JP2022022601A - Manufacturing method of heteromorphic silica particle dispersion, and heteromorphic silica particle dispersion thereof - Google Patents

Manufacturing method of heteromorphic silica particle dispersion, and heteromorphic silica particle dispersion thereof Download PDF

Info

Publication number
JP2022022601A
JP2022022601A JP2020111744A JP2020111744A JP2022022601A JP 2022022601 A JP2022022601 A JP 2022022601A JP 2020111744 A JP2020111744 A JP 2020111744A JP 2020111744 A JP2020111744 A JP 2020111744A JP 2022022601 A JP2022022601 A JP 2022022601A
Authority
JP
Japan
Prior art keywords
silica
particle dispersion
silicic acid
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020111744A
Other languages
Japanese (ja)
Inventor
和洋 中山
Kazuhiro Nakayama
達也 向井
Tatsuya Mukai
大輔 山田
Daisuke Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2020111744A priority Critical patent/JP2022022601A/en
Publication of JP2022022601A publication Critical patent/JP2022022601A/en
Pending legal-status Critical Current

Links

Abstract

To provide a manufacturing method of a heteromorphic silica particle dispersion.SOLUTION: There is provided a manufacturing method of a heteromorphic silica particle dispersion that comprises the following steps 1 to 3, satisfying the following condition 1. The step 1 is a step of mixing a first acidic silicate solution and an aqueous alkaline solution including an alkaline compound in which Na or K is contained, followed by heat-aging to obtain a precursor dispersion with SiO2 concentration and SiO2/A2O (molar ratio) in specific ranges. The step 2 is a step of adding a second acidic silicate solution into the precursor dispersion obtained in the step 1, in a specific range of a second addition speed ratio, followed by the heat-aging to obtain a seed particle dispersion. The step 3 is a step of adding a third acidic silicate solution into a seed particle dispersion obtained in the step 2, in a specific range of a third addition speed ratio, followed by the heat-aging to obtain the heteromorphic silica particle dispersion. The condition 1 is that the third addition speed ratio/the second addition speed ratio is within a specific range.SELECTED DRAWING: None

Description

本発明は、異形シリカ粒子分散液の製造方法および異形シリカ粒子分散液に関する。 The present invention relates to a method for producing a modified silica particle dispersion and a modified silica particle dispersion.

研磨用粒子としては、従来、シリカゾルやヒュームドシリカおよびヒュームドアルミナ等が用いられている。半導体の集積回路付基板の製造においては、シリコンウェハー上にアルミニウムの配線を形成し、この上に絶縁膜としてシリカ等の酸化膜を設ける。この場合に配線による凹凸が生じるので、この酸化膜を研磨して平坦化することが行われている。このような基板の研磨において、研磨後の表面は段差や凹凸がなく平坦で、さらにミクロな傷等もなく平滑であること、および高い研磨速度が求められている。 Conventionally, silica sol, fumed silica, fumed alumina, and the like have been used as the polishing particles. In the manufacture of a substrate with an integrated circuit of a semiconductor, an aluminum wiring is formed on a silicon wafer, and an oxide film such as silica is provided as an insulating film on the aluminum wiring. In this case, unevenness occurs due to wiring, so this oxide film is polished and flattened. In such polishing of a substrate, the surface after polishing is required to be flat without steps or irregularities, to be smooth without microscopic scratches, and to have a high polishing speed.

化学的機械的研磨(CMP)で使用される研磨材は、通常、研磨用粒子、酸化剤、有機酸等の添加剤および純水等の溶媒から構成されている。研磨用粒子は、シリカおよびアルミナ等の金属酸化物からなる平均粒子径が200nm程度の球状である。酸化剤は、配線・回路用金属の研磨速度を早める。
被研磨材の表面には配線用の溝パターンに起因した段差(凹凸)が存在する場合、主に凸部を研磨除去しながら共面まで研磨し、平坦な研磨面とすることが求められている。しかし、従来の球状の研磨用粒子では共面より上の部分を研磨した際に、凹部の下部にあった配線溝内の回路用金属が共面以下まで研磨される問題(ディッシングと呼ばれている。)があった。このようなディッシング(過研磨)が起きると配線の厚みが減少して配線抵抗が増加したり、また、この上に形成される絶縁膜の平坦性が低下する等の問題が生じる。このため、ディッシングを抑制することが求められている。
近年、研磨用粒子として、従来の球状粒子に代わり、非球状の粒子が提案されている。
Abrasives used in chemical mechanical polishing (CMP) are usually composed of polishing particles, oxidants, additives such as organic acids and solvents such as pure water. The polishing particles are spherical with an average particle diameter of about 200 nm, which is made of a metal oxide such as silica and alumina. Oxidizing agents accelerate the polishing speed of metal for wiring and circuits.
When there is a step (unevenness) due to the groove pattern for wiring on the surface of the material to be polished, it is required to polish the convex part to the same surface while polishing and removing it to make a flat polished surface. There is. However, with conventional spherical polishing particles, when the part above the coplanarity is polished, the circuit metal in the wiring groove at the bottom of the recess is polished to below the coplanarity (called dishing). There was.). When such dishing (over-polishing) occurs, the thickness of the wiring is reduced and the wiring resistance is increased, and the flatness of the insulating film formed on the wiring is lowered. Therefore, it is required to suppress dishing.
In recent years, non-spherical particles have been proposed as polishing particles instead of the conventional spherical particles.

異形粒子を含むシリカゾルの製造方法としては、特許文献1にSiOとして0.05~5.0重量%のアルカリ金属珪酸塩水溶液に、珪酸液を添加して混合液のSiO/MO(モル比、Mはアルカリ金属または第4級アンモニウム)を30~60とした後に、Ca、Mg、Al、In、Ti、Zr、Sn、Si、Sb、Fe、Cuおよび希土類金属からなる群から選ばれた1種または2種以上の金属の化合物を添加し(添加時期は、前記珪酸液添加の前または添加中でも良い)、この混合液を60℃以上の任意の温度で一定時間維持し、更に珪酸液を添加して反応液中のSiO/MO(モル比)を60~100としてなる実質的に異形形状のシリカ粒子が分散したゾルの製法が開示されている。 As a method for producing a silica sol containing irregularly shaped particles, in Patent Document 1, a silicic acid solution is added to an alkali metal silicate aqueous solution of 0.05 to 5.0% by weight as SiO 2 , and the mixed solution is SiO 2 / M 2 O. After setting (molar ratio, M is alkali metal or quaternary ammonium) to 30 to 60, it consists of a group consisting of Ca, Mg, Al, In, Ti, Zr, Sn, Si, Sb, Fe, Cu and rare earth metals. A compound of one or more selected metals is added (the time of addition may be before or during the addition of the silicic acid solution), and the mixed solution is maintained at an arbitrary temperature of 60 ° C. or higher for a certain period of time. Further disclosed is a method for producing a sol in which substantially irregularly shaped silica particles having a SiO 2 / M 2 O (molar ratio) of 60 to 100 in the reaction solution are dispersed by adding a silicic acid solution.

特許文献2には、活性珪酸のコロイド水溶液に、水溶性のカルシウム塩、マグネシウム塩またはこれらの混合物の水溶液を添加し、得られた水溶液にアルカリ性物質を加え、得られた混合物の一部を60℃以上に加熱してヒール液とし、残部をフィード液として、当該ヒール液に当該フィード液を添加し、当該添加の間に、水を蒸発させることによりSiO濃度6~30重量%まで濃縮することよりなる細長い形状のシリカゾルの製造法が開示されている。 In Patent Document 2, an aqueous solution of a water-soluble calcium salt, magnesium salt or a mixture thereof is added to a colloidal aqueous solution of active silicic acid, an alkaline substance is added to the obtained aqueous solution, and a part of the obtained mixture is 60. The feed liquid is added to the heel liquid by heating to a temperature of ° C. or higher to obtain a heel liquid, and the balance is used as a feed liquid. During the addition, water is evaporated to concentrate the SiO 2 concentration to 6 to 30% by weight. Disclosed is a method for producing a silica sol having an elongated shape.

特許文献3には、SiOとして0.5~10重量%を含有し、かつ、pHが2~6である活性珪酸のコロイド水溶液に、水溶性のII価またはIII価の金属の塩を単独または混合して含有する水溶液を、同活性珪酸のコロイド水溶液のSiOに対して、金属酸化物(II価の金属の塩の場合はMOとし、III価の金属の塩の場合はMとする。但し、MはII価またはIII価の金属原子を表し、Oは酸素原子を表す。) として1~10重量%となる量を加えて混合し、得られた混合液(1)に、平均粒子径10~120nm、pH2~6の酸性球状シリカゾルを、この酸性球状シリカゾルに由来するシリカ含量(A)とこの混合液(1)に由来するシリカ含量(B)の比A/B(重量比)が5~100、かつ、この酸性球状シリカゾルとこの混合液(1)との混合により得られる混合液(2)の全シリカ含量(A+B)が混合液(2)においてSiO濃度5~40重量%となるように加えて混合し混合液(2)にアルカリ金属水酸化物等をpHが7~11となるように加えて混合し、得られた混合液(3)を100~200℃で0.5~50時間加熱してなる数珠状のシリカゾルの製造方法が記載されている。 Patent Document 3 describes a water-soluble II-valent or III-valent metal salt alone in a colloidal aqueous solution of active silicic acid containing 0.5 to 10% by weight of SiO 2 and having a pH of 2 to 6. Alternatively, the aqueous solution contained as a mixture is designated as MO for a metal oxide (MO in the case of a salt of a II-valent metal, and M 2 O in the case of a salt of a III-valent metal) with respect to SiO 2 of a colloidal aqueous solution of the same active silicic acid. However, M represents a metal atom having a valence of II or III , and O represents an oxygen atom.) An amount of 1 to 10% by weight was added and mixed to obtain a mixed solution (1). In addition, an acidic spherical silica sol having an average particle diameter of 10 to 120 nm and a pH of 2 to 6 is a ratio A / B of the silica content (A) derived from the acidic spherical silica sol and the silica content (B) derived from the mixed solution (1). The (weight ratio) is 5 to 100, and the total silica content (A + B) of the mixed solution (2) obtained by mixing the acidic spherical silica sol and the mixed solution (1) is the SiO 2 concentration in the mixed solution (2). Add and mix so as to be 5 to 40% by weight, add alkali metal hydroxide or the like to the mixed solution (2) so as to have a pH of 7 to 11, and mix, and the obtained mixed solution (3) is 100. A method for producing a beaded silica sol heated at about 200 ° C. for 0.5 to 50 hours is described.

特許文献4には、SiO濃度1~8モル/リットル、酸濃度0.0018~0.18モル/リットルで水濃度2~30モル/リットルの範囲の組成で、溶剤を使用しないでアルキルシリケートを酸触媒で加水分解した後、SiO濃度が0.2~1.5モル/リットルの範囲となるように水で希釈し、次いでpHが7以上となるようにアルカリ触媒を加え加熱して珪酸の重合を進行させて、電子顕微鏡観察による太さ方向の平均直径が5~100nmであり、長さがその1.5~50倍の長さの細長い形状の非晶質シリカ粒子が液状分散体中に分散されているシリカゾルの製造方法が記載されている。 Patent Document 4 describes alkyl silicates having a composition in the range of SiO 2 concentration of 1 to 8 mol / liter, acid concentration of 0.0018 to 0.18 mol / liter and water concentration of 2 to 30 mol / liter, without using a solvent. Is hydrolyzed with an acid catalyst, diluted with water so that the SiO 2 concentration is in the range of 0.2 to 1.5 mol / liter, and then an alkaline catalyst is added and heated so that the pH is 7 or more. By advancing the polymerization of silicic acid, amorphous silica particles having an elongated shape having an average diameter of 5 to 100 nm in the thickness direction and 1.5 to 50 times the length as observed by an electron microscope are liquid-dispersed. A method for producing a silica sol dispersed throughout the body is described.

特許文献5には、水ガラス等のアルカリ金属珪酸塩の水溶液を脱陽イオン処理することにより得られるSiO濃度2~6質量%程度の活性珪酸の酸性水溶液に、アルカリ土類金属、例えば、Ca、Mg、Ba等の塩をその酸化物換算で上記活性珪酸のSiOに対し100~1500ppmの重量比に添加し、更にこの液中SiO/MO(Mは、アルカリ金属原子、NHまたは第4級アンモニウム基を表す。)モル比が20~150となる量の同アルカリ物質を添加することにより得られる液を当初ヒール液とし、同様にして得られる2~6質量%のSiO濃度と20~150のSiO/MO(Mは、上記と同じ。)モル比を有する活性珪酸水溶液をチャージ液として、60~150℃で前記当初ヒール液に前記チャージ液を、1時間当たり、チャージ液SiO/当初ヒール液SiOの重量比として0.05~1.0の速度で、液から水を蒸発除去しながら(またはせずに)、添加してなる歪な形状を有するシリカゾルの製造方法が記載されている。 Patent Document 5 describes an alkaline earth metal, for example, an alkaline earth metal, for example, in an acidic aqueous solution of active silicic acid having a SiO 2 concentration of about 2 to 6% by mass, which is obtained by decationizing an aqueous solution of an alkali metal silicate such as water glass. Salts such as Ca, Mg, and Ba are added in a weight ratio of 100 to 1500 ppm with respect to SiO 2 of the active silicic acid in terms of oxide thereof, and further, SiO 2 / M 2 O (M is an alkali metal atom, Represents NH 4 or a quaternary ammonium group.) The liquid obtained by adding the same alkaline substance in an amount having a molar ratio of 20 to 150 is initially used as a heel liquid, and 2 to 6% by mass obtained in the same manner. An active silicic acid aqueous solution having a SiO 2 concentration and a SiO 2 / M 2 O (M is the same as above) molar ratio of 20 to 150 is used as a charging liquid, and the charging liquid is added to the initial heel liquid at 60 to 150 ° C. Distortion caused by adding water from the liquid with or without evaporation at a rate of 0.05 to 1.0 as the weight ratio of charge liquid SiO 2 / initial heel liquid SiO 2 per hour. A method for producing a silica sol having a shape is described.

特許文献6には、(1)珪酸アルカリ水溶液を鉱酸で中和しアルカリ性物質を添加して加熱熟成する方法、(2)珪酸アルカリ水溶液を陽イオン交換処理して得られる活性珪酸にアルカリ性物質を添加して加熱熟成する方法、(3)エチルシリケート等のアルコキシシランを加水分解して得られる活性珪酸を加熱熟成する方法、または、(4)シリカ微粉末を水性媒体中で直接に分散する方法等によって製造されるコロイダルシリカ水溶液は、通常、4~1,000nm(ナノメートル)、好ましくは7~500nmの粒子径を有するコロイド状シリカ粒子が水性媒体に分散したものであり、SiOとして0.5~50質量%、好ましくは0.5~30質量%の濃度を有する。上記シリカ粒子の粒子形状は、球状、いびつ状、偏平状、板状、細長い形状および繊維状等が挙げられることが記載されている。 Patent Document 6 describes (1) a method of neutralizing an aqueous solution of alkaline silicate with mineral acid, adding an alkaline substance and aging by heating, and (2) an alkaline substance in active silicic acid obtained by cation exchange treatment of the aqueous solution of alkaline silicate. (3) A method of heating and aging active silicic acid obtained by hydrolyzing an alkoxysilane such as ethyl silicate, or (4) A method of directly dispersing silica fine powder in an aqueous medium. The colloidal silica aqueous solution produced by the method or the like is usually composed of colloidal silica particles having a particle size of 4 to 1,000 nm (nanometers), preferably 7 to 500 nm dispersed in an aqueous medium, and is used as SiO 2 . It has a concentration of 0.5 to 50% by mass, preferably 0.5 to 30% by mass. It is described that the particle shape of the silica particles includes a spherical shape, a distorted shape, a flat shape, a plate shape, an elongated shape, a fibrous shape, and the like.

特許文献7には、互いにボンドによって連結していない球形の、分離したシリカ粒子を含む研磨剤であって、A)寸法5-50nmのシリカ粒子5-95質量%、およびb)寸法50-200nmのシリカ粒子95-5質量%を含む、但し粒子の全体がバイモーダルな粒径分布を有する研磨剤が高い研磨速度を与えることを報告している。 Patent Document 7 describes a polishing agent containing separated silica particles, which are spherical and not connected to each other by a bond, in which A) the silica particles having a size of 5-50 nm are 5-95% by mass, and b) the size is 50-200 nm. It is reported that a polishing agent containing 95-5% by mass of silica particles, but having a bimodal particle size distribution as a whole, gives a high polishing rate.

また、特許文献8には、異形度が1.55~4の範囲にあり、動的光散乱法による粒子径分布において30~70nmの粒子径範囲と71~150nmの粒子径範囲に粒子径分布のピークがあり、両ピークの粒子径差が50~100nmの範囲にある研磨用シリカゾルを用いると優れた研磨レートが達成されることを開示している。 Further, in Patent Document 8, the degree of deformation is in the range of 1.55 to 4, and the particle size distribution is in the particle size range of 30 to 70 nm and the particle size range of 71 to 150 nm in the particle size distribution by the dynamic light scattering method. It is disclosed that an excellent polishing rate is achieved by using a polishing silica sol having a peak in the range of 50 to 100 nm in particle size difference between the two peaks.

さらに、特許文献9には、真球度が0.9以上の球状粒子とこの球状粒子に該当しない非球状粒子を所定重量比で含む研磨用組成物は被研磨面が凹凸を有していても研磨後の表面が平坦性に優れ、長時間の研磨に供しても研磨性能の低下が抑制できることを開示している。 Further, in Patent Document 9, a polishing composition containing spherical particles having a sphericity of 0.9 or more and non-spherical particles not corresponding to the spherical particles in a predetermined weight ratio has an uneven surface to be polished. However, it is disclosed that the surface after polishing is excellent in flatness, and deterioration of polishing performance can be suppressed even after long-term polishing.

