珪酸液の自己核生成が生じ易い。第三添加速度比は、2以上6以下であることが好ましい。
<Step 3>
Step 3 is a step of growing the irregular seed particles obtained in step 2 to a desired size. In step 3, a third acidic silicic acid liquid is added to the seed particle dispersion obtained in step 2 so that a third addition rate ratio represented by the following mathematical formula (F3-1) is in the range of 1.1 [kg/hr kg] to 10 [kg/hr kg], and the mixture is further heated and aged at a temperature of 50° C. or higher and lower than 100° C. to obtain an irregular silica particle dispersion.
Third addition speed ratio [kg/hr kg]=(silica content in third acidic silicic acid liquid [kg])/(addition time of third acidic silicic acid liquid [hr])/(silica content in precursor dispersion liquid [kg]) (F3-1)
Here, the third addition rate ratio means the addition rate of silica in the third acidic silicic acid liquid relative to the silica content in the precursor dispersion. When the third addition rate ratio is in the range of 1.1 [kg/hr·kg] or more and 10 [kg/hr·kg] or less, an appropriate reaction rate can be achieved. Therefore, dissolution of the added acidic silicic acid liquid and deposition of the dissolved silica on the irregular seed particles occur, and the irregular seed particles obtained in step 2 can be grown to a desired size, which is preferable. When the third addition rate ratio is less than 1.1 [kg/hr·kg], the addition rate of the acidic silicic acid becomes significantly slow. Therefore, although the irregular seed particles can be grown, the production efficiency is poor and the economic efficiency is poor. When the third addition rate ratio exceeds 10 [kg/hr·kg], the addition rate of the acidic silicic acid liquid is significantly high, so that self-nucleation of the acidic silicic acid liquid is likely to occur. It is preferable that the third addition rate ratio is 2 or more and 6 or less.

工程3においては、前記のとおり、シード粒子分散液を50℃以上100℃未満に昇温し、第三酸性珪酸液を添加し、その温度で15分間以上24時間以下に保持することにより加熱熟成する。この様な加熱熟成をすることにより、反応液中に残存した未反応の珪酸が粒子表面に沈着し、反応を完結させることができる。
前記加熱熟成温度は60℃以上98℃以下の範囲にあることが好ましい。
加熱熟成温度が50℃未満の場合は、添加した酸性珪酸液が十分に溶解しないため、珪酸による自己核生成が生じ易い。
前記保持時間は、保持温度または酸性珪酸液のSiO濃度等によっても異なるが、概ね24時間以内であることが好ましい。
第三酸性珪酸液としては、前記した第一酸性珪酸液と同様な酸性珪酸液を使用する。
In step 3, as described above, the seed particle dispersion is heated to 50° C. or more and less than 100° C., the third acidic silicic acid liquid is added, and the mixture is heated and aged by maintaining the mixture at that temperature for 15 minutes to 24 hours. By carrying out such heating and aging, the unreacted silicic acid remaining in the reaction liquid is deposited on the particle surface, and the reaction can be completed.
The heat aging temperature is preferably in the range of 60°C or higher and 98°C or lower.
If the heating and aging temperature is less than 50° C., the added acidic silicic acid solution does not dissolve sufficiently, and self-nucleation by silicic acid is likely to occur.
The retention time varies depending on the retention temperature or the SiO2 concentration of the acidic silicic acid solution, but is preferably within about 24 hours.
As the third acidic silicic acid liquid, an acidic silicic acid liquid similar to the above-mentioned first acidic silicic acid liquid is used.

<条件1>
本発明の異形シリカ粒子分散液の製造方法においては、更に下記条件1を満たすことが必要である。
条件1は、下記数式(F0-1)で示す条件を満たすことである。
1.9≦[第三添加速度比]/[第二添加速度比]≦40・・・(F0-1)
[第三添加速度比]/[第二添加速度比]の値は、効率よく異形でかつ粒子サイズの大きなシリカ粒子を得るための指標である。その値が1.9以上40以下の範囲にあるとハロゲンやアルカリ土類金属等の汚染源となる元素を使用せずに、サイズの大きな異形シリカ粒子を得ることができる。
[第三添加速度比]/[第二添加速度比]の値が、1.9未満の場合は、異形シリカ粒子が得られにくくなり、サイズの大きな粒子が得られにくい。
[第三添加速度比]/[第二添加速度比]の値が40を超える場合は、異形シリカ粒子は得やすいものの、珪酸が自己核生成し易い傾向にあり、所望の粒子径分布、サイズのシリカ粒子が得られにくくなる傾向にある。
[第三添加速度比]/[第二添加速度比]の値は、5以上20以下であることがより好ましい。
<Condition 1>
In the method for producing a dispersion liquid of irregular shaped silica particles of the present invention, it is further necessary to satisfy the following condition 1.
Condition 1 is to satisfy the condition shown in the following formula (F0-1).
1.9≦[third addition speed ratio]/[second addition speed ratio]≦40...(F0-1)
The value of [third addition speed ratio]/[second addition speed ratio] is an index for efficiently obtaining irregularly shaped and large-sized silica particles. When the value is in the range of 1.9 to 40, large-sized irregularly shaped silica particles can be obtained without using elements that are sources of contamination, such as halogens and alkaline earth metals.
When the value of [third addition speed ratio]/[second addition speed ratio] is less than 1.9, it becomes difficult to obtain irregularly shaped silica particles and large-sized particles.
When the value of [third addition speed ratio]/[second addition speed ratio] exceeds 40, irregular silica particles are easily obtained, but silicic acid tends to easily undergo self-nucleation, and it tends to be difficult to obtain silica particles having the desired particle size distribution and size.
The value of [third addition speed ratio]/[second addition speed ratio] is more preferably 5 or more and 20 or less.

<工程4>
本発明の異形シリカ粒子分散液の製造方法は、次の工程4を更に含んでいてもよい。
工程4は、工程3で得られた異形シリカ粒子分散液を濃縮する工程である。
工程4においては、前記工程3で得られた異形シリカ粒子分散液をそのまま研磨用途または研磨用スラリーの原料として用いることもできる。所望により、工程3で得られた異形シリカ粒子分散液を濃縮してから各種用途に適用してもよい。
具体的には、例えば、工程3で得られた異形シリカ粒子分散液を室温以上40℃以下程度に冷却する。その後、限外ろ過膜等を用いて濃縮し、エバポレータ等を用いてさらに濃縮し、残った異形シリカ粒子を回収すればよい。さらに粗大な粒子を除去するために、遠心分離を用いてもよい。
<Step 4>
The method for producing a dispersion liquid of irregular shaped silica particles of the present invention may further include the following step 4.
Step 4 is a step of concentrating the irregular shaped silica particle dispersion liquid obtained in step 3.
In step 4, the irregular silica particle dispersion obtained in step 3 can be used as it is for polishing purposes or as a raw material for polishing slurry. If desired, the irregular silica particle dispersion obtained in step 3 can be concentrated before being used for various purposes.
Specifically, for example, the irregular silica particle dispersion obtained in step 3 is cooled to a temperature between room temperature and 40° C. Thereafter, the irregular silica particle dispersion is concentrated using an ultrafiltration membrane or the like, and further concentrated using an evaporator or the like, and the remaining irregular silica particles are recovered. Centrifugation may be used to further remove coarse particles.

本発明のシリカ粒子の製造方法では、工程3あるいは工程4を経て異形シリカ粒子分散液として得られ、そのまま研磨剤等に使用することができる。さらに必要に応じて常法により乾燥して用いることもでき、さらに必要に応じて常法により焼成して用いることもできる。 In the method for producing silica particles of the present invention, a dispersion of irregularly shaped silica particles is obtained through step 3 or step 4, and can be used as is as an abrasive, etc. If necessary, it can be dried by a conventional method before use, and if necessary, it can be calcined by a conventional method before use.

<条件2>
本発明の異形シリカ粒子分散液の製造方法は、更に下記条件2を満たすことが好ましい。
条件2は、前駆体分散液中において、シリカ1モルあたりに換算したハロゲン元素のモル数(モル/モル比)が0.5%以下であり、かつシリカ単位モルあたりに換算したアルカリ土類金属のモル数(モル/モル比)が1000ppm以下であること。
ハロゲン元素やアルカリ土類金属は、天然の原料である珪砂に微量含まれており、さらにカレットや珪酸ナトリウムを製造する際の原料等に微量含まれている。そのため、珪酸ナトリウムを原料としてシリカゾルを製造した場合、原料に由来するこれら元素の含有量は、シリカ1モルあたりに換算したハロゲン元素として0.5%以下を含み、シリカ1モルあたりに換算したアルカリ土類金属として、1000ppm以下を含む。しかし、原料に由来するこれら元素の含有量は微量であるため、核粒子の生成や粒子成長あるいは粒子の形状への影響は小さい。そのため、従来の異形粒子の製造方法では、粒子合成時にこれら元素を添加し、例えば、シード成分のシリカ粒子とシリカ粒子とをアルカリ土類金属(例えば、MgO、CaO等)を介して結合させて異形化させる方法(シード粒子分散液にアルカリ土類金属を添加し、シード成分のシリカ粒子とシリカ粒子とをアルカリ土類金属を介して結合させる方法)、あるいは、シード粒子分散液にハロゲン化アルカリ(KCl等)を加えてイオン強度を調製することによってシード粒子を異形化させる方法が行われている。しかし、これらアルカリ土類金属やハロゲン化アルカリなどの異種物質は、異形シリカ粒子分散液を研磨用途に適用する場合、用途によっては基板への汚染等の悪影響を与えることがあるので、本来存在しないことが好ましい。
本発明の異形シリカ粒子分散液の製造方法は、粒子合成時にハロゲン元素やアルカリ土類金属などの異種物質を使用することなく、異形シリカ粒子分散液を製造する方法であり、具体的にはシード粒子に酸性珪酸液を加えて行う粒子成長を、酸性珪酸液の添加速度の異なる2段階にて行うことを特徴とする製造方法である。このため、従来行われていた異形化手法に必要な異種物質を必要としない。
<Condition 2>
In the method for producing a dispersion liquid of irregular shaped silica particles of the present invention, it is preferable that the following condition 2 is further satisfied.
Condition 2 is that in the precursor dispersion, the number of moles of halogen elements converted per 1 mole of silica (mol/mol ratio) is 0.5% or less, and the number of moles of alkaline earth metals converted per unit mole of silica (mol/mol ratio) is 1000 ppm or less.
Halogen elements and alkaline earth metals are contained in small amounts in silica sand, which is a natural raw material, and are also contained in small amounts in raw materials used to manufacture cullet and sodium silicate. Therefore, when silica sol is manufactured using sodium silicate as a raw material, the content of these elements derived from the raw material is 0.5% or less as halogen elements converted to 1 mole of silica, and 1000 ppm or less as alkaline earth metals converted to 1 mole of silica. However, since the content of these elements derived from the raw material is small, the influence on the generation of core particles, particle growth, or particle shape is small. Therefore, in conventional methods for manufacturing irregular-shaped particles, these elements are added during particle synthesis, and, for example, a method is used in which seed components of silica particles are bonded to each other via an alkaline earth metal (e.g., MgO, CaO, etc.) to form irregular shapes (a method in which an alkaline earth metal is added to a seed particle dispersion liquid and the seed components of silica particles are bonded to each other via an alkaline earth metal), or a method is used in which an alkali halide (e.g., KCl) is added to a seed particle dispersion liquid to adjust the ionic strength to form irregular shapes of seed particles. However, when the irregular shaped silica particle dispersion is used for polishing, these foreign substances such as alkaline earth metals and alkali halides may have adverse effects such as contamination of the substrate depending on the application, so it is preferable that they are not present in the first place.
The method for producing an irregular silica particle dispersion of the present invention is a method for producing an irregular silica particle dispersion without using foreign substances such as halogen elements and alkaline earth metals during particle synthesis, and specifically, the method is characterized in that particle growth is performed by adding an acidic silicic acid liquid to seed particles in two stages with different addition rates of the acidic silicic acid liquid. Therefore, it does not require foreign substances required in the conventional irregular sphericity method.

