JP4963825B2 - Polishing silica sol and polishing composition containing the same - Google Patents

Polishing silica sol and polishing composition containing the same Download PDF

Info

Publication number
JP4963825B2
JP4963825B2 JP2005331807A JP2005331807A JP4963825B2 JP 4963825 B2 JP4963825 B2 JP 4963825B2 JP 2005331807 A JP2005331807 A JP 2005331807A JP 2005331807 A JP2005331807 A JP 2005331807A JP 4963825 B2 JP4963825 B2 JP 4963825B2
Authority
JP
Japan
Prior art keywords
silica sol
range
polishing
particle size
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005331807A
Other languages
Japanese (ja)
Other versions
JP2007137972A (en
Inventor
一昭 井上
修 吉田
祐一郎 田熊
昭 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2005331807A priority Critical patent/JP4963825B2/en
Publication of JP2007137972A publication Critical patent/JP2007137972A/en
Application granted granted Critical
Publication of JP4963825B2 publication Critical patent/JP4963825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

本発明は研磨材として好適な異方形状のシリカゾルおよびその効率的な製造方法に関する。   The present invention relates to an anisotropic shaped silica sol suitable as an abrasive and an efficient production method thereof.

半導体の集積回路付基板の製造においては、シリコンウェーハ上に銅などの金属で回路を形成する際に凹凸あるいは段差が生じるので、これを研磨して表面の段差がなくなるように回路の金属部分を優先的に除去することが行われている。また、シリコンウェーハ上にアルミ配線を形成し、この上に絶縁膜としてシリカ等の酸化膜を設けると配線による凹凸が生じるので、この酸化膜を研磨して平坦化することが行われている。このような基板の研磨においては、研磨後の表面は段差や凹凸がなく平坦で、さらにミクロな傷等もなく平滑であることが求められており、また研磨速度が速いことも必要である。
研磨用粒子としては、従来、シリカゾルやヒュームドシリカ、ヒュームドアルミナなどが用いられている。
In the manufacture of a substrate with a semiconductor integrated circuit, irregularities or steps are formed when forming a circuit with a metal such as copper on a silicon wafer. Removal is performed preferentially. Further, when an aluminum wiring is formed on a silicon wafer and an oxide film such as silica is provided thereon as an insulating film, irregularities due to the wiring are generated. Therefore, the oxide film is polished and flattened. In the polishing of such a substrate, the surface after polishing is required to be flat with no steps or irregularities, smooth without microscopic scratches, etc., and the polishing rate must be high.
Conventionally, silica sol, fumed silica, fumed alumina, or the like is used as the abrasive particles.

CMPで使用される研磨材は、通常、シリカ、アルミナ等の金属酸化物からなる平均粒子径が200nm程度の球状の研磨用粒子と、配線・回路用金属の研磨速度を早めるための酸化剤、有機酸等の添加剤及び純水などの溶媒から構成されているが、被研磨材の表面には下地の絶縁膜に形成した配線用の溝パターンに起因した段差(凹凸)が存在するので、主に凸部を研磨除去しながら共面まで研磨し、平坦な研磨面とすることが求められている。しかしながら、従来の球状の研磨用粒子では共面より上の部分を研磨した際に、凹部の下部にあった配線溝内の回路用金属が共面以下まで研磨される問題(ディッシングと呼ばれている。)があった。このようなディッシング(過研磨)が起きると配線の厚みが減少して配線抵抗が増加したり、また、この上に形成される絶縁膜の平坦性が低下するなどの問題が生じるので、ディッシングを抑制することが求められている。   The abrasive used in CMP is usually spherical abrasive particles having an average particle diameter of about 200 nm made of a metal oxide such as silica and alumina, and an oxidizer for increasing the polishing rate of the wiring / circuit metal. It is composed of additives such as organic acids and solvents such as pure water, but there are steps (unevenness) due to the groove pattern for wiring formed on the underlying insulating film on the surface of the material to be polished. It is required to polish the coplanar surface mainly while polishing and removing the convex portions to obtain a flat polished surface. However, with conventional spherical abrasive particles, when the portion above the coplanar surface is polished, the circuit metal in the wiring trench at the bottom of the recess is polished to below the coplanar surface (called dishing) There was.) If such dishing (overpolishing) occurs, the thickness of the wiring decreases and the wiring resistance increases, and the flatness of the insulating film formed thereon deteriorates. There is a need to suppress it.