また、特許文献10には、電子材料用研磨剤等に有用なコロイダルシリカとして、ケイ酸アルカリ水溶液をカチオン交換樹脂に接触させて活性珪酸を調製し、これにカリウムイオンの供給源となる化合物とアルカリ剤として水酸化アルカリ金属あるいは水酸化第4級アンモニウム等を添加してアルカリ性にした後、加熱してシリカ粒子を形成し、続いて加熱下に、アルカリ性を維持しながら、活性珪酸水溶液とアルカリ剤とカリウムイオンの供給源となる化合物を添加してシリカ粒子を成長させ、透過型電子顕微鏡写真観察による長径/短径比が1.2~10のカリウムイオンを含む異形シリカ粒子群が開示されている。 Further, in Patent Document 10, as colloidal silica useful for polishing agents for electronic materials and the like, an alkaline aqueous solution of silicic acid is brought into contact with a cation exchange resin to prepare active silicic acid, which is used as a compound as a source of potassium ions. After adding alkali metal hydroxide or quaternary ammonium hydroxide as an alkaline agent to make it alkaline, it is heated to form silica particles, and then under heating, the active silicic acid aqueous solution and alkali are maintained while maintaining alkalinity. A group of deformed silica particles containing potassium ions having a major axis / minor axis ratio of 1.2 to 10 by observing a transmission electron micrograph by adding an agent and a compound that is a source of potassium ions to grow silica particles is disclosed. ing.

特許文献11には、平均一次粒子径(D1)が20~100nmの範囲にあるシリカ一次粒子が少なくとも4個以上クラスター化し、平均粒子径(DCL)が40~300nmの範囲にあり、アスペクト比(DL)/(DS)が1.5~5の範囲にあることを特徴とするシリカ粒子の製造方法として、珪酸アルカリ水溶液に酸性珪酸液とハロゲン化アルカリとを、所定のモル比範囲となるように混合して、シリカ粒子の種粒子前駆体分散液とし、続いて加熱熟成させた後、下記式(1)で表されるレイノルズ数(Re)が2000~1,000,000の範囲で撹拌しながら酸性珪酸液を添加してなる製造方法を開示している。
Re=ndρ/μ・・・・・・・(1)
(但し、nは撹拌翼の回転数[S-1]、dは撹拌翼径[m]、ρは分散液の密度[kg/m]、μは分散液の粘度[Pa・s]である)
In Patent Document 11, at least four or more silica primary particles having an average primary particle diameter (D1) in the range of 20 to 100 nm are clustered, an average particle diameter (DCL) is in the range of 40 to 300 nm, and an aspect ratio (aspect ratio). As a method for producing silica particles characterized in that DL) / (DS) is in the range of 1.5 to 5, an acidic silicic acid solution and an alkali halide are added to an alkaline silicate aqueous solution so as to have a predetermined molar ratio range. To obtain a seed particle precursor dispersion of silica particles, which is subsequently heated and aged, and then stirred in the range of the Reynolds number (Re) represented by the following formula (1) in the range of 2000 to 1,000,000. However, it discloses a production method in which an acidic silicic acid solution is added.
Re = nd 2 ρ / μ ... (1)
(However, n is the rotation speed of the stirring blade [S-1], d is the diameter of the stirring blade [m], ρ is the density of the dispersion liquid [kg / m 3 ], and μ is the viscosity of the dispersion liquid [Pa · s]. be)

一般に、比較的大きな粒子径の異形シリカ粒子の製造方法としては、次の様な製造方法が知られている。
1)異形形状の種粒子にシリカ源となる成分を添加し、粒子成長させて異形シリカ粒子を得る方法
2)球状粒子どうしを結合させて粒子連結型シリカ系粒子またはそれに準じた異形シリカ粒子を得る方法
3)シリカ粒子を破砕して異形シリカ粒子を得る方法
ここで、1)の製造方法は、異形度の高い粒子は調製できるものの、比表面積換算粒子径が小さい粒子しか得られないため、研磨用途に適用した場合、研磨速度が低いという課題がある。比表面積換算粒子径の小さな粒子に珪酸等のシリカ源を添加して、大きなサイズに成長させると、粒子成長に従って異形度が低下し、球状に近づくため、所望の異形度の異形シリカ粒子を得ることは容易ではなかった。また、このような異形度の低い粒子を研磨用途に用いた場合、研磨速度が低いという課題がある。
2)の製造方法では、粒子どうしの連結のためにシリカ系以外の成分を必要としており(例えば、特許文献2では酸化カルシウム、酸化マグネシウム、特許文献4ではアルカリ触媒、特許文献5ではアルカリ土類金属、特許文献11では塩化カリウム等)、それらの成分を含んだ異形シリカ粒子を半導体用途の研磨等に適用した場合、汚染の原因となることが懸念される。また、これらのシリカ以外の成分はシリカ粒子の凝集促進剤として機能することで異形化が生じるが、一方でサイズが大きく異形度の高いシリカ粒子を調製しようとした場合、凝集促進剤が多量に必要であるため、凝集反応が進み過ぎ、一部に粗大な凝集体が生じる。このようなシリカゾルを研磨用途に適用した場合、粗大粒子数が多いため、スクラッチが発生し易く、沈降性によって研磨性能が安定しない傾向にある。
3)の製造方法では、粒子径、粒子形状とも均一な異形シリカ粒子を得ることは容易ではなかった。
Generally, the following production method is known as a method for producing irregularly shaped silica particles having a relatively large particle diameter.
1) A method of adding a component that becomes a silica source to irregularly shaped seed particles and growing the particles to obtain irregularly shaped silica particles. 2) Bonding spherical particles to form particle-connected silica-based particles or similar irregularly shaped silica particles. Method of obtaining 3) Method of crushing silica particles to obtain deformed silica particles Here, in the manufacturing method of 1), although particles having a high degree of deformity can be prepared, only particles having a small specific surface area equivalent particle diameter can be obtained. When applied to polishing applications, there is a problem that the polishing speed is low. When a silica source such as silicic acid is added to particles having a small specific surface area equivalent particle diameter and grown to a large size, the degree of deformation decreases as the particles grow and the particles approach a spherical shape, so that deformed silica particles having a desired degree of deformation can be obtained. It wasn't easy. Further, when such particles having a low degree of deformation are used for polishing, there is a problem that the polishing speed is low.
The production method of 2) requires components other than silica-based components for linking the particles (for example, calcium oxide and magnesium oxide in Patent Document 2, alkaline catalyst in Patent Document 4, and alkaline earth in Patent Document 5). Metals, potassium chloride, etc. in Patent Document 11), and when deformed silica particles containing these components are applied to polishing for semiconductor applications, there is a concern that they may cause contamination. In addition, these components other than silica cause deformation by functioning as an agglutination promoter for silica particles, but on the other hand, when trying to prepare silica particles having a large size and a high degree of agglutination, a large amount of agglutination promoter is used. Since it is necessary, the agglutination reaction proceeds too much, and coarse agglomerates are partially formed. When such a silica sol is applied to a polishing application, scratches are likely to occur due to a large number of coarse particles, and the polishing performance tends to be unstable due to sedimentation.
In the production method of 3), it was not easy to obtain irregularly shaped silica particles having uniform particle size and particle shape.

特開平4-187512号公報Japanese Unexamined Patent Publication No. 4-187512 特開平7-118008号公報Japanese Unexamined Patent Publication No. 7-118008 特開2001-11433号公報Japanese Unexamined Patent Publication No. 2001-11433 特開2001-48520号公報Japanese Unexamined Patent Publication No. 2001-48520 特開2001-150334号公報Japanese Unexamined Patent Publication No. 2001-150334 特開平8-279480号公報Japanese Unexamined Patent Publication No. 8-279480 特表2003-529662号公報Japanese Patent Publication No. 2003-528662 特開2007-137972号公報JP-A-2007-137972 特開2006-80406号公報Japanese Unexamined Patent Publication No. 2006-80406 特開2011-98859号公報Japanese Unexamined Patent Publication No. 2011-98859 特開2015-86102号公報Japanese Unexamined Patent Publication No. 2015-86102

本発明は、優れた研磨特性を有する比較的粒子径の大きい異形シリカ粒子を含む異形シリカ粒子分散液の製造において、珪酸ナトリウム等の原料に由来するアルカリ土類金属やハロゲン以外にこれらの元素を使用せずに製造する方法を提供することを課題とする。また、本発明は、優れた研磨特性を有する比較的粒子径の大きい異形シリカ粒子を含む異形シリカ粒子分散液を提供することを課題とする。 INDUSTRIAL APPLICABILITY The present invention uses these elements in addition to alkaline earth metals and halogens derived from raw materials such as sodium silicate in the production of a deformed silica particle dispersion containing deformed silica particles having a relatively large particle size and having excellent polishing properties. An object of the present invention is to provide a method for manufacturing without using the particles. Another object of the present invention is to provide a modified silica particle dispersion liquid containing irregular silica particles having a relatively large particle size and having excellent polishing properties.

本発明の一態様によれば、下記工程1~下記工程3を含み、かつ、下記条件1を満たすことを特徴とする異形シリカ粒子分散液の製造方法が提供される。
工程1:少なくともNaまたはKを有するアルカリ性化合物を含むアルカリ水溶液に第一酸性珪酸液を混合して、
更に温度50℃以上100℃未満の範囲で加熱熟成することにより、SiO濃度が3質量%以上20質量%以下であり、かつ下記数式(F1-1)で示す条件を満たす前駆体分散液を得る工程
2≦SiO/AO≦15・・・(F1-1)
(ここで、SiOは、前駆体分散液中のシリカのモル数を表し、AOは、前駆体分散液中のNaOおよびKOの合計のモル数を表す。)
工程2:前記工程1で得られた前記前駆体分散液に、第二酸性珪酸液を、下記数式(F2-1)で示す第二添加速度比が、0.1[kg/hr・kg]以上0.6[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満の範囲で加熱熟成することによりシード粒子分散液を得る工程
第二添加速度比[kg/hr・kg]=(第二酸性珪酸液中のシリカ含有量[kg])/(第二酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F2-1)
工程3:前記工程2で得られたシード粒子分散液に、第三酸性珪酸液を、下記数式(F3-1)で示す第三添加速度比が、1.1[kg/hr・kg]以上10[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満の範囲で加熱熟成することにより異形シリカ粒子分散液を得る工程
第三添加速度比[kg/hr・kg] =(第三酸性珪酸液中のシリカ含有量[kg])/(第三酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg]) ・・・(F3-1)
条件1:下記数式(F0-1)で示す条件を満たすこと。
1.9≦[前記第三添加速度比]/[前記第二添加速度比]≦40・・・(F0-1)
According to one aspect of the present invention, there is provided a method for producing a modified silica particle dispersion liquid, which comprises the following steps 1 to 3 and satisfies the following condition 1.
Step 1: The first acidic silicic acid solution is mixed with an alkaline aqueous solution containing an alkaline compound having at least Na or K.
Further, by heating and aging in a temperature range of 50 ° C. or higher and lower than 100 ° C., a precursor dispersion liquid having a SiO 2 concentration of 3% by mass or more and 20% by mass or less and satisfying the conditions shown by the following formula (F1-1) can be obtained. Obtaining step 2 ≦ SiO 2 / A 2 O ≦ 15 ... (F1-1)
(Here, SiO 2 represents the number of moles of silica in the precursor dispersion, and A 2 O represents the total number of moles of Na 2 O and K 2 O in the precursor dispersion.)
Step 2: The second acidic silicic acid solution is added to the precursor dispersion obtained in the step 1, and the second addition rate ratio represented by the following formula (F2-1) is 0.1 [kg / hr · kg]. Step 2 Addition rate ratio [2 kg / hr · kg] = (silica content in secondary acidic silicic acid solution [kg]) / (addition time of secondary acidic silicic acid solution [hr]) / (silica content in precursor dispersion [kg] ) ... (F2-1)
Step 3: The third acidic silicic acid solution is added to the seed particle dispersion obtained in the above step 2, and the third addition rate ratio shown by the following formula (F3-1) is 1.1 [kg / hr · kg] or more. Step to obtain a modified silica particle dispersion liquid by adding so as to be in the range of 10 [kg / hr · kg] or less and further heating and aging in the range of temperature 50 ° C. or higher and lower than 100 ° C. Third addition rate ratio [kg / kg / hr · kg] = (silica content in the tertiary acidic silicic acid solution [kg]) / (addition time of the tertiary acidic silicic acid solution [hr]) / (silica content in the precursor dispersion liquid [kg]).・ ・ (F3-1)
Condition 1: The condition shown by the following formula (F0-1) is satisfied.
1.9 ≤ [The third addition rate ratio] / [The second addition rate ratio] ≤ 40 ... (F0-1)

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、前記工程3に続いて、下記工程4を含むことが好ましい。
工程4:前記工程3で得られた異形シリカ粒子分散液を濃縮する工程
In the method for producing a modified silica particle dispersion liquid according to one aspect of the present invention, it is preferable to include the following step 4 following the step 3.
Step 4: A step of concentrating the irregularly shaped silica particle dispersion obtained in the above step 3.

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、更に下記条件2を満たすことが好ましい。
条件2:前記前駆体分散液中において、シリカ1モルあたりに換算したハロゲン元素のモル数(モル/モル比)が0.5%以下であり、かつシリカ1モルあたりに換算したアルカリ土類金属のモル数(モル/モル比)が1000ppm以下であること。
In the method for producing a modified silica particle dispersion liquid according to one aspect of the present invention, it is preferable to further satisfy the following condition 2.
Condition 2: In the precursor dispersion, the number of moles (molar / molar ratio) of the halogen element converted to 1 mol of silica is 0.5% or less, and the alkaline earth metal converted to 1 mol of silica. The number of moles (molar / molar ratio) is 1000 ppm or less.

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、更に下記条件3を満たすことが好ましい。
条件3:下記数式(F0-2)で示すシリカ含有量比が、10以上100以下の範囲にあること。
シリカ含有量比={(第二酸性珪酸液中のシリカ含有量[kg])+(第三酸性珪酸液中のシリカ含有量[kg])}/(前駆体分散液中のシリカ含有量[kg])・・・(F0-2)
In the method for producing a modified silica particle dispersion liquid according to one aspect of the present invention, it is preferable to further satisfy the following condition 3.
Condition 3: The silica content ratio represented by the following mathematical formula (F0-2) is in the range of 10 or more and 100 or less.
Silica content ratio = {(silica content in secondary acidic silicic acid solution [kg]) + (silica content in tertiary acidic silicic acid solution [kg])} / (silica content in precursor dispersion liquid [kg] kg]) ・ ・ ・ (F0-2)

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、更に下記条件4を満たすことが好ましい。
条件4:前記異形シリカ粒子分散液におけるSiO/AOモル比が、60以上140以下の範囲にあること。
(ここで、SiOは異形シリカ粒子分散液中のシリカのモル数を表し、AOは異形シリカ粒子分散液中のNaOおよびKOの合計モル数を表す。)
In the method for producing a modified silica particle dispersion liquid according to one aspect of the present invention, it is preferable to further satisfy the following condition 4.
Condition 4: The SiO 2 / A 2 O molar ratio in the variant silica particle dispersion is in the range of 60 or more and 140 or less.
(Here, SiO 2 represents the number of moles of silica in the variant silica particle dispersion, and A 2 O represents the total number of moles of Na 2 O and K 2 O in the variant silica particle dispersion.)

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、前記工程1の前記アルカリ水溶液が、珪酸カリウム水溶液であることが好ましい。 In the method for producing a modified silica particle dispersion according to one aspect of the present invention, it is preferable that the alkaline aqueous solution in step 1 is a potassium silicate aqueous solution.

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、前記工程1の前記アルカリ性化合物が、水酸化カリウムであることが好ましい。 In the method for producing a modified silica particle dispersion according to one aspect of the present invention, it is preferable that the alkaline compound in the step 1 is potassium hydroxide.

本発明の一態様にかかる異形シリカ粒子分散液の製造方法において、得られる異形シリカ粒子が、比表面積換算粒子径(D1)10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、かつ(D2)/(D1)の値が1.2以上20以下の範囲にあることが好ましい。 In the method for producing a deformed silica particle dispersion liquid according to one aspect of the present invention, the obtained deformed silica particles have a specific surface area equivalent particle diameter (D1) in the range of 10 nm or more and 200 nm or less, and were measured by a dynamic light scattering method. It is preferable that the average particle size (D2) is in the range of 20 nm or more and 300 nm or less, and the value of (D2) / (D1) is in the range of 1.2 or more and 20 or less.

本発明の一態様によれば、比表面積換算粒子径(D1)10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、かつ(D2)/(D1)の値が1.2以上20以下の範囲にあることを特徴とする異形シリカ粒子を含む異形シリカ粒子分散液が提供される。 According to one aspect of the present invention, the specific surface area equivalent particle diameter (D1) is in the range of 10 nm or more and 200 nm or less, and the average particle diameter (D2) measured by the dynamic light scattering method is in the range of 20 nm or more and 300 nm or less. And, a variant silica particle dispersion liquid containing the variant silica particles characterized in that the value of (D2) / (D1) is in the range of 1.2 or more and 20 or less is provided.

本発明の一態様にかかる異形シリカ粒子分散液において、カリウム化合物を含むことが好ましい。 The variant silica particle dispersion according to one aspect of the present invention preferably contains a potassium compound.

本発明によれば、優れた研磨特性を有する比較的粒子径の大きい異形シリカ粒子を含む異形シリカ粒子分散液の製造方法を提供することができ、さらに珪酸ナトリウム等の原料に由来するアルカリ土類金属やハロゲン以外にこれらの元素を使用せずに製造する方法を提供することができる。また、本発明によれば、優れた研磨特性を有する比較的粒子径の大きい異形シリカ粒子分散液を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing a deformed silica particle dispersion liquid containing a deformed silica particle having a relatively large particle size having excellent polishing properties, and further, an alkaline earth derived from a raw material such as sodium silicate. It is possible to provide a method for producing without using these elements other than metal and halogen. Further, according to the present invention, it is possible to provide a deformed silica particle dispersion having a relatively large particle size and having excellent polishing properties.