<条件3>
本発明の異形シリカ粒子分散液の製造方法は、更に下記条件3を満たすことが好ましい。
条件3は、下記数式(F0-2)で示すシリカ含有量比が10以上100以下の範囲にあることである。
シリカ含有量比={(第二酸性珪酸液中のシリカ含有量[kg])+(第三酸性珪酸液中のシリカ含有量[kg])}/(前駆体分散液中のシリカ含有量[kg])・・・(F0-2)
数式(F0-2)で示すシリカ含有量比は、シードとなる前駆体に対して、粒子成長させる珪酸の重量比であり、シード粒子を効率良く所望の粒子サイズに成長させる指標である。その値が10以上100以下の範囲にあると効率よく所望のサイズに粒子成長させることができる。
数式(F0-2)で示すシリカ含有量比が、10未満の場合は、生成したシード粒子を成長させる珪酸量が不足することになり、サイズの大きな異形シリカ粒子を得ることができない。
数式(F0-2)で示すシリカ含有量比が、100を超える場合は、核生成した異形シリカシードを成長させる珪酸の量が過剰となる。このため、粒子の形状が球形に近づき、所望の異形度の異形シリカ粒子を得ることができない。また過剰な珪酸により自己核生成が生じる場合もある。
数式(F0-2)で示すシリカ含有量比は、20以上80以下であることがより好ましい。
<Condition 3>
In the method for producing a dispersion liquid of irregular shaped silica particles of the present invention, it is preferable that the following condition 3 is further satisfied.
Condition 3 is that the silica content ratio represented by the following formula (F0-2) is in the range of 10 or more and 100 or less.
Silica content ratio={(silica content in the second acidic silicic acid liquid [kg])+(silica content in the third acidic silicic acid liquid [kg])}/(silica content in the precursor dispersion liquid [kg]) (F0-2)
The silica content ratio shown by the formula (F0-2) is the weight ratio of silicic acid to be grown to a seed precursor, and is an index for efficiently growing seed particles to a desired particle size. When the value is in the range of 10 to 100, the particles can be efficiently grown to a desired size.
When the silica content ratio represented by the formula (F0-2) is less than 10, the amount of silicic acid for growing the generated seed particles becomes insufficient, and large-sized irregularly shaped silica particles cannot be obtained.
When the silica content ratio shown by the formula (F0-2) exceeds 100, the amount of silicic acid that grows the nucleated irregular silica seeds becomes excessive. Therefore, the particle shape becomes closer to a sphere, and irregular silica particles with the desired degree of irregularity cannot be obtained. In addition, the excess silicic acid may cause self-nucleation.
The silica content ratio represented by formula (F0-2) is more preferably 20 or more and 80 or less.

<条件4>
本発明の異形シリカ粒子分散液の製造方法は、更に下記条件4を満たすことが好ましい。
条件4は、工程3終了時の異形シリカ粒子分散液におけるSiO/AOモル比が、60以上140以下の範囲にあること。(ここで、SiOは工程3終了時の異形シリカ粒子分散液中のシリカのモル数を表し、AOは工程3終了時の異形シリカ粒子分散液中のNaOおよびKOの合計モル数を表す。)
ここで、AOにおけるKOおよびNaOは、各々、異形シリカ粒子分散液中に存在するKおよびNaの量を、酸化物に換算したことを意味する。
工程3終了時の異形シリカ粒子分散液におけるSiO/AOモル比は、粒子成長時のpHの指標である。目標とするサイズによって変わるが、概ねこの範囲であれば、粒子成長に用いる珪酸が十分に溶解し、異形シード粒子表面に沈着させることができ、所望の粒子径に成長させることができる。
異形シリカ粒子分散液におけるSiO/AOモル比が、60未満の場合は、反応中のpHが高いため、反応中に粒子の凝集が生じる場合がある。また仮に凝集せずに粒子成長が行われたとしても、反応終了後の分散液のイオン強度が高いため、後工程で濃縮する際に、凝集が生じやすい。凝集を防ぎ粒子の安定性を保つためにはイオン強度を下げる必要があり、イオン強度を下げる方法としてイオン交換や洗浄等の手段が適用可能だが、経済性が低下する。
異形シリカ粒子分散液におけるSiO/AOモル比が、140を超える場合は、反応中のpHが低いため、粒子成長のために加えた珪酸が十分に溶解せずに、自己核生成する傾向にある。
異形シリカ粒子分散液におけるSiO/AOモル比は、80以上120以下であることがより好ましい。
<Condition 4>
In the method for producing a dispersion liquid of irregular shaped silica particles of the present invention, it is preferable that the following condition 4 is further satisfied.
Condition 4 is that the SiO2 / A2O molar ratio in the irregular silica particle dispersion at the end of step 3 is in the range of 60 to 140. (Here, SiO2 represents the number of moles of silica in the irregular silica particle dispersion at the end of step 3, and A2O represents the total number of moles of Na2O and K2O in the irregular silica particle dispersion at the end of step 3.)
Here, K 2 O and Na 2 O in A 2 O mean the amounts of K and Na present in the irregular shaped silica particle dispersion, respectively, converted into oxides.
The SiO2 / A2O molar ratio in the irregular silica particle dispersion at the end of step 3 is an index of the pH during particle growth. Although it varies depending on the target size, within this range, the silicic acid used for particle growth can be sufficiently dissolved and deposited on the surfaces of the irregular seed particles, allowing the particles to grow to the desired particle diameter.
When the SiO2 / A2O molar ratio in the irregular silica particle dispersion is less than 60, the pH during the reaction is high, so that the particles may aggregate during the reaction. Even if the particles grow without aggregation, the ionic strength of the dispersion after the reaction is high, so that aggregation is likely to occur during concentration in the subsequent process. In order to prevent aggregation and maintain the stability of the particles, it is necessary to lower the ionic strength, and although methods such as ion exchange and washing can be used to lower the ionic strength, this reduces the economic efficiency.
When the SiO 2 /A 2 O molar ratio in the irregular shaped silica particle dispersion exceeds 140, the pH during the reaction is low, so that the silicic acid added for particle growth does not dissolve sufficiently, and self-nucleation tends to occur.
The SiO 2 /A 2 O molar ratio in the irregular shaped silica particle dispersion is more preferably 80 or more and 120 or less.

[異形シリカ粒子]
本発明の異形シリカ粒子分散液の製造方法においては、得られる異形シリカ粒子が、比表面積換算粒子径(D1)が、10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、(D2)/(D1)の値が1.2以上20以下の範囲にあることが好ましい。このような異形シリカ粒子であれば、優れた研磨特性を有する比較的粒子径の大きいものとなる。
[Deformed silica particles]
In the manufacturing method of irregular silica particle dispersion of the present invention, it is preferable that the obtained irregular silica particles have a specific surface area converted particle diameter (D1) in the range of 10 nm to 200 nm, an average particle diameter (D2) measured by dynamic light scattering method in the range of 20 nm to 300 nm, and a value of (D2)/(D1) in the range of 1.2 to 20. Such irregular silica particles have a relatively large particle diameter and excellent polishing properties.

[異形シリカ粒子分散液]
本発明の製造方法で得られる異形シリカ粒子分散液は、比表面積換算粒子径(D1)が、10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、異形度[(D2)/(D1)]の値が1.2以上20以下の範囲にある異形シリカ粒子が水に分散してなることが好ましい。
異形度[(D2)/(D1)]が1.2以上20以下の範囲にあると、研磨用砥粒として用いた場合、高い研磨速度を示し、かつディフェクトも少なく、表面粗さも低い研磨面を得ることができる。異形度[(D2)/(D1)]が1.2未満の場合、球状粒子に近くなり、そのような異形シリカ粒子分散液を研磨用途に適用した場合、研磨速度が低下する傾向がある。異形度[(D2)/(D1)]が20を超える場合、そのような異形シリカ粒子分散液を研磨用途に適用すると、被研磨基板にスクラッチ等のディフェクトが発生し易くなり、研磨基板の表面粗さも悪化する傾向がある。
動的光散乱法で測定された平均粒子径(D2)が、20nm以上300nm以下の範囲にあると高い研磨速度が得られるため、好ましい。平均粒子径(D2)が20nm未満の異形シリカ粒子分散液を研磨用途に適用した場合、実用上の研磨速度が充分ではない。また、平均粒子径(D2)が300nmを超える異形シリカ粒子分散液を研磨用途に適用した場合、研磨速度が低下し、さらに、被研磨基板にスクラッチが発生しやすくなる傾向がある。
[Irregular shaped silica particle dispersion]
The irregular silica particle dispersion obtained by the manufacturing method of the present invention is preferably formed by dispersing irregular silica particles in water, the irregular silica particles having a specific surface area converted particle diameter (D1) in the range of 10 nm or more and 200 nm or less, an average particle diameter (D2) measured by dynamic light scattering in the range of 20 nm or more and 300 nm or less, and an irregularity [(D2)/(D1)] value in the range of 1.2 or more and 20 or less.
When the irregularity [(D2)/(D1)] is in the range of 1.2 to 20, when used as polishing abrasive grains, it shows a high polishing rate, has few defects, and can obtain a polished surface with low surface roughness. When the irregularity [(D2)/(D1)] is less than 1.2, it becomes close to a spherical particle, and when such an irregular silica particle dispersion is applied to a polishing application, the polishing rate tends to decrease. When the irregularity [(D2)/(D1)] is more than 20, when such an irregular silica particle dispersion is applied to a polishing application, defects such as scratches tend to occur on the polished substrate, and the surface roughness of the polished substrate also tends to deteriorate.
The average particle size (D2) measured by dynamic light scattering is preferably in the range of 20 nm to 300 nm, since it can obtain a high polishing rate. When the irregular silica particle dispersion liquid having an average particle size (D2) of less than 20 nm is used for polishing, the polishing rate is not sufficient in practice. Also, when the irregular silica particle dispersion liquid having an average particle size (D2) of more than 300 nm is used for polishing, the polishing rate decreases, and scratches tend to easily occur on the polished substrate.

