JP2003297778A - Composition for polishing and method for modifying the same - Google Patents

Composition for polishing and method for modifying the same

Info

Publication number
JP2003297778A
JP2003297778A JP2002093810A JP2002093810A JP2003297778A JP 2003297778 A JP2003297778 A JP 2003297778A JP 2002093810 A JP2002093810 A JP 2002093810A JP 2002093810 A JP2002093810 A JP 2002093810A JP 2003297778 A JP2003297778 A JP 2003297778A
Authority
JP
Japan
Prior art keywords
polishing
composition
solution
polishing composition
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002093810A
Other languages
Japanese (ja)
Other versions
JP3754986B2 (en
Inventor
Kuniaki Maejima
邦明 前島
Shinsuke Miyabe
慎介 宮部
Masahiro Izumi
昌弘 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002093810A priority Critical patent/JP3754986B2/en
Priority to TW92107324A priority patent/TW200400249A/en
Priority to CNB031212182A priority patent/CN1322087C/en
Publication of JP2003297778A publication Critical patent/JP2003297778A/en
Application granted granted Critical
Publication of JP3754986B2 publication Critical patent/JP3754986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for polishing and a method for modifying the composition for polishing to polish the surface or the edge face of a silicon wafer or a semiconductor device substrate or the surface or edge face of a silicon wafer or a semiconductor device substrate whose surface is coated with an oxide film or a nitride film or the like. <P>SOLUTION: Mono-dispersed oxide silicon particles whose mean primary particle diameters range from 30 to 200 nm are made of colloidal solutions whose concentration ranges from 1 to 25 wt.%, and the colloidal solution is modified as a buffer solution having buffer action in the range of pH 8.7 to 10.5, and a fluorine ion or anion coordinated with fluorine is contained in one of components for composing a composition for polishing. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウェーハ
や半導体デバイス基板の表面または端面、または表面を
酸化膜や窒化膜等で被覆した表面または端面の研磨加工
を行なう研磨用組成物および該研磨用組成物の調整方法
に関する。
TECHNICAL FIELD The present invention relates to a polishing composition for polishing a surface or an end surface of a silicon wafer or a semiconductor device substrate, or a surface or an end surface whose surface is coated with an oxide film or a nitride film, and the polishing composition. It relates to a method for preparing a composition.

【0002】[0002]

【従来の技術】従来より、シリコンウェーハあるいは半
導体デバイス基板(以下ウェーハ等と略記する)の研磨
加工を行なう研磨用組成物として、酸化珪素またはその
水和物をコロイド状に分散した懸濁液、所謂コロイダル
シリカを含有する組成物が多数提案されている。たとえ
ば、米国特許第3170273号公報では、シリカゾル
及びシリカゲルが研磨剤として提案されている。また、
米国特許第4910155号公報では、半導体ウェーハ
の絶縁層の研磨剤としてフュームドシリカの水性分散ス
ラリーの使用が開示されている。特開平7−22105
9号公報には、細長く歪んだ球状のシリカ粒子からなる
コロイダルシリカが高い研磨速度を示す事が記載されて
いる。特開2001−11433号公報には、球が数珠
状につながった形体のシリカ粒子からなるコロイダルシ
リカが高いシリコン研磨速度を示す事が記載されてい
る。一方、液組成においても非常に多くの提案がなされ
ている。米国特許第3328141号公報では、該懸濁
液のpHを10.5〜12.5の範囲内にすることによ
り、研磨速度が増大する事が開示されている。米国特許
第4169337号公報では、アミン類を研磨用組成物
に添加することが開示されている。特開平2−1586
84号公報には、水、コロイダルシリカ、分子量10万
以上の水溶性高分子、水溶性塩類からなる研磨用組成物
が開示されている。更に特開平5−154760号公報
では、水溶性アミンの一種であるピペラジンを、シリカ
ゾルまたはシリカゲルのシリカ基準にて、10〜80重
量%含む研磨組成物を使用した研磨方法を開示してい
る。これら開示されている方法は、アルカリ性の母液に
シリカの微細粒子を分散させたスラリーやコロイダルシ
リカに、様々な添加剤を加えることにより研磨剤の分散
性を上げたり、加工力の安定性を図ったり、加工速度を
増加するものであって、現在要求される研磨性能すなわ
ち、高速でかつ安定した研磨速度、加工後の洗浄性の良
いこと、研磨面の平坦性等に十分対応できるものではな
かった。
2. Description of the Related Art Conventionally, as a polishing composition for polishing a silicon wafer or a semiconductor device substrate (hereinafter abbreviated as a wafer or the like), a suspension of colloidal dispersion of silicon oxide or its hydrate, Many compositions containing so-called colloidal silica have been proposed. For example, in US Pat. No. 3,170,273, silica sol and silica gel are proposed as abrasives. Also,
U.S. Pat. No. 4,910,155 discloses the use of an aqueous dispersion slurry of fumed silica as an abrasive for the insulating layer of semiconductor wafers. JP-A-7-22105
No. 9, it is described that colloidal silica composed of elongated and distorted spherical silica particles exhibits a high polishing rate. Japanese Unexamined Patent Publication No. 2001-11433 describes that colloidal silica composed of silica particles in the form of beads connected in a bead shape exhibits a high silicon polishing rate. On the other hand, a great number of proposals have been made regarding the liquid composition. U.S. Pat. No. 3,328,141 discloses that the polishing rate is increased by adjusting the pH of the suspension within the range of 10.5 to 12.5. US Pat. No. 4,169,337 discloses adding amines to a polishing composition. JP-A-2-1586
Japanese Patent Publication No. 84 discloses a polishing composition comprising water, colloidal silica, a water-soluble polymer having a molecular weight of 100,000 or more, and water-soluble salts. Further, JP-A-5-154760 discloses a polishing method using a polishing composition containing piperazine, which is one of water-soluble amines, in an amount of 10 to 80% by weight based on the silica sol or silica gel. These disclosed methods increase the dispersibility of the abrasive and stabilize the processing force by adding various additives to the slurry in which fine silica particles are dispersed in an alkaline mother liquor or colloidal silica. Or increase the processing speed, and cannot sufficiently meet the presently required polishing performance, that is, high speed and stable polishing speed, good cleaning property after processing, flatness of polishing surface, etc. It was