[異形シリカ粒子分散液の製造方法]
以下、本発明に係る異形シリカ粒子分散液の製造方法について説明する。
本発明に係る異形シリカ粒子分散液の製造方法は、下記の工程1~工程3を含み、かつ、下記条件1を満たすことを特徴としている。
[Manufacturing method of irregularly shaped silica particle dispersion]
Hereinafter, a method for producing a modified silica particle dispersion liquid according to the present invention will be described.
The method for producing a modified silica particle dispersion liquid according to the present invention is characterized by comprising the following steps 1 to 3 and satisfying the following condition 1.

<工程1>
工程1においては、アルカリ水溶液に第一酸性珪酸液を、以下説明する条件を満たすように添加し、混合して、以下説明する条件を満たす前駆体分散液を得る。
この前駆体分散液の調製にあたっては、例えば、次のように製造することが好ましい。
すなわち、超純水にアルカリ水溶液を添加して均一になるまで撹拌した後、第一酸性珪酸液を添加し、十分に混合する。このアルカリ溶液と第一酸性珪酸液の混合物を50℃以上100℃未満の範囲に昇温し、その温度範囲で15分間以上2時間以下の時間、保持し、前駆体分散液を製造する。第一酸性珪酸液の添加にあたっては、第一酸性珪酸液を連続的に添加することが過度の凝集を防ぐうえで好ましい。
<Step 1>
In step 1, the primary acidic silicic acid solution is added to the alkaline aqueous solution so as to satisfy the conditions described below, and mixed to obtain a precursor dispersion liquid satisfying the conditions described below.
In preparing this precursor dispersion, for example, it is preferable to produce it as follows.
That is, after adding an alkaline aqueous solution to ultrapure water and stirring until uniform, the primary acidic silicic acid solution is added and mixed sufficiently. The mixture of the alkaline solution and the primary acidic silicic acid solution is heated to a temperature range of 50 ° C. or higher and lower than 100 ° C. and held in the temperature range for 15 minutes or longer and 2 hours or shorter to produce a precursor dispersion liquid. When adding the primary acidic silicic acid solution, it is preferable to continuously add the primary acidic silicic acid solution in order to prevent excessive aggregation.

・アルカリ水溶液
アルカリ水溶液は、少なくともNaまたはKを有するアルカリ性化合物を含む。少なくともNaまたはKを有するアルカリ性化合物としては、珪酸ナトリウム、珪酸カリウム、水酸化カリウムおよび水酸化ナトリウム等が挙げられる。珪酸アルカリ化合物としては、1号水ガラス、2号水ガラス、3号水ガラス等の名称で市販されている珪酸ナトリウムまたは珪酸カリウム等が好ましい。また、テトラエチルオルソシリケート(TEOS)、テトラメチルオルソシリケート(TMOS)等の加水分解性有機化合物を過剰のNaOHまたはKOH等を用いて加水分解して得られる珪酸アルカリ水溶液等も好適である。
また、アルカリ水溶液に任意に含まれるアルカリ性化合物としては、珪酸リチウムおよび第4級アンモニウムシリケート、アンモニア、アミン類およびこれらの塩等があげられる。
アルカリ水溶液としては珪酸カリウム水溶液または水酸化カリウム水溶液が好ましい。一般に、電子材用途では、イオン半径が小さいナトリウムイオンは基板等に拡散し易く、不良の原因となりうる。そのため、比較的イオン半径の大きいカリウムイオンが望ましいからである。
アルカリ水溶液のアルカリ性化合物成分の濃度は、特に制限されない。アルカリ性化合物成分の濃度としては、1質量%以上50質量%以下であることが好ましく、5質量%以上25質量%以下であることがより好ましい。
アルカリ水溶液は、ハロゲン化物イオン(塩素イオン等)およびアルカリ土類金属(カルシウムおよびマグネシウム等)を含まないことが好ましい。アルカリ水溶液に含まれるハロゲンイオンは1000ppm以下であり、アルカリ土類金属(マグネシウム等)は100ppm以下であることが好ましい。
-Alkaline aqueous solution The alkaline aqueous solution contains an alkaline compound having at least Na or K. Examples of the alkaline compound having at least Na or K include sodium silicate, potassium silicate, potassium hydroxide, sodium hydroxide and the like. As the alkaline silicate compound, sodium silicate, potassium silicate and the like commercially available under the names of No. 1 water glass, No. 2 water glass, No. 3 water glass and the like are preferable. Further, an alkaline silicate aqueous solution obtained by hydrolyzing a hydrolyzable organic compound such as tetraethyl orthosilicate (TEOS) or tetramethyl orthosilicate (TMS) with excess NaOH or KOH is also suitable.
Examples of the alkaline compound arbitrarily contained in the alkaline aqueous solution include lithium silicate and quaternary ammonium silicate, ammonia, amines and salts thereof.
As the alkaline aqueous solution, a potassium silicate aqueous solution or a potassium hydroxide aqueous solution is preferable. Generally, in electronic material applications, sodium ions having a small ionic radius tend to diffuse to a substrate or the like, which may cause defects. Therefore, potassium ions having a relatively large ionic radius are desirable.
The concentration of the alkaline compound component in the alkaline aqueous solution is not particularly limited. The concentration of the alkaline compound component is preferably 1% by mass or more and 50% by mass or less, and more preferably 5% by mass or more and 25% by mass or less.
The alkaline aqueous solution preferably does not contain a halide ion (chloride ion or the like) or an alkaline earth metal (calcium, magnesium or the like). The halogen ion contained in the alkaline aqueous solution is preferably 1000 ppm or less, and the alkaline earth metal (magnesium or the like) is preferably 100 ppm or less.

・酸性珪酸液
酸性珪酸液としては、珪酸アルカリ(珪酸アルカリ金属および珪酸アンモニウム等)の水溶液を陽イオン交換樹脂で脱アルカリし、得られる酸性珪酸液を使用することが好ましい。酸性珪酸液のSiO濃度は、概ね0.1質量%以上10質量%以下が好ましく、さらには1質量%以上7質量%以下の範囲がより好ましい。pHが概ね1以上5以下のものが好適に使用される。
-Acid silicic acid solution As the acidic silicic acid solution, it is preferable to use an acidic silicic acid solution obtained by dealkalizing an aqueous solution of alkali silicate (alkali metal silicate, ammonium silicate, etc.) with a cation exchange resin. The SiO 2 concentration of the acidic silicic acid solution is preferably about 0.1% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 7% by mass or less. Those having a pH of approximately 1 or more and 5 or less are preferably used.

工程1は、所望の異形シード粒子の前駆体分散液を調製する工程である。工程1においては、珪酸アルカリ水溶液を超純水に加え、均一になるまで攪拌した後、第一酸性珪酸液を連続的または断続的に添加し、混合する。混合後は、50℃以上100℃未満に昇温し、15分間以上2時間以下に保持して、加熱熟成することにより、前駆体粒子分散液を得ることができる。混合する際の温度が前記範囲にあれば、工程2、工程3および必要に応じて工程4の後、研磨性能に優れた本発明の異形シリカ粒子分散液を得ることができる。 Step 1 is a step of preparing a precursor dispersion of desired irregularly shaped seed particles. In step 1, an aqueous alkaline silicate solution is added to ultrapure water, and the mixture is stirred until uniform, and then the primary acidic silicate solution is continuously or intermittently added and mixed. After mixing, the temperature is raised to 50 ° C. or higher and lower than 100 ° C., the temperature is maintained for 15 minutes or longer and 2 hours or lower, and the mixture is heated and aged to obtain a precursor particle dispersion. If the temperature at the time of mixing is within the above range, the modified silica particle dispersion liquid of the present invention having excellent polishing performance can be obtained after step 2, step 3 and, if necessary, step 4.

得られる前駆体分散液のSiO濃度は、異形シード粒子の異形度を制御するパラメーターであり、SiOとして3質量%以上20質量%以下であり、3質量%以上15質量%以下であることがより好ましい。前駆体分散液のSiO濃度が3質量%未満の場合は、高い異形度の異形シード粒子が得られにくい傾向にある。前駆体分散液のSiO濃度が20質量%超の場合は、凝集や沈殿が生じ易く、仮に凝集や沈殿が生じない場合でも、反応槽内部にシリカが大量に沈着し、所望サイズの異形シード粒子を得ることができない。前駆体分散液のSiO濃度が前記範囲にあれば、工程2、工程3および必要に応じて工程4の後、研磨性能に優れた本発明の異形シリカ粒子およびその分散液を得ることができる。 The SiO 2 concentration of the obtained precursor dispersion liquid is a parameter that controls the degree of deformation of the deformed seed particles, and is 3% by mass or more and 20% by mass or less as SiO 2 and 3% by mass or more and 15% by mass or less. Is more preferable. When the SiO 2 concentration of the precursor dispersion is less than 3% by mass, it tends to be difficult to obtain deformed seed particles having a high degree of deformity. When the SiO 2 concentration of the precursor dispersion is more than 20% by mass, aggregation and precipitation are likely to occur, and even if aggregation and precipitation do not occur, a large amount of silica is deposited inside the reaction vessel, and a deformed seed of a desired size is formed. No particles can be obtained. If the SiO 2 concentration of the precursor dispersion is within the above range, the modified silica particles of the present invention having excellent polishing performance and the dispersion thereof can be obtained after step 2, step 3 and, if necessary, step 4. ..

得られる前駆体分散液は、下記数式(F1-1)で示す条件を満たす。
2≦SiO/AO≦15・・・(F1-1)
ここで、SiOは、前駆体分散液中のシリカのモル数を表し、AOは、前駆体分散液中のNaOおよびKOの合計のモル数を表す。
前駆体分散液におけるSiO/AO(モル比)は、2以上5以下であることが好ましい。SiO/AO(モル比)がこの範囲にある場合、工程2で凝集や沈殿が生じない分散したシード粒子生成に好適である。
OにおけるKOおよびNaOは、各々、前駆体分散液中に存在するKおよびNaの量を、酸化物に換算したことを意味する。
SiO/AO(モル比)が2未満の前駆体分散液は、前駆体分散液中のアルカリ量が過剰であるため、工程2において、シード粒子分散液を生成させるには、分散液中でのシリカの溶解度が過大となり、適さない。他方、SiO/AO(モル比)が15を超える前駆体分散液を工程2に適用すると、シード粒子が過剰に生成するため、却って所望する粒子成長が生じ難くなる傾向がある。
The obtained precursor dispersion liquid satisfies the conditions shown by the following mathematical formula (F1-1).
2 ≦ SiO 2 / A 2 O ≦ 15 ... (F1-1)
Here, SiO 2 represents the number of moles of silica in the precursor dispersion, and A 2 O represents the total number of moles of Na 2 O and K 2 O in the precursor dispersion.
The SiO 2 / A 2 O (molar ratio) in the precursor dispersion is preferably 2 or more and 5 or less. When SiO 2 / A 2 O (molar ratio) is in this range, it is suitable for producing dispersed seed particles in which aggregation and precipitation do not occur in step 2.
K 2 O and Na 2 O in A 2 O mean that the amounts of K and Na present in the precursor dispersion are converted into oxides, respectively.
Since the amount of alkali in the precursor dispersion is excessive in the precursor dispersion having a SiO 2 / A 2 O (molar ratio) of less than 2, in order to generate the seed particle dispersion in step 2, the dispersion is required. The solubility of silica in it becomes excessive, which is not suitable. On the other hand, when a precursor dispersion having a SiO 2 / A 2 O (molar ratio) of more than 15 is applied to step 2, seed particles are excessively generated, so that desired particle growth tends to be difficult to occur.

前駆体分散液のpHは、9以上12.5以下、さらには10以上12以下の範囲にあることが好ましい。
前駆体分散液のpHが9未満の場合は、pHが低すぎるため、工程2において異形シード粒子が生成しないことがある。あるいはシード粒子が生成したとしても、安定性が保たれず凝集したり、工程2で添加する酸性珪酸液が溶解、沈着せずに、凝集やゲル化が生じる場合がある。
他方、前駆体分散液のpHが12.5を超えると、分散液中でのシリカの溶解度が著しく高まり、更にイオン強度も著しく高くなる。このため、工程2において生成するシード粒子が凝集し、凝集により沈殿が生じる場合がある。
The pH of the precursor dispersion is preferably in the range of 9 or more and 12.5 or less, more preferably 10 or more and 12 or less.
If the pH of the precursor dispersion is less than 9, the pH is too low and atypical seed particles may not be produced in step 2. Alternatively, even if seed particles are generated, stability may not be maintained and they may aggregate, or the acidic silicic acid solution added in step 2 may not dissolve or deposit, and aggregation or gelation may occur.
On the other hand, when the pH of the precursor dispersion liquid exceeds 12.5, the solubility of silica in the dispersion liquid is remarkably increased, and the ionic strength is also remarkably increased. Therefore, the seed particles produced in step 2 may aggregate, and precipitation may occur due to the aggregation.

<工程2>
本発明の異形シリカ粒子分散液の製造方法は、異形シリカ粒子分散液を、酸性珪酸液の添加速度が異なる2段階(工程2および工程3)に分けて調製することを特徴とする。
工程2は、工程1で調製した前駆体を所望のサイズおよび異形度を備える異形シード粒子を調製する工程である。工程2においては、工程1で得られた前駆体分散液に、第二酸性珪酸液を、以下説明する条件を満たすように添加し、更に加熱熟成することによりシード粒子分散液を得る。
ここで、前駆体分散液は、SiO濃度が3質量%以上20質量%以下であり、SiO/AO(モル比)が2以上15以下(SiOは、前駆体分散液中のシリカのモル数を表し、AOは、前駆体分散液中のKOおよびNaOの合計のモル数を表す。)である。
<Step 2>
The method for producing a modified silica particle dispersion liquid of the present invention is characterized in that the modified silica particle dispersion liquid is prepared by dividing it into two steps (step 2 and step 3) in which the addition rate of the acidic silicic acid liquid is different.
Step 2 is a step of preparing deformed seed particles having a desired size and degree of deformation from the precursor prepared in step 1. In step 2, a secondary acidic silicic acid solution is added to the precursor dispersion obtained in step 1 so as to satisfy the conditions described below, and further heat-aged to obtain a seed particle dispersion.
Here, the precursor dispersion liquid has a SiO 2 concentration of 3% by mass or more and 20% by mass or less, and a SiO 2 / A 2 O (molar ratio) of 2 or more and 15 or less (SiO 2 is contained in the precursor dispersion liquid. Represents the number of moles of silica, where A 2 O represents the total number of moles of K 2 O and Na 2 O in the precursor dispersion).

第二酸性珪酸液は、工程1で用いた第一酸性珪酸液と同様に、珪酸アルカリ水溶液を陽イオン交換樹脂で脱アルカリして得られる酸性珪酸液を使用することが好ましい。酸性珪酸液としてはSiO濃度が概ね0.1質量%以上10質量%以下が好ましく、1質量%以上7質量%以下の範囲がより好ましい。酸性珪酸液のpHは、概ね1以上5以下が好ましい。 As the second acidic silicic acid solution, it is preferable to use an acidic silicic acid solution obtained by dealkalizing an alkaline silicate aqueous solution with a cation exchange resin, similarly to the first acidic silicic acid solution used in step 1. The acid silicic acid solution preferably has a SiO 2 concentration of approximately 0.1% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 7% by mass or less. The pH of the acidic silicic acid solution is preferably 1 or more and 5 or less.

工程2においては、前駆体分散液に酸性珪酸液を連続的または断続的に、下記数式(F2-1)で示す第二添加速度比が、0.1[kg/hr・kg]以上0.6以下[kg/hr・kg]の範囲となるように添加し、混合する。そして、温度50℃以上100℃未満で、加熱熟成することにより、シード粒子分散液を調製する。
第二添加速度比[kg/hr・kg]=(第二酸性珪酸液中のシリカ含有量[kg])/(第二酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F2-1)
In step 2, the acid silicic acid solution is continuously or intermittently added to the precursor dispersion, and the second addition rate ratio shown by the following formula (F2-1) is 0.1 [kg / hr · kg] or more. Add and mix so as to be in the range of 6 or less [kg / hr · kg]. Then, a seed particle dispersion is prepared by heating and aging at a temperature of 50 ° C. or higher and lower than 100 ° C.
Second addition rate ratio [kg / hr · kg] = (silica content in secondary acidic silicic acid solution [kg]) / (addition time of secondary acidic silicic acid solution [hr]) / (in precursor dispersion) Silica content [kg]) ... (F2-1)

第二添加速度比は、前駆体分散液中のシリカ含有量に対する第二酸性珪酸液中のシリカの添加速度を意味し、異形シード粒子のサイズおよび異形度を制御するパラメーターである。第二添加速度比が0.1以上0.6以下の範囲にある場合、生成する核粒子が適度に凝集あるいは会合し平均粒子径の大きな異形シード粒子を得ることができる。さらに核粒子が大きくなるため、シード粒子の比表面積換算径が大きくなるため、好ましい。第二添加速度比が0.1未満の場合は、生成する核サイズはより大きくなるものの、核粒子の凝集あるいは会合が進み過ぎ、粗大な凝集塊が生じ、沈殿物が発生する傾向にある。また、第二添加速度比が0.6を超える場合は、生成した核粒子の凝集あるいは会合が進みにくく、異形シード粒子が得られ難い。仮に異形シード粒子が得られたとしても異形度の低い粒子となる。第二添加速度比は、0.1以上0.5以下であることが好ましい。 The second addition rate ratio means the addition rate of silica in the secondary acidic silicic acid solution with respect to the silica content in the precursor dispersion, and is a parameter for controlling the size and the degree of deformation of the deformed seed particles. When the second addition rate ratio is in the range of 0.1 or more and 0.6 or less, the generated nuclear particles are appropriately aggregated or associated to obtain irregular seed particles having a large average particle diameter. Further, since the core particles become large, the specific surface area equivalent diameter of the seed particles becomes large, which is preferable. When the second addition rate ratio is less than 0.1, the size of the nuclei produced becomes larger, but the agglutination or association of the nuclei particles progresses too much, coarse agglomerates are formed, and precipitates tend to be generated. Further, when the second addition rate ratio exceeds 0.6, it is difficult to promote aggregation or association of the produced nuclear particles, and it is difficult to obtain irregularly shaped seed particles. Even if the irregularly shaped seed particles are obtained, the particles have a low degree of irregularity. The second addition rate ratio is preferably 0.1 or more and 0.5 or less.