比表面積換算粒子径(D1)は、10nm以上200nm以下の範囲にあることが好ましい。
比表面積換算粒子径(D1)が10nm未満の場合は、サイズが小さいため粒子の数は増えるが、個々の粒子の研磨速度が低いため、研磨用途として用いた場合、研磨速度が著しく低くなる。比表面積換算粒子径(D1)が200nmを超えると、サイズが大き過ぎるため、粒子個数が著しく減少する。そのため研磨用途に適用した場合、研磨速度が低下する傾向にある。また、サイズが大き過ぎ、分散液中でシリカ粒子の沈殿が生じ、使用する際に再分散の手間がかかったり、充分に分散できず研磨性能が安定しない可能性がある。
比表面積換算粒子径(D1)は、20以上150以下であることがより好ましい。
The specific surface area converted particle diameter (D1) is preferably in the range of 10 nm or more and 200 nm or less.
When the specific surface area converted particle diameter (D1) is less than 10 nm, the number of particles increases due to the small size, but the polishing speed of each particle is low, so when used for polishing, the polishing speed is significantly reduced. When the specific surface area converted particle diameter (D1) is more than 200 nm, the size is too large, so the number of particles is significantly reduced. Therefore, when used for polishing, the polishing speed tends to decrease. In addition, the size is too large, so that precipitation of silica particles occurs in the dispersion liquid, which may require a lot of effort to redisperse when used, or may not be dispersed sufficiently, resulting in unstable polishing performance.
The specific surface area converted particle diameter (D1) is more preferably 20 or more and 150 or less.

異形度[(D2)/(D1)]の値は、1.5以上15以下であることがより好ましく、1.5以上5以下であることが特に好ましい。
動的光散乱法で測定された平均粒子径(D2)の値は、30nm以上250nm以下であることがより好ましい。
The irregularity value [(D2)/(D1)] is more preferably 1.5 or more and 15 or less, and particularly preferably 1.5 or more and 5 or less.
The average particle size (D2) measured by dynamic light scattering is more preferably 30 nm or more and 250 nm or less.

異形シリカ粒子分散液のSiO濃度は、10質量%以上50質量%以下であることが好ましく、20質量%以上50質量%以下であることがより好ましい。
異形シリカ粒子分散液の分散溶媒としては、水または水と親水性の有機溶媒との混合溶媒を使用することができる。
The SiO2 concentration of the irregular shaped silica particle dispersion is preferably 10% by mass or more and 50% by mass or less, and more preferably 20% by mass or more and 50% by mass or less.
As the dispersion medium for the irregular shaped silica particle dispersion, water or a mixed solvent of water and a hydrophilic organic solvent can be used.

本発明の異形シリカ粒子分散液は、カリウム化合物を含むことが好ましい。カリウム化合物を含むことによって、分散液をアルカリ性に保つことができ、異形シリカ粒子の表面シラノール基の乖離が進み、異形シリカ粒子が凝集することなく安定に保つことができる。
カリウム化合物としては、水酸化カリウムや水酸化カリウムの塩、珪酸カリウム等を例示することができる。カリウム化合物は、1種または2種以上を併用してもよい。
異形シリカ粒子分散液におけるカリウム化合物の濃度は、SiO/KOモル比として、50以上400以下が好ましく、60以上300以下がより好ましい。
The irregular silica particle dispersion of the present invention preferably contains a potassium compound. By containing a potassium compound, the dispersion can be kept alkaline, the dissociation of the surface silanol groups of the irregular silica particles progresses, and the irregular silica particles can be kept stable without aggregation.
Examples of the potassium compound include potassium hydroxide, salts of potassium hydroxide, potassium silicate, etc. The potassium compounds may be used alone or in combination of two or more.
The concentration of the potassium compound in the irregular shaped silica particle dispersion is preferably 50 or more and 400 or less, and more preferably 60 or more and 300 or less, in terms of the SiO 2 /K 2 O molar ratio.

本発明では、異形シリカ粒子分散液に含まれる粒子径が、0.51μm以上の粒子を粗大粒子という。粗大粒子の割合は、SiO濃度1質量%のシリカ粒子分散液中の粗大粒子の個数とした場合、500千個/cc以下が好ましく、120千個/cc以下がより好ましい。
粗大粒子の個数が500千個/ccを超えると、研磨時に研磨傷が発生し易い傾向にある。
In the present invention, particles having a particle diameter of 0.51 μm or more contained in the irregular shaped silica particle dispersion are called coarse particles. The ratio of the coarse particles is preferably 500,000 particles/cc or less, and more preferably 120,000 particles/cc or less, when expressed as the number of coarse particles in a silica particle dispersion having a SiO2 concentration of 1% by mass.
If the number of coarse particles exceeds 500,000/cc, polishing scratches tend to occur easily during polishing.

[1]SiOの定量方法
シリカ微粒子分散液中のSiO含有量は、シリカ微粒子分散液に1000℃で灼熱減量を行い、固形分の質量を求めた後、後述するNa、Kの含有率を測定する場合と同様に、原子吸光分光分析装置(日立製作所社製、Z-2310)を用いて、検量線法によりNa、Kの質量%を算出し、Na、KをNaO、KOに換算し、NaO、KO以外の固形分の成分はSiOであるとして、SiOの含有量を求めた。
[1] Method for quantifying SiO2 The SiO2 content in the silica microparticle dispersion was determined by subjecting the silica microparticle dispersion to ignition loss at 1000°C to determine the mass of the solid content, and then, in the same manner as in the case of measuring the Na and K contents described below, using an atomic absorption spectrophotometer (Hitachi, Ltd., Z-2310) to calculate the mass% of Na and K by the calibration curve method, converting Na and K to Na2O and K2O , and determining the SiO2 content by assuming that the solid components other than Na2O and K2O are SiO2 .

[2]NaおよびKの定量方法
1.測定試料の調製
(1)約1gの異形シリカ粒子分散液を白金皿に精秤する。
(2)上記(1)に、リン酸3mL、硝酸5mLおよび弗化水素酸10mLを加えて、サンドバス上で加熱する。
(3)乾固したら、少量の水と硝酸50mLを加え溶解させて、100mLのメスフラスコにおさめ、水を加えて、100mLにし、測定試料する。
2.NaおよびKの含有割合の測定方法
上記1.で得られた測定試料を、原子吸光分光分析装置(日立製作所社製、Z-2310)で測定し、検量線法により算出した。
[2] Method for Quantifying Na and K 1. Preparation of Measurement Sample (1) Approximately 1 g of the irregular shaped silica particle dispersion is weighed out onto a platinum dish.
(2) Add 3 mL of phosphoric acid, 5 mL of nitric acid, and 10 mL of hydrofluoric acid to (1) above and heat on a sand bath.
(3) Once dried, add a small amount of water and 50 mL of nitric acid to dissolve, place in a 100 mL measuring flask, add water to make 100 mL, and use as the measurement sample.
2. Method for Measuring the Contents of Na and K The measurement sample obtained in 1 above was measured using an atomic absorption spectrophotometer (Hitachi, Ltd., Z-2310), and the contents of Na and K were calculated using the calibration curve method.

[3]アルカリ土類金属の定量方法
(1)上記[2]NaおよびKの定量方法で調製した測定試料を20mLのメスフラスコに10mL採取する操作を5回繰り返し、分液10mLを5個得る。
(2)これを用いて、ICPプラズマ発光分析装置(SII製、品番SPS5520)にて、標準添加法で測定を行う。
(3)同様の方法でブランクを測定し、ブランク分を差し引いて調整し、各元素における測定値とする。
[3] Method for quantifying alkaline earth metals (1) The measurement sample prepared in the above [2] Method for quantifying Na and K is taken in an amount of 10 mL into a 20 mL measuring flask. This operation is repeated five times to obtain five 10 mL aliquots.
(2) This is used to perform measurements using the standard addition method in an ICP plasma emission spectrometer (manufactured by SII, model number SPS5520).
(3) Measure the blank in the same manner, subtract the blank amount to adjust and obtain the measured value for each element.

[4]ハロゲンの定量方法
1.試料の調製
(1)異形シリカ粒子分散液からなる試料5gを水で希釈して全量を100mlとする。
(2)遠心分離機(日立製HIMAC CT06E)にて4000rpmで20分遠心分離して、沈降成分を除去して得た液を測定試料とする。
2.ハロゲンの含有割合の測定方法
上記1.で得られた水溶液を、イオンクロマトグラフを用いて測定し、検量線法により算出した。
システム:DIONEX社製ICS-1100
[4] Method for Determining Halogen Content 1. Sample Preparation (1) 5 g of a sample made of a dispersion of irregular shaped silica particles is diluted with water to a total volume of 100 ml.
(2) The mixture is centrifuged at 4,000 rpm for 20 minutes using a centrifuge (HIMAC CT06E manufactured by Hitachi) to remove the precipitated components, and the resulting liquid is used as a measurement sample.
2. Method for measuring halogen content The aqueous solution obtained in 1 above was measured using an ion chromatograph, and the halogen content was calculated using a calibration curve method.
System: DIONEX ICS-1100

[5]動的光散乱法による平均粒子径D2の測定方法
異形シリカ粒子分散液を0.58%アンモニア水にて希釈して、シリカ濃度1質量%に調整し、レーザーパーティクルアナライザーを用いて測定する。
[レーザーパーティクルアナライザー]
大塚電子株式会社製、型番「ゼータ電位・粒径測定システム ELSZ-1000S」(測定原理:動的光散乱法、光源波長:665.70nm、セル:10mm角のプラスチックセル)
[5] Measurement method for average particle diameter D2 by dynamic light scattering method The irregular shaped silica particle dispersion liquid is diluted with 0.58% ammonia water to adjust the silica concentration to 1% by mass, and the average particle diameter D2 is measured using a laser particle analyzer.
[Laser particle analyzer]
Manufactured by Otsuka Electronics Co., Ltd., model number "Zeta potential/particle size measurement system ELSZ-1000S" (measurement principle: dynamic light scattering method, light source wavelength: 665.70 nm, cell: 10 mm square plastic cell)