【0003】特開平11−315273号公報、特開平
11−302635号公報、特開平11−302634
号公報および特開2000−158329号公報には、
酸解離定数の逆数の対数値が8.0〜12.0の弱酸及
び/または弱塩基を使用して、弱酸と強塩基、強酸と弱
塩基あるいは弱酸と弱塩基の何れかの組み合わせのもの
を添加することによりpHの緩衝作用を有する緩衝溶液
としたコロイダルシリカ組成物が開示されている。緩衝
液の使用は、外的条件の変化によるpHの変化が少な
く、繰り返し使用においても変化の少ない安定した研磨
用組成物を提供しているが、pHが低くなる分だけ研磨
速度が低くなり、さらなる改良が望まれていた。特に近
年電子回路の高集積化およびウェーハ自体の大型化に伴
いシリコンウェーハ、半導体デバイス基板表面の高度な
平坦化が必須となっている。さらに、生産効率を向上さ
せるため、加工速度が速い研磨用組成物が望まれてい
る。
JP-A-11-315273, JP-A-11-302635, and JP-A-11-302634.
In Japanese Patent Laid-Open No. 2000-158329 and Japanese Patent Laid-Open No. 2000-158329,
Using a weak acid and / or a weak base having a logarithmic value of the reciprocal of the acid dissociation constant of 8.0 to 12.0, a combination of a weak acid and a strong base, a strong acid and a weak base, or a weak acid and a weak base is used. There is disclosed a colloidal silica composition which is a buffer solution having a pH buffering action when added. The use of a buffer solution provides a stable polishing composition with little change in pH due to changes in external conditions and little change even after repeated use, but the lower the pH, the lower the polishing rate, Further improvements were desired. Particularly, in recent years, as the integration of electronic circuits has increased and the size of the wafer itself has increased, it has become essential to highly planarize the surfaces of silicon wafers and semiconductor device substrates. Furthermore, in order to improve production efficiency, a polishing composition having a high processing speed is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明者等は上述の、
従来の研磨用組成物が持つ問題点に鑑み、鋭意研究を行
ない、研磨用組成物溶液として、特定の粒度を有する酸
化珪素の粒子を含むコロイド、すなわちコロイダルシリ
カのアルカリ性水溶液であって、pHの緩衝作用を有
し、特定のイオン構成を構築することで、安定した高速
加工が達成されることを見出し、本発明を完成するに至
ったものであり、その目的となすところはpHの変化が
少なく、かつ研磨速度が高速で、繰り返し使用において
も変化の少ない安定した研磨を行うことができる、研磨
後の洗浄性を改善した研磨用組成物を提供すること及び
該研磨用組成物を調整する方法を提供することにある。
SUMMARY OF THE INVENTION The inventors of the present invention have
In view of the problems of the conventional polishing composition, earnestly researched, as a polishing composition solution, a colloid containing particles of silicon oxide having a specific particle size, that is, an alkaline aqueous solution of colloidal silica, pH of It has been found that stable high-speed processing can be achieved by constructing a specific ionic composition having a buffering effect, and has completed the present invention. To provide a polishing composition having a small polishing rate, a high polishing rate, stable polishing with little change even after repeated use, and improved cleaning properties after polishing, and adjusting the polishing composition. To provide a method.

【0005】[0005]

【課題を解決するための手段】上述の目的は、平均一次
粒子径が30〜200nmの実質的に単分散である酸化
珪素粒子がその濃度が1〜25重量%であるコロイド溶
液からなり、該コロイド溶液が、pH8.7〜10.5
の間で緩衝作用を有する緩衝溶液として調整されたもの
であり、成分の一つにフッ素イオンもしくはフッ素が配
位した陰イオンをフッ素として1〜100ミリmol/
Kg含有することを特徴とする研磨用組成物によって達
成される。この研磨用組成物は、例えば15〜65重量
%の濃厚原液を使用の都度、水、有機溶剤、塩類を含ん
だ溶液あるいはその混合物で希釈して調整することがで
きる。
The above-mentioned object is to provide a substantially monodisperse silicon oxide particle having an average primary particle diameter of 30 to 200 nm which is a colloidal solution having a concentration of 1 to 25% by weight. The colloidal solution has a pH of 8.7 to 10.5
It was prepared as a buffer solution having a buffering action between 1 to 100 millimol / fluorine ion or anion having fluorine coordinated as one of the components.
This is achieved by a polishing composition containing Kg. This polishing composition can be prepared, for example, by diluting a concentrated stock solution of 15 to 65% by weight with water, an organic solvent, a solution containing salts or a mixture thereof each time it is used.

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0006】酸化珪素の微粒子はその製法から気相法酸
化珪素と液相法酸化珪素に二分される。気相法酸化珪素
としてはフュームドシリカを水性媒体に分散させたスラ
リーが半導体研磨に多用されてきたが、この微粒子は粒
度分布が広く、更に凝集して二次粒子を構成し、典型的
な多分散系である。液相法酸化珪素は水ガラスを原料と
した一般のコロイダルシリカと、有機珪素化合物の加水
分解法によって得られる高純度コロイダルシリカがあ
る。本発明に用いる酸化珪素微粒子のコロイド溶液は、
この一般のコロイダルシリカと高純度コロイダルシリカ
である。特に水ガラスを原料とした一般のコロイダルシ
リカは安価であり、研磨速度も速く、好適に用いられ
る。
The fine particles of silicon oxide are divided into gas phase method silicon oxide and liquid phase method silicon oxide according to the manufacturing method. As the vapor-phase method silicon oxide, a slurry in which fumed silica is dispersed in an aqueous medium has been frequently used for semiconductor polishing, but these fine particles have a wide particle size distribution and further aggregate to form secondary particles. It is a polydisperse system. Liquid phase silicon oxide includes general colloidal silica made from water glass and high-purity colloidal silica obtained by a hydrolysis method of an organic silicon compound. The colloidal solution of silicon oxide fine particles used in the present invention is
These are general colloidal silica and high-purity colloidal silica. In particular, general colloidal silica made from water glass is inexpensive, has a high polishing rate, and is preferably used.

【0007】本発明に用いるコロイド溶液に含まれる酸
化珪素の微粒子は平均一次粒子径が30〜200nmの
実質的に単分散である酸化珪素粒子であり、好ましくは
40〜100nmのものが用いられる。ここで言う平均
一次粒子径とは、窒素吸着BET法により測定される比
表面積を、球状粒子の直径に換算したものである。 コ
ロイダルシリカのBET法粒径(比表面積)について
は、THE CHEMISTRY OF SILICA Solubility,Polymeriza
toin,Colloid and Surface Properties,and Biochemis
try(P344-354,RALPH K.ILER著,A Wiley-Interscienc
e Publication JOHN WILEY & SONS P )に詳細に記載
されている。計算式は粒子径(nm)=2720/比表面積
(m2/g)である。
The fine particles of silicon oxide contained in the colloidal solution used in the present invention are substantially monodisperse silicon oxide particles having an average primary particle diameter of 30 to 200 nm, preferably 40 to 100 nm. The average primary particle diameter mentioned here is a value obtained by converting the specific surface area measured by the nitrogen adsorption BET method into the diameter of spherical particles. For the BET particle size (specific surface area) of colloidal silica, see THE CHEMISTRY OF SILICA Solubility, Polymeriza
toin, Colloid and Surface Properties , and Biochemis
try (P344-354, RALPH K. ILER, A Wiley-Interscienc
e Publication JOHN WILEY & SONS P). The calculation formula is particle diameter (nm) = 2720 / specific surface area (m 2 / g).