前記のとおり、前駆体分散液に、第二酸性珪酸液を添加した後、更に温度50℃以上100℃未満の範囲で加熱熟成する。この温度範囲で熟成することにより、反応液中に残存する未反応な酸性珪酸液等を溶解させ、粒子表面に沈着させ、反応を完結させることができる。その結果、適切なサイズに成長し、分散した異形シード粒子を得ることができる。
前記加熱熟成の温度は50℃以上99℃以下がより好ましく、60℃以上98℃以下の範囲にあることがさらに好ましい。
かかる温度が50℃未満の場合は、反応液中に残存する未反応な酸性珪酸液が十分に溶解せず、反応液中に残存し、後工程において粒子の凝集を生じる場合がある。
加熱熟成時の温度が100℃以上の場合、反応溶液の沸点であるため、溶媒が蒸発しやすく濃度が上昇し反応の制御が難しく、仮に反応させることができたとしても、核粒子の凝集が進み過ぎ、沈殿が生じやすい。
前記加熱熟成は、保持温度および酸性珪酸液のSiO濃度等によっても異なるが、概ね24時間以内であることが好ましい。
As described above, after adding the secondary acidic silicic acid solution to the precursor dispersion liquid, the mixture is further heated and aged in a temperature range of 50 ° C. or higher and lower than 100 ° C. By aging in this temperature range, the unreacted acidic silicic acid solution and the like remaining in the reaction solution can be dissolved and deposited on the particle surface to complete the reaction. As a result, it is possible to obtain irregularly shaped seed particles that have grown to an appropriate size and dispersed.
The temperature of the heat aging is more preferably 50 ° C. or higher and 99 ° C. or lower, and further preferably 60 ° C. or higher and 98 ° C. or lower.
If the temperature is less than 50 ° C., the unreacted acidic silicic acid solution remaining in the reaction solution may not be sufficiently dissolved and may remain in the reaction solution, causing agglomeration of particles in a subsequent step.
When the temperature at the time of heat aging is 100 ° C. or higher, the boiling point of the reaction solution is such that the solvent easily evaporates and the concentration increases, making it difficult to control the reaction. It goes too far and tends to settle.
The heat aging varies depending on the holding temperature, the SiO 2 concentration of the acidic silicic acid solution, and the like, but is preferably within 24 hours.

<工程3>
工程3は、工程2で得た異形シード粒子を所望のサイズに粒子成長させる工程である。工程3においては、工程2で得られたシード粒子分散液に第三酸性珪酸液を、下記数式(F3-1)で示す第三添加速度比が、1.1[kg/hr・kg]以上10[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満で加熱熟成することにより異形シリカ粒子分散液を得る。
第三添加速度比[kg/hr・kg]=(第三酸性珪酸液中のシリカ含有量[kg])/(第三酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F3-1)
ここで第三添加速度比は、前駆体分散液中のシリカ含有量に対する第三酸性珪酸液中のシリカの添加速度を意味する。第三添加速度比が1.1[kg/hr・kg]以上10[kg/hr・kg]以下の範囲にある場合、適切な反応速度とすることができる。このため、添加した酸性珪酸液の溶解と、溶解したシリカの異形シード粒子への沈着が生じ、工程2で得られた異形シード粒子を所望のサイズに粒子成長させることができるため、好ましい。第三添加速度比が1.1[kg/hr・kg]未満の場合は、酸性珪酸の添加速度が著しく遅くなる。このため、異形シード粒子の粒子成長させることができるものの、生産効率が悪く、経済性が悪い。第三添加速度比が10[kg/hr・kg]を超える場合は、酸性珪酸液の添加速度が著しく高いため、酸性珪酸液の自己核生成が生じ易い。第三添加速度比は、2以上6以下であることが好ましい。
<Process 3>
Step 3 is a step of growing the deformed seed particles obtained in Step 2 to a desired size. In step 3, the third acidic silicic acid solution is added to the seed particle dispersion obtained in step 2, and the third addition rate ratio shown by the following formula (F3-1) is 1.1 [kg / hr · kg] or more. A variant silica particle dispersion is obtained by adding the mixture in a range of 10 [kg / hr · kg] or less and further heating and aging at a temperature of 50 ° C. or higher and lower than 100 ° C.
Third addition rate ratio [kg / hr · kg] = (silica content in tertiary acidic silicic acid solution [kg]) / (addition time of tertiary acidic silicic acid solution [hr]) / (in precursor dispersion) Silica content [kg]) ... (F3-1)
Here, the third addition rate ratio means the addition rate of silica in the tertiary acidic silicic acid solution with respect to the silica content in the precursor dispersion. When the third addition rate ratio is in the range of 1.1 [kg / hr · kg] or more and 10 [kg / hr · kg] or less, an appropriate reaction rate can be obtained. Therefore, the added acidic silicic acid solution is dissolved and the dissolved silica is deposited on the deformed seed particles, and the deformed seed particles obtained in step 2 can be grown to a desired size, which is preferable. When the third addition rate ratio is less than 1.1 [kg / hr · kg], the addition rate of acidic silicic acid becomes significantly slow. Therefore, although it is possible to grow the irregularly shaped seed particles, the production efficiency is poor and the economy is poor. When the third addition rate ratio exceeds 10 [kg / hr · kg], the addition rate of the acidic silicic acid solution is extremely high, so that self-nucleation of the acidic silicic acid solution is likely to occur. The third addition rate ratio is preferably 2 or more and 6 or less.

工程3においては、前記のとおり、シード粒子分散液を50℃以上100℃未満に昇温し、第三酸性珪酸液を添加し、その温度で15分間以上24時間以下に保持することにより加熱熟成する。この様な加熱熟成をすることにより、反応液中に残存した未反応の珪酸が粒子表面に沈着し、反応を完結させることができる。
前記加熱熟成温度は60℃以上98℃以下の範囲にあることが好ましい。
加熱熟成温度が50℃未満の場合は、添加した酸性珪酸液が十分に溶解しないため、珪酸による自己核生成が生じ易い。
前記保持時間は、保持温度または酸性珪酸液のSiO濃度等によっても異なるが、概ね24時間以内であることが好ましい。
第三酸性珪酸液としては、前記した第一酸性珪酸液と同様な酸性珪酸液を使用する。
In step 3, as described above, the seed particle dispersion is heated to 50 ° C. or higher and lower than 100 ° C., a tertiary acidic silicic acid solution is added, and the mixture is kept at that temperature for 15 minutes or more and 24 hours or less for heat aging. do. By performing such heat aging, unreacted silicic acid remaining in the reaction solution is deposited on the particle surface, and the reaction can be completed.
The heat aging temperature is preferably in the range of 60 ° C. or higher and 98 ° C. or lower.
When the heat aging temperature is less than 50 ° C., the added acidic silicic acid solution is not sufficiently dissolved, so that self-nucleation by silicic acid is likely to occur.
The holding time varies depending on the holding temperature, the SiO 2 concentration of the acidic silicic acid solution, and the like, but is preferably within 24 hours.
As the tertiary acidic silicic acid solution, the same acidic silicic acid solution as the above-mentioned primary acidic silicic acid solution is used.

<条件1>
本発明の異形シリカ粒子分散液の製造方法においては、更に下記条件1を満たすことが必要である。
条件1は、下記数式(F0-1)で示す条件を満たすことである。
1.9≦[第三添加速度比]/[第二添加速度比]≦40・・・(F0-1)
[第三添加速度比]/[第二添加速度比]の値は、効率よく異形でかつ粒子サイズの大きなシリカ粒子を得るための指標である。その値が1.9以上40以下の範囲にあるとハロゲンやアルカリ土類金属等の汚染源となる元素を使用せずに、サイズの大きな異形シリカ粒子を得ることができる。
[第三添加速度比]/[第二添加速度比]の値が、1.9未満の場合は、異形シリカ粒子が得られにくくなり、サイズの大きな粒子が得られにくい。
[第三添加速度比]/[第二添加速度比]の値が40を超える場合は、異形シリカ粒子は得やすいものの、珪酸が自己核生成し易い傾向にあり、所望の粒子径分布、サイズのシリカ粒子が得られにくくなる傾向にある。
[第三添加速度比]/[第二添加速度比]の値は、5以上20以下であることがより好ましい。
<Condition 1>
In the method for producing the modified silica particle dispersion liquid of the present invention, it is necessary to further satisfy the following condition 1.
Condition 1 is to satisfy the condition shown by the following mathematical formula (F0-1).
1.9 ≤ [Third addition rate ratio] / [Second addition rate ratio] ≤ 40 ... (F0-1)
The value of [third addition rate ratio] / [second addition rate ratio] is an index for efficiently obtaining silica particles having a deformed shape and a large particle size. When the value is in the range of 1.9 or more and 40 or less, large-sized irregular silica particles can be obtained without using elements that are pollutants such as halogens and alkaline earth metals.
When the value of [third addition rate ratio] / [second addition rate ratio] is less than 1.9, it is difficult to obtain irregularly shaped silica particles, and it is difficult to obtain large-sized particles.
When the value of [Third addition rate ratio] / [Second addition rate ratio] exceeds 40, it is easy to obtain irregularly shaped silica particles, but silicic acid tends to easily self-nucleate, and the desired particle size distribution and size. Silica particles tend to be difficult to obtain.
The value of [third addition rate ratio] / [second addition rate ratio] is more preferably 5 or more and 20 or less.

<工程4>
本発明の異形シリカ粒子分散液の製造方法は、次の工程4を更に含んでいてもよい。
工程4は、工程3で得られた異形シリカ粒子分散液を濃縮する工程である。
工程4においては、前記工程3で得られた異形シリカ粒子分散液をそのまま研磨用途または研磨用スラリーの原料として用いることもできる。所望により、工程3で得られた異形シリカ粒子分散液を濃縮してから各種用途に適用してもよい。
具体的には、例えば、工程3で得られた異形シリカ粒子分散液を室温以上40℃以下程度に冷却する。その後、限外ろ過膜等を用いて濃縮し、エバポレータ等を用いてさらに濃縮し、残った異形シリカ粒子を回収すればよい。さらに粗大な粒子を除去するために、遠心分離を用いてもよい。
<Step 4>
The method for producing a modified silica particle dispersion liquid of the present invention may further include the following step 4.
Step 4 is a step of concentrating the irregularly shaped silica particle dispersion obtained in Step 3.
In step 4, the deformed silica particle dispersion obtained in step 3 can be used as it is for polishing or as a raw material for a slurry for polishing. If desired, the variant silica particle dispersion obtained in step 3 may be concentrated and then applied to various uses.
Specifically, for example, the irregularly shaped silica particle dispersion obtained in step 3 is cooled to about room temperature or higher and 40 ° C. or lower. Then, it may be concentrated using an ultrafiltration membrane or the like, further concentrated using an evaporator or the like, and the remaining irregularly shaped silica particles may be recovered. Centrifugation may be used to remove even coarser particles.

本発明のシリカ粒子の製造方法では、工程3あるいは工程4を経て異形シリカ粒子分散液として得られ、そのまま研磨剤等に使用することができる。さらに必要に応じて常法により乾燥して用いることもでき、さらに必要に応じて常法により焼成して用いることもできる。 In the method for producing silica particles of the present invention, it can be obtained as a modified silica particle dispersion liquid through step 3 or step 4, and can be used as it is as an abrasive or the like. Further, if necessary, it can be dried by a conventional method and used, and further, if necessary, it can be fired by a conventional method and used.

<条件2>
本発明の異形シリカ粒子分散液の製造方法は、更に下記条件2を満たすことが好ましい。
条件2は、前駆体分散液中において、シリカ1モルあたりに換算したハロゲン元素のモル数(モル/モル比)が0.5%以下であり、かつシリカ単位モルあたりに換算したアルカリ土類金属のモル数(モル/モル比)が1000ppm以下であること。
ハロゲン元素やアルカリ土類金属は、天然の原料である珪砂に微量含まれており、さらにカレットや珪酸ナトリウムを製造する際の原料等に微量含まれている。そのため、珪酸ナトリウムを原料としてシリカゾルを製造した場合、原料に由来するこれら元素の含有量は、シリカ1モルあたりに換算したハロゲン元素として0.5%以下を含み、シリカ1モルあたりに換算したアルカリ土類金属として、1000ppm以下を含む。しかし、原料に由来するこれら元素の含有量は微量であるため、核粒子の生成や粒子成長あるいは粒子の形状への影響は小さい。そのため、従来の異形粒子の製造方法では、粒子合成時にこれら元素を添加し、例えば、シード成分のシリカ粒子とシリカ粒子とをアルカリ土類金属(例えば、MgO、CaO等)を介して結合させて異形化させる方法(シード粒子分散液にアルカリ土類金属を添加し、シード成分のシリカ粒子とシリカ粒子とをアルカリ土類金属を介して結合させる方法)、あるいは、シード粒子分散液にハロゲン化アルカリ(KCl等)を加えてイオン強度を調製することによってシード粒子を異形化させる方法が行われている。しかし、これらアルカリ土類金属やハロゲン化アルカリなどの異種物質は、異形シリカ粒子分散液を研磨用途に適用する場合、用途によっては基板への汚染等の悪影響を与えることがあるので、本来存在しないことが好ましい。
本発明の異形シリカ粒子分散液の製造方法は、粒子合成時にハロゲン元素やアルカリ土類金属などの異種物質を使用することなく、異形シリカ粒子分散液を製造する方法であり、具体的にはシード粒子に酸性珪酸液を加えて行う粒子成長を、酸性珪酸液の添加速度の異なる2段階にて行うことを特徴とする製造方法である。このため、従来行われていた異形化手法に必要な異種物質を必要としない。
<Condition 2>
It is preferable that the method for producing the modified silica particle dispersion liquid of the present invention further satisfies the following condition 2.
Condition 2 is an alkaline earth metal in which the number of moles (molar / molar ratio) of halogen elements converted per mole of silica is 0.5% or less in the precursor dispersion and the number of moles of halogen element is converted per mole of silica. The number of moles (molar / molar ratio) is 1000 ppm or less.
Halogen elements and alkaline earth metals are contained in trace amounts in silica sand, which is a natural raw material, and are further contained in trace amounts in raw materials for producing cullet and sodium silicate. Therefore, when a silica sol is produced from sodium silicate as a raw material, the content of these elements derived from the raw material contains 0.5% or less as a halogen element converted to 1 mol of silica, and an alkali converted to 1 mol of silica. It contains 1000 ppm or less as an earth metal. However, since the content of these elements derived from the raw material is very small, the influence on the generation of nuclear particles, particle growth, or the shape of the particles is small. Therefore, in the conventional method for producing deformed particles, these elements are added at the time of particle synthesis, and for example, the silica particles of the seed component and the silica particles are bonded via an alkaline earth metal (for example, MgO, CaO, etc.). A method of deforming the seed particles (a method of adding an alkaline earth metal to the seed particle dispersion and bonding the silica particles of the seed component and the silica particles via the alkaline earth metal) or an alkali halide in the seed particle dispersion. A method of deforming seed particles by adding (KCl or the like) to adjust the ionic strength is performed. However, these dissimilar substances such as alkaline earth metals and halogenated alkalis do not exist originally because when the deformed silica particle dispersion is applied to polishing applications, it may have an adverse effect such as contamination on the substrate depending on the application. Is preferable.
The method for producing a modified silica particle dispersion of the present invention is a method for producing a modified silica particle dispersion without using a dissimilar substance such as a halogen element or an alkaline earth metal during particle synthesis, specifically, a seed. It is a production method characterized in that particle growth performed by adding an acidic silicic acid solution to particles is performed in two steps in which the addition rate of the acidic silicic acid solution is different. Therefore, it does not require the different substances required for the conventional transformation method.

<条件3>
本発明の異形シリカ粒子分散液の製造方法は、更に下記条件3を満たすことが好ましい。
条件3は、下記数式(F0-2)で示すシリカ含有量比が10以上100以下の範囲にあることである。
シリカ含有量比={(第二酸性珪酸液中のシリカ含有量[kg])+(第三酸性珪酸液中のシリカ含有量[kg])}/(前駆体分散液中のシリカ含有量[kg])・・・(F0-2)
数式(F0-2)で示すシリカ含有量比は、シードとなる前駆体に対して、粒子成長させる珪酸の重量比であり、シード粒子を効率良く所望の粒子サイズに成長させる指標である。その値が10以上100以下の範囲にあると効率よく所望のサイズに粒子成長させることができる。
数式(F0-2)で示すシリカ含有量比が、10未満の場合は、生成したシード粒子を成長させる珪酸量が不足することになり、サイズの大きな異形シリカ粒子を得ることができない。
数式(F0-2)で示すシリカ含有量比が、100を超える場合は、核生成した異形シリカシードを成長させる珪酸の量が過剰となる。このため、粒子の形状が球形に近づき、所望の異形度の異形シリカ粒子を得ることができない。また過剰な珪酸により自己核生成が生じる場合もある。
数式(F0-2)で示すシリカ含有量比は、20以上80以下であることがより好ましい。
<Condition 3>
It is preferable that the method for producing the modified silica particle dispersion liquid of the present invention further satisfies the following condition 3.
Condition 3 is that the silica content ratio represented by the following mathematical formula (F0-2) is in the range of 10 or more and 100 or less.
Silica content ratio = {(silica content in secondary acidic silicic acid solution [kg]) + (silica content in tertiary acidic silicic acid solution [kg])} / (silica content in precursor dispersion liquid [kg] kg]) ・ ・ ・ (F0-2)
The silica content ratio represented by the formula (F0-2) is a weight ratio of silicic acid for particle growth to a precursor to be a seed, and is an index for efficiently growing seed particles to a desired particle size. When the value is in the range of 10 or more and 100 or less, particles can be efficiently grown to a desired size.
When the silica content ratio shown in the formula (F0-2) is less than 10, the amount of silicic acid for growing the produced seed particles is insufficient, and it is not possible to obtain deformed silica particles having a large size.
When the silica content ratio shown in the formula (F0-2) exceeds 100, the amount of silicic acid that grows the nucleated irregular silica seed becomes excessive. Therefore, the shape of the particles approaches a spherical shape, and it is not possible to obtain irregular silica particles having a desired degree of irregularity. In addition, excess silicic acid may cause self-nucleation.
The silica content ratio shown in the formula (F0-2) is more preferably 20 or more and 80 or less.