異形粒子群を含む研磨材は、この様な凹凸を有する基材の研磨において、凸部の上端面が凹部の底面と同レベルになるまで凹部の研磨が抑制され、凸部の上端面が凹部の底面と同レベルまで研磨された後は凸部、凹部ともに同じ研磨速度で研磨できるので、ディッシング(過研磨)が起きることがなく、研磨後の表面は凹凸が無く平坦性に優れることが知られている。例えば、半導体集積回路の形成などにおける研磨においてディッシングが起きることがないので、得られる集積回路の回路抵抗を増加させることもなく、研磨後の表面は平坦性に優れているので効率的に積層集積回路を形成することができる。   The abrasive containing the irregularly shaped particle group is such that, when polishing a substrate having such irregularities, polishing of the concave portion is suppressed until the upper end surface of the convex portion is at the same level as the bottom surface of the concave portion, and the upper end surface of the convex portion is concave. After polishing to the same level as the bottom surface, both the convex and concave portions can be polished at the same polishing rate, so dishing (overpolishing) does not occur, and the polished surface has no unevenness and is excellent in flatness. It has been. For example, since dishing does not occur during polishing in the formation of semiconductor integrated circuits, etc., without increasing the circuit resistance of the obtained integrated circuit, the surface after polishing is excellent in flatness, so that stacking can be performed efficiently. A circuit can be formed.

また、この様な異形粒子群を含む研磨材の用途としては、アルミニウムディスク(アルミニウムまたはその基材上のメッキ層)や半導体多層配線基板のアルミニウム配線、光ディスクや磁気ディスク用ガラス基板、液晶ディスプレイ用ガラス基板、フォトマスク用ガラス基板、ガラス質材料の鏡面加工などへの適用が期待されている。   In addition, the abrasives containing such irregularly shaped particles can be used for aluminum disks (aluminum or a plating layer on a base material thereof), aluminum wiring of semiconductor multilayer wiring boards, glass substrates for optical disks and magnetic disks, and liquid crystal displays. Application to glass substrates, glass substrates for photomasks, mirror finishing of glassy materials, and the like is expected.

異形粒子を含むシリカゾルの製造方法としては、特開平4−187512号公報(特許文献1)にSiO2として0.05〜5.0重量%のアルカリ金属珪酸塩水溶液に、珪酸液を添加して混合液のSiO2/M2O(モル比、Mはアルカリ金属又は第4級アンモニウム)を30〜60とした後に、Ca,Mg,Al,In,Ti,Zr,Sn,Si,Sb,Fe,Cuおよび希土類金属からなる群から選ばれた1種または2種以上の金属の化合物を添加し(添加時期は、前記珪酸液添加の前または添加中でも良い)、この混合液を60℃以上の任意の温度で一定時間維持し、更に珪酸液を添加して反応液中のSiO2/M2O(モル比)を60〜100としてなる実質的に異形形状のシリカ微粒子が分散したゾルの製法が開示されている。 As a method for producing the silica sol comprising irregular particles, the alkali metal silicate aqueous solution of 0.05 to 5.0 wt% as SiO 2 in JP-A 4-187512 (Patent Document 1), the mixture was added silicic acid solution SiO After 2 / M 2 O (molar ratio, M is alkali metal or quaternary ammonium) 30-60, Ca, Mg, Al, In, Ti, Zr, Sn, Si, Sb, Fe, Cu and rare earth A compound of one or two or more metals selected from the group consisting of metals is added (addition time may be before or during addition of the silicic acid solution), and this mixed solution is heated at an arbitrary temperature of 60 ° C. or higher. Disclosed is a method for producing a sol in which substantially irregularly shaped silica fine particles are dispersed in which a silicic acid solution is added and SiO 2 / M 2 O (molar ratio) in the reaction solution is set to 60 to 100 in a reaction solution. Yes.

特開平7−118008号公報(特許文献2)には、活性珪酸のコロイド水溶液に、水溶性のカルシウム塩、マグネシウム塩又はこれらの混合物の水溶液を添加し、得られた水溶液にアルカリ性物質を加え、得られた混合物の一部を60℃以上に加熱してヒール液とし、残部をフィード液として、当該ヒール液に当該フィード液を添加し、当該添加の間に、水を蒸発させる事によりSiO2濃度6〜30重量%まで濃縮することよりなる細長い形状のシリカゾルの製造法が開示されている。 In JP-A-7-118008 (Patent Document 2), an aqueous solution of a water-soluble calcium salt, magnesium salt or a mixture thereof is added to an aqueous colloidal solution of active silicic acid, and an alkaline substance is added to the resulting aqueous solution. A part of the obtained mixture is heated to 60 ° C. or more to obtain a heel liquid, the remainder is used as a feed liquid, the feed liquid is added to the heel liquid, and water is evaporated during the addition to evaporate SiO 2. A process for producing an elongated silica sol comprising concentrating to a concentration of 6-30% by weight is disclosed.