【0008】平均一次粒子径が、30nmより小さい粒
子の使用は緩衝液成分の電解質濃度を高くしたときにコ
ロイド溶液が凝集し易く、研磨用組成物としての安定性
が低下し、さらに研磨後のウェーハ表面に付着した粒子
の洗浄性が低下する。また、平均一次粒子径が、200
nm以上の粒子の使用は、デバイス研磨では配線幅に近
く好ましくない。特に、複数枚の研磨に循環使用する際
には、研磨屑やパッド屑の濾過除去が必要となるが、2
00nm以上の粒子では、屑との分離が出来なくなる。
また、他の用途でも、粗大粒子が沈降し製品の経時安定
性確保が難しくまた、価格的にも不利である。
The use of particles having an average primary particle diameter smaller than 30 nm causes the colloidal solution to easily aggregate when the electrolyte concentration of the buffer solution component is increased, which lowers the stability as a polishing composition, and further after polishing. The cleaning property of particles adhering to the wafer surface decreases. The average primary particle size is 200
The use of particles of nm or larger is not preferable in device polishing because it is close to the wiring width. In particular, it is necessary to remove polishing scraps and pad scraps by filtration when they are repeatedly used for polishing a plurality of sheets.
Particles with a size of 00 nm or more cannot be separated from dust.
Further, also in other applications, coarse particles settle, it is difficult to secure the stability of the product over time, and it is also disadvantageous in terms of price.

【0009】このような意味から、微細粒子や粗大粒子
を含まない実質的に単一の粒度である単分散の粒子を使
用することが必要となる。本発明で言う、実質的な単分
散とは、電子顕微鏡法、遠心沈降法、レーザー光散乱法
等の一般のコロイド粒子径測定法で測定された、個数平
均径(Dn)と体積平均径(Dv)または重量平均径
(Dw)の比(Dv/Dn)または(Dw/Dn)が
1.00〜1.50の範囲にあることと定義する。単分
散のコロイダルシリカとしては日本化学工業(株)製
「シリカドール」、多摩化学工業(株)製「TCSOL
703」、扶桑化学工業(株)製「超高純度コロイダル
シリカPL−7」等がある。実質的な単分散でない分散
系を多分散と記載する。多分散のコロイダルシリカとし
ては、DuPontAirProducts Nano
Materials L.L.C.社の「Syto
n」、「Mazin」、「Ascend」等がある。
From this point of view, it is necessary to use monodisperse particles having substantially a single particle size that does not contain fine particles or coarse particles. The term “substantially monodisperse” as used in the present invention means a number average diameter (Dn) and a volume average diameter (Dn) measured by a general colloidal particle diameter measuring method such as an electron microscope method, a centrifugal sedimentation method and a laser light scattering method. It is defined that the ratio (Dv / Dn) or (Dw / Dn) of Dv) or the weight average diameter (Dw) is in the range of 1.00 to 1.50. Monodisperse colloidal silica includes "Silica Doll" manufactured by Nippon Kagaku Kogyo Co., Ltd. and "TCSOL" manufactured by Tama Chemical Co., Ltd.
703 ”and“ Ultra-high-purity colloidal silica PL-7 ”manufactured by Fuso Chemical Industry Co., Ltd. A dispersion system that is not substantially monodisperse is described as polydisperse. As the polydisperse colloidal silica, DuPontAirProducts Nano is used.
Materials L.M. L. C. "Syto
n ”,“ Mazin ”,“ Ascend ”, etc.

【0010】酸化珪素の濃度は、実際の研磨加工時にお
いて1〜25重量%であることが肝要であり、より好ま
しい範囲は、シリコンウェーハや半導体デバイス基板の
表面研磨では3〜15重量%であり、端面研磨では10
〜25重量%が良い。研磨時の酸化珪素の濃度が、3重
量%未満であると研磨加工速度は低くなり実用的ではな
い。研磨時の酸化珪素濃度が高くなれば研磨加工速度自
体は増大するが約25重量%を越えるとウェーハへの汚
染が増大し、洗浄性が悪化する。
It is essential that the concentration of silicon oxide is 1 to 25% by weight in the actual polishing process, and a more preferable range is 3 to 15% by weight in the surface polishing of a silicon wafer or a semiconductor device substrate. , 10 for edge polishing
~ 25 wt% is good. If the concentration of silicon oxide during polishing is less than 3% by weight, the polishing rate will be low, which is not practical. If the concentration of silicon oxide during polishing increases, the polishing rate itself increases, but if it exceeds about 25% by weight, contamination of the wafer increases and cleaning performance deteriorates.

【0011】以下、本発明をさらに説明する。本発明に
おいては研磨用組成物のpHは8.6〜10.5の範囲
にあることが肝要である。更に好ましくはpHは9.5
〜10.5の範囲にあることが良い。pHが8.6以下
であると研磨速度は著しく低下し実用の範囲からは外れ
る。また、pHが10.6以上になると、ウェーハへの
汚染が増大し、洗浄性が悪化する。そしてまた、このp
Hは摩擦、熱、外気との接触あるいは他の成分との混合
等、考えられる外的条件の変化により容易に変化するよ
うなものであってはならないが、本発明においては研磨
用組成物溶液自体を、外的条件の変化に対してpHの変
化の幅の少ない、いわゆる緩衝作用の強い液とすること
をその必要条件とするものである。
The present invention will be further described below. In the present invention, it is important that the pH of the polishing composition is in the range of 8.6 to 10.5. More preferably, the pH is 9.5.
It is preferably in the range of 10.5. If the pH is 8.6 or less, the polishing rate will be remarkably reduced and will be out of the practical range. Further, when the pH is 10.6 or higher, the contamination of the wafer increases and the cleaning property deteriorates. And again, this p
H must not be easily changed by conceivable changes in external conditions such as friction, heat, contact with outside air or mixing with other components, but in the present invention, a polishing composition solution is used. The necessary condition is that the liquid itself has a small change in pH with respect to changes in external conditions and has a so-called strong buffering action.