<条件4>
本発明の異形シリカ粒子分散液の製造方法は、更に下記条件4を満たすことが好ましい。
条件4は、工程3終了時の異形シリカ粒子分散液におけるSiO/AOモル比が、60以上140以下の範囲にあること。(ここで、SiOは工程3終了時の異形シリカ粒子分散液中のシリカのモル数を表し、AOは工程3終了時の異形シリカ粒子分散液中のNaOおよびKOの合計モル数を表す。)
ここで、AOにおけるKOおよびNaOは、各々、異形シリカ粒子分散液中に存在するKおよびNaの量を、酸化物に換算したことを意味する。
工程3終了時の異形シリカ粒子分散液におけるSiO/AOモル比は、粒子成長時のpHの指標である。目標とするサイズによって変わるが、概ねこの範囲であれば、粒子成長に用いる珪酸が十分に溶解し、異形シード粒子表面に沈着させることができ、所望の粒子径に成長させることができる。
異形シリカ粒子分散液におけるSiO/AOモル比が、60未満の場合は、反応中のpHが高いため、反応中に粒子の凝集が生じる場合がある。また仮に凝集せずに粒子成長が行われたとしても、反応終了後の分散液のイオン強度が高いため、後工程で濃縮する際に、凝集が生じやすい。凝集を防ぎ粒子の安定性を保つためにはイオン強度を下げる必要があり、イオン強度を下げる方法としてイオン交換や洗浄等の手段が適用可能だが、経済性が低下する。
異形シリカ粒子分散液におけるSiO/AOモル比が、140を超える場合は、反応中のpHが低いため、粒子成長のために加えた珪酸が十分に溶解せずに、自己核生成する傾向にある。
異形シリカ粒子分散液におけるSiO/AOモル比は、80以上120以下であることがより好ましい。
<Condition 4>
It is preferable that the method for producing the modified silica particle dispersion liquid of the present invention further satisfies the following condition 4.
Condition 4 is that the SiO 2 / A 2 O molar ratio in the deformed silica particle dispersion at the end of step 3 is in the range of 60 or more and 140 or less. (Here, SiO 2 represents the number of moles of silica in the modified silica particle dispersion at the end of step 3, and A 2 O is Na 2 O and K 2 O in the modified silica particle dispersion at the end of step 3. Represents the total number of particles.)
Here, K 2 O and Na 2 O in A 2 O mean that the amounts of K and Na present in the variant silica particle dispersion liquid are converted into oxides, respectively.
The SiO 2 / A 2 O molar ratio in the variant silica particle dispersion at the end of step 3 is an index of pH at the time of particle growth. Although it varies depending on the target size, within this range, the silicic acid used for particle growth is sufficiently dissolved and can be deposited on the surface of the irregularly shaped seed particles, and can be grown to a desired particle size.
When the SiO 2 / A 2 O molar ratio in the variant silica particle dispersion is less than 60, the pH during the reaction is high, and the particles may aggregate during the reaction. Even if the particles are grown without agglomeration, the ionic strength of the dispersion after the reaction is high, so that agglomeration is likely to occur when concentrating in a subsequent step. It is necessary to reduce the ionic strength in order to prevent aggregation and maintain the stability of the particles, and means such as ion exchange and cleaning can be applied as a method for reducing the ionic strength, but the economic efficiency is reduced.
When the SiO 2 / A 2 Omolar ratio in the modified silica particle dispersion exceeds 140, the pH during the reaction is low, so the silicic acid added for particle growth is not sufficiently dissolved and self-nucleation is generated. There is a tendency.
The SiO 2 / A 2 O molar ratio in the variant silica particle dispersion is more preferably 80 or more and 120 or less.

[異形シリカ粒子]
本発明の異形シリカ粒子分散液の製造方法においては、得られる異形シリカ粒子が、比表面積換算粒子径(D1)が、10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、(D2)/(D1)の値が1.2以上20以下の範囲にあることが好ましい。このような異形シリカ粒子であれば、優れた研磨特性を有する比較的粒子径の大きいものとなる。
[Atypical silica particles]
In the method for producing a deformed silica particle dispersion liquid of the present invention, the obtained deformed silica particles have a specific surface area equivalent particle diameter (D1) in the range of 10 nm or more and 200 nm or less, and are averages measured by a dynamic light scattering method. It is preferable that the particle size (D2) is in the range of 20 nm or more and 300 nm or less, and the value of (D2) / (D1) is in the range of 1.2 or more and 20 or less. Such irregularly shaped silica particles have relatively large particle diameters with excellent polishing characteristics.

[異形シリカ粒子分散液]
本発明の製造方法で得られる異形シリカ粒子分散液は、比表面積換算粒子径(D1)が、10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、異形度[(D2)/(D1)]の値が1.2以上20以下の範囲にある異形シリカ粒子が水に分散してなることが好ましい。
異形度[(D2)/(D1)]が1.2以上20以下の範囲にあると、研磨用砥粒として用いた場合、高い研磨速度を示し、かつディフェクトも少なく、表面粗さも低い研磨面を得ることができる。異形度[(D2)/(D1)]が1.2未満の場合、球状粒子に近くなり、そのような異形シリカ粒子分散液を研磨用途に適用した場合、研磨速度が低下する傾向がある。異形度[(D2)/(D1)]が20を超える場合、そのような異形シリカ粒子分散液を研磨用途に適用すると、被研磨基板にスクラッチ等のディフェクトが発生し易くなり、研磨基板の表面粗さも悪化する傾向がある。
動的光散乱法で測定された平均粒子径(D2)が、20nm以上300nm以下の範囲にあると高い研磨速度が得られるため、好ましい。平均粒子径(D2)が20nm未満の異形シリカ粒子分散液を研磨用途に適用した場合、実用上の研磨速度が充分ではない。また、平均粒子径(D2)が300nmを超える異形シリカ粒子分散液を研磨用途に適用した場合、研磨速度が低下し、さらに、被研磨基板にスクラッチが発生しやすくなる傾向がある。
[Atypical silica particle dispersion]
The modified silica particle dispersion obtained by the production method of the present invention has a specific surface area equivalent particle diameter (D1) in the range of 10 nm or more and 200 nm or less, and has an average particle diameter (D2) measured by a dynamic light scattering method. It is preferable that the deformed silica particles in the range of 20 nm or more and 300 nm or less and the value of the degree of deformation [(D2) / (D1)] in the range of 1.2 or more and 20 or less are dispersed in water.
When the degree of deformation [(D2) / (D1)] is in the range of 1.2 or more and 20 or less, a polished surface showing a high polishing rate, less defect, and low surface roughness when used as an abrasive grain for polishing. Can be obtained. When the degree of deformation [(D2) / (D1)] is less than 1.2, it becomes close to spherical particles, and when such a deformed silica particle dispersion is applied to a polishing application, the polishing rate tends to decrease. When the degree of deformation [(D2) / (D1)] exceeds 20, if such a deformed silica particle dispersion is applied to a polishing application, defects such as scratches are likely to occur on the substrate to be polished, and the surface of the polishing substrate is easily scratched. Roughness also tends to worsen.
When the average particle size (D2) measured by the dynamic light scattering method is in the range of 20 nm or more and 300 nm or less, a high polishing rate can be obtained, which is preferable. When a deformed silica particle dispersion having an average particle diameter (D2) of less than 20 nm is applied to a polishing application, the practical polishing rate is not sufficient. Further, when a deformed silica particle dispersion having an average particle diameter (D2) of more than 300 nm is applied to a polishing application, the polishing rate tends to decrease, and scratches tend to occur easily on the substrate to be polished.

比表面積換算粒子径(D1)は、10nm以上200nm以下の範囲にあることが好ましい。
比表面積換算粒子径(D1)が10nm未満の場合は、サイズが小さいため粒子の数は増えるが、個々の粒子の研磨速度が低いため、研磨用途として用いた場合、研磨速度が著しく低くなる。比表面積換算粒子径(D1)が200nmを超えると、サイズが大き過ぎるため、粒子個数が著しく減少する。そのため研磨用途に適用した場合、研磨速度が低下する傾向にある。また、サイズが大き過ぎ、分散液中でシリカ粒子の沈殿が生じ、使用する際に再分散の手間がかかったり、充分に分散できず研磨性能が安定しない可能性がある。
比表面積換算粒子径(D1)は、20以上150以下であることがより好ましい。
The specific surface area equivalent particle diameter (D1) is preferably in the range of 10 nm or more and 200 nm or less.
When the specific surface area equivalent particle diameter (D1) is less than 10 nm, the number of particles increases due to the small size, but the polishing rate of each particle is low, so that the polishing rate becomes significantly low when used for polishing purposes. When the specific surface area equivalent particle diameter (D1) exceeds 200 nm, the size is too large and the number of particles is significantly reduced. Therefore, when applied to polishing applications, the polishing speed tends to decrease. In addition, the size may be too large, silica particles may precipitate in the dispersion liquid, and it may take time and effort to redisperse the particles when used, or the silica particles may not be sufficiently dispersed and the polishing performance may not be stable.
The specific surface area equivalent particle diameter (D1) is more preferably 20 or more and 150 or less.

異形度[(D2)/(D1)]の値は、1.5以上15以下であることがより好ましく、1.5以上5以下であることが特に好ましい。
動的光散乱法で測定された平均粒子径(D2)の値は、30nm以上250nm以下であることがより好ましい。
The value of the degree of deformation [(D2) / (D1)] is more preferably 1.5 or more and 15 or less, and particularly preferably 1.5 or more and 5 or less.
The value of the average particle size (D2) measured by the dynamic light scattering method is more preferably 30 nm or more and 250 nm or less.

異形シリカ粒子分散液のSiO濃度は、10質量%以上50質量%以下であることが好ましく、20質量%以上50質量%以下であることがより好ましい。
異形シリカ粒子分散液の分散溶媒としては、水または水と親水性の有機溶媒との混合溶媒を使用することができる。
The SiO 2 concentration of the modified silica particle dispersion is preferably 10% by mass or more and 50% by mass or less, and more preferably 20% by mass or more and 50% by mass or less.
As the dispersion solvent of the modified silica particle dispersion liquid, water or a mixed solvent of water and a hydrophilic organic solvent can be used.

本発明の異形シリカ粒子分散液は、カリウム化合物を含むことが好ましい。カリウム化合物を含むことによって、分散液をアルカリ性に保つことができ、異形シリカ粒子の表面シラノール基の乖離が進み、異形シリカ粒子が凝集することなく安定に保つことができる。
カリウム化合物としては、水酸化カリウムや水酸化カリウムの塩、珪酸カリウム等を例示することができる。カリウム化合物は、1種または2種以上を併用してもよい。
異形シリカ粒子分散液におけるカリウム化合物の濃度は、SiO/KOモル比として、50以上400以下が好ましく、60以上300以下がより好ましい。
The modified silica particle dispersion of the present invention preferably contains a potassium compound. By containing the potassium compound, the dispersion can be kept alkaline, the surface silanol groups of the deformed silica particles are dissociated, and the deformed silica particles can be kept stable without agglomeration.
Examples of the potassium compound include potassium hydroxide, a salt of potassium hydroxide, potassium silicate, and the like. The potassium compound may be used alone or in combination of two or more.
The concentration of the potassium compound in the variant silica particle dispersion is preferably 50 or more and 400 or less, and more preferably 60 or more and 300 or less, as a SiO 2 / K 2 O molar ratio.

本発明では、異形シリカ粒子分散液に含まれる粒子径が、0.51μm以上の粒子を粗大粒子という。粗大粒子の割合は、SiO濃度1質量%のシリカ粒子分散液中の粗大粒子の個数とした場合、500千個/cc以下が好ましく、120千個/cc以下がより好ましい。
粗大粒子の個数が500千個/ccを超えると、研磨時に研磨傷が発生し易い傾向にある。
In the present invention, particles having a particle size of 0.51 μm or more contained in the modified silica particle dispersion are referred to as coarse particles. The ratio of the coarse particles is preferably 500,000 particles / cc or less, more preferably 120 thousand particles / cc or less, when the number of coarse particles in the silica particle dispersion liquid having a SiO 2 concentration of 1% by mass is taken as the number.
When the number of coarse particles exceeds 500,000 / cc, polishing scratches tend to occur during polishing.

[1]SiOの定量方法
シリカ微粒子分散液中のSiO含有量は、シリカ微粒子分散液に1000℃で灼熱減量を行い、固形分の質量を求めた後、後述するNa、Kの含有率を測定する場合と同様に、原子吸光分光分析装置(日立製作所社製、Z-2310)を用いて、検量線法によりNa、Kの質量%を算出し、Na、KをNaO、KOに換算し、NaO、KO以外の固形分の成分はSiOであるとして、SiOの含有量を求めた。
[1] Method for quantifying SiO 2 The content of SiO 2 in the silica fine particle dispersion is determined by burning the silica fine particle dispersion at 1000 ° C. to determine the mass of the solid content, and then the Na and K contents described later. In the same manner as in the case of measuring, the mass% of Na and K is calculated by the calibration curve method using an atomic absorption spectroscopic analyzer (manufactured by Hitachi, Ltd., Z-2310), and Na and K are Na 2 O and K. Converted to 2 O, the solid content component other than Na 2 O and K 2 O was assumed to be SiO 2 , and the content of SiO 2 was determined.

[2]NaおよびKの定量方法
1.測定試料の調製
(1)約1gの異形シリカ粒子分散液を白金皿に精秤する。
(2)上記(1)に、リン酸3mL、硝酸5mLおよび弗化水素酸10mLを加えて、サンドバス上で加熱する。
(3)乾固したら、少量の水と硝酸50mLを加え溶解させて、100mLのメスフラスコにおさめ、水を加えて、100mLにし、測定試料する。
2.NaおよびKの含有割合の測定方法
上記1.で得られた測定試料を、原子吸光分光分析装置(日立製作所社製、Z-2310)で測定し、検量線法により算出した。
[2] Method for quantifying Na and K 1. Preparation of measurement sample (1) Approximately 1 g of the irregular silica particle dispersion is precisely weighed in a platinum dish.
(2) To the above (1), add 3 mL of phosphoric acid, 5 mL of nitric acid and 10 mL of hydrofluoric acid, and heat the mixture on a sand bath.
(3) After drying, add a small amount of water and 50 mL of nitric acid to dissolve, put in a 100 mL volumetric flask, add water to make 100 mL, and make a measurement sample.
2. 2. Method for measuring the content ratio of Na and K The above 1. The measurement sample obtained in 1 was measured by an atomic absorption spectrophotometer (manufactured by Hitachi, Ltd., Z-2310) and calculated by the calibration curve method.

[3]アルカリ土類金属の定量方法
(1)上記[2]NaおよびKの定量方法で調製した測定試料を20mLのメスフラスコに10mL採取する操作を5回繰り返し、分液10mLを5個得る。
(2)これを用いて、ICPプラズマ発光分析装置(SII製、品番SPS5520)にて、標準添加法で測定を行う。
(3)同様の方法でブランクを測定し、ブランク分を差し引いて調整し、各元素における測定値とする。
[3] Alkaline earth metal quantification method (1) Repeat the operation of collecting 10 mL of the measurement sample prepared by the above [2] Na and K quantification method in a 20 mL volumetric flask 5 times to obtain 5 separate liquids of 10 mL. ..
(2) Using this, measurement is performed by a standard addition method with an ICP plasma emission spectrometer (manufactured by SII, product number SPS5520).
(3) Measure the blank by the same method, subtract the blank amount and adjust, and use it as the measured value for each element.