特開2001−11433号公報(特許文献3)には、SiO2として0.5〜10重量%を含有し、かつ、pHが2〜6である、活性珪酸のコロイド水溶液に、水溶性のII価又はIII価の金属の塩を単独又は混合して含有する水溶液を、同活性珪酸のコロイド水溶液のSiO2に対して、金属酸化物(II価の金属の塩の場合はMOとし、III価の金属の塩の場合はM23とする。但し、MはII価又はIII価の金属原子を表し、Oは酸素原子を表す。)として1〜10重量%となる量を加えて混合し、得られた混合液(1)に、平均粒子径10〜120nm、pH2〜6の酸性球状シリカゾルを、この酸性球状シリカゾルに由来するシリカ含量(A)とこの混合液(1)に由来するシリカ含量(B)の比A/B(重量比)が5〜100、かつ、この酸性球状シリカゾルとこの混合液(1)との混合により得られる混合液(2)の全シリカ含量(A+B)が混合液(2)においてSiO2濃度5〜40重量%となるように加えて混合し混合液(2)にアルカリ金属水酸化物等をpHが7〜11となるように加えて混合し、得られた混合液(3)を100〜200℃で0.5〜50時間加熱してなる数珠状のシリカゾルの製造方法が記載されている。 JP-A-2001-11433 (Patent Document 3) discloses a water-soluble II colloidal solution of active silicic acid containing 0.5 to 10% by weight of SiO 2 and having a pH of 2 to 6. an aqueous solution containing valence or III valent metal salt singly or as a mixture thereof, with respect to SiO 2 colloid solution having the same active silicic acid in the case of the metal oxide (II valent metal salt and MO, the III In the case of a metal salt of M 2 O 3 , M represents a II or III valent metal atom, and O represents an oxygen atom). Then, an acidic spherical silica sol having an average particle size of 10 to 120 nm and a pH of 2 to 6 is added to the obtained mixed liquid (1), and the silica content (A) derived from the acidic spherical silica sol and the mixed liquid (1). The ratio A / B (weight ratio) of silica content (B) is 5 to 100, and this acid Spherical silica sol and the mixture (1) and the resulting mixture by mixing (2) the total silica content (A + B) is added and mixed so that SiO 2 concentration of 5 to 40 wt% in the mixture (2) An alkali metal hydroxide or the like is added to and mixed with the mixed liquid (2) so that the pH becomes 7 to 11, and the obtained mixed liquid (3) is heated at 100 to 200 ° C. for 0.5 to 50 hours. A method for producing a beaded silica sol is described.

特開2001−48520号公報(特許文献4)には、シリカ濃度1〜8モル/リットル、酸濃度0.0018〜0.18モル/リットルで水濃度2〜30モル/リットルの範囲の組成で、溶剤を使用しないでアルキルシリケートを酸触媒で加水分解した後、シリカ濃度が0.2〜1.5モル/リットルの範囲となるように水で希釈し、次いでpHが7以上となるようにアルカリ触媒を加え加熱して珪酸の重合を進行させて、電子顕微鏡観察による太さ方向の平均直径が5〜100nmであり、長さがその1.5〜50倍の長さの細長い形状の非晶質シリカ粒子が液状分散体中に分散されているシリカゾルの製造方法が記載されている。   Japanese Patent Laid-Open No. 2001-48520 (Patent Document 4) describes a composition having a silica concentration of 1 to 8 mol / liter, an acid concentration of 0.0018 to 0.18 mol / liter, and a water concentration of 2 to 30 mol / liter. The alkyl silicate is hydrolyzed with an acid catalyst without using a solvent, diluted with water so that the silica concentration is in the range of 0.2 to 1.5 mol / liter, and then the pH is 7 or more. An alkali catalyst is added and heated to advance the polymerization of silicic acid, and the average diameter in the thickness direction by electron microscope observation is 5 to 100 nm, and the length is 1.5 to 50 times that of a long and thin shape. A method for producing a silica sol in which crystalline silica particles are dispersed in a liquid dispersion is described.

特開2001−150334号公報(特許文献5)には、水ガラスなどのアルカリ金属珪酸塩の水溶液を脱陽イオン処理することにより得られるSiO2濃度2〜6重量%程度の活性珪酸の酸性水溶液に、アルカリ土類金属、例えば、Ca、Mg、Baなどの塩をその酸化物換算で上記活性珪酸のSiO2に対し 100〜1500 ppmの重量比に添加し、更にこの液中SiO2/M2O (M は、アルカリ金属原子、NH4 又は第4級アンモニウム基を表す。) モル比が20〜150 となる量の同アルカリ物質を添加することにより得られる液を当初ヒール液とし、同様にして得られる2〜6重量%のSiO2濃度と20〜150 のSiO2/M2O (M は、上記に同じ。) モル比を有する活性珪酸水溶液をチャージ液として、60〜150 ℃で前記当初ヒール液に前記チャージ液を、1時間当たり、チャージ液SiO2/当初ヒール液SiO2の重量比として0.05〜1.0 の速度で、液から水を蒸発除去しながら(又はせずに)、添加してなる歪な形状を有するシリカゾルの製造方法が記載されている。 JP 2001-150334 A (Patent Document 5) discloses an acidic aqueous solution of activated silicic acid having a SiO 2 concentration of about 2 to 6% by weight obtained by subjecting an aqueous solution of alkali metal silicate such as water glass to decation treatment. In addition, an alkaline earth metal such as a salt of Ca, Mg, Ba or the like is added in a weight ratio of 100 to 1500 ppm with respect to SiO 2 of the above active silicic acid in terms of its oxide, and further SiO 2 / M in this solution. 2 O (M represents an alkali metal atom, NH 4 or a quaternary ammonium group.) The liquid obtained by adding the same alkali substance in an amount that the molar ratio is 20 to 150 is the initial heel liquid. An active silicic acid aqueous solution having a SiO 2 concentration of 2 to 6% by weight and SiO 2 / M 2 O of 20 to 150 (M is the same as above) obtained as a charge liquid at 60 to 150 ° C. The charge liquid to the initial heel liquid per hour, In Yaji solution SiO 2 / initial 0.05-1.0 rate as the weight ratio of the heel solution SiO 2, (without or) a while evaporating off water from the liquid, method for producing a silica sol having a distorted shape obtained by adding the Are listed.