【0012】本発明の緩衝溶液を形成するイオンとして
は、陰イオンは一例をあげると、塩酸、硝酸、フッ酸、
硫酸などの強酸やホウ酸、炭酸、燐酸及び水溶性の有機
酸等の弱酸があげられ、またその混合物であってもかま
わない。特に好適なのは炭酸イオンもしく炭酸水素イオ
ンである。陽イオンとしては、ナトリウム、カリウム等
のアルカリ金属イオン、アンモニウム、コリン、テトラ
メチルアンモニウム等のアンモニウムイオン、エチレン
ジアミン、ピペラジン等のアミン類イオンなど水酸イオ
ンと対をなしてアルカリ性を示すもので、それらの混合
物でも良い。特にカリウムイオンやテトラメチルアンモ
ニウムイオンやそれらの混合物が好ましい。本発明で述
べる緩衝溶液とは、上述のイオンの組み合わせで形成さ
れ、酸、アルカリ、塩として添加され、イオンとして解
離している状態及び、未解離の状態が共存している溶液
を示し、少量の酸または、塩基が混入してもpHの変化
が少ないことが特徴である。
As an ion forming the buffer solution of the present invention, an anion is, for example, hydrochloric acid, nitric acid, hydrofluoric acid,
Examples thereof include strong acids such as sulfuric acid and weak acids such as boric acid, carbonic acid, phosphoric acid and water-soluble organic acids, and a mixture thereof may be used. Particularly preferred is carbonate ion or hydrogen carbonate ion. As the cations, alkali metal ions such as sodium and potassium, ammonium ions such as ammonium, choline, and tetramethylammonium, and amines ions such as ethylenediamine and piperazine that show alkalinity by pairing with hydroxide ions, such as It may be a mixture of. Particularly, potassium ion, tetramethylammonium ion and a mixture thereof are preferable. The buffer solution described in the present invention refers to a solution formed by a combination of the above-mentioned ions, added as an acid, an alkali, or a salt, dissociated as ions, and a non-dissociated state coexisting, and a small amount. The feature is that there is little change in pH even if the acid or base is mixed.

【0013】成分の一つにフッ素イオンもしくはフッ素
が配位した陰イオンをフッ素として1〜100ミリmo
l/Kg含有することが必要である。特に、本発明のよ
うにpH緩衝液を使用して比較的低いpHで研磨を行う
場合には、このような浸食作用の大きい成分を用いるこ
とが必要である。フッ素イオンはフッ酸として添加して
も良く、上記の各塩基のフッ化物として添加することも
できる。フッ素が配位した陰イオンとしては、テトラフ
ルオロホウ酸イオンやヘキサフルオロ珪酸イオンが良
い。これらは酸化珪素15〜65重量%の濃厚原液に添
加しておくこともできるが、原液を使用の都度希釈して
調整するときに添加しても良い。フッ素イオンもしくは
フッ素が配位した陰イオンは、シリコンウェーハや半導
体デバイス基板の表面または端面、または表面を酸化膜
や窒化膜等で被覆した表面または端面の研磨速度を向上
させると同時に、研磨加工後の洗浄性の向上作用があ
る。フッ素イオンもしくはフッ素が配位した陰イオンを
フッ素として1ミリmol/Kg以下では充分な研磨速
度は得られない。100ミリmol/Kg以上の添加
は、浸食が強すぎて平坦な鏡面を得ることが出来ず、洗
浄性も悪化する。好ましくは3〜60ミリmol/Kg
である。
One of the components is a fluorine ion or an anion in which fluorine is coordinated as fluorine, and the amount is 1 to 100 mm.
It is necessary to contain 1 / Kg. In particular, when polishing is performed at a relatively low pH using a pH buffer solution as in the present invention, it is necessary to use such a component having a large erosion effect. Fluoride ions may be added as hydrofluoric acid, or may be added as a fluoride of each of the above bases. Tetrafluoroborate ion and hexafluorosilicate ion are preferable as the anion coordinated with fluorine. These may be added to a concentrated stock solution containing 15 to 65% by weight of silicon oxide, or may be added when the stock solution is diluted and adjusted each time it is used. Fluorine ions or anions coordinated with fluorine improve the polishing rate of the surface or end face of a silicon wafer or semiconductor device substrate, or the surface or end face whose surface is covered with an oxide film or nitride film, and at the same time after polishing. Has the effect of improving the cleaning property. If the amount of fluorine ion or anion coordinated with fluorine is 1 millimol / Kg or less, a sufficient polishing rate cannot be obtained. If it is added in an amount of 100 millimol / Kg or more, the erosion is too strong to obtain a flat mirror surface and the cleaning property is deteriorated. Preferably 3 to 60 millimol / Kg
Is.

【0014】また、一般的には酸化珪素濃度25〜65
%の高濃度の組成物を調製しておき、水あるいは、水と
有機溶媒の混合物で希釈して使用することが便利であ
る。 高濃度の組成物には酸化珪素以外の上記必須成分
のうちいずれかを欠いておき、希釈時に添加することも
できる。
Further, generally, the silicon oxide concentration is 25 to 65.
%, It is convenient to prepare a high-concentration composition and dilute it with water or a mixture of water and an organic solvent before use. It is also possible to omit any of the above-mentioned essential components other than silicon oxide in the high-concentration composition and add them at the time of dilution.

【0015】本発明の研磨組成物の物性を改良するた
め、界面活性剤、分散剤、沈降防止剤などを併用するこ
とができる。界面活性剤、分散剤、沈降防止剤として
は、水溶性の有機物、無機層状化合物などがあげられ
る。また、本発明の研磨組成物は基本的には水溶液とし
ているが、有機溶媒を添加してもかまわない
In order to improve the physical properties of the polishing composition of the present invention, a surfactant, a dispersant, an antisettling agent and the like can be used in combination. Examples of the surfactant, dispersant and anti-settling agent include water-soluble organic substances and inorganic layered compounds. The polishing composition of the present invention is basically an aqueous solution, but an organic solvent may be added.

【0016】[0016]

【実施例】次に実施例及び比較例をあげて本発明の研磨
用組成物、およびそれを用いた研磨加工方法を具体的に
説明するが、特にこれにより限定を行なうものではな
い。実施例で用いた単分散コロイダルシリカは、平均粒
子径15nmは「シリカドール30」、平均粒子径40
nmは「シリカドール30G」、平均粒子径80nmは
「シリカドール40G−80」、平均粒子径120nm
は「シリカドール40G−120」を使用し、その他の
平均粒子径のコロイダルシリカは水ガラスを原料として
製作した。個数平均径(Dn)と体積平均径(Dv)
は、日機装(株)製マイクロトラックUPAを用いて測
定し、その比(Dv/Dn)が1.00〜1.50の範
囲にあることを確認した。多分散コロイダルシリカとは
以下のようにして作成した。平均粒子径15nmの「シ
リカドール30」、平均粒子径40nmの「シリカドー
ル30G」、平均粒子径80nmの「シリカドール40
G−80」、平均粒子径120nmの「シリカドール4
0G−120」を任意の比率で混合し、平均粒子径40
nm、(Dv/Dn)が2.0となるようにした。
EXAMPLES Next, the polishing composition of the present invention and the polishing method using the same will be specifically described with reference to Examples and Comparative Examples, but the invention is not particularly limited thereto. The monodisperse colloidal silica used in the examples has an average particle diameter of 15 nm of “silica dol 30” and an average particle diameter of 40 nm.
nm is "Silicadol 30G", average particle diameter 80nm is "Silicadol 40G-80", average particle diameter 120nm
"Silica Doll 40G-120" was used, and colloidal silica having other average particle diameters was produced using water glass as a raw material. Number average diameter (Dn) and volume average diameter (Dv)
Was measured using Microtrac UPA manufactured by Nikkiso Co., Ltd., and it was confirmed that the ratio (Dv / Dn) was in the range of 1.00 to 1.50. The polydisperse colloidal silica was prepared as follows. "Silica Doll 30" having an average particle diameter of 15 nm, "Silica Doll 30G" having an average particle diameter of 40 nm, "Silica Doll 40" having an average particle diameter of 80 nm
G-80 "," Silica Doll 4 "having an average particle diameter of 120 nm
0G-120 "in an arbitrary ratio to obtain an average particle size of 40
nm and (Dv / Dn) were set to 2.0.