[4]ハロゲンの定量方法
1.試料の調製
(1)異形シリカ粒子分散液からなる試料5gを水で希釈して全量を100mlとする。
(2)遠心分離機(日立製HIMAC CT06E)にて4000rpmで20分遠心分離して、沈降成分を除去して得た液を測定試料とする。
2.ハロゲンの含有割合の測定方法
上記1.で得られた水溶液を、イオンクロマトグラフを用いて測定し、検量線法により算出した。
システム:DIONEX社製ICS-1100
[4] Halogen quantification method 1. Preparation of sample (1) Dilute 5 g of the sample consisting of the irregular silica particle dispersion with water to make the total volume 100 ml.
(2) Centrifuge at 4000 rpm for 20 minutes with a centrifuge (HIMAC CT06E manufactured by Hitachi) to remove the sedimentation component, and use the obtained liquid as a measurement sample.
2. 2. Method for measuring halogen content ratio 1. The aqueous solution obtained in 1) was measured using an ion chromatograph and calculated by the calibration curve method.
System: DIONEX ICS-1100

[5]動的光散乱法による平均粒子径D2の測定方法
異形シリカ粒子分散液を0.58%アンモニア水にて希釈して、シリカ濃度1質量%に調整し、レーザーパーティクルアナライザーを用いて測定する。
[レーザーパーティクルアナライザー]
大塚電子株式会社製、型番「ゼータ電位・粒径測定システム ELSZ-1000S」(測定原理:動的光散乱法、光源波長:665.70nm、セル:10mm角のプラスチックセル)
[5] Measurement method of average particle size D2 by dynamic light scattering method Atypical silica particle dispersion is diluted with 0.58% aqueous ammonia to adjust the silica concentration to 1% by mass, and measured using a laser particle analyzer. do.
[Laser Particle Analyzer]
Model number "Zeta potential / particle size measurement system ELSZ-1000S" manufactured by Otsuka Electronics Co., Ltd. (Measurement principle: dynamic light scattering method, light source wavelength: 665.70 nm, cell: 10 mm square plastic cell)

[6]比表面積換算粒子径D1の測定方法
異形シリカ粒子分散液50mLをHNOでpH3.5に調整し、1-プロパノール40mLを加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とする。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いて窒素吸着法(BET法)を用いて、窒素の吸着量から、BET1点法により比表面積を算出する。
具体的には、試料0.5gを測定セルに取り、窒素30v%とヘリウム70v%との混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、異形シリカ粒子の比表面積を算出する。また、得られた比表面積(SA)を下記式に代入して比表面積換算粒子径D1を求める。
比表面積換算粒子径D1(nm)=6000/(ρ×SA)
(ここで、ρはシリカ粒子の密度2.2[g/cm]を表す。)
[6] Measuring method of specific surface area equivalent particle size D1 50 mL of irregular silica particle dispersion was adjusted to pH 3.5 with HNO 3 , 40 mL of 1-propanol was added, and the sample dried at 110 ° C. for 16 hours was pulverized in a dairy pot. , Bake at 500 ° C. for 1 hour in a muffle furnace to prepare a sample for measurement. Then, the specific surface area is calculated from the amount of nitrogen adsorbed by the BET 1-point method using the nitrogen adsorption method (BET method) using a specific surface area measuring device (manufactured by Yuasa Ionics, model number Multisorb 12).
Specifically, 0.5 g of a sample is taken in a measurement cell, degassed at 300 ° C. for 20 minutes in a mixed gas stream of 30 v% nitrogen and 70 v% helium, and then the sample is placed in the mixed gas stream. Keep the temperature at the liquid nitrogen level and allow nitrogen to equilibrate and adsorb to the sample. Next, the sample temperature is gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that period is detected, and the specific surface area of the deformed silica particles is calculated from a calibration curve prepared in advance. Further, the obtained specific surface area (SA) is substituted into the following formula to obtain the specific surface area conversion particle diameter D1.
Specific surface area conversion particle diameter D1 (nm) = 6000 / (ρ × SA)
(Here, ρ represents the density of silica particles 2.2 [g / cm 3 ].)

[7]粗大粒子の測定方法
1.測定試料の調製
シリカ粒子分散液を水で1質量%に希釈し、測定試料とした。
2.
測定試料5mLを測定装置(パーティクルサイジングシステム社(Particle sizing system Inc.)製アキュサイザー780APS(Accusizer 780APS))に注入して測定する。0.51μm以上の粗大粒子数を測定試料の粗大粒子数とする。測定条件は以下の通り。
<System Setup>
・Stir Speed Control / Low Speed Factor 1600 / High Speed Factor 2500
<System Menu>
・Data Collection Time 120 sec.
・Syringe Volume 2.5mL
・Sample Line Number :Sum Mode
・Initial 2nd-Stage Dilution Factor 30
・Vessel Fast Flush Time 60 sec.
・System Flush Time / Before Measurement 100 sec. / After Measurement 100 sec.
・Sample Equilibration Time 25 sec./ Sample Flow Time 10 sec.
[7] Measurement method for coarse particles 1. Preparation of measurement sample The silica particle dispersion was diluted with water to 1% by mass to prepare a measurement sample.
2. 2.
5 mL of the measurement sample is injected into a measuring device (Accusizer 780APS (Accusizer 780APS) manufactured by Particle sizing system Inc.) for measurement. The number of coarse particles of 0.51 μm or more is defined as the number of coarse particles of the measurement sample. The measurement conditions are as follows.
<System Setup>
・ Stir Speed Control / Low Speed Factor 1600 / High Speed Factor 2500
<System Menu>
・ Data Collection Time 120 sec.
・ Syringe Volume 2.5mL
-Sample Line Number: Sum Mode
・ Initial 2nd-Stage Dilution Factor 30
・ Vessel Fast Flush Time 60 sec.
・ System Flush Time / Before Measurement 100 sec. / After Measurement 100 sec.
・ Sample Equilibration Time 25 sec./Sample Flow Time 10 sec.

[実施例1]
・珪酸カリウム溶液の製造
超純水3.699kgに水酸化カリウム水溶液(KOH濃度48.7質量%)2.766kgを添加し、均一になるまで攪拌した。この水酸化カリウム水溶液にシリカ粉末(含水率20質量%)2.82kgを添加して混合した。この混合液を95℃に昇温し、4時間保持し、珪酸カリウム溶液を得た。
得られた珪酸カリウム溶液において、SiO濃度は24.5質量%であり、KO濃度は12.4質量%であり、SiO/KO(モル比)は3.10であり、Clイオン濃度は8ppmであった(以下、この珪酸カリウム溶液ないしそれと同等の珪酸カリウム溶液を「珪酸カリウム溶液(1)」と記す。)。
[Example 1]
-Production of potassium silicate solution 2.766 kg of potassium hydroxide aqueous solution (KOH concentration 48.7% by mass) was added to 3.699 kg of ultrapure water, and the mixture was stirred until uniform. 2.82 kg of silica powder (water content 20% by mass) was added to this potassium hydroxide aqueous solution and mixed. The temperature of this mixed solution was raised to 95 ° C. and kept for 4 hours to obtain a potassium silicate solution.
In the obtained potassium silicate solution, the SiO 2 concentration was 24.5% by mass, the K 2 O concentration was 12.4% by mass, and the SiO 2 / K 2 O (molar ratio) was 3.10. The Cl ion concentration was 8 ppm (hereinafter, this potassium silicate solution or an equivalent potassium silicate solution is referred to as "potassium silicate solution (1)").

・酸性珪酸液の製造
SiO濃度5質量%の珪酸カリウム水溶液15kgを、強酸性陽イオン交換樹脂(SK1BH(三菱ケミカル社製))6Lに空間速度2.75(1/hr)で通液して酸性珪酸液15kgを得た。得られた酸性珪酸液において、SiO濃度は4.6質量%であった(以下、この酸性珪酸液ないしそれと同等の酸性珪酸液を「酸性珪酸液」と記す。)。
-Production of acidic silicic acid solution 15 kg of an aqueous potassium silicate solution having a SiO 2 concentration of 5% by mass is passed through 6 L of a strongly acidic cation exchange resin (SK1BH (manufactured by Mitsubishi Chemical Co., Ltd.)) at an air velocity of 2.75 (1 / hr). To obtain 15 kg of an acidic silicic acid solution. In the obtained acidic silicic acid solution, the SiO 2 concentration was 4.6% by mass (hereinafter, this acidic silicic acid solution or an acidic silicic acid solution equivalent thereto is referred to as "acidic silicic acid solution").

<前駆体分散液の調製>
超純水2.344kgに珪酸カリウム溶液(1)0.88kgを添加して均一になるまで撹拌し、アルカリ水溶液を得た。このアルカリ水溶液に、酸性珪酸液0.15kgを添加して混合した。
この混合液を98.5℃に昇温し、1.3時間保持し、前駆体分散液を得た。
前駆体分散液は、SiO濃度6.6質量%であり、SiO/AO(モル比)は3.2であった。
<Preparation of precursor dispersion>
To 2.344 kg of ultrapure water, 0.88 kg of potassium silicate solution (1) was added and stirred until uniform to obtain an alkaline aqueous solution. To this alkaline aqueous solution, 0.15 kg of an acidic silicic acid solution was added and mixed.
The temperature of this mixed solution was raised to 98.5 ° C. and held for 1.3 hours to obtain a precursor dispersion.
The precursor dispersion had a SiO 2 concentration of 6.6% by mass and a SiO 2 / A 2O (molar ratio) of 3.2.

<シード粒子分散液の調製>
この前駆体粒子分散液全量に酸性珪酸液6.97kgを、98.5℃で、4.9時間かけて添加した(第二添加速度比=0.29)。添加終了後も98.5℃で0.5時間放置し、シード粒子分散液を得た。
このシード粒子分散液のSiO濃度は5.2質量%、およびKO濃度は1.1質量%であった。また、動的光散乱粒子径測定装置で測定したシード粒子の平均粒子径は105nmであった。
<Preparation of seed particle dispersion>
6.97 kg of an acidic silicic acid solution was added to the total amount of the precursor particle dispersion liquid at 98.5 ° C. over 4.9 hours (second addition rate ratio = 0.29). After the addition was completed, the mixture was left at 98.5 ° C. for 0.5 hours to obtain a seed particle dispersion.
The SiO 2 concentration of this seed particle dispersion was 5.2% by mass, and the K2O concentration was 1.1% by mass. The average particle size of the seed particles measured by the dynamic light scattering particle size measuring device was 105 nm.

<異形シリカ粒子分散液の製造>
超純水0.113kgに珪酸カリウム溶液(1)0.006kgを添加した。これにシード粒子分散液10.34kgを添加して混合した。ついで、これを97.5℃に昇温し、0.5時間保持した。
その後、97.5℃で、酸性珪酸液142.94kgを12時間かけて添加した(第三添加速度比=2.5)。添加終了後も97.5℃で1時間放置し、続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られた異形シリカ粒子分散液において、SiO濃度は4.6質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定した異形シリカ粒子の平均粒子径D2は131nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Manufacturing of irregularly shaped silica particle dispersion>
To 0.113 kg of ultrapure water was added 0.006 kg of potassium silicate solution (1). 10.34 kg of seed particle dispersion was added thereto and mixed. Then, the temperature was raised to 97.5 ° C. and held for 0.5 hours.
Then, at 97.5 ° C., 142.94 kg of an acidic silicic acid solution was added over 12 hours (third addition rate ratio = 2.5). After the addition was completed, the mixture was allowed to stand at 97.5 ° C. for 1 hour and then cooled to room temperature to obtain an irregular silica particle dispersion.
In the obtained variant silica particle dispersion, the SiO 2 concentration was 4.6% by mass and the K2O concentration was 0.07% by mass. The average particle size D2 of the irregularly shaped silica particles measured by the dynamic light scattering particle size measuring device was 131 nm. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.7質量%のシリカ粒子分散液を調製した。
得られたシリカ粒子の比表面積換算粒子径D1は41nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
Subsequently, the silica particles were concentrated using an extraordinary module to prepare a silica particle dispersion having a SiO 2 concentration of 11.7% by mass.
The specific surface area equivalent particle diameter D1 of the obtained silica particles was 41 nm. Moreover, when the shape of the obtained silica particles was observed with an electron microscope, the shape of the particles was a particle containing irregularly shaped particles as if a plurality of particles were bonded.

[実施例2]
・珪酸カリウム溶液
この実施例では、実施例1と同様に調製した珪酸カリウム溶液を使用した。
・酸性珪酸液
この実施例では、実施例1と同様に調整した酸性珪酸液使用した。
[Example 2]
-Potassium silicate solution In this example, a potassium silicate solution prepared in the same manner as in Example 1 was used.
-Acid silicic acid solution In this example, an acidic silicic acid solution prepared in the same manner as in Example 1 was used.

<前駆体分散液の調製>
超純水1.989kgに珪酸カリウム溶液(1)0.88kgを添加して均一になるまで撹拌し、アルカリ水溶液を得た。このアルカリ水溶液に酸性珪酸液0.137kgを添加して混合した。
この混合液を、87.0℃に昇温し、1.3時間保持し、前駆体分散液を得た。
前駆体分散液において、SiO濃度は7.4質量%であり、SiO/AO(モル比)は3.2であった。
<Preparation of precursor dispersion>
A potassium silicate solution (1) of 0.88 kg was added to 1.989 kg of ultrapure water and stirred until uniform to obtain an alkaline aqueous solution. 0.137 kg of an acidic silicic acid solution was added to this alkaline aqueous solution and mixed.
The temperature of this mixed solution was raised to 87.0 ° C. and held for 1.3 hours to obtain a precursor dispersion.
In the precursor dispersion, the SiO 2 concentration was 7.4% by mass, and the SiO 2 / A 2 O (molar ratio) was 3.2.

<シード粒子分散液の製造>
この前駆体分散液に、酸性珪酸液6.993kgを、87.0℃で4.9時間かけて添加した(第二添加速度比=0.30)。添加終了後も87.0℃で0.5時間放置し、シード粒子分散液を得た。
このシード粒子分散液のSiO濃度は5.4質量%、およびKO濃度は1.1質量%であった。動的光散乱粒子径測定装置で測定したシード粒子の平均粒子径は64nmであった。
<Manufacturing of seed particle dispersion>
To this precursor dispersion, 6.993 kg of an acidic silicic acid solution was added at 87.0 ° C. over 4.9 hours (second addition rate ratio = 0.30). After the addition was completed, the mixture was left at 87.0 ° C. for 0.5 hours to obtain a seed particle dispersion.
The SiO 2 concentration of this seed particle dispersion was 5.4% by mass, and the K2O concentration was 1.1% by mass. The average particle size of the seed particles measured by the dynamic light scattering particle size measuring device was 64 nm.

<異形シリカ粒子分散液の製造>
超純水0.461kgに珪酸カリウム溶液(1)0.003kgを添加した。これにシード粒子分散液10.00kgを添加して混合した。ついで、これを87.0℃に昇温し、0.5時間保持した。
その後、87.0℃で、酸性珪酸液142.29kgを12時間かけて添加した(第三添加速度比=2.5)。添加終了後も87.0℃で1時間放置し、続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られた異形シリカ粒子分散液において、SiO濃度は4.6質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定したシリカ粒子の平均粒子径D2は91nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Manufacturing of irregularly shaped silica particle dispersion>
To 0.461 kg of ultrapure water was added 0.003 kg of potassium silicate solution (1). To this, 10.00 kg of a seed particle dispersion was added and mixed. Then, the temperature was raised to 87.0 ° C. and held for 0.5 hours.
Then, at 87.0 ° C., 142.29 kg of an acidic silicic acid solution was added over 12 hours (third addition rate ratio = 2.5). After the addition was completed, the mixture was allowed to stand at 87.0 ° C. for 1 hour and then cooled to room temperature to obtain an irregular silica particle dispersion.
In the obtained variant silica particle dispersion, the SiO 2 concentration was 4.6% by mass and the K2O concentration was 0.07% by mass. The average particle size D2 of the silica particles measured by the dynamic light scattering particle size measuring device was 91 nm. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.8質量%の異形シリカ粒子分散液を調製した。
得られた異形シリカ粒子の比表面積換算粒子径D1は41nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
Subsequently, it was concentrated using an extraordinary module to prepare a modified silica particle dispersion having a SiO 2 concentration of 11.8% by mass.
The specific surface area-equivalent particle diameter D1 of the obtained irregularly shaped silica particles was 41 nm. Moreover, when the shape of the obtained silica particles was observed with an electron microscope, the shape of the particles was a particle containing irregularly shaped particles as if a plurality of particles were bonded.

[実施例3]
・珪酸カリウム溶液
この実施例では、実施例1と同様に調製した珪酸カリウム溶液を使用した。
・酸性珪酸液
この実施例では、実施例1と同様に調整した酸性珪酸液使用した。
[Example 3]
-Potassium silicate solution In this example, a potassium silicate solution prepared in the same manner as in Example 1 was used.
-Acid silicic acid solution In this example, an acidic silicic acid solution prepared in the same manner as in Example 1 was used.

<前駆体分散液の製造>
超純水1.609kgに珪酸カリウム溶液(1)0.88kgを添加して均一になるまで撹拌し、アルカリ水溶液を得た。このアルカリ水溶液に酸性珪酸液0.137kgを添加して混合した。
この混合液を87.0℃に昇温し、1.3時間保持し前駆体分散液を得た。
前駆体分散液において、SiO濃度は8.5質量であり、SiO/AO(モル比)は3.2であった。
<Manufacturing of precursor dispersion>
A potassium silicate solution (1) of 0.88 kg was added to 1.609 kg of ultrapure water and stirred until uniform to obtain an alkaline aqueous solution. 0.137 kg of an acidic silicic acid solution was added to this alkaline aqueous solution and mixed.
The temperature of this mixed solution was raised to 87.0 ° C. and held for 1.3 hours to obtain a precursor dispersion.
In the precursor dispersion, the SiO 2 concentration was 8.5 mass and the SiO 2 / A 2 O (molar ratio) was 3.2.

<シード粒子分散液の製造>
この前駆体分散液に、酸性珪酸液7.041kgを87.0℃で4.9時間かけて添加した(第二添加速度比=0.30)。添加終了後も87.0℃で0.5時間放置し、シード粒子分散液を得た。
このシード粒子分散液において、SiO濃度は5.7質量%であり、KO濃度は1.1質量%であった。動的光散乱粒子径測定装置で測定したシード粒子の平均粒子径は73nmであった。
<Manufacturing of seed particle dispersion>
To this precursor dispersion, 7.041 kg of an acidic silicic acid solution was added at 87.0 ° C. over 4.9 hours (second addition rate ratio = 0.30). After the addition was completed, the mixture was left at 87.0 ° C. for 0.5 hours to obtain a seed particle dispersion.
In this seed particle dispersion, the SiO 2 concentration was 5.7% by mass and the K2O concentration was 1.1% by mass. The average particle size of the seed particles measured by the dynamic light scattering particle size measuring device was 73 nm.