特開平8−279480号公報(特許文献6)には、(1)珪酸アルカリ水溶液を鉱酸で中和しアルカリ性物質を添加して加熱熟成する方法、(2)珪酸アルカリ水溶液を陽イオン交換処理して得られる活性珪酸にアルカリ性物質を添加して加熱熟成する方法、(3)エチルシリケート等のアルコキシシランを加水分解して得られる活性珪酸を加熱熟成する方法、または、(4)シリカ微粉末を水性媒体中で直接に分散する方法等によって製造されるコロイダルシリカ水溶液は、通常、4〜1,000nm(ナノメートル)、好ましくは7〜500nmの粒子径を有するコロイド状シリカ粒子が水性媒体に分散したものであり、SiO2 として0.5〜50重量%、好ましくは0.5〜30重量%の濃度を有する。上記シリカ粒子の粒子形状は、球状、いびつ状、偏平状、板状、細長い形状、繊維状等が挙げられることが記載されている。 In JP-A-8-279480 (Patent Document 6), (1) a method in which an alkali silicate aqueous solution is neutralized with mineral acid, an alkaline substance is added and heat-aged, and (2) the alkali silicate aqueous solution is subjected to cation exchange treatment. A method of heating and aging by adding an alkaline substance to the obtained active silicic acid, (3) a method of heating and aging the active silicic acid obtained by hydrolyzing alkoxysilane such as ethyl silicate, or (4) fine silica powder Colloidal silica aqueous solution produced by, for example, a method of directly dispersing in an aqueous medium usually contains colloidal silica particles having a particle diameter of 4 to 1,000 nm (nanometer), preferably 7 to 500 nm. is obtained by dispersing 0.5 to 50% by weight SiO 2, preferably has a concentration of 0.5 to 30 wt%. It is described that the particle shape of the silica particles includes a spherical shape, a distorted shape, a flat shape, a plate shape, an elongated shape, and a fibrous shape.

特表2003−529662号公報(特許文献7)には、互いにボンドによって連結していない球形の、分離したシリカ粒子を含む研磨剤であって、a)寸法5−50nmのシリカ粒子5−95重量%、及びb)寸法50−200nmのシリカ粒子95−5重量%を含む、但し粒子の全体がバイモーダルな粒径分布を有する研磨剤が高い研磨速度を与えることを報告している。   Japanese Patent Publication No. 2003-52962 (Patent Document 7) discloses an abrasive containing spherical, separated silica particles that are not connected to each other by a bond, and a) 5-95 weight silica particles having a size of 5-50 nm. And b) abrasives containing 95-5% by weight of silica particles of size 50-200 nm, but with the entire particle having a bimodal particle size distribution, are reported to give high polishing rates.

特開平4−187512号公報Japanese Patent Laid-Open No. 4-187512 特開平7−118008号公報Japanese Patent Laid-Open No. 7-118008 特開2001−11433号公報JP 2001-11433 A 特開2001−48520号公報JP 2001-48520 A 特開2001−150334号公報JP 2001-150334 A 特開平8−279480号公報JP-A-8-279480 特表2003−529662号公報Japanese translation of PCT publication No. 2003-52962

本発明の課題は、ガラスハードディスク、石英ガラス、水晶、アルミニウムディスク、半導体デバイスのSiO2酸化膜、珪素半導体ウェハー、化合物半導体ウェハーなどに対して、優れた研磨特性を発揮する研磨用組成物を提供することにある。また、該研磨用組成物の主成分となるシリカゾルおよびその製造方法を提供するものである。 An object of the present invention is to provide a polishing composition that exhibits excellent polishing properties for glass hard disks, quartz glass, quartz, aluminum disks, SiO 2 oxide films of semiconductor devices, silicon semiconductor wafers, compound semiconductor wafers, etc. There is to do. The present invention also provides a silica sol that is a main component of the polishing composition and a method for producing the same.