[6]比表面積換算粒子径D1の測定方法
異形シリカ粒子分散液50mLをHNOでpH3.5に調整し、1-プロパノール40mLを加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とする。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いて窒素吸着法(BET法)を用いて、窒素の吸着量から、BET1点法により比表面積を算出する。
具体的には、試料0.5gを測定セルに取り、窒素30v%とヘリウム70v%との混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、異形シリカ粒子の比表面積を算出する。また、得られた比表面積(SA)を下記式に代入して比表面積換算粒子径D1を求める。
比表面積換算粒子径D1(nm)=6000/(ρ×SA)
(ここで、ρはシリカ粒子の密度2.2[g/cm]を表す。)
[6] Measurement method of specific surface area converted particle diameter D1 50 mL of irregular silica particle dispersion was adjusted to pH 3.5 with HNO 3 , 40 mL of 1-propanol was added, and a sample was dried at 110°C for 16 hours. The sample was then pulverized in a mortar and baked at 500°C for 1 hour in a muffle furnace to obtain a measurement sample. The specific surface area was calculated from the amount of adsorbed nitrogen by the BET single point method using a specific surface area measuring device (manufactured by Yuasa Ionics, model number Multisorb 12) and nitrogen adsorption method (BET method).
Specifically, 0.5g of sample is taken into a measuring cell, and degassed at 300°C for 20 minutes in a mixed gas flow of 30v% nitrogen and 70v% helium, and then the sample is kept at liquid nitrogen temperature in the mixed gas flow to allow nitrogen to be equilibrated and adsorbed on the sample.Next, while the mixed gas is flowing, the sample temperature is gradually raised to room temperature, and the amount of nitrogen desorbed during this period is detected, and the specific surface area of the irregular silica particles is calculated using a calibration curve created in advance.Furthermore, the obtained specific surface area (SA) is substituted into the following formula to obtain the specific surface area converted particle diameter D1.
Specific surface area converted particle diameter D1 (nm) = 6000 / (ρ × SA)
(Here, ρ represents the density of the silica particles, 2.2 [g/cm 3 ].)

[7]粗大粒子の測定方法
1.測定試料の調製
シリカ粒子分散液を水で1質量%に希釈し、測定試料とした。
2.
測定試料5mLを測定装置(パーティクルサイジングシステム社(Particle sizing system Inc.)製アキュサイザー780APS(Accusizer 780APS))に注入して測定する。0.51μm以上の粗大粒子数を測定試料の粗大粒子数とする。測定条件は以下の通り。
<System Setup>
・Stir Speed Control / Low Speed Factor 1600 / High Speed Factor 2500
<System Menu>
・Data Collection Time 120 sec.
・Syringe Volume 2.5mL
・Sample Line Number :Sum Mode
・Initial 2nd-Stage Dilution Factor 30
・Vessel Fast Flush Time 60 sec.
・System Flush Time / Before Measurement 100 sec. / After Measurement 100 sec.
・Sample Equilibration Time 25 sec./ Sample Flow Time 10 sec.
[7] Measurement method for coarse particles 1. Preparation of measurement sample The silica particle dispersion was diluted with water to 1% by mass to prepare a measurement sample.
2.
5 mL of the measurement sample is injected into a measurement device (Accusizer 780APS manufactured by Particle Sizing System Inc.) and the measurement is performed. The number of coarse particles of 0.51 μm or more is regarded as the number of coarse particles of the measurement sample. The measurement conditions are as follows.
<System Setup>
・Stir Speed Control / Low Speed Factor 1600 / High Speed Factor 2500
<System Menu>
・Data Collection Time 120 sec.
Syringe Volume 2.5mL
・Sample Line Number: Sum Mode
・Initial 2nd-Stage Dilution Factor 30
・Vessel Fast Flush Time 60 sec.
・System Flush Time / Before Measurement 100 sec. / After Measurement 100 sec.
・Sample Equilibration Time 25 sec./ Sample Flow Time 10 sec.

[実施例1]
・珪酸カリウム溶液の製造
超純水3.699kgに水酸化カリウム水溶液(KOH濃度48.7質量%)2.766kgを添加し、均一になるまで攪拌した。この水酸化カリウム水溶液にシリカ粉末(含水率20質量%)2.82kgを添加して混合した。この混合液を95℃に昇温し、4時間保持し、珪酸カリウム溶液を得た。
得られた珪酸カリウム溶液において、SiO濃度は24.5質量%であり、KO濃度は12.4質量%であり、SiO/KO(モル比)は3.10であり、Clイオン濃度は8ppmであった(以下、この珪酸カリウム溶液ないしそれと同等の珪酸カリウム溶液を「珪酸カリウム溶液(1)」と記す。)。
[Example 1]
- Preparation of potassium silicate solution 2.766 kg of potassium hydroxide aqueous solution (KOH concentration 48.7 mass%) was added to 3.699 kg of ultrapure water and stirred until homogenous. 2.82 kg of silica powder (water content 20 mass%) was added to this potassium hydroxide aqueous solution and mixed. This mixture was heated to 95°C and held for 4 hours to obtain a potassium silicate solution.
In the obtained potassium silicate solution, the SiO2 concentration was 24.5 mass%, the K2O concentration was 12.4 mass%, the SiO2 / K2O (molar ratio) was 3.10, and the Cl ion concentration was 8 ppm (hereinafter, this potassium silicate solution or an equivalent potassium silicate solution will be referred to as "potassium silicate solution (1)").

・酸性珪酸液の製造
SiO濃度5質量%の珪酸カリウム水溶液15kgを、強酸性陽イオン交換樹脂(SK1BH(三菱ケミカル社製))6Lに空間速度2.75(1/hr)で通液して酸性珪酸液15kgを得た。得られた酸性珪酸液において、SiO濃度は4.6質量%であった(以下、この酸性珪酸液ないしそれと同等の酸性珪酸液を「酸性珪酸液」と記す。)。
- Production of acidic silicic acid solution 15 kg of potassium silicate aqueous solution with a SiO2 concentration of 5 mass% was passed through 6 L of strong acid cation exchange resin (SK1BH (manufactured by Mitsubishi Chemical Corporation)) at a space velocity of 2.75 (1/hr) to obtain 15 kg of acidic silicic acid solution. In the obtained acidic silicic acid solution, the SiO2 concentration was 4.6 mass% (hereinafter, this acidic silicic acid solution or an acidic silicic acid solution equivalent thereto will be referred to as "acidic silicic acid solution").

<前駆体分散液の調製>
超純水2.344kgに珪酸カリウム溶液(1)0.88kgを添加して均一になるまで撹拌し、アルカリ水溶液を得た。このアルカリ水溶液に、酸性珪酸液0.15kgを添加して混合した。
この混合液を98.5℃に昇温し、1.3時間保持し、前駆体分散液を得た。
前駆体分散液は、SiO濃度6.6質量%であり、SiO/AO(モル比)は3.2であった。
<Preparation of Precursor Dispersion>
0.88 kg of potassium silicate solution (1) was added to 2.344 kg of ultrapure water and stirred until homogenous to obtain an alkaline aqueous solution. 0.15 kg of acidic silicic acid solution was added to this alkaline aqueous solution and mixed.
The mixture was heated to 98.5° C. and maintained at that temperature for 1.3 hours to obtain a precursor dispersion.
The precursor dispersion had a SiO 2 concentration of 6.6 mass %, and the SiO 2 /A 2 O (molar ratio) was 3.2.

<シード粒子分散液の調製>
この前駆体粒子分散液全量に酸性珪酸液6.97kgを、98.5℃で、4.9時間かけて添加した(第二添加速度比=0.29)。添加終了後も98.5℃で0.5時間放置し、シード粒子分散液を得た。
このシード粒子分散液のSiO濃度は5.2質量%、およびKO濃度は1.1質量%であった。また、動的光散乱粒子径測定装置で測定したシード粒子の平均粒子径は105nmであった。
<Preparation of seed particle dispersion>
To the entire amount of this precursor particle dispersion, 6.97 kg of acidic silicic acid liquid was added over 4.9 hours (second addition rate ratio = 0.29) at 98.5°C. After completion of the addition, the mixture was left at 98.5°C for 0.5 hours to obtain a seed particle dispersion.
The SiO2 concentration of this seed particle dispersion was 5.2% by mass, and the K2O concentration was 1.1% by mass. The average particle size of the seed particles measured by a dynamic light scattering particle size measuring device was 105 nm.

<異形シリカ粒子分散液の製造>
超純水0.113kgに珪酸カリウム溶液(1)0.006kgを添加した。これにシード粒子分散液10.34kgを添加して混合した。ついで、これを97.5℃に昇温し、0.5時間保持した。
その後、97.5℃で、酸性珪酸液142.94kgを12時間かけて添加した(第三添加速度比=2.5)。添加終了後も97.5℃で1時間放置し、続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られた異形シリカ粒子分散液において、SiO濃度は4.6質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定した異形シリカ粒子の平均粒子径D2は131nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Production of irregular shaped silica particle dispersion>
0.006 kg of potassium silicate solution (1) was added to 0.113 kg of ultrapure water. 10.34 kg of the seed particle dispersion was added thereto and mixed. The temperature was then raised to 97.5° C. and maintained at that temperature for 0.5 hours.
Thereafter, 142.94 kg of the acidic silicic acid liquid was added over 12 hours (third addition rate ratio=2.5) at 97.5° C. After the addition was completed, the mixture was left at 97.5° C. for 1 hour and then cooled to room temperature to obtain a dispersion of irregular shaped silica particles.
In the obtained irregular silica particle dispersion, the SiO2 concentration was 4.6 mass% and the K2O concentration was 0.07 mass%. The average particle diameter D2 of the irregular silica particles measured with a dynamic light scattering particle size measuring device was 131 nm. In addition, when the reaction vessel was checked after the reaction was completed, no precipitation was found at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.7質量%のシリカ粒子分散液を調製した。
得られたシリカ粒子の比表面積換算粒子径D1は41nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
The mixture was then concentrated using an ultrafiltration module to prepare a silica particle dispersion having a SiO2 concentration of 11.7% by mass.
The obtained silica particles had a specific surface area converted particle diameter D1 of 41 nm. When the shape of the obtained silica particles was observed with an electron microscope, the particles were found to have an irregular shape, such as a plurality of particles bonded together.