<異形シリカ粒子分散液の製造>
超純水0.870kgに珪酸カリウム溶液(1)0.008kgを添加した。これにシード粒子分散液9.67kgを添加して混合した。ついで、これを87.0℃に昇温し、0.5時間保持した。
その後、87.0℃で、酸性珪酸液143.07kgを12時間かけて添加した(第三添加速度比=2.5)。添加終了後も87.0℃で1時間放置した。続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られたシリカ粒子分散液において、SiO濃度は4.6質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定した異形シリカ粒子の平均粒子径D2は98nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Manufacturing of irregularly shaped silica particle dispersion>
To 0.870 kg of ultrapure water was added 0.008 kg of a potassium silicate solution (1). 9.67 kg of seed particle dispersion was added thereto and mixed. Then, the temperature was raised to 87.0 ° C. and held for 0.5 hours.
Then, at 87.0 ° C., 143.07 kg of an acidic silicic acid solution was added over 12 hours (third addition rate ratio = 2.5). After the addition was completed, the mixture was left at 87.0 ° C. for 1 hour. Subsequently, the mixture was cooled to room temperature to obtain a modified silica particle dispersion.
In the obtained silica particle dispersion, the SiO 2 concentration was 4.6% by mass and the K2O concentration was 0.07% by mass. The average particle size D2 of the irregularly shaped silica particles measured by the dynamic light scattering particle size measuring device was 98 nm. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.6質量%の異形シリカ粒子分散液を調製した。
得られた異形シリカ粒子の比表面積換算粒子径D1は41nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
Subsequently, it was concentrated using an extraordinary module to prepare a modified silica particle dispersion having a SiO 2 concentration of 11.6% by mass.
The specific surface area-equivalent particle diameter D1 of the obtained irregularly shaped silica particles was 41 nm. Moreover, when the shape of the obtained silica particles was observed with an electron microscope, the shape of the particles was a particle containing irregularly shaped particles as if a plurality of particles were bonded.

[実施例4]
・珪酸カリウム溶液
この実施例では、実施例1と同様に調製した珪酸カリウム溶液を使用した。
・酸性珪酸液
この実施例では、実施例1と同様に調整した酸性珪酸液使用した。
[Example 4]
-Potassium silicate solution In this example, a potassium silicate solution prepared in the same manner as in Example 1 was used.
-Acid silicic acid solution In this example, an acidic silicic acid solution prepared in the same manner as in Example 1 was used.

実施例3と同様にしてシード粒子分散液を得た(SiO濃度は5.7質量%、およびKO濃度は1.1質量%であり、シード粒子の平均粒子径は73nmであった。)。 A seed particle dispersion was obtained in the same manner as in Example 3 (SiO 2 concentration was 5.7% by mass, K2O concentration was 1.1% by mass, and the average particle size of the seed particles was 73 nm. .).

<異形シリカ粒子分散液の製造>
超純水0.335kgにシード粒子分散液9.67kgを添加して混合した。ついで、これを97.5℃に昇温し、0.5時間保持した。
その後、97.5℃で、酸性珪酸液147.57kgを12時間かけて添加した(第三添加速度比=2.4)。添加終了後も97.5℃で1時間放置し、続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られた異形シリカ粒子分散液において、SiO濃度は4.7質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定した異形シリカ粒子の平均粒子径D2は104nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Manufacturing of irregularly shaped silica particle dispersion>
9.67 kg of seed particle dispersion was added to 0.335 kg of ultrapure water and mixed. Then, the temperature was raised to 97.5 ° C. and held for 0.5 hours.
Then, at 97.5 ° C., 147.57 kg of an acidic silicic acid solution was added over 12 hours (third addition rate ratio = 2.4). After the addition was completed, the mixture was allowed to stand at 97.5 ° C. for 1 hour and then cooled to room temperature to obtain an irregular silica particle dispersion.
In the obtained variant silica particle dispersion, the SiO 2 concentration was 4.7% by mass and the K2O concentration was 0.07% by mass. The average particle size D2 of the irregularly shaped silica particles measured by the dynamic light scattering particle size measuring device was 104 nm. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.9質量%の異形シリカ粒子分散液を調製した。
得られた異形シリカ粒子の比表面積換算粒子径D1は47nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
Subsequently, the mixture was concentrated using an extraordinary module to prepare a modified silica particle dispersion having a SiO 2 concentration of 11.9% by mass.
The specific surface area-equivalent particle diameter D1 of the obtained irregularly shaped silica particles was 47 nm. Moreover, when the shape of the obtained silica particles was observed with an electron microscope, the shape of the particles was a particle containing irregularly shaped particles as if a plurality of particles were bonded.

[実施例5]
・珪酸カリウム溶液の製造
超純水4.757kgに水酸化カリウム水溶液(KOH濃度48.7質量%)3.556kgを添加して均一になるまで攪拌した。この水酸化カリウム水溶液にシリカ粉末(含水量含水率20.0%)3.62kgを添加して混合した。
この混合液を95℃に昇温し、4時間保持し、珪酸カリウム溶液を得た。
得られた珪酸カリウム溶液において、SiO濃度は24.5質量%であり、KO濃度は12.3質量%であり、SiO/KO(モル比)は3.12であり、Clイオン濃度4ppmであった(以下、この珪酸カリウム溶液ないしそれと同等の珪酸カリウム溶液を「珪酸カリウム溶液(2)」と記す。)。
・酸性珪酸液
この実施例では、実施例1と同様に調整した酸性珪酸液使用した。
[Example 5]
-Production of potassium silicate solution 3.556 kg of potassium hydroxide aqueous solution (KOH concentration 48.7% by mass) was added to 4.757 kg of ultrapure water and stirred until uniform. 3.62 kg of silica powder (water content 20.0%) was added to this potassium hydroxide aqueous solution and mixed.
The temperature of this mixed solution was raised to 95 ° C. and kept for 4 hours to obtain a potassium silicate solution.
In the obtained potassium silicate solution, the SiO 2 concentration was 24.5% by mass, the K 2 O concentration was 12.3% by mass, and the SiO 2 / K 2 O (molar ratio) was 3.12. The Cl ion concentration was 4 ppm (hereinafter, this potassium silicate solution or an equivalent potassium silicate solution is referred to as "potassium silicate solution (2)").
-Acid silicic acid solution In this example, an acidic silicic acid solution prepared in the same manner as in Example 1 was used.

<前駆体分散液の製造>
超純水0.672kgに珪酸カリウム溶液(2)0.99kgを添加して均一になるまで撹拌し、アルカリ水溶液を得た。このアルカリ水溶液に、酸性珪酸液0.132kgを添加して混合した。
この混合液を80.0℃に昇温し、1.3時間保持し、前駆体分散液を得た。
前駆体分散液において、SiO濃度は13.8質量%であり、SiO/AO(モル比)は3.2であった。
<Manufacturing of precursor dispersion>
A potassium silicate solution (2) of 0.99 kg was added to 0.672 kg of ultrapure water and stirred until uniform to obtain an alkaline aqueous solution. To this alkaline aqueous solution, 0.132 kg of an acidic silicic acid solution was added and mixed.
The temperature of this mixed solution was raised to 80.0 ° C. and held for 1.3 hours to obtain a precursor dispersion.
In the precursor dispersion, the SiO 2 concentration was 13.8% by mass, and the SiO 2 / A 2 O (molar ratio) was 3.2.

<シード粒子分散液の製造>
この前駆体分散液に、酸性珪酸液7.840kgを80.0℃で4.9時間かけて添加した(第二添加速度比=0.30)。添加終了後も80.0℃で0.5時間放置した。シード粒子分散液を得た。
得られたシード粒子分散液において、SiO濃度は6.3質量%であり、KO濃度は1.3質量%であった。動的光散乱粒子径測定装置で測定したシード粒子の平均粒子径は71nmであった。
<Manufacturing of seed particle dispersion>
To this precursor dispersion, 7.840 kg of an acidic silicic acid solution was added at 80.0 ° C. over 4.9 hours (second addition rate ratio = 0.30). After the addition was completed, the mixture was left at 80.0 ° C. for 0.5 hours. A seed particle dispersion was obtained.
In the obtained seed particle dispersion, the SiO 2 concentration was 6.3% by mass, and the K2O concentration was 1.3% by mass. The average particle size of the seed particles measured by the dynamic light scattering particle size measuring device was 71 nm.

<異形シリカ粒子分散液の製造>
超純水1.970kgに珪酸カリウム溶液(2)0.001kgを添加した。これにシード粒子分散液9.63kgを添加して混合した。ついで、これを97.5℃に昇温し、0.5時間保持した。
その後、酸性珪酸液160.06kgを12時間かけて添加した(第三添加速度比=2.5)。添加終了後も97.5℃で1時間放置した。続いて室温まで冷却し、異形シリカ粒子分散液を得た。
得られたシリカ粒子分散液において、SiO濃度は4.6質量%であり、KO濃度は0.07質量%であった。動的光散乱粒子径測定装置で測定した異形シリカ粒子の平均粒子径D2は102nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
<Manufacturing of irregularly shaped silica particle dispersion>
To 1.970 kg of ultrapure water, 0.001 kg of potassium silicate solution (2) was added. 9.63 kg of seed particle dispersion was added thereto and mixed. Then, the temperature was raised to 97.5 ° C. and held for 0.5 hours.
Then, 160.06 kg of an acidic silicic acid solution was added over 12 hours (third addition rate ratio = 2.5). After the addition was completed, the mixture was left at 97.5 ° C. for 1 hour. Subsequently, the mixture was cooled to room temperature to obtain a modified silica particle dispersion.
In the obtained silica particle dispersion, the SiO 2 concentration was 4.6% by mass and the K2O concentration was 0.07% by mass. The average particle size D2 of the irregularly shaped silica particles measured by the dynamic light scattering particle size measuring device was 102 nm. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel.

続いて限外モジュールを用いて濃縮してSiO濃度11.7質量%の異形シリカ粒子分散液を調製した。
得られた異形シリカ粒子の比表面積換算粒子径D1は45nmであった。また、得られたシリカ粒子を電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、複数個の粒子が結合したような異形粒子を含む粒子であった。
Subsequently, the mixture was concentrated using an extraordinary module to prepare a modified silica particle dispersion having a SiO 2 concentration of 11.7% by mass.
The specific surface area-equivalent particle diameter D1 of the obtained irregularly shaped silica particles was 45 nm. Moreover, when the shape of the obtained silica particles was observed with an electron microscope, the shape of the particles was a particle containing irregularly shaped particles as if a plurality of particles were bonded.

[比較例1]
珪酸ナトリウム(SiO濃度24.28質量%、NaO濃度8.0質量%)67.2gに純水839.5gを添加して、シリカ濃度1.8質量%の珪酸ナトリウム水溶液を906.7g調製した。この珪酸ナトリウム水溶液に実施例1と同様にして得られた酸性珪酸液264.1g(SiO濃度4.7質量%)を添加し、攪拌した後に、79℃に昇温し、79℃にて、30分間保持し前駆体分散液とした。
次に、酸性珪酸液6,122.2gを9時間かけて連続的に添加した。続いて、酸性珪酸液2,040.6gを2時間かけて連続的に添加した。添加終了後、79℃にて1時間保った後、室温まで冷却した。動的光散乱法粒子径D2は15nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
得られたシリカゾルを限外ろ過膜(商品名:SIP-1013、旭化成株式会社製)を用いてシリカ濃度が12質量%になるまで濃縮した。ついでロータリーエバポレーターで20質量%まで濃縮した。
得られたシリカゾルにおける比表面積換算粒子径D1は11nmであった。電子顕微鏡で粒子の形状を観察したところ、粒子の形状は、ほぼ球状であり異形粒子を得ることができなかった。
[Comparative Example 1]
To 67.2 g of sodium silicate (SiO 2 concentration 24.28% by mass, Na 2O concentration 8.0% by mass), 839.5 g of pure water was added, and an aqueous sodium silicate solution having a silica concentration of 1.8% by mass was added to 906. 7 g was prepared. 264.1 g (SiO 2 concentration 4.7% by mass) of the acidic silicic acid solution obtained in the same manner as in Example 1 was added to this sodium silicate aqueous solution, and after stirring, the temperature was raised to 79 ° C. and at 79 ° C. , And held for 30 minutes to prepare a precursor dispersion.
Next, 6,122.2 g of an acidic silicic acid solution was continuously added over 9 hours. Subsequently, 2,040.6 g of an acidic silicic acid solution was continuously added over 2 hours. After the addition was completed, the mixture was kept at 79 ° C. for 1 hour and then cooled to room temperature. The dynamic light scattering method particle diameter D2 was 15 nm. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel.
The obtained silica sol was concentrated using an ultrafiltration membrane (trade name: SIP-1013, manufactured by Asahi Kasei Corporation) until the silica concentration reached 12% by mass. Then, it was concentrated to 20% by mass with a rotary evaporator.
The specific surface area equivalent particle diameter D1 in the obtained silica sol was 11 nm. When the shape of the particles was observed with an electron microscope, the shape of the particles was almost spherical and it was not possible to obtain irregularly shaped particles.

[比較例2]
珪酸カリウム(SiO濃度20.5質量%、KO濃度9.37質量%)87.84gに純水1,126.6gを添加し、水酸化カリウム水溶液(KOH濃度3質量%)31.42gを添加し、攪拌した後に83℃に昇温し、83℃にて30分保持して前駆体分散液とした。
次に、酸性珪酸液1,493.8gを3時間かけて連続的に添加した。続いて、酸性珪酸液8,962.8gを12時間かけて連続的に添加した。添加終了後、83℃にて1時間保った後、室温まで冷却した。動的光散乱粒子径D2は35nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
得られたシリカゾルを限外ろ過膜(商品名:SIP-1013、旭化成株式会社製)を用いてシリカ濃度が12質量%になるまで濃縮した。ついでロータリーエバポレーターで20質量%まで濃縮した。
得られたシリカゾルにおける比表面積換算粒子径D1は25nmであった。電子顕微鏡で粒子の形状を観察したところ、粒子の形状はほぼ球状であり異形粒子を得ることができなかった。
[Comparative Example 2]
To 87.84 g of potassium silicate (SiO 2 concentration 20.5% by mass, K2O concentration 9.37% by mass), 1,126.6 g of pure water was added, and an aqueous potassium hydroxide solution (KOH concentration 3% by mass) 31. After adding 42 g and stirring, the temperature was raised to 83 ° C. and kept at 83 ° C. for 30 minutes to prepare a precursor dispersion.
Next, 1,493.8 g of the acidic silicic acid solution was continuously added over 3 hours. Subsequently, 8,962.8 g of an acidic silicic acid solution was continuously added over 12 hours. After the addition was completed, the mixture was kept at 83 ° C. for 1 hour and then cooled to room temperature. The dynamic light scattering particle diameter D2 was 35 nm. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel.
The obtained silica sol was concentrated using an ultrafiltration membrane (trade name: SIP-1013, manufactured by Asahi Kasei Corporation) until the silica concentration reached 12% by mass. Then, it was concentrated to 20% by mass with a rotary evaporator.
The specific surface area equivalent particle diameter D1 in the obtained silica sol was 25 nm. When the shape of the particles was observed with an electron microscope, the shape of the particles was almost spherical and it was not possible to obtain irregularly shaped particles.

[比較例3]
珪酸ナトリウム(SiO濃度24.3質量%、NaO濃度8質量%)3,294gに純水9,483gを添加し、実施例1と同様にして得られた酸性珪酸液(SiO濃度4.6質量%)347gを添加し、塩化カリウム水溶液(KCl濃度20質量%)254gを添加し、攪拌した後に、97℃に昇温し、97℃にて、30分保持し、前駆体分散液とした。
次に酸性珪酸液281.8kgを15時間かけて連続的に添加した。添加終了後、97℃にて1時間保った後、室温まで冷却した。動的光散乱粒子径D2は155nmであった。また反応容器を確認すると、反応容器の一部に粗大なシリカの凝集体による沈殿が確認された。
得られたシリカゾルを限外ろ過膜(商品名:SIP-1013、旭化成株式会社製)を用いてシリカ濃度が12質量%になるまで濃縮した。ついでロータリーエバポレーターで20質量%まで濃縮した。
得られたシリカゾルにおける比表面積換算粒子径D1は65nmであった。電子顕微鏡で粒子の形状を観察したところ、異形粒子であった。しかし、下記表2に示すように粗大粒子数が多く、一部に粗大な凝集物や沈殿が確認された。
[Comparative Example 3]
An acidic silicate solution (SiO 2 concentration) obtained in the same manner as in Example 1 by adding 9,483 g of pure water to 3,294 g of sodium silicate (SiO 2 concentration 24.3% by mass, Na 2O concentration 8% by mass). 4.6 mass%) 347 g was added, 254 g of an aqueous potassium chloride solution (KCl concentration 20 mass%) was added, and after stirring, the temperature was raised to 97 ° C. and held at 97 ° C. for 30 minutes to disperse the precursor. It was made into a liquid.
Next, 281.8 kg of acidic silicic acid solution was continuously added over 15 hours. After the addition was completed, the mixture was kept at 97 ° C. for 1 hour and then cooled to room temperature. The dynamic light scattering particle diameter D2 was 155 nm. When the reaction vessel was confirmed, precipitation due to coarse silica aggregates was confirmed in a part of the reaction vessel.
The obtained silica sol was concentrated using an ultrafiltration membrane (trade name: SIP-1013, manufactured by Asahi Kasei Corporation) until the silica concentration reached 12% by mass. Then, it was concentrated to 20% by mass with a rotary evaporator.
The specific surface area equivalent particle diameter D1 in the obtained silica sol was 65 nm. When the shape of the particles was observed with an electron microscope, they were irregular particles. However, as shown in Table 2 below, the number of coarse particles was large, and coarse aggregates and precipitates were partially confirmed.

[比較例4]
酸性珪酸液3,804g(4.6質量%)に純水1,196gを添加し、さらにフッ化カリウム水溶液(KF濃度10質量%)を42.34g添加し、水酸化ナトリウム水溶液(NaOH濃度3.0質量%)を用いてpHを8.0に調整し、98℃で1h保持することで、前駆体分散液を得た。
次に、酸性珪酸液7,609gを2時間かけて添加し、添加中はNaOHでpH9~10を維持し、添加終了後、98℃で1時間熟成を行った。得られたシリカゾルにおける比表面積換算粒子径D1が9nmで、動的光散乱粒子径D2は54nmであった。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。電子顕微鏡で粒子の形状を観察したところ、異形粒子であったが、一次径および二次径のサイズが小さな異形粒子しか得ることができなかった。
[Comparative Example 4]
1,196 g of pure water was added to 3,804 g (4.6% by mass) of an acidic silicic acid solution, 42.34 g of a potassium fluoride aqueous solution (KF concentration 10% by mass) was added, and a sodium hydroxide aqueous solution (NaOH concentration 3) was added. The pH was adjusted to 8.0 using (0.0% by mass) and kept at 98 ° C. for 1 h to obtain a precursor dispersion.
Next, 7,609 g of an acidic silicic acid solution was added over 2 hours, the pH was maintained at 9 to 10 with NaOH during the addition, and after the addition was completed, aging was carried out at 98 ° C. for 1 hour. The specific surface area-equivalent particle diameter D1 of the obtained silica sol was 9 nm, and the dynamic light scattering particle diameter D2 was 54 nm. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel. When the shape of the particles was observed with an electron microscope, they were irregular particles, but only irregular particles with small primary and secondary diameters could be obtained.

[比較例5]
酸性珪酸液782.6gに純水を加えて、SiO濃度3.6質量%に希釈し、攪拌しながら10質量%の硝酸カルシウム水溶液を5.8g添加し、引き続き、10質量%の水酸化ナトリウムを6.0g添加し、さらに純水188.2gを添加し、前駆体分散液を調製した。得られた前駆体分散液をオートクレーブに投入し、攪拌しながら120℃で6時間加熱した。加熱後は、室温まで冷却してシリカゾルを取り出した。また、反応終了後の反応容器を確認したところ、容器底部には沈殿などは確認されなかった。
得られたシリカゾルを限外ろ過膜を用いて12質量%になるまで濃縮した。得られたシリカゾルにおける比表面積換算粒子径D1が9nmで、動的光散乱粒子径D2は30nmであった。電子顕微鏡で粒子の形状を観察したところ、異形粒子であったが、一次径および二次径のサイズが小さな異形粒子しか得ることができなかった。
[Comparative Example 5]
Pure water is added to 782.6 g of the acidic silicic acid solution, diluted to a SiO 2 concentration of 3.6% by mass, 5.8 g of a 10% by mass calcium nitrate aqueous solution is added while stirring, and then 10% by mass of hydroxylation is continued. 6.0 g of sodium was added, and 188.2 g of pure water was further added to prepare a precursor dispersion. The obtained precursor dispersion was put into an autoclave and heated at 120 ° C. for 6 hours with stirring. After heating, it was cooled to room temperature and the silica sol was taken out. Moreover, when the reaction vessel after the reaction was confirmed, no precipitation was confirmed at the bottom of the vessel.
The obtained silica sol was concentrated to 12% by mass using an ultrafiltration membrane. The specific surface area-equivalent particle diameter D1 of the obtained silica sol was 9 nm, and the dynamic light scattering particle diameter D2 was 30 nm. When the shape of the particles was observed with an electron microscope, they were irregular particles, but only irregular particles with small primary and secondary diameters could be obtained.

表1には、異形シリカ粒子分散液の製造方法における各値を記載した。表2には、得られた異形シリカ粒子分散液に含まれる異形シリカ粒子の平均粒子径等を記載した。 Table 1 shows each value in the method for producing a modified silica particle dispersion. Table 2 shows the average particle size and the like of the deformed silica particles contained in the obtained deformed silica particle dispersion.

Figure 2022022601000001
Figure 2022022601000001

Figure 2022022601000002
Figure 2022022601000002

本発明の製造方法によれば、シリカ系成分以外の成分、例えば、アルカリ土類金属系原料(例えば、CaOおよびMgO等)あるいはハロゲン元素を含む原料(例えば、KClおよびKF等)を添加することなく、異形シリカ粒子を得ることができる。
このため、本発明の製造方法により得られた異形シリカ粒子分散液は、半導体デバイスのSiO酸化膜あるいは珪素半導体ウェハー用途において、研磨対象の基板を汚染するおそれがない。
したがって、シリカ系成分以外の成分を含まず半導体関係の研磨用途に好適な異形シリカ粒子分散液を効率的に製造することができる。
また、本発明の製造方法によれば、所望の異形度を有したシリカ粒子が溶媒に分散してなる異形シリカ粒子分散液を得ることができる。このため、ガラスハードディスク、石英ガラス、水晶、アルミニウムハードディスク、半導体デバイスのSiO酸化膜、珪素半導体ウェハーおよび化合物半導体ウェハー等に対して、優れた研磨特性を発揮するシリカ粒子を含む分散液を製造できる。
According to the production method of the present invention, a component other than the silica-based component, for example, an alkaline earth metal-based raw material (for example, CaO and MgO) or a raw material containing a halogen element (for example, KCl and KF) is added. It is possible to obtain irregularly shaped silica particles.
Therefore, the deformed silica particle dispersion obtained by the production method of the present invention does not have a possibility of contaminating the substrate to be polished in the SiO 2 oxide film of the semiconductor device or the silicon semiconductor wafer application.
Therefore, it is possible to efficiently produce a modified silica particle dispersion liquid that does not contain components other than silica-based components and is suitable for semiconductor-related polishing applications.
Further, according to the production method of the present invention, it is possible to obtain a modified silica particle dispersion liquid in which silica particles having a desired degree of irregularity are dispersed in a solvent. Therefore, it is possible to produce a dispersion liquid containing silica particles exhibiting excellent polishing properties for glass hard disk, quartz glass, crystal, aluminum hard disk, SiO 2 oxide film of semiconductor device, silicon semiconductor wafer, compound semiconductor wafer and the like. ..

Claims (10)

下記工程1~下記工程3を含み、かつ、下記条件1を満たすことを特徴とする異形シリカ粒子分散液の製造方法。
工程1:少なくともNaまたはKを有するアルカリ性化合物を含むアルカリ水溶液に第一酸性珪酸液を混合して、
更に温度50℃以上100℃未満の範囲で加熱熟成することにより、SiO濃度が3質量%以上20質量%以下であり、かつ下記数式(F1-1)で示す条件を満たす前駆体分散液を得る工程
2≦SiO/AO≦15・・・(F1-1)
(ここで、SiOは、前駆体分散液中のシリカのモル数を表し、AOは、前駆体分散液中のNaOおよびKOの合計のモル数を表す。)
工程2:前記工程1で得られた前記前駆体分散液に、第二酸性珪酸液を、下記数式(F2-1)で示す第二添加速度比が、0.1[kg/hr・kg]以上0.6[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満の範囲で加熱熟成することによりシード粒子分散液を得る工程
第二添加速度比[kg/hr・kg]=(第二酸性珪酸液中のシリカ含有量[kg])/(第二酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F2-1)
工程3:前記工程2で得られたシード粒子分散液に、第三酸性珪酸液を、下記数式(F3-1)で示す第三添加速度比が、1.1[kg/hr・kg]以上10[kg/hr・kg]以下の範囲となるように添加し、更に温度50℃以上100℃未満の範囲で加熱熟成することにより異形シリカ粒子分散液を得る工程
第三添加速度比[kg/hr・kg]=(第三酸性珪酸液中のシリカ含有量[kg])/(第三酸性珪酸液の添加時間[hr])/(前駆体分散液中のシリカ含有量[kg])・・・(F3-1)
条件1:下記数式(F0-1)で示す条件を満たすこと。
1.9≦[前記第三添加速度比]/[前記第二添加速度比]≦40・・・(F0-1)
A method for producing a modified silica particle dispersion liquid, which comprises the following steps 1 to 3 and satisfies the following condition 1.
Step 1: The first acidic silicic acid solution is mixed with an alkaline aqueous solution containing an alkaline compound having at least Na or K.
Further, by heating and aging in a temperature range of 50 ° C. or higher and lower than 100 ° C., a precursor dispersion liquid having a SiO 2 concentration of 3% by mass or more and 20% by mass or less and satisfying the conditions shown by the following formula (F1-1) can be obtained. Obtaining step 2 ≦ SiO 2 / A 2 O ≦ 15 ... (F1-1)
(Here, SiO 2 represents the number of moles of silica in the precursor dispersion, and A 2 O represents the total number of moles of Na 2 O and K 2 O in the precursor dispersion.)
Step 2: The second acidic silicic acid solution is added to the precursor dispersion obtained in the step 1, and the second addition rate ratio represented by the following formula (F2-1) is 0.1 [kg / hr · kg]. Step 2 Addition rate ratio [2 kg / hr · kg] = (silica content in secondary acidic silicic acid solution [kg]) / (addition time of secondary acidic silicic acid solution [hr]) / (silica content in precursor dispersion [kg] ) ... (F2-1)
Step 3: The third acidic silicic acid solution is added to the seed particle dispersion obtained in the above step 2, and the third addition rate ratio shown by the following formula (F3-1) is 1.1 [kg / hr · kg] or more. Step to obtain a modified silica particle dispersion liquid by adding so as to be in the range of 10 [kg / hr · kg] or less and further heating and aging in the range of temperature 50 ° C. or higher and lower than 100 ° C. Third addition rate ratio [kg / kg / hr · kg] = (silica content in the tertiary acidic silicic acid solution [kg]) / (addition time of the tertiary acidic silicic acid solution [hr]) / (silica content in the precursor dispersion [kg]).・ ・ (F3-1)
Condition 1: The condition shown by the following formula (F0-1) is satisfied.
1.9 ≤ [The third addition rate ratio] / [The second addition rate ratio] ≤ 40 ... (F0-1)
前記工程3に続いて、下記工程4を含むことを特徴とする請求項1に記載の異形シリカ粒子分散液の製造方法。
工程4:前記工程3で得られた異形シリカ粒子分散液を濃縮する工程
The method for producing a modified silica particle dispersion liquid according to claim 1, wherein the step 3 is followed by the following step 4.
Step 4: A step of concentrating the irregularly shaped silica particle dispersion obtained in the above step 3.
更に下記条件2を満たすことを特徴とする請求項1または2に記載の異形シリカ粒子分散液の製造方法。
条件2:前記前駆体分散液中において、シリカ1モルあたりに換算したハロゲン元素のモル数(モル/モル比)が0.5%以下であり、かつシリカ1モルあたりに換算したアルカリ土類金属のモル数(モル/モル比)が1000ppm以下であること。
The method for producing a modified silica particle dispersion according to claim 1 or 2, further satisfying the following condition 2.
Condition 2: In the precursor dispersion, the number of moles (molar / molar ratio) of the halogen element converted to 1 mol of silica is 0.5% or less, and the alkaline earth metal converted to 1 mol of silica. The number of moles (molar / molar ratio) is 1000 ppm or less.
更に下記条件3を満たすことを特徴とする請求項1から3のいずれか一項に記載の異形シリカ粒子分散液の製造方法。
条件3:下記数式(F0-2)で示すシリカ含有量比が、10以上100以下の範囲にあること。
シリカ含有量比={(第二酸性珪酸液中のシリカ含有量[kg])+(第三酸性珪酸液中のシリカ含有量[kg])}/(前駆体分散液中のシリカ含有量[kg])・・・(F0-2)
The method for producing a modified silica particle dispersion liquid according to any one of claims 1 to 3, further satisfying the following condition 3.
Condition 3: The silica content ratio represented by the following mathematical formula (F0-2) is in the range of 10 or more and 100 or less.
Silica content ratio = {(silica content in secondary acidic silicic acid solution [kg]) + (silica content in tertiary acidic silicic acid solution [kg])} / (silica content in precursor dispersion liquid [kg] kg]) ・ ・ ・ (F0-2)
更に下記条件4を満たすことを特徴とする請求項1から4のいずれか一項に記載の異形シリカ粒子分散液の製造方法。
条件4:前記異形シリカ粒子分散液におけるSiO/AOモル比が、60以上140以下の範囲にあること。(ここで、SiOは異形シリカ粒子分散液中のシリカのモル数を表し、AOは異形シリカ粒子分散液中のNaOおよびKOの合計モル数を表す。)
The method for producing a modified silica particle dispersion liquid according to any one of claims 1 to 4, further satisfying the following condition 4.
Condition 4: The SiO 2 / A 2 O molar ratio in the variant silica particle dispersion is in the range of 60 or more and 140 or less. (Here, SiO 2 represents the number of moles of silica in the variant silica particle dispersion, and A 2 O represents the total number of moles of Na 2 O and K 2 O in the variant silica particle dispersion.)
前記工程1の前記アルカリ水溶液が、珪酸カリウム水溶液である請求項1から5のいずれか一項に記載の異形シリカ粒子分散液の製造方法。 The method for producing a modified silica particle dispersion liquid according to any one of claims 1 to 5, wherein the alkaline aqueous solution in the step 1 is a potassium silicate aqueous solution. 前記工程1の前記アルカリ性化合物が、水酸化カリウムである請求項1から5のいずれか一項に記載の異形シリカ分散液の製造方法。 The method for producing a modified silica dispersion according to any one of claims 1 to 5, wherein the alkaline compound in the step 1 is potassium hydroxide. 得られる異形シリカ粒子が、比表面積換算粒子径(D1)10nm以上200nm以下の範囲であり、動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、かつ(D2)/(D1)の値が1.2以上20以下の範囲にあることを特徴とする請求項1から7のいずれか一項に記載の異形シリカ粒子分散液の製造方法。 The obtained deformed silica particles have a specific surface area equivalent particle diameter (D1) in the range of 10 nm or more and 200 nm or less, and an average particle diameter (D2) measured by a dynamic light scattering method in the range of 20 nm or more and 300 nm or less. The method for producing a modified silica particle dispersion according to any one of claims 1 to 7, wherein the value of (D2) / (D1) is in the range of 1.2 or more and 20 or less. 比表面積換算粒子径(D1)10nm以上200nm以下の範囲であり、
動的光散乱法で測定された平均粒子径(D2)が20nm以上300nm以下の範囲であり、
かつ(D2)/(D1)の値が1.2以上20以下の範囲にあることを特徴とする異形シリカ粒子を含む異形シリカ粒子分散液。
Specific surface area equivalent particle size (D1) is in the range of 10 nm or more and 200 nm or less.
The average particle size (D2) measured by the dynamic light scattering method is in the range of 20 nm or more and 300 nm or less.
A variant silica particle dispersion liquid containing variant silica particles, wherein the value of (D2) / (D1) is in the range of 1.2 or more and 20 or less.
カリウム化合物を含むことを特徴とする請求項9に記載の異形シリカ粒子分散液。 The variant silica particle dispersion according to claim 9, which comprises a potassium compound.
JP2020111744A 2020-06-29 2020-06-29 Manufacturing method of heteromorphic silica particle dispersion, and heteromorphic silica particle dispersion thereof Pending JP2022022601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020111744A JP2022022601A (en) 2020-06-29 2020-06-29 Manufacturing method of heteromorphic silica particle dispersion, and heteromorphic silica particle dispersion thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020111744A JP2022022601A (en) 2020-06-29 2020-06-29 Manufacturing method of heteromorphic silica particle dispersion, and heteromorphic silica particle dispersion thereof

Publications (1)

Publication Number Publication Date
JP2022022601A true JP2022022601A (en) 2022-02-07

Family

ID=80224901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111744A Pending JP2022022601A (en) 2020-06-29 2020-06-29 Manufacturing method of heteromorphic silica particle dispersion, and heteromorphic silica particle dispersion thereof

Country Status (1)

Country Link
JP (1) JP2022022601A (en)

Similar Documents

Publication Publication Date Title
JP5127452B2 (en) Method for producing deformed silica sol
JP6803823B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion
JP5602358B2 (en) Non-spherical silica sol, method for producing the same, and polishing composition
US8118898B2 (en) Spinous silica-based sol and method of producing the same
JP4907317B2 (en) Kinpe sugar-like inorganic oxide sol, method for producing the same, and abrasive containing the sol
JP3721497B2 (en) Method for producing polishing composition
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
JPWO2008111383A1 (en) Aluminum modified colloidal silica and method for producing the same
JP2007153671A (en) Method for manufacturing anisotropic-shape silica sol
JP4911961B2 (en) Method for producing anisotropic silica sol
JP4549878B2 (en) Method for producing high-purity aqueous silica sol
JP6207345B2 (en) Method for producing silica particles
JP4949209B2 (en) Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition
KR101121576B1 (en) A manufacturing method of colloidal silica for chemical mechenical polishing
JP2021127359A (en) Ceria-based composite fine particle dispersion, method for producing the same, and ceria-based composite fine particle dispersion-containing polishing abrasive grain dispersion
JP4979930B2 (en) Method for producing anisotropic silica sol
JP2022022601A (en) Manufacturing method of heteromorphic silica particle dispersion, and heteromorphic silica particle dispersion thereof
JP6598719B2 (en) Method for producing silica-based composite particle dispersion
JP2013227168A (en) Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
JP7117225B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP2003297778A (en) Composition for polishing and method for modifying the same
JP2009091197A (en) Warty-surfaced sphere-form inorganic oxide sol, method for producing same, and abrasive containing the sol
WO2022123820A1 (en) Irregularly-shaped silica-based fine particle dispersion, method for producing same, particle-linked silica fine particle dispersion, method for producing same, and abrasive grain dispersion for polishing
JP2024511723A (en) Cerium oxide particles, their manufacturing process and their use in chemical mechanical polishing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240229