本出願の第1の発明は、動的光散乱法により測定された平均粒子径(D1)が40〜70nmの範囲にあり、BET法により測定された平均粒子径(D2)が10〜50nmの範囲にあり、異形度(D1/D2)が1.55〜4.00の範囲にある非球状シリカ微粒子が分散してなる異方形状シリカゾルであって、該異方形状シリカゾルの動的光散乱法により測定された粒子径分布において30〜70nmの粒子径範囲Aと71〜150nmの粒子径範囲Bにそれぞれ粒子径分布のピークがあり(但し、両ピークに相当する粒子径の差の絶対値が50〜100nmの範囲にある場合に限る。)、該粒子径範囲Aに存在する粒子の体積%と該粒子径範囲Bに存在する粒子の体積%の比が60:40〜95:5の範囲にあることを特徴とする研磨用シリカゾルである。   1st invention of this application has the average particle diameter (D1) measured by the dynamic light scattering method in the range of 40-70 nm, and the average particle diameter (D2) measured by BET method is 10-50 nm. An anisotropic silica sol in which non-spherical silica fine particles having an irregularity (D1 / D2) in the range of 1.55 to 4.00 are dispersed, and dynamic light scattering of the anisotropic silica sol In the particle size distribution measured by the method, there is a particle size distribution peak in each of the particle size range A of 30 to 70 nm and the particle size range B of 71 to 150 nm (however, the absolute value of the difference in particle size corresponding to both peaks) Is in the range of 50 to 100 nm.), The ratio of the volume percent of particles present in the particle size range A to the volume percent of particles present in the particle size range B is 60:40 to 95: 5 Polishing characterized by being in range It is a silica sol.

本出願の第2の発明は、前記研磨用シリカゾルにおいて、前記粒子径範囲A内の30〜50nmの範囲と、前記粒子径範囲B内の90〜130nmの範囲とのそれぞれに粒子径分布のピークがあることを特徴とする研磨用シリカゾルである。   According to a second aspect of the present application, in the polishing silica sol, the particle size distribution peaks in each of a range of 30 to 50 nm in the particle size range A and a range of 90 to 130 nm in the particle size range B. There is a silica sol for polishing.

本出願の第3の発明は、珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加した後、60〜200℃の範囲に加熱してシリカゾルを調製し、これをシードゾルとして、pH9〜12.5の範囲にて、温度60〜200℃の条件下、珪酸液を連続的にまたは断続的に添加することを特徴とする研磨用シリカゾルの製造方法である。
本出願の第4の発明は、前記研磨用シリカゾルの製造方法において、前記シードゾルにpH調整剤を添加することにより、pH9〜12.5に調整することを特徴とする研磨用シリカゾルの製造方法である。
In the third invention of the present application, a silica hydrogel obtained by neutralizing a silicate with an acid is washed to remove salts, and after adding an alkali, the silica sol is heated to a range of 60 to 200 ° C. A method for producing a silica sol for polishing, characterized in that a silicic acid solution is continuously or intermittently added under the conditions of a temperature of 60 to 200 ° C. in a pH range of 9 to 12.5, using this as a seed sol. It is.
A fourth invention of the present application is the method for producing a polishing silica sol, wherein in the method for producing a polishing silica sol, the pH is adjusted to 9 to 12.5 by adding a pH adjusting agent to the seed sol. is there.

本出願の第5の発明は、前記粒子径範囲Aの単分散相からなる異方形状シリカゾルと、前記粒子径範囲Bの単分散相からなる異方形状シリカゾルとを混合することにより研磨用シリカゾルを得る研磨用シリカゾルの製造方法である。
本出願の第6の発明は、前記研磨用シリカゾルを含有する研磨用組成物である。
According to a fifth aspect of the present application, a silica sol for polishing is prepared by mixing an anisotropic shaped silica sol composed of a monodispersed phase having a particle size range A and an anisotropic shaped silica sol composed of a monodispersed phase having a particle size range B. It is the manufacturing method of the silica sol for grinding | polishing which obtains.
A sixth invention of the present application is a polishing composition containing the polishing silica sol.

本発明に係る研磨用シリカゾルを含む研磨用組成物によれば、例えば、ガラスディスクに対して、従来の研磨用組成物を用いた場合に比べて、優れた研磨レートが達成される。
また、本発明に係る製造方法によれば、本発明の研磨用組成物に適用される研磨用シリカゾルを効率的に製造することができる。
According to the polishing composition containing the polishing silica sol according to the present invention, for example, an excellent polishing rate is achieved for a glass disk as compared with the case where a conventional polishing composition is used.
Moreover, according to the manufacturing method which concerns on this invention, the silica sol for polishing applied to the polishing composition of this invention can be manufactured efficiently.

研磨用シリカゾル
本発明の研磨用シリカゾルは、異方形状シリカゾルからなるものである。ここで異方形状シリカゾルとは、溶媒に分散したシリカ微粒子の形状が、非球状、異形、鎖状、数珠状、楔状または細長い等と称されるものである。具体的には、動的光散乱法により測定された平均粒子径(D1)が40〜70nmの範囲にあり、BET法により測定された平均粒子径(D2)が10〜50nmの範囲にあり、異形度(D1/D2)が1.55〜4.00の範囲にあるものである。
Polishing silica sol The polishing silica sol of the present invention comprises an anisotropic shaped silica sol. Here, the anisotropic shaped silica sol is one in which the shape of the silica fine particles dispersed in the solvent is referred to as non-spherical, irregular, chained, beaded, wedged or elongated. Specifically, the average particle diameter (D1) measured by the dynamic light scattering method is in the range of 40 to 70 nm, the average particle diameter (D2) measured by the BET method is in the range of 10 to 50 nm, The degree of irregularity (D1 / D2) is in the range of 1.55 to 4.00.