[実施例2]
・珪酸カリウム溶液
この実施例では、実施例1と同様に調製した珪酸カリウム溶液を使用した。
・酸性珪酸液
この実施例では、実施例1と同様に調整した酸性珪酸液使用した。
[Example 2]
Potassium Silicate Solution In this example, a potassium silicate solution prepared in the same manner as in Example 1 was used.
Acidic silicic acid solution In this example, an acidic silicic acid solution prepared in the same manner as in Example 1 was used.

<前駆体分散液の調製>
超純水1.989kgに珪酸カリウム溶液(1)0.88kgを添加して均一になるまで撹拌し、アルカリ水溶液を得た。このアルカリ水溶液に酸性珪酸液0.137kgを添加して混合した。
この混合液を、87.0℃に昇温し、1.3時間保持し、前駆体分散液を得た。
前駆体分散液において、SiO濃度は7.4質量%であり、SiO/AO(モル比)は3.2であった。
<Preparation of Precursor Dispersion>
0.88 kg of potassium silicate solution (1) was added to 1.989 kg of ultrapure water and stirred until homogenous to obtain an alkaline aqueous solution. 0.137 kg of acidic silicic acid solution was added to this alkaline aqueous solution and mixed.
The mixture was heated to 87.0° C. and maintained at that temperature for 1.3 hours to obtain a precursor dispersion.
In the precursor dispersion, the SiO 2 concentration was 7.4 mass %, and the SiO 2 /A 2 O (molar ratio) was 3.2.

<シード粒子分散液の製造>
この前駆体分散液に、酸性珪酸液6.993kgを、87.0℃で4.9時間かけて添加した(第二添加速度比=0.30)。添加終了後も87.0℃で0.5時間放置し、シード粒子分散液を得た。
このシード粒子分散液のSiO濃度は5.4質量%、およびKO濃度は1.1質量%であった。動的光散乱粒子径測定装置で測定したシード粒子の平均粒子径は64nmであった。
<Preparation of seed particle dispersion>
To this precursor dispersion, 6.993 kg of the acidic silicic acid liquid was added over 4.9 hours (second addition rate ratio=0.30) at 87.0° C. After the addition was completed, the mixture was left at 87.0° C. for 0.5 hours to obtain a seed particle dispersion.
The SiO2 concentration of this seed particle dispersion was 5.4% by mass, and the K2O concentration was 1.1% by mass. The average particle size of the seed particles measured by a dynamic light scattering particle size measuring device was 64 nm.

<異形シリカ粒子分散液の製造>
超純水0.461kgに珪酸カリウム溶液(1)0.003kgを添加した。これにシード粒子分散液10.00kgを添加して混合した。ついで、これを87.0℃に昇温し、0.5時間保持した。
その後、87.0℃で、酸性珪酸液142.29kgを12時間かけて添加した(第三添加速度比=2.5)。添加終了後も87.0℃で1時間放置し、続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られた異形シリカ粒子分散液において、SiO濃度は4.6質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定したシリカ粒子の平均粒子径D2は91nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Production of irregular shaped silica particle dispersion>
0.003 kg of potassium silicate solution (1) was added to 0.461 kg of ultrapure water. 10.00 kg of the seed particle dispersion was added thereto and mixed. Then, the temperature was raised to 87.0° C. and maintained at that temperature for 0.5 hours.
Thereafter, 142.29 kg of the acidic silicic acid liquid was added over 12 hours (third addition rate ratio=2.5) at 87.0° C. After the addition was completed, the mixture was left at 87.0° C. for 1 hour and then cooled to room temperature to obtain a dispersion of irregular shaped silica particles.
In the obtained irregular silica particle dispersion, the SiO2 concentration was 4.6 mass% and the K2O concentration was 0.07 mass%. The average particle diameter D2 of the silica particles measured by a dynamic light scattering particle size measuring device was 91 nm. In addition, when the reaction vessel was checked after the reaction was completed, no precipitation was found at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.8質量%の異形シリカ粒子分散液を調製した。
得られた異形シリカ粒子の比表面積換算粒子径D1は41nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
The mixture was then concentrated using an ultrafiltration module to prepare a dispersion of irregular shaped silica particles with a SiO2 concentration of 11.8% by mass.
The resulting irregular shaped silica particles had a particle diameter D1 calculated based on a specific surface area of 41 nm. When the shape of the resulting silica particles was observed with an electron microscope, the particles were found to be particles containing irregular shaped particles in which a plurality of particles were bonded together.

[実施例3]
・珪酸カリウム溶液
この実施例では、実施例1と同様に調製した珪酸カリウム溶液を使用した。
・酸性珪酸液
この実施例では、実施例1と同様に調整した酸性珪酸液使用した。
[Example 3]
Potassium Silicate Solution In this example, a potassium silicate solution prepared in the same manner as in Example 1 was used.
Acidic silicic acid solution In this example, an acidic silicic acid solution prepared in the same manner as in Example 1 was used.

<前駆体分散液の製造>
超純水1.609kgに珪酸カリウム溶液(1)0.88kgを添加して均一になるまで撹拌し、アルカリ水溶液を得た。このアルカリ水溶液に酸性珪酸液0.137kgを添加して混合した。
この混合液を87.0℃に昇温し、1.3時間保持し前駆体分散液を得た。
前駆体分散液において、SiO濃度は8.5質量であり、SiO/AO(モル比)は3.2であった。
<Preparation of Precursor Dispersion>
0.88 kg of potassium silicate solution (1) was added to 1.609 kg of ultrapure water and stirred until homogenous to obtain an alkaline aqueous solution. 0.137 kg of acidic silicic acid solution was added to this alkaline aqueous solution and mixed.
The mixture was heated to 87.0° C. and maintained at that temperature for 1.3 hours to obtain a precursor dispersion.
In the precursor dispersion, the SiO 2 concentration was 8.5 mass %, and the SiO 2 /A 2 O (molar ratio) was 3.2.

<シード粒子分散液の製造>
この前駆体分散液に、酸性珪酸液7.041kgを87.0℃で4.9時間かけて添加した(第二添加速度比=0.30)。添加終了後も87.0℃で0.5時間放置し、シード粒子分散液を得た。
このシード粒子分散液において、SiO濃度は5.7質量%であり、KO濃度は1.1質量%であった。動的光散乱粒子径測定装置で測定したシード粒子の平均粒子径は73nmであった。
<Preparation of seed particle dispersion>
To this precursor dispersion, 7.041 kg of the acidic silicic acid liquid was added over 4.9 hours at 87.0° C. (second addition rate ratio=0.30). After the addition was completed, the mixture was left at 87.0° C. for 0.5 hours to obtain a seed particle dispersion.
In this seed particle dispersion, the SiO2 concentration was 5.7 mass %, and the K2O concentration was 1.1 mass %. The average particle size of the seed particles measured with a dynamic light scattering particle size measuring device was 73 nm.

<異形シリカ粒子分散液の製造>
超純水0.870kgに珪酸カリウム溶液(1)0.008kgを添加した。これにシード粒子分散液9.67kgを添加して混合した。ついで、これを87.0℃に昇温し、0.5時間保持した。
その後、87.0℃で、酸性珪酸液143.07kgを12時間かけて添加した(第三添加速度比=2.5)。添加終了後も87.0℃で1時間放置した。続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られたシリカ粒子分散液において、SiO濃度は4.6質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定した異形シリカ粒子の平均粒子径D2は98nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Production of irregular shaped silica particle dispersion>
0.008 kg of potassium silicate solution (1) was added to 0.870 kg of ultrapure water. 9.67 kg of the seed particle dispersion was added thereto and mixed. Then, the temperature was raised to 87.0° C. and maintained at that temperature for 0.5 hours.
Thereafter, 143.07 kg of the acidic silicic acid liquid was added over 12 hours at 87.0° C. (third addition rate ratio=2.5). After the addition was completed, the mixture was left for 1 hour at 87.0° C. Then, it was cooled to room temperature to obtain a dispersion of irregular shaped silica particles.
In the obtained silica particle dispersion, the SiO2 concentration was 4.6 mass% and the K2O concentration was 0.07 mass%. The average particle diameter D2 of the irregular silica particles measured by a dynamic light scattering particle size measuring device was 98 nm. In addition, when the reaction vessel was checked after the reaction was completed, no precipitation was confirmed at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.6質量%の異形シリカ粒子分散液を調製した。
得られた異形シリカ粒子の比表面積換算粒子径D1は41nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
The mixture was then concentrated using an ultrafiltration module to prepare a dispersion of irregular shaped silica particles with a SiO2 concentration of 11.6% by mass.
The resulting irregular shaped silica particles had a particle diameter D1 calculated based on a specific surface area of 41 nm. When the shape of the resulting silica particles was observed with an electron microscope, the particles were found to be particles containing irregular shaped particles in which a plurality of particles were bonded together.

[実施例4]
・珪酸カリウム溶液
この実施例では、実施例1と同様に調製した珪酸カリウム溶液を使用した。
・酸性珪酸液
この実施例では、実施例1と同様に調整した酸性珪酸液使用した。
[Example 4]
Potassium Silicate Solution In this example, a potassium silicate solution prepared in the same manner as in Example 1 was used.
Acidic silicic acid solution In this example, an acidic silicic acid solution prepared in the same manner as in Example 1 was used.

実施例3と同様にしてシード粒子分散液を得た(SiO濃度は5.7質量%、およびKO濃度は1.1質量%であり、シード粒子の平均粒子径は73nmであった。)。 A seed particle dispersion was obtained in the same manner as in Example 3 (SiO 2 concentration was 5.7% by mass, K 2 O concentration was 1.1% by mass, and the average particle size of the seed particles was 73 nm).

<異形シリカ粒子分散液の製造>
超純水0.335kgにシード粒子分散液9.67kgを添加して混合した。ついで、これを97.5℃に昇温し、0.5時間保持した。
その後、97.5℃で、酸性珪酸液147.57kgを12時間かけて添加した(第三添加速度比=2.4)。添加終了後も97.5℃で1時間放置し、続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られた異形シリカ粒子分散液において、SiO濃度は4.7質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定した異形シリカ粒子の平均粒子径D2は104nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Production of irregular shaped silica particle dispersion>
9.67 kg of the seed particle dispersion was added to 0.335 kg of ultrapure water and mixed in. The mixture was then heated to 97.5° C. and held at that temperature for 0.5 hours.
Thereafter, 147.57 kg of the acidic silicic acid liquid was added over 12 hours (third addition rate ratio = 2.4) at 97.5°C. After the addition was completed, the mixture was left at 97.5°C for 1 hour and then cooled to room temperature to obtain a dispersion of irregular shaped silica particles.
In the obtained irregular silica particle dispersion, the SiO2 concentration was 4.7 mass% and the K2O concentration was 0.07 mass%. The average particle diameter D2 of the irregular silica particles measured with a dynamic light scattering particle size measuring device was 104 nm. In addition, when the reaction vessel was checked after the reaction was completed, no precipitation was found at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.9質量%の異形シリカ粒子分散液を調製した。
得られた異形シリカ粒子の比表面積換算粒子径D1は47nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
The mixture was then concentrated using an ultrafiltration module to prepare a dispersion of irregular shaped silica particles with a SiO2 concentration of 11.9% by mass.
The resulting irregular shaped silica particles had a specific surface area converted particle diameter D1 of 47 nm. When the shape of the resulting silica particles was observed with an electron microscope, the particles were found to be particles containing irregular shaped particles in which a plurality of particles were bonded together.