【0017】また、水酸化テトラメチメルアンモニウム
(以下TMAHと略記)としては市販の水溶液を使用し
た。また、上記TMAH水溶液を炭酸ガスで中和して炭
酸水素テトラメチメルアンモニウム(以下TMAHCと
略記)を作成した。作成方法は以下のようにした。20
%TMAH水溶液を500mlのガス洗浄瓶に入れ、炭
酸ガスを微細泡状にして12時間吹き込み、TMAH水
溶液に吸収させTMAHC溶液を得た。炭酸化の定量
は、希塩酸で中和滴定を行い滴定曲線の変曲点より計算
し、中和度は97%であった。
A commercially available aqueous solution was used as tetramethymelammonium hydroxide (hereinafter abbreviated as TMAH). Further, the above TMAH aqueous solution was neutralized with carbon dioxide gas to prepare tetramethyl methylammonium hydrogen carbonate (hereinafter abbreviated as TMAHC). The creation method was as follows. 20
% TMAH aqueous solution was put into a 500 ml gas washing bottle, carbon dioxide gas was made into fine bubbles and blown for 12 hours, and absorbed in the TMAH aqueous solution to obtain a TMAHC solution. The amount of carbonation was determined by performing neutralization titration with dilute hydrochloric acid and calculating from the inflection point of the titration curve, and the degree of neutralization was 97%.

【0018】フッ素は試薬のフッ酸水溶液、ホウフッ化
水素酸水溶液、ケイフッ化水素酸水溶液を使用し、同様
に試薬のフッ化ナトリウム、ケイフッ化ナトリウム、フ
ッ化カリウムを使用した。炭酸塩は試薬の炭酸水素ナト
リウム、炭酸水素カリウムを使用した。そのほか水酸化
ナトリウムは工業用の50%水溶液を希釈して使用し
た。
As the fluorine, an aqueous solution of hydrofluoric acid, an aqueous solution of borofluoric acid and an aqueous solution of hydrofluoric silicic acid were used as the reagents, and similarly, sodium fluoride, sodium silicofluoride and potassium fluoride were used as the reagents. As the carbonate, reagents such as sodium hydrogen carbonate and potassium hydrogen carbonate were used. In addition, sodium hydroxide was used by diluting an industrial 50% aqueous solution.

【0019】実施例1〜5および比較例1〜3のシリコ
ンウェーハの表面研磨の実施例を示す。表1に示した組
成となるよう調整した研磨組成物を用いて、以下の研磨
条件で鏡面研磨加工を実施した。 研磨装置:スピードファム株式会社製、SH−24型片
面加工機、 定盤回転数:70RPM プレッシャープレート回転数:50RPM 研磨布:SUBA400(ロデールニッタ社製) 面圧力:200g/cm2 研磨組成物流量:80ml/分 研磨時間:2分 工作物:4インチ、酸化膜1200nm付きシリコンウ
ェーハ。 研磨組成物のpHはpHメーターを用いて測定した。ま
た、研磨面の評価は、集光灯下で肉眼にてヘイズ及びピ
ットの状態を観察した。また、研磨速度は、研磨前後の
シリコンウエハーの重量差より求めμm/分に換算し
た。結果を表1に示した。実施例1〜5は比較例1〜3
に比べ研磨速度が大きく、表面状態は良好である。
Examples of surface polishing of silicon wafers of Examples 1 to 5 and Comparative Examples 1 to 3 will be shown. Using the polishing composition adjusted to have the composition shown in Table 1, mirror polishing was carried out under the following polishing conditions. Polishing device: manufactured by Speedfam Co., Ltd., SH-24 type single-sided processing machine, surface plate rotation speed: 70 RPM Pressure plate rotation speed: 50 RPM Polishing cloth: SUBA400 (manufactured by Rodel Nitta Co.) Surface pressure: 200 g / cm2 Polishing composition flow rate: 80 ml / Min Polishing time: 2 minutes Workpiece: 4 inches, silicon wafer with oxide film 1200 nm. The pH of the polishing composition was measured using a pH meter. The polished surface was evaluated by observing the state of haze and pits with the naked eye under a concentrating lamp. The polishing rate was calculated from the weight difference between the silicon wafers before and after polishing and converted to μm / min. The results are shown in Table 1. Examples 1 to 5 are comparative examples 1 to 3.
The polishing rate is higher than that of, and the surface condition is good.

【0020】実施例1〜5および比較例1〜3における
研磨組成物の調整方法は以下のとおりである。 比較例1〜2と実施例1〜2:希釈したTMAH水溶液
にフッ化水素酸水溶液を所定量添加混合し、次いで炭酸
水素カリウムを添加し攪拌下で溶解させた。この添加剤
溶液を各粒子径のコロイダルシリカに攪拌下添加して、
最後に純水で希釈して表1の組成物とした。比較例1は
平均粒子径15nmのコロイダルシリカを使用してお
り、比較例2は上記の方法で作成した多分散のコロイダ
ルシリカを使用している。 実施例3:希釈したTMAH水溶液とTMAHC水溶液
を所定量混合し、これにフッ化ナトリウムおよびフッ化
カリウムを所定量添加し攪拌下で溶解させた。次いで、
この添加剤溶液をコロイダルシリカに攪拌下添加して、
最後に純水で希釈して表1の組成物とした。 実施例4:希釈したTMAH水溶液とTMAHC水溶液
を所定量混合し、これにフッ化水素酸水溶液を所定量添
加混合し、次いで炭酸水素カリウムを添加し攪拌下で溶
解させた。次いで、この添加剤溶液をコロイダルシリカ
に攪拌下添加して、最後に純水で希釈して表1の組成物
とした。 比較例3:フッ化水素酸水溶液を添加しなかった以外
は、実施例4と同じにして表1の組成物とした。 実施例5:希釈したTMAH水溶液とTMAHC水溶液
を所定量混合し、これにホウフッ化水素酸水溶液を所定
量添加混合し、この添加剤溶液をコロイダルシリカに攪
拌下添加して、最後に純水で希釈して表1の組成物とし
た。
The methods for preparing the polishing compositions in Examples 1-5 and Comparative Examples 1-3 are as follows. Comparative Examples 1-2 and Examples 1-2: A predetermined amount of hydrofluoric acid aqueous solution was added and mixed to the diluted TMAH aqueous solution, and then potassium hydrogen carbonate was added and dissolved under stirring. Add this additive solution to colloidal silica of each particle size with stirring,
Finally, it was diluted with pure water to obtain the composition shown in Table 1. Comparative Example 1 uses colloidal silica having an average particle diameter of 15 nm, and Comparative Example 2 uses the polydisperse colloidal silica prepared by the above method. Example 3: A predetermined amount of diluted TMAH aqueous solution and a predetermined amount of TMAHC aqueous solution were mixed, and predetermined amounts of sodium fluoride and potassium fluoride were added thereto and dissolved under stirring. Then
Add this additive solution to colloidal silica with stirring,
Finally, it was diluted with pure water to obtain the composition shown in Table 1. Example 4: A predetermined amount of diluted TMAH aqueous solution and a predetermined amount of TMAHC aqueous solution were mixed, and a predetermined amount of hydrofluoric acid aqueous solution was added and mixed, and then potassium hydrogen carbonate was added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the composition shown in Table 1. Comparative Example 3: The composition of Table 1 was prepared in the same manner as in Example 4 except that the hydrofluoric acid aqueous solution was not added. Example 5: A predetermined amount of diluted TMAH aqueous solution and TMAHC aqueous solution were mixed, a predetermined amount of borohydrofluoric acid aqueous solution was added and mixed, and this additive solution was added to colloidal silica with stirring, and finally with pure water. The composition of Table 1 was diluted.