動的光散乱法により測定される平均粒子径(D1)が40nm未満の場合は、シリカ微粒子の粒子径が相対的に小さいため、シリカゾルの粘度が高くなり易く、貯蔵上問題がある。また、研磨用途においても、充分な研磨性能を発揮できない場合がある。他方、動的光散乱法により測定される平均粒子径(D1)が、70nmを超える場合は、研磨用途において、充分な研磨性能が発揮でき難い。
また、BET法により測定された平均粒子径(D2)が10nm未満の場合についても、シリカ微粒子の粒子径が相対的に小さいため、シリカゾルの粘度が高くなり易く、貯蔵上問題がある。また、研磨用途においても、充分な研磨性能を発揮できない場合がある。BET法により測定された平均粒子径(D2)が50nmを超える場合は、研磨用途において、充分な研磨性能が発揮し難い。
When the average particle size (D1) measured by the dynamic light scattering method is less than 40 nm, the particle size of the silica fine particles is relatively small, so that the viscosity of the silica sol tends to be high, and there is a problem in storage. Further, even in polishing applications, sufficient polishing performance may not be exhibited. On the other hand, when the average particle diameter (D1) measured by the dynamic light scattering method exceeds 70 nm, it is difficult to exhibit sufficient polishing performance in polishing applications.
In addition, even when the average particle size (D2) measured by the BET method is less than 10 nm, the silica sol has a relatively high viscosity because the particle size of the silica fine particles is relatively small, and there is a problem in storage. Further, even in polishing applications, sufficient polishing performance may not be exhibited. When the average particle diameter (D2) measured by the BET method exceeds 50 nm, sufficient polishing performance is hardly exhibited in polishing applications.

本発明の研磨用シリカゾルは、さらに異形度(D1/D2)が1.55〜4.00の範囲にあることが必要である。動的光散乱法による平均粒子径の測定値は、粒子の形状、特にその長径の大きさに影響された測定値になる傾向があるのに対し、BET法で測定される平均粒子径の測定値は、粒子の形状の影響が少ない測定値となる傾向がある。このため、シリカ微粒子が真球の場合、両者の比である異形度(D1/D2)の値は、一般に1に収束し、シリカ微粒子が真球から乖離するに従い、その値は増加する傾向にある。
本発明の研磨用シリカゾルにおいて、前記異形度が1.55未満では、本発明に見られるような研磨効果への寄与が低下する。他方、異形度の値が、4.00を越える場合は、研磨効果は増大するものの、スクラッチ発生などの問題が増大するため、実用性が低下する。
The polishing silica sol of the present invention needs to have a degree of irregularity (D1 / D2) in the range of 1.55 to 4.00. The average particle size measured by the dynamic light scattering method tends to be a value influenced by the shape of the particle, particularly the major axis, whereas the average particle size measured by the BET method is measured. The value tends to be a measured value that is less affected by the shape of the particles. For this reason, when the silica fine particle is a true sphere, the value of the degree of deformation (D1 / D2), which is the ratio between the two, generally converges to 1, and the value tends to increase as the silica fine particle deviates from the true sphere. is there.
In the polishing silica sol of the present invention, if the degree of profile is less than 1.55, the contribution to the polishing effect as seen in the present invention is reduced. On the other hand, when the value of the irregularity exceeds 4.00, although the polishing effect is increased, problems such as generation of scratches increase, so that the practicality is lowered.

本発明の研磨用シリカゾルは、前記の異方形状シリカゾルであって、更にそのシリカゾルの動的光散乱法により測定される粒子径分布が、いわゆるバイモーダルな分布を示すことを特徴とするものである。このバイモーダルな粒子径分布については、具体的には、30〜70nmの粒子径範囲Aと71〜150nmの粒子径範囲Bにそれぞれ粒子径分布のピークがあり、(但し、両ピークに相当する粒子径の差の絶対値が50〜100nmの範囲にある場合に限る)、該粒子径範囲Aに存在する粒子の体積%と該粒子径範囲Bに存在する粒子の体積%の比が、60:40〜95:5の範囲にあることを特徴とするものである。ここで粒子径範囲Aに存在する粒子の体積%とは、本発明の研磨用シリカゾルに含まれるシリカ微粒子全体の体積を100%としたときの、粒子径範囲Aに該当するシリカ微粒子が占める体積の割合を意味する。粒子径範囲Bに存在する粒子の体積%も同様である。
このような異方形状シリカゾルであって、前記所定のバイモーダルな粒子径分布を有する研磨用シリカゾルを含んでなる研磨用組成物は、優れた研磨効果を発揮することができる。
The polishing silica sol of the present invention is the above-mentioned anisotropic silica sol, wherein the particle size distribution measured by the dynamic light scattering method of the silica sol exhibits a so-called bimodal distribution. is there. Specifically, the bimodal particle size distribution has a particle size distribution peak in a particle size range A of 30 to 70 nm and a particle size range B of 71 to 150 nm, respectively (however, these correspond to both peaks). Only when the absolute value of the difference in particle size is in the range of 50 to 100 nm), the ratio of the volume percent of particles present in the particle size range A to the volume percent of particles present in the particle size range B is 60 : 40 to 95: 5. Here, the volume% of the particles existing in the particle diameter range A is the volume occupied by the silica fine particles corresponding to the particle diameter range A when the volume of the entire silica fine particles contained in the polishing silica sol of the present invention is 100%. Means the percentage of The same applies to the volume% of particles present in the particle diameter range B.
A polishing composition comprising such an anisotropic silica sol having the predetermined bimodal particle size distribution can exhibit an excellent polishing effect.