[実施例5]
・珪酸カリウム溶液の製造
超純水4.757kgに水酸化カリウム水溶液(KOH濃度48.7質量%)3.556kgを添加して均一になるまで攪拌した。この水酸化カリウム水溶液にシリカ粉末(含水量含水率20.0%)3.62kgを添加して混合した。
この混合液を95℃に昇温し、4時間保持し、珪酸カリウム溶液を得た。
得られた珪酸カリウム溶液において、SiO濃度は24.5質量%であり、KO濃度は12.3質量%であり、SiO/KO(モル比)は3.12であり、Clイオン濃度4ppmであった(以下、この珪酸カリウム溶液ないしそれと同等の珪酸カリウム溶液を「珪酸カリウム溶液(2)」と記す。)。
・酸性珪酸液
この実施例では、実施例1と同様に調整した酸性珪酸液使用した。
[Example 5]
Preparation of potassium silicate solution 3.556 kg of potassium hydroxide aqueous solution (KOH concentration 48.7% by mass) was added to 4.757 kg of ultrapure water and stirred until homogenous. 3.62 kg of silica powder (water content 20.0%) was added to this potassium hydroxide aqueous solution and mixed.
The mixture was heated to 95° C. and maintained at that temperature for 4 hours to obtain a potassium silicate solution.
In the obtained potassium silicate solution, the SiO2 concentration was 24.5 mass%, the K2O concentration was 12.3 mass%, the SiO2 / K2O (molar ratio) was 3.12, and the Cl ion concentration was 4 ppm (hereinafter, this potassium silicate solution or an equivalent potassium silicate solution will be referred to as "potassium silicate solution (2)").
Acidic silicic acid solution In this example, an acidic silicic acid solution prepared in the same manner as in Example 1 was used.

<前駆体分散液の製造>
超純水0.672kgに珪酸カリウム溶液(2)0.99kgを添加して均一になるまで撹拌し、アルカリ水溶液を得た。このアルカリ水溶液に、酸性珪酸液0.132kgを添加して混合した。
この混合液を80.0℃に昇温し、1.3時間保持し、前駆体分散液を得た。
前駆体分散液において、SiO濃度は13.8質量%であり、SiO/AO(モル比)は3.2であった。
<Preparation of Precursor Dispersion>
0.99 kg of potassium silicate solution (2) was added to 0.672 kg of ultrapure water and stirred until homogenous to obtain an alkaline aqueous solution. 0.132 kg of acidic silicic acid solution was added to this alkaline aqueous solution and mixed.
The mixture was heated to 80.0° C. and maintained at that temperature for 1.3 hours to obtain a precursor dispersion.
In the precursor dispersion, the SiO 2 concentration was 13.8 mass %, and the SiO 2 /A 2 O (molar ratio) was 3.2.

<シード粒子分散液の製造>
この前駆体分散液に、酸性珪酸液7.840kgを80.0℃で4.9時間かけて添加した(第二添加速度比=0.30)。添加終了後も80.0℃で0.5時間放置した。シード粒子分散液を得た。
得られたシード粒子分散液において、SiO濃度は6.3質量%であり、KO濃度は1.3質量%であった。動的光散乱粒子径測定装置で測定したシード粒子の平均粒子径は71nmであった。
<Preparation of seed particle dispersion>
To this precursor dispersion, 7.840 kg of the acidic silicic acid liquid was added over 4.9 hours at 80.0° C. (second addition rate ratio=0.30). After the addition was completed, the mixture was left at 80.0° C. for 0.5 hours to obtain a seed particle dispersion.
In the obtained seed particle dispersion, the SiO2 concentration was 6.3 mass %, and the K2O concentration was 1.3 mass %. The average particle size of the seed particles measured by a dynamic light scattering particle size measuring device was 71 nm.

<異形シリカ粒子分散液の製造>
超純水1.970kgに珪酸カリウム溶液(2)0.001kgを添加した。これにシード粒子分散液9.63kgを添加して混合した。ついで、これを97.5℃に昇温し、0.5時間保持した。
その後、酸性珪酸液160.06kgを12時間かけて添加した(第三添加速度比=2.5)。添加終了後も97.5℃で1時間放置した。続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られたシリカ粒子分散液において、SiO濃度は4.6質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定した異形シリカ粒子の平均粒子径D2は102nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Production of irregular shaped silica particle dispersion>
0.001 kg of potassium silicate solution (2) was added to 1.970 kg of ultrapure water. 9.63 kg of the seed particle dispersion was added thereto and mixed. Then, the temperature was raised to 97.5° C. and maintained at that temperature for 0.5 hours.
Thereafter, 160.06 kg of the acidic silicic acid liquid was added over 12 hours (third addition rate ratio = 2.5). After the addition was completed, the mixture was left at 97.5°C for 1 hour. Then, it was cooled to room temperature to obtain a dispersion of irregular shaped silica particles.
In the obtained silica particle dispersion, the SiO2 concentration was 4.6 mass% and the K2O concentration was 0.07 mass%. The average particle diameter D2 of the irregular silica particles measured by a dynamic light scattering particle size measuring device was 102 nm. In addition, when the reaction vessel was checked after the reaction was completed, no precipitation was confirmed at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.7質量%の異形シリカ粒子分散液を調製した。
得られた異形シリカ粒子の比表面積換算粒子径D1は45nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
The mixture was then concentrated using an ultrafiltration module to prepare a dispersion of irregular shaped silica particles with a SiO2 concentration of 11.7% by mass.
The resulting irregular shaped silica particles had a particle diameter D1 calculated based on a specific surface area of 45 nm. When the shape of the resulting silica particles was observed with an electron microscope, the particles were found to be particles containing irregular shaped particles in which a plurality of particles were bonded together.

[比較例1]
珪酸ナトリウム(SiO濃度24.28質量%、NaO濃度8.0質量%)67.2gに純水839.5gを添加して、シリカ濃度1.8質量%の珪酸ナトリウム水溶液を906.7g調製した。この珪酸ナトリウム水溶液に実施例1と同様にして得られた酸性珪酸液264.1g(SiO濃度4.7質量%)を添加し、攪拌した後に、79℃に昇温し、79℃にて、30分間保持し前駆体分散液とした。
次に、酸性珪酸液6,122.2gを9時間かけて連続的に添加した。続いて、酸性珪酸液2,040.6gを2時間かけて連続的に添加した。添加終了後、79℃にて1時間保った後、室温まで冷却した。動的光散乱法粒子径D2は15nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
得られたシリカゾルを限外ろ過膜(商品名:SIP-1013、旭化成株式会社製)を用いてシリカ濃度が12質量%になるまで濃縮した。ついでロータリーエバポレーターで20質量%まで濃縮した。
得られたシリカゾルにおける比表面積換算粒子径D1は11nmであった。電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、ほぼ球状であり異形粒子を得ることができなかった。
[Comparative Example 1]
839.5g of pure water was added to 67.2g of sodium silicate ( SiO2 concentration 24.28% by mass, Na2O concentration 8.0% by mass) to prepare 906.7g of sodium silicate aqueous solution with a silica concentration of 1.8% by mass. 264.1g of acidic silicic acid solution ( SiO2 concentration 4.7% by mass) obtained in the same manner as in Example 1 was added to this sodium silicate aqueous solution, stirred, and then heated to 79°C and held at 79°C for 30 minutes to obtain a precursor dispersion.
Next, 6,122.2 g of acidic silicic acid solution was added continuously over 9 hours. Then, 2,040.6 g of acidic silicic acid solution was added continuously over 2 hours. After the addition was completed, the mixture was kept at 79° C. for 1 hour and then cooled to room temperature. The particle diameter D2 measured by dynamic light scattering was 15 nm. In addition, when the reaction vessel was checked after the reaction was completed, no precipitation was observed at the bottom of the vessel.
The obtained silica sol was concentrated using an ultrafiltration membrane (product name: SIP-1013, manufactured by Asahi Kasei Corporation) until the silica concentration became 12% by mass, and then concentrated to 20% by mass with a rotary evaporator.
The silica sol had a particle diameter D1 calculated based on a specific surface area of 11 nm. When the shape of the particles was observed with an electron microscope, the shape of the particles was found to be almost spherical, and no irregularly shaped particles were obtained.

[比較例2]
珪酸カリウム(SiO濃度20.5質量%、KO濃度9.37質量%)87.84gに純水1,126.6gを添加し、水酸化カリウム水溶液(KOH濃度3質量%)31.42gを添加し、攪拌した後に83℃に昇温し、83℃にて30分保持して前駆体分散液とした。
次に、酸性珪酸液1,493.8gを3時間かけて連続的に添加した。続いて、酸性珪酸液8,962.8gを12時間かけて連続的に添加した。添加終了後、83℃にて1時間保った後、室温まで冷却した。動的光散乱粒子径D2は35nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
得られたシリカゾルを限外ろ過膜(商品名:SIP-1013、旭化成株式会社製)を用いてシリカ濃度が12質量%になるまで濃縮した。ついでロータリーエバポレーターで20質量%まで濃縮した。
得られたシリカゾルにおける比表面積換算粒子径D1は25nmであった。電子顕微鏡で粒子の形状を観察したところ、粒子の形状はほぼ球状であり異形粒子を得ることができなかった。
[Comparative Example 2]
1,126.6 g of pure water was added to 87.84 g of potassium silicate ( SiO2 concentration 20.5 mass%, K2O concentration 9.37 mass%), 31.42 g of potassium hydroxide aqueous solution (KOH concentration 3 mass%) was added, and after stirring, the mixture was heated to 83°C and maintained at 83°C for 30 minutes to obtain a precursor dispersion liquid.
Next, 1,493.8 g of acidic silicic acid solution was added continuously over 3 hours. Then, 8,962.8 g of acidic silicic acid solution was added continuously over 12 hours. After the addition was completed, the mixture was kept at 83° C. for 1 hour and then cooled to room temperature. The dynamic light scattering particle diameter D2 was 35 nm. In addition, when the reaction vessel was checked after the reaction was completed, no precipitation was confirmed at the bottom of the vessel.
The obtained silica sol was concentrated using an ultrafiltration membrane (product name: SIP-1013, manufactured by Asahi Kasei Corporation) until the silica concentration became 12% by mass, and then concentrated to 20% by mass with a rotary evaporator.
The silica sol had a particle diameter D1 calculated based on the specific surface area of 25 nm. When the shape of the particles was observed with an electron microscope, the shape of the particles was almost spherical, and no irregular-shaped particles were obtained.