【表1】 [Table 1]

【0021】実施例6および比較例4の研磨組成液を循
環使用したシリコンウェーハの表面研磨の実施例を示
す。表2に示した組成となるよう調整した研磨組成物を
用いて、研磨条件は実施例1と同じにして、研磨組成液
を10回循環使用して、10枚のウェーハ研磨実験を行
い、各回毎の研磨組成物のpHと研磨速度を測定した。
結果は表2に示した。実施例6のpHは比較例4と比べ
循環回数9回まで変化が少なく,研磨速度は大きい。
An example of polishing the surface of a silicon wafer using the polishing composition liquids of Example 6 and Comparative Example 4 in circulation will be described. Using the polishing composition adjusted to have the composition shown in Table 2, the polishing conditions were the same as in Example 1, the polishing composition solution was circulated 10 times, and 10 wafer polishing experiments were performed. The pH and polishing rate of each polishing composition were measured.
The results are shown in Table 2. The pH of Example 6 is smaller than that of Comparative Example 4 up to 9 times of circulation, and the polishing rate is high.

【0022】実施例6および比較例4における研磨組成
物の調整方法は以下のとおりである。 実施例6:希釈したTMAH水溶液とTMAHC水溶液
を所定量混合し、これにフッ化水素酸水溶液を所定量添
加混合し、この添加剤溶液をコロイダルシリカに攪拌下
添加して、最後に純水で希釈して表2の組成物とした。 比較例4:TMAH水溶液とTMAHC水溶液を添加せ
ず、フッ化ナトリウムと水酸化ナトリウムだけをコロイ
ダルシリカに攪拌下添加して、最後に純水で希釈して表
2の組成物とした
The method for preparing the polishing composition in Example 6 and Comparative Example 4 is as follows. Example 6: A predetermined amount of diluted TMAH aqueous solution and TMAHC aqueous solution were mixed, a predetermined amount of hydrofluoric acid aqueous solution was added and mixed, and this additive solution was added to colloidal silica with stirring, and finally with pure water. It diluted and it was set as the composition of Table 2. Comparative Example 4: TMAH aqueous solution and TMAHC aqueous solution were not added, only sodium fluoride and sodium hydroxide were added to colloidal silica with stirring, and finally diluted with pure water to obtain the composition of Table 2.

【表2】 [Table 2]

【0023】実施例7〜11および比較例5〜7のシリ
コンウェーハの端面研磨の実施例を示す。表3に示した
組成となるよう調整した研磨組成物を用いて、以下の研
磨条件方法で鏡面研磨加工を実施した。 研磨装置:スピードファム株式会社製、EP−IV型端
面加工機 ドラム回転速度:800RPM ウェーハ回転速度:70秒/REV ウェーハ回転数:4回/枚 研磨布:DRP−II(スピードファム社製) 荷重:2.5Kg 研磨組成物流量:250ml/分 工作物:8インチ、酸化膜800nm+ポリシリコン膜
2000nm付きシリコンウェーハ 研磨組成物のpHはpHメーターを用いて測定した。ま
た、研磨面の評価は、集光灯下で肉眼にてヘイズ及びピ
ットの状態を観察した。また、研磨速度は、研磨前後の
シリコンウエハーの重量差より求めmg/分に換算し
た。結果を表3に示した。実施例7〜11は比較例5〜
7に比べ研磨速度が大きく、表面状態は良好である。
Examples of polishing the end faces of the silicon wafers of Examples 7 to 11 and Comparative Examples 5 to 7 will be shown. Using the polishing composition adjusted to have the composition shown in Table 3, mirror polishing was performed under the following polishing condition method. Polishing device: manufactured by Speedfam Co., EP-IV type end surface processing machine Drum rotation speed: 800 RPM Wafer rotation speed: 70 seconds / REV Wafer rotation speed: 4 times / sheet Polishing cloth: DRP-II (manufactured by Speedfam) Load Polishing composition flow rate: 250 ml / min Workpiece: 8 inches, oxide film 800 nm + polysilicon film 2000 nm with silicon wafer The polishing composition pH was measured using a pH meter. The polished surface was evaluated by observing the state of haze and pits with the naked eye under a concentrating lamp. The polishing rate was calculated from the weight difference between the silicon wafers before and after polishing and converted into mg / min. The results are shown in Table 3. Examples 7 to 11 are comparative examples 5 to 5.
The polishing rate is higher than that of No. 7, and the surface condition is good.