本発明の研磨用シリカゾルについての、前記各条件のうち、前記粒子径範囲Aに存在する粒子の体積%と前記該粒子径範囲Bに存在する粒子の体積%の比が、60:40〜95:5の範囲に無い場合であって、前記粒子径範囲Aに存在する粒子の体積%がこの範囲の上限を上回る場合は、実質的には粒子径範囲Aに存在する粒子の単分散に近くなり、本発明の研磨用シリカゾルを含む研磨用組成物で見られるような優れた研磨効果が得られなくなる。他方、前記粒子径範囲Aに存在する粒子の体積%がこの範囲の下限を下回る場合は、バイモーダルな粒子径分布であるものの、本発明の研磨用シリカゾルを含む研磨用組成物で見られるような優れた研磨効果が得られなくなる。   In the polishing silica sol of the present invention, among the above-mentioned conditions, the ratio of the volume% of particles existing in the particle diameter range A to the volume% of particles existing in the particle diameter range B is 60:40 to 95. When the volume percentage of the particles existing in the particle diameter range A exceeds the upper limit of this range, the particle diameter range A is substantially close to the monodispersion of the particles existing in the particle diameter range A. Thus, the excellent polishing effect as seen in the polishing composition containing the polishing silica sol of the present invention cannot be obtained. On the other hand, when the volume% of the particles existing in the particle size range A is below the lower limit of this range, it is a bimodal particle size distribution, but can be seen in the polishing composition containing the polishing silica sol of the present invention. A superior polishing effect cannot be obtained.

また、前記粒子径範囲AとBの両ピークに相当する粒子径の差の絶対値は50〜100nmの範囲にあることが必要である。この値が50nm未満の場合は、実質的にバイモーダルとならない場合も含まれることになり、発明の効果を達成することができない。他方、この値が100nmを越える場合は、バイモーダルな粒子径分布を持つものであっても、本発明と同様な効果を得難くなる。   The absolute value of the difference in particle diameter corresponding to both peaks in the particle diameter ranges A and B needs to be in the range of 50 to 100 nm. When this value is less than 50 nm, the case where it is not substantially bimodal is included, and the effect of the invention cannot be achieved. On the other hand, when this value exceeds 100 nm, it is difficult to obtain the same effect as the present invention even if it has a bimodal particle size distribution.

本発明の研磨用シリカゾルにおいて、粒子径範囲A、Bの各ピークは、粒子径範囲A内において30〜50nmの範囲と、粒子径範囲B内において90〜130nmの範囲とのそれぞれにあることが推奨される。
前記粒子径範囲Aに存在する粒子の体積%と前記粒子径範囲Bに存在する粒子の体積%の比については、好ましくは、70:30〜90:10の範囲が推奨される。
また、前記粒子径範囲AとBの両ピークに相当する粒子径の差の絶対値については、好ましくは、53〜80nmの範囲が推奨され、更に好ましくは53〜70nmの範囲が推奨される。
In the polishing silica sol of the present invention, each peak in the particle size ranges A and B may be in the range of 30 to 50 nm in the particle size range A and in the range of 90 to 130 nm in the particle size range B. Recommended.
Regarding the ratio of the volume% of particles existing in the particle diameter range A to the volume% of particles existing in the particle diameter range B, a range of 70:30 to 90:10 is recommended.
The absolute value of the difference in particle size corresponding to both peaks in the particle size ranges A and B is preferably in the range of 53 to 80 nm, more preferably in the range of 53 to 70 nm.

本発明の研磨用シリカゾルのシリカ固形分濃度については、通常は1〜50重量%の範囲のものが使用される。このシリカ固形分濃度がこの範囲にある研磨用シリカゾルは、研磨用組成物の原料として、実用的に使用することができる。なお、さらに好適にはシリカ固形分濃度3〜30重量%のものが使用される。シリカ固形分濃度が1重量%未満では、効率的にシリカゾルの生産を行うには不向きである。他方、シリカ固形分濃度が50重量%を越えるとシリカゾルの安定性が低下し、凝集し易くなるので望ましくない。
本発明の研磨用シリカゾルの比表面積については、通常は、60〜700m2/gの範囲となる。
Regarding the silica solid content concentration of the polishing silica sol of the present invention, those having a range of 1 to 50% by weight are usually used. The polishing silica sol having a silica solid content concentration in this range can be used practically as a raw material for the polishing composition. More preferably, a silica solid content concentration of 3 to 30% by weight is used. If the silica solid content concentration is less than 1% by weight, it is not suitable for efficient production of silica sol. On the other hand, when the silica solid content concentration exceeds 50% by weight, the stability of the silica sol is lowered, and it tends to aggregate.
The specific surface area of the polishing silica sol of the present invention is usually in the range of 60 to 700 m 2 / g.