[比較例3]
珪酸ナトリウム(SiO濃度24.3質量%、NaO濃度8質量%)3,294gに純水9,483gを添加し、実施例1と同様にして得られた酸性珪酸液(SiO濃度4.6質量%)347gを添加し、塩化カリウム水溶液(KCl濃度20質量%)254gを添加し、攪拌した後に、97℃に昇温し、97℃にて、30分保持し、前駆体分散液とした。
次に酸性珪酸液281.8kgを15時間かけて連続的に添加した。添加終了後、97℃にて1時間保った後、室温まで冷却した。動的光散乱粒子径D2は155nmであった。また反応容器を確認すると、反応容器の一部に粗大なシリカの凝集体による沈殿が確認された。
得られたシリカゾルを限外ろ過膜(商品名:SIP-1013、旭化成株式会社製)を用いてシリカ濃度が12質量%になるまで濃縮した。ついでロータリーエバポレーターで20質量%まで濃縮した。
得られたシリカゾルにおける比表面積換算粒子径D1は65nmであった。電子顕微鏡で粒子の形状を観察したところ、異形粒子であった。しかし、下記表2に示すように粗大粒子数が多く、一部に粗大な凝集物や沈殿が確認された。
[Comparative Example 3]
9,483 g of pure water was added to 3,294 g of sodium silicate ( SiO2 concentration 24.3 mass%, Na2O concentration 8 mass%), 347 g of an acidic silicic acid solution ( SiO2 concentration 4.6 mass%) obtained in the same manner as in Example 1 was added, and 254 g of an aqueous potassium chloride solution (KCl concentration 20 mass%) was added. After stirring, the mixture was heated to 97°C and held at 97°C for 30 minutes to obtain a precursor dispersion.
Next, 281.8 kg of acidic silicic acid solution was added continuously over 15 hours. After the addition was completed, the mixture was kept at 97° C. for 1 hour and then cooled to room temperature. The dynamic light scattering particle diameter D2 was 155 nm. When the reaction vessel was checked, precipitation due to coarse silica aggregates was confirmed in part of the reaction vessel.
The obtained silica sol was concentrated using an ultrafiltration membrane (product name: SIP-1013, manufactured by Asahi Kasei Corporation) until the silica concentration became 12% by mass, and then concentrated to 20% by mass with a rotary evaporator.
The specific surface area converted particle diameter D1 of the obtained silica sol was 65 nm. When the shape of the particles was observed with an electron microscope, the particles were found to be irregularly shaped. However, as shown in Table 2 below, the number of coarse particles was large, and coarse aggregates and precipitates were partially observed.

[比較例4]
酸性珪酸液3,804g(4.6質量%)に純水1,196gを添加し、さらにフッ化カリウム水溶液(KF濃度10質量%)を42.34g添加し、水酸化ナトリウム水溶液(NaOH濃度3.0質量%)を用いてpHを8.0に調整し、98℃で1h保持することで、前駆体分散液を得た。
次に、酸性珪酸液7,609gを2時間かけて添加し、添加中はNaOHでpH9~10を維持し、添加終了後、98℃で1時間熟成を行った。得られたシリカゾルにおける比表面積換算粒子径D1が9nmで、動的光散乱粒子径D2は54nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。電子顕微鏡で粒子の形状を観察したところ、異形粒子であったが、一次径および二次径のサイズが小さな異形粒子しか得ることができなかった。
[Comparative Example 4]
1,196 g of pure water was added to 3,804 g (4.6 mass%) of the acidic silicic acid liquid, 42.34 g of an aqueous potassium fluoride solution (KF concentration 10 mass%) was further added, and the pH was adjusted to 8.0 using an aqueous sodium hydroxide solution (NaOH concentration 3.0 mass%). The mixture was then kept at 98° C. for 1 hour to obtain a precursor dispersion liquid.
Next, 7,609 g of acidic silicic acid liquid was added over 2 hours, and the pH was maintained at 9-10 with NaOH during the addition, and after the addition was completed, the mixture was aged at 98°C for 1 hour. The specific surface area converted particle diameter D1 of the obtained silica sol was 9 nm, and the dynamic light scattering particle diameter D2 was 54 nm. Furthermore, when the reaction vessel was checked after the reaction was completed, no precipitation or the like was confirmed at the bottom of the vessel. When the particle shape was observed with an electron microscope, it was found to be irregularly shaped particles, but only irregularly shaped particles with small primary and secondary diameters were obtained.

[比較例5]
酸性珪酸液782.6gに純水を加えて、SiO濃度3.6質量%に希釈し、攪拌しながら10質量%の硝酸カルシウム水溶液を5.8g添加し、引き続き、10質量%の水酸化ナトリウムを6.0g添加し、さらに純水188.2gを添加し、前駆体分散液を調製した。得られた前駆体分散液をオートクレーブに投入し、攪拌しながら120℃で6時間加熱した。加熱後は、室温まで冷却してシリカゾルを取り出した。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
得られたシリカゾルを限外ろ過膜を用いて12質量%になるまで濃縮した。得られたシリカゾルにおける比表面積換算粒子径D1が9nmで、動的光散乱粒子径D2は30nmであった。電子顕微鏡で粒子の形状を観察したところ、異形粒子であったが、一次径および二次径のサイズが小さな異形粒子しか得ることができなかった。
[Comparative Example 5]
Add pure water to 782.6g of acidic silicic acid solution to dilute to 3.6% by mass of SiO2 concentration, add 5.8g of 10% by mass of calcium nitrate aqueous solution while stirring, add 6.0g of 10% by mass of sodium hydroxide, and further add 188.2g of pure water to prepare a precursor dispersion. The obtained precursor dispersion was put into an autoclave and heated at 120°C for 6 hours while stirring. After heating, it was cooled to room temperature and the silica sol was taken out. In addition, when the reaction vessel was checked after the reaction was completed, no precipitation was confirmed at the bottom of the vessel.
The obtained silica sol was concentrated to 12% by mass using an ultrafiltration membrane. The specific surface area converted particle diameter D1 of the obtained silica sol was 9 nm, and the dynamic light scattering particle diameter D2 was 30 nm. When the particle shape was observed with an electron microscope, it was found to be irregular particles, but only irregular particles with small primary and secondary diameters were obtained.

表1には、異形シリカ粒子分散液の製造方法における各値を記載した。表2には、得られた異形シリカ粒子分散液に含まれる異形シリカ粒子の平均粒子径等を記載した。 Table 1 lists the various values in the manufacturing method of the irregular silica particle dispersion. Table 2 lists the average particle size of the irregular silica particles contained in the obtained irregular silica particle dispersion.

Figure 0007482699000001
Figure 0007482699000001

Figure 0007482699000002
Figure 0007482699000002

本発明の製造方法によれば、シリカ系成分以外の成分、例えば、アルカリ土類金属系原料(例えば、CaOおよびMgO等)あるいはハロゲン元素を含む原料(例えば、KClおよびKF等)を添加することなく、異形シリカ粒子を得ることができる。
このため、本発明の製造方法により得られた異形シリカ粒子分散液は、半導体デバイスのSiO酸化膜あるいは珪素半導体ウェハー用途において、研磨対象の基板を汚染するおそれがない。
したがって、シリカ系成分以外の成分を含まず半導体関係の研磨用途に好適な異形シリカ粒子分散液を効率的に製造することができる。
また、本発明の製造方法によれば、所望の異形度を有したシリカ粒子が溶媒に分散してなる異形シリカ粒子分散液を得ることができる。このため、ガラスハードディスク、石英ガラス、水晶、アルミニウムハードディスク、半導体デバイスのSiO酸化膜、珪素半導体ウェハーおよび化合物半導体ウェハー等に対して、優れた研磨特性を発揮するシリカ粒子を含む分散液を製造できる。
According to the manufacturing method of the present invention, irregular silica particles can be obtained without adding components other than silica-based components, such as alkaline earth metal-based raw materials (e.g., CaO and MgO, etc.) or raw materials containing halogen elements (e.g., KCl and KF, etc.).
Therefore, the irregular shaped silica particle dispersion obtained by the manufacturing method of the present invention does not contaminate the substrate to be polished when used for the SiO 2 oxide film of a semiconductor device or a silicon semiconductor wafer.
Therefore, it is possible to efficiently produce a dispersion of irregular shaped silica particles which does not contain any components other than silica-based components and is suitable for semiconductor-related polishing applications.
Furthermore, according to the manufacturing method of the present invention, it is possible to obtain an irregularly shaped silica particle dispersion in which silica particles having a desired irregularity are dispersed in a solvent, and therefore it is possible to produce a dispersion containing silica particles that exhibits excellent polishing properties for glass hard disks, quartz glass, crystal, aluminum hard disks, SiO2 oxide films of semiconductor devices, silicon semiconductor wafers, compound semiconductor wafers, etc.

Claims (8)

下記工程1~下記工程3を含み、かつ、下記条件1を満たすことを特徴とする異形シリカ粒子分散液の製造方法。
工程1:少なくともNaまたはKを有するアルカリ性化合物を含むアルカリ水溶液に第一酸性珪酸液を混合して、
更に温度50℃以上100℃未満の範囲で加熱熟成することにより、SiO濃度が3質量%以上20質量%以下であり、かつ下記数式(F1-1)で示す条件を満たす前駆体分散液を得る工程
2≦SiO/AO≦15・・・(F1-1)
(ここで、SiOは、前駆体分散液中のシリカのモル数を表し、AOは、前駆体分散液中のNaOおよびKOの合計のモル数を表す。)
工程2:前記工程1で得られた前記前駆体分散液に、第二酸性珪酸液を、下記数式(F2-1)で示す第二添加速度比が、0.1[kg/hr・kg]以上0.6[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満の範囲で加熱熟成することによりシード粒子分散液を得る工程
第二添加速度比[kg/hr・kg]=(第二酸性珪酸液中のシリカ含有量[kg])/(第二酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F2-1)
工程3:前記工程2で得られたシード粒子分散液に、第三酸性珪酸液を、下記数式(F3-1)で示す第三添加速度比が、1.1[kg/hr・kg]以上10[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満の範囲で加熱熟成することにより異形シリカ粒子分散液を得る工程
第三添加速度比[kg/hr・kg]=(第三酸性珪酸液中のシリカ含有量[kg])/(第三酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F3-1)
条件1:下記数式(F0-1)で示す条件を満たすこと。
1.9≦[前記第三添加速度比]/[前記第二添加速度比]≦40・・・(F0-1)
A method for producing a dispersion of irregular shaped silica particles, comprising the following steps 1 to 3, and satisfying the following condition 1:
Step 1: Mixing a first acidic silicic acid liquid with an alkaline aqueous solution containing an alkaline compound having at least Na or K;
Further, by heating and aging at a temperature in the range of 50° C. or more and less than 100° C., a precursor dispersion liquid having an SiO 2 concentration of 3 mass % or more and 20 mass % or less and satisfying the condition shown in the following mathematical formula (F1-1) is obtained. Step 2≦SiO 2 /A 2 O≦15...(F1-1)
(Here, SiO2 represents the number of moles of silica in the precursor dispersion, and A2O represents the total number of moles of Na2O and K2O in the precursor dispersion.)
Step 2: A step of adding a second acidic silicic acid liquid to the precursor dispersion liquid obtained in step 1 so that a second addition rate ratio represented by the following mathematical formula (F2-1) is in the range of 0.1 [kg/hr kg] to 0.6 [kg/hr kg], and further heating and aging the mixture at a temperature in the range of 50° C. to 100° C. to obtain a seed particle dispersion liquid. Second addition rate ratio [kg/hr kg]=(silica content in the second acidic silicic acid liquid [kg])/(addition time of the second acidic silicic acid liquid [hr])/(silica content in the precursor dispersion liquid [kg])...(F2-1)
Step 3: A step of adding a third acidic silicic acid liquid to the seed particle dispersion liquid obtained in the step 2 so that a third addition speed ratio represented by the following mathematical formula (F3-1) is in the range of 1.1 [kg/hr kg] to 10 [kg/hr kg], and further heating and aging the mixture at a temperature in the range of 50° C. to less than 100° C. to obtain an irregularly shaped silica particle dispersion liquid. Third addition speed ratio [kg/hr kg]=(silica content in the third acidic silicic acid liquid [kg])/(addition time of the third acidic silicic acid liquid [hr])/(silica content in the precursor dispersion liquid [kg])...(F3-1)
Condition 1: The condition shown in the following formula (F0-1) is satisfied.
1.9≦[the third addition speed ratio]/[the second addition speed ratio]≦40 (F0-1)
前記工程3に続いて、下記工程4を含むことを特徴とする請求項1に記載の異形シリカ粒子分散液の製造方法。
工程4:前記工程3で得られた異形シリカ粒子分散液を濃縮する工程
2. The method for producing an irregular shaped silica particle dispersion according to claim 1, further comprising the following step 4 subsequent to step 3:
Step 4: Concentrating the irregular shaped silica particle dispersion obtained in step 3
更に下記条件2を満たすことを特徴とする請求項1または2に記載の異形シリカ粒子分散液の製造方法。
条件2:前記前駆体分散液中において、シリカ1モルあたりに換算したハロゲン元素のモル数(モル/モル比)が0.5%以下であり、かつシリカ1モルあたりに換算したアルカリ土類金属のモル数(モル/モル比)が1000ppm以下であること。
3. The method for producing a dispersion liquid of irregular shaped silica particles according to claim 1, further satisfying the following condition 2:
Condition 2: In the precursor dispersion, the number of moles of halogen elements converted per 1 mole of silica (mol/mol ratio) is 0.5% or less, and the number of moles of alkaline earth metals converted per 1 mole of silica (mol/mol ratio) is 1000 ppm or less.
更に下記条件3を満たすことを特徴とする請求項1から3のいずれか一項に記載の異形シリカ粒子分散液の製造方法。
条件3:下記数式(F0-2)で示すシリカ含有量比が、10以上100以下の範囲にあること。
シリカ含有量比={(第二酸性珪酸液中のシリカ含有量[kg])+(第三酸性珪酸液中のシリカ含有量[kg])}/(前駆体分散液中のシリカ含有量[kg])・・・(F0-2)
The method for producing a dispersion liquid of irregular shaped silica particles according to any one of claims 1 to 3, further satisfying the following condition 3:
Condition 3: The silica content ratio represented by the following formula (F0-2) is in the range of 10 or more and 100 or less.
Silica content ratio={(silica content in the second acidic silicic acid liquid [kg])+(silica content in the third acidic silicic acid liquid [kg])}/(silica content in the precursor dispersion liquid [kg]) (F0-2)
更に下記条件4を満たすことを特徴とする請求項1から4のいずれか一項に記載の異形シリカ粒子分散液の製造方法。
条件4:前記異形シリカ粒子分散液におけるSiO/AOモル比が、60以上140以下の範囲にあること。(ここで、SiOは異形シリカ粒子分散液中のシリカのモル数を表し、AOは異形シリカ粒子分散液中のNaOおよびKOの合計モル数を表す。)
The method for producing a dispersion liquid of irregular shaped silica particles according to any one of claims 1 to 4, further satisfying the following condition 4:
Condition 4: The SiO2 / A2O molar ratio in the irregular silica particle dispersion is in the range of 60 to 140. (Here, SiO2 represents the number of moles of silica in the irregular silica particle dispersion, and A2O represents the total number of moles of Na2O and K2O in the irregular silica particle dispersion.)
前記工程1の前記アルカリ水溶液が、珪酸カリウム水溶液である請求項1から5のいずれか一項に記載の異形シリカ粒子分散液の製造方法。 The method for producing a dispersion of irregular silica particles according to any one of claims 1 to 5, wherein the alkaline aqueous solution in step 1 is an aqueous potassium silicate solution. 前記工程1の前記アルカリ性化合物が、水酸化カリウムである請求項1から5のいずれか一項に記載の異形シリカ粒子分散液の製造方法。 The method for producing a dispersion liquid of irregular shaped silica particles according to any one of claims 1 to 5, wherein the alkaline compound in the step 1 is potassium hydroxide. 得られる異形シリカ粒子が、比表面積換算粒子径(D1)10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、かつ(D2)/(D1)の値が1.2以上20以下の範囲にあることを特徴とする請求項1から7のいずれか一項に記載の異形シリカ粒子分散液の製造方法。 The method for producing an irregular silica particle dispersion according to any one of claims 1 to 7, characterized in that the obtained irregular silica particles have a specific surface area converted particle diameter (D1) in the range of 10 nm to 200 nm, an average particle diameter (D2) measured by dynamic light scattering in the range of 20 nm to 300 nm, and a value of (D2)/(D1) in the range of 1.2 to 20.
JP2020111744A 2020-06-29 2020-06-29 Method for producing irregular silica particle dispersion Active JP7482699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020111744A JP7482699B2 (en) 2020-06-29 2020-06-29 Method for producing irregular silica particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020111744A JP7482699B2 (en) 2020-06-29 2020-06-29 Method for producing irregular silica particle dispersion

Publications (2)

Publication Number Publication Date
JP2022022601A JP2022022601A (en) 2022-02-07
JP7482699B2 true JP7482699B2 (en) 2024-05-14

Family

ID=80224901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111744A Active JP7482699B2 (en) 2020-06-29 2020-06-29 Method for producing irregular silica particle dispersion

Country Status (1)

Country Link
JP (1) JP7482699B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149493A (en) 2007-11-30 2009-07-09 Jgc Catalysts & Chemicals Ltd Nonspherical silica sol, method for producing the same and polishing composition
JP2011104694A (en) 2009-11-16 2011-06-02 Jgc Catalysts & Chemicals Ltd Inorganic oxide particulate dispersion liquid, polishing particle dispersion liquid, and polishing composition
JP2013032276A (en) 2005-08-10 2013-02-14 Jgc Catalysts & Chemicals Ltd Deformed silica sol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032276A (en) 2005-08-10 2013-02-14 Jgc Catalysts & Chemicals Ltd Deformed silica sol
JP2009149493A (en) 2007-11-30 2009-07-09 Jgc Catalysts & Chemicals Ltd Nonspherical silica sol, method for producing the same and polishing composition
JP2011104694A (en) 2009-11-16 2011-06-02 Jgc Catalysts & Chemicals Ltd Inorganic oxide particulate dispersion liquid, polishing particle dispersion liquid, and polishing composition

Also Published As

Publication number Publication date
JP2022022601A (en) 2022-02-07

Similar Documents

Publication Publication Date Title
JP6803823B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion
JP5599440B2 (en) Deformed silica sol
JP5602358B2 (en) Non-spherical silica sol, method for producing the same, and polishing composition
JP5587957B2 (en) Konpira sugar-like sol
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
JPWO2016159167A1 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing silica-based composite fine particle dispersion
JP2019081672A (en) Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
JP6207345B2 (en) Method for producing silica particles
JP4549878B2 (en) Method for producing high-purity aqueous silica sol
TW201904870A (en) Oxide-based composite fine particle dispersion, method for producing the same, and abrasive dispersion for polishing containing cerium oxide-based composite fine particle dispersion
JP2007153692A (en) Method for manufacturing anisotropic-shape silica sol
JP2017193692A (en) Silica-based composite fine particle fluid dispersion, method for producing same and polishing slurry including silica-based composite fine particle fluid dispersion
KR101121576B1 (en) A manufacturing method of colloidal silica for chemical mechenical polishing
JP2009126741A (en) Non-spherical alumina-silica composite sol, method for producing the same and composition for polishing
JPWO2018181713A1 (en) Method for producing silica particle dispersion
JP7482699B2 (en) Method for producing irregular silica particle dispersion
JP2017178703A (en) Method for producing silica-based composite particle dispersion liquid
JP7117225B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP2021127359A (en) Ceria-based composite fine particle dispersion, method for producing the same, and ceria-based composite fine particle dispersion-containing polishing abrasive grain dispersion
TW201831403A (en) Silica particle liquid dispersion and production method therefor
WO2022123820A1 (en) Irregularly-shaped silica-based fine particle dispersion, method for producing same, particle-linked silica fine particle dispersion, method for producing same, and abrasive grain dispersion for polishing
JP7015200B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP2017214271A (en) Silica-based composite fine particle fluid dispersion, production method therefor and abrasive grain fluid dispersion including silica-based composite fine particle fluid dispersion
JP2009091197A (en) Warty-surfaced sphere-form inorganic oxide sol, method for producing same, and abrasive containing the sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240430

R150 Certificate of patent or registration of utility model

Ref document number: 7482699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150