【0024】実施例7〜11および比較例5〜7におけ
る研磨組成物の調整方法は以下のとおりである。 実施例7:希釈したTMAH水溶液にフッ化水素酸水溶
液を所定量添加混合し、次いで炭酸水素カリウムおよび
炭酸水素ナトリウムを添加し攪拌下で溶解させた。次い
で、この添加剤溶液をコロイダルシリカに攪拌下添加し
て、最後に純水で希釈して表3の組成物とした。 実施例8〜9:希釈したTMAH水溶液とTMAHC水
溶液を所定量混合し、これにホウフッ化水素酸水溶液を
所定量添加混合し、この添加剤溶液をコロイダルシリカ
に攪拌下添加して、最後に純水で希釈して第3表の組成
物とした。 実施例10:希釈したTMAH水溶液にフッ化水素酸水
溶液を所定量添加混合し、次いで炭酸水素ナトリウムを
添加し攪拌下で溶解させた。次いで、この添加剤溶液を
コロイダルシリカに攪拌下添加して、最後に純水で希釈
して表3の組成物とした。 実施例11:希釈したTMAH水溶液とTMAHC水溶
液を所定量混合し、これにケイフッ化水素酸水溶液を所
定量添加混合し、次いでケイフッ化ナトリウムを添加し
攪拌下で溶解させた。次いで、この添加剤溶液をコロイ
ダルシリカに攪拌下添加して、最後に純水で希釈して表
3の組成物とした。 比較例5:単分散のコロイダルシリカに替えて、上記の
方法で作成した多分散のコロイダルシリカを使用した以
外は、実施例10と同じにして表3の組成物とした。 比較例6:希釈したTMAH水溶液にフッ化水素酸水溶
液を所定量添加混合し、次いで炭酸水素ナトリウムを添
加し攪拌下で溶解させた。次いで、この添加剤溶液をコ
ロイダルシリカに攪拌下添加して、最後に純水で希釈し
て表3の組成物とした。この組成物はpHが8.2であ
った。 比較例7:希釈したTMAH水溶液にフッ化水素酸水溶
液を所定量添加混合し、次いで炭酸水素ナトリウムを添
加し攪拌下で溶解させ、更に水酸化ナトリウム水溶液を
添加混合した。次いで、この添加剤溶液をコロイダルシ
リカに攪拌下添加して、最後に純水で希釈して表3の組
成物とした。この組成物はpHが11.0であった。
The methods for preparing the polishing compositions in Examples 7 to 11 and Comparative Examples 5 to 7 are as follows. Example 7: A predetermined amount of a hydrofluoric acid aqueous solution was added to and mixed with a diluted TMAH aqueous solution, and then potassium hydrogen carbonate and sodium hydrogen carbonate were added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the composition shown in Table 3. Examples 8 to 9: A predetermined amount of diluted TMAH aqueous solution and a predetermined amount of TMAHC aqueous solution were mixed, and a predetermined amount of an aqueous solution of borofluoric acid was added to and mixed with this, and this additive solution was added to colloidal silica with stirring, and finally pure water was added. It was diluted with water to obtain the composition shown in Table 3. Example 10: A predetermined amount of a hydrofluoric acid aqueous solution was added to and mixed with a diluted TMAH aqueous solution, and then sodium hydrogencarbonate was added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the composition shown in Table 3. Example 11: A predetermined amount of diluted TMAH aqueous solution and a predetermined amount of TMAHC aqueous solution were mixed, and a predetermined amount of hydrofluoric silicofluoric acid solution was added and mixed, and then sodium silicofluoride was added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the composition shown in Table 3. Comparative Example 5: The composition of Table 3 was obtained in the same manner as in Example 10 except that the polydisperse colloidal silica prepared by the above method was used in place of the monodisperse colloidal silica. Comparative Example 6: A predetermined amount of hydrofluoric acid aqueous solution was added to and mixed with the diluted TMAH aqueous solution, and then sodium hydrogen carbonate was added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the composition shown in Table 3. The composition had a pH of 8.2. Comparative Example 7: A predetermined amount of a hydrofluoric acid aqueous solution was added to and mixed with the diluted TMAH aqueous solution, then sodium hydrogen carbonate was added and dissolved under stirring, and a sodium hydroxide aqueous solution was further added and mixed. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the composition shown in Table 3. The composition had a pH of 11.0.

【表3】 [Table 3]

【0025】[0025]

【発明の効果】以上の説明で示される通り、本発明の研
磨組成物は、平均一次粒子径が30〜200nmの実質
的に単分散である酸化珪素粒子がその濃度が1〜25重
量%であるコロイド溶液からなり、該コロイド溶液が、
pH8.7〜10.5の間で緩衝作用を有する緩衝溶液
として調整されたものであり、成分の一つにフッ素イオ
ンもしくはフッ素が配位した陰イオンをフッ素として1
〜100ミリmol/Kg含有することを特徴とする研
磨用組成物は、pH変化が少なく、研磨速度が速く、洗
浄性が良好な事が判明した。本発明の研磨組成物を使い
シリコンウェーハ、半導体デバイス基板を研磨表面の品
質を落とさず、安定に高速研磨する事が出来る。
As described above, the polishing composition of the present invention has a concentration of 1 to 25% by weight of substantially monodisperse silicon oxide particles having an average primary particle diameter of 30 to 200 nm. Consisting of a colloidal solution, the colloidal solution comprising:
It is prepared as a buffer solution having a buffering action between pH 8.7 and 10.5, and one of the components is a fluorine ion or an anion in which fluorine is coordinated as fluorine.
It was found that the polishing composition characterized by containing ˜100 millimol / Kg has a small pH change, a high polishing rate, and a good cleaning property. Using the polishing composition of the present invention, a silicon wafer or a semiconductor device substrate can be stably and rapidly polished without degrading the quality of the polished surface.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】平均一次粒子径が30〜200nmの実質
的に単分散である酸化珪素粒子がその濃度が1〜25重
量%であるコロイド溶液からなり、該コロイド溶液が、
pH8.7〜10.5の間で緩衝作用を有する緩衝溶液
として調整されたものであり、成分の一つにフッ素イオ
ンもしくはフッ素が配位した陰イオンをフッ素として1
〜100ミリmol/Kg含有することを特徴とする研
磨用組成物。
1. A substantially monodisperse silicon oxide particle having an average primary particle diameter of 30 to 200 nm is composed of a colloidal solution having a concentration of 1 to 25% by weight, and the colloidal solution is
It is prepared as a buffer solution having a buffering action between pH 8.7 and 10.5, and one of the components is a fluorine ion or an anion in which fluorine is coordinated as fluorine.
A polishing composition containing 100 to 100 millimoles / Kg.
【請求項2】緩衝溶液を形成する陽イオンが、カリウム
イオン及び/または、ナトリウムイオン及び/または、
テトラメチルアンモニウムイオンであることを特徴とす
る請求項第1項記載の研磨用組成物。
2. The cation forming the buffer solution is potassium ion and / or sodium ion and / or
The polishing composition according to claim 1, which is a tetramethylammonium ion.
【請求項3】緩衝溶液を形成する陰イオンが、炭酸イオ
ン及び/または、炭酸水素イオンを含むことを特徴とす
る請求項第1項および請求項第2項記載の研磨用組成
物。
3. The polishing composition according to claim 1 or 2, wherein the anion forming the buffer solution contains carbonate ion and / or hydrogen carbonate ion.
【請求項4】ナトリウムの含有量が2ミリmol/Kg
以下である請求項第1項、請求項第2項および請求項第
3項記載の研磨用組成物。
4. The content of sodium is 2 millimol / Kg
The polishing composition according to claim 1, claim 2 or claim 3, wherein:
【請求項5】平均一次粒子径が30〜200nmの実質
的に単分散である酸化珪素粒子がその濃度が25〜65
重量%であるコロイド溶液からなり、該コロイド溶液
が、pH緩衝作用を有する緩衝溶液として調整されたも
のであり、成分の一つにフッ素イオンもしくはフッ素が
配位した陰イオンをフッ素として5〜500ミリmol
/Kg含有し、水、有機溶剤、塩類を含んだ溶液あるい
はその混合物で希釈することにより、請求項第1項〜第
4項に記載の研磨用組成物を調整する方法。
5. A substantially monodisperse silicon oxide particle having an average primary particle diameter of 30 to 200 nm has a concentration of 25 to 65.
It is composed of a colloidal solution having a weight percentage of 5 to 500, and the colloidal solution is prepared as a buffer solution having a pH buffering action. Millimol
A method for adjusting the polishing composition according to any one of claims 1 to 4, wherein the polishing composition is diluted with a solution containing Kg / Kg, water, an organic solvent, a salt or a mixture thereof.
JP2002093810A 2002-03-29 2002-03-29 Abrasive composition and method for preparing the same Expired - Fee Related JP3754986B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002093810A JP3754986B2 (en) 2002-03-29 2002-03-29 Abrasive composition and method for preparing the same
TW92107324A TW200400249A (en) 2002-03-29 2003-03-28 Polishing agent composition and preparation method thereof
CNB031212182A CN1322087C (en) 2002-03-29 2003-03-28 Composition for grinding agent and making-up method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093810A JP3754986B2 (en) 2002-03-29 2002-03-29 Abrasive composition and method for preparing the same