本発明の研磨用シリカゾルの溶媒については、水系または非水系のいずれであっても良いが、研磨用組成物の原料として適用される場合は、通常、水系溶媒に分散されたシリカゾルが使用される。
本発明の研磨用シリカゾルの溶媒が水系溶媒の場合、そのpHについては、主としてシリカゾルの安定性を維持するために9〜12.5の範囲にあるものが使用される。9未満では、粒子の電位が小さくなるので、凝集し易くなり、分布が広がる傾向が強まる。他方、12.5以上では、粒子の溶解性が増大し、一部が珪酸アルカリ溶液になる傾向が強まる。
The solvent for the polishing silica sol of the present invention may be either aqueous or non-aqueous, but when applied as a raw material for the polishing composition, a silica sol dispersed in an aqueous solvent is usually used. .
When the solvent of the polishing silica sol of the present invention is an aqueous solvent, the pH is mainly in the range of 9 to 12.5 in order to maintain the stability of the silica sol. If it is less than 9, the potential of the particles becomes small, so that the particles tend to aggregate and the tendency of the distribution to widen is increased. On the other hand, at 12.5 or more, the solubility of the particles increases, and the tendency that a part becomes an alkali silicate solution increases.

本発明の研磨用シリカゾルを含有する研磨用組成物が優れた研磨特性を発揮することについては、特に本発明の研磨用シリカゾルの粘度と研磨レート比の傾向を考慮する限り、本発明の設定条件により、大粒子径の異方形状シリカゾルと小粒子径の異方形状シリカゾルとの混合系が比較的低粘度にて共存する結果、研磨時に大粒子と小粒子が効率良く研磨に寄与するものと推察される。   Regarding the fact that the polishing composition containing the polishing silica sol of the present invention exhibits excellent polishing characteristics, as long as the tendency of the viscosity and polishing rate ratio of the polishing silica sol of the present invention is taken into consideration, the setting conditions of the present invention As a result of the coexistence of an anisotropic shaped silica sol having a large particle size and an anisotropic shaped silica sol having a small particle size at a relatively low viscosity, large particles and small particles contribute to polishing efficiently during polishing. Inferred.

研磨用シリカゾルの製造方法
本発明に係る研磨用シリカゾルの製造方法については、最終的に本発明の研磨用シリカゾルの前記各要件を満たすシリカゾルが得られる限り、格別に限定されるものではなく、(1)解膠法でシリカゾルを調製し、必要に応じて粒子成長させる方法、および、(2)粒子径範囲が重複しない範囲に単分散している複数の非球状シリカ微粒子からなるシリカゾルを混合する方法等を挙げることができる。
Manufacturing method of polishing silica sol The manufacturing method of the polishing silica sol according to the present invention is not particularly limited as long as a silica sol satisfying the above requirements of the polishing silica sol of the present invention is finally obtained. 1) A silica sol is prepared by a peptization method, and particles are grown as needed. (2) A silica sol composed of a plurality of non-spherical silica fine particles monodispersed in a range where the particle diameter ranges do not overlap is mixed. The method etc. can be mentioned.

(1)第1製造方法
前記解膠法とは、通常は、珪酸塩の水溶液を酸で中和して、シリカヒドロゲルを調製し、化学的手段または機械的な手段にて、シリカヒドロゲルをスラリー状ないしは分散溶液にする方法を意味する。ここで、化学的手段としては、シリカヒドロゲルにアルカリを添加し、所望により加熱する方法が挙げられる。また、機械的手段としては、攪拌器などの装置を使用する方法を挙げることができる。これらの化学的手段と機械的な手段は併用されても差し支えない。
(1) First production method The peptization method usually involves neutralizing an aqueous silicate solution with an acid to prepare a silica hydrogel, and slurrying the silica hydrogel by chemical means or mechanical means. Means a method of forming a dispersion or solution. Here, as a chemical means, the method of adding an alkali to a silica hydrogel and heating as desired is mentioned. Moreover, as a mechanical means, the method of using apparatuses, such as a stirrer, can be mentioned. These chemical means and mechanical means may be used in combination.

本発明の研磨用シリカゾルの好適な製造方法のひとつとしては、このような解膠法で調製されたシリカゾルを必要に応じて粒子成長させてなる製造方法を挙げることができる。
具体的には、珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加し、60〜200℃の範囲に加熱することにより、シリカヒドロゲルを解膠して、シリカゾルを調製する。そして、これをシードゾルとし