Publications (2)

Publication Number Publication Date
JP2003297778A true JP2003297778A (en) 2003-10-17
JP3754986B2 JP3754986B2 (en) 2006-03-15

Family

ID=28786172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093810A Expired - Fee Related JP3754986B2 (en) 2002-03-29 2002-03-29 Abrasive composition and method for preparing the same

Country Status (3)

Country Link
JP (1) JP3754986B2 (en)
CN (1) CN1322087C (en)
TW (1) TW200400249A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041494A (en) * 2004-06-25 2006-02-09 Jsr Corp Cleaning composition for semiconductor component, and manufacturing method of semiconductor device
JP2006104354A (en) * 2004-10-06 2006-04-20 Nippon Chem Ind Co Ltd Polishing composition, method for producing the same and polishing method using the polishing composition
JP2007510307A (en) * 2003-10-29 2007-04-19 マリンクロッド・ベイカー・インコーポレイテッド Alkaline plasma etching / ashing residue remover and photoresist stripping composition containing metal halide corrosion inhibitors
JP2008235481A (en) * 2007-03-19 2008-10-02 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition, manufacturing method thereof, and polishing processing method
US7559825B2 (en) 2006-12-21 2009-07-14 Memc Electronic Materials, Inc. Method of polishing a semiconductor wafer
KR101148461B1 (en) * 2004-06-25 2012-05-25 제이에스알 가부시끼가이샤 Cleaning Composition for Semiconductor Components and Process for Manufacturing Semiconductor Device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202129737A (en) * 2019-10-03 2021-08-01 日商日產化學股份有限公司 Cation-containing polishing composition for eliminating protrusions at periphery of laser mark

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230833A (en) * 1989-06-09 1993-07-27 Nalco Chemical Company Low sodium, low metals silica polishing slurries
JP2877440B2 (en) * 1989-06-09 1999-03-31 ナルコ ケミカル カンパニー Colloidal silica polishing slurry
JP3197575B2 (en) * 1991-05-09 2001-08-13 株式会社吾妻商会 Mounting method of light emitting display
JPH11130418A (en) * 1997-10-29 1999-05-18 Clariant Japan Kk Method for removing sodium ion from colloidal silica
JPH11302635A (en) * 1998-04-24 1999-11-02 Hiroaki Tanaka Polishing composition and method for polishing using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510307A (en) * 2003-10-29 2007-04-19 マリンクロッド・ベイカー・インコーポレイテッド Alkaline plasma etching / ashing residue remover and photoresist stripping composition containing metal halide corrosion inhibitors
JP2006041494A (en) * 2004-06-25 2006-02-09 Jsr Corp Cleaning composition for semiconductor component, and manufacturing method of semiconductor device
JP4600169B2 (en) * 2004-06-25 2010-12-15 Jsr株式会社 Semiconductor component cleaning composition and method for manufacturing semiconductor device
KR101148461B1 (en) * 2004-06-25 2012-05-25 제이에스알 가부시끼가이샤 Cleaning Composition for Semiconductor Components and Process for Manufacturing Semiconductor Device
JP2006104354A (en) * 2004-10-06 2006-04-20 Nippon Chem Ind Co Ltd Polishing composition, method for producing the same and polishing method using the polishing composition
US7559825B2 (en) 2006-12-21 2009-07-14 Memc Electronic Materials, Inc. Method of polishing a semiconductor wafer
JP2008235481A (en) * 2007-03-19 2008-10-02 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition, manufacturing method thereof, and polishing processing method

Also Published As

Publication number Publication date
TWI306471B (en) 2009-02-21
CN1322087C (en) 2007-06-20
JP3754986B2 (en) 2006-03-15
TW200400249A (en) 2004-01-01
CN1448459A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP4963825B2 (en) Polishing silica sol and polishing composition containing the same
JP5275595B2 (en) Semiconductor wafer polishing composition and polishing method
JP3721497B2 (en) Method for producing polishing composition
US6027669A (en) Polishing composition
US5264010A (en) Compositions and methods for polishing and planarizing surfaces
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
JP4113288B2 (en) Polishing composition and silicon wafer processing method using the same
JP2008270584A (en) Polishing composition for semiconductor wafer and polishing processing method
JP2002338232A (en) Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP6207345B2 (en) Method for producing silica particles
JP2003297777A (en) Composition for polishing, method for modifying the same and method for polishing the same
JP3754986B2 (en) Abrasive composition and method for preparing the same
JP7356932B2 (en) Polishing composition and polishing method
JP4291665B2 (en) Abrasive composition for siliceous material and polishing method using the same
US20180094166A1 (en) Cmp polishing composition comprising positive and negative silica particles
JPWO2005029563A1 (en) Silicon wafer polishing composition and polishing method
CN112552824B (en) Polishing composition and polishing method
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP4247955B2 (en) Abrasive composition for hard and brittle materials and polishing method using the same
JP4396963B2 (en) Polishing composition, method for preparing the same, and method for polishing a wafer using the same
TWI808978B (en) Silicon oxide slurry for polishing liquid composition
JP4042906B2 (en) Polishing composition, method for adjusting polishing composition, and polishing method
WO2016106766A1 (en) Chemical mechanical polishing liquid and application thereof
JP5421006B2 (en) Particle-linked silica sol and method for producing the same
JP2007013070A (en) Polishing composition for polishing device wafer edge, its manufacturing method and polishing work method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3754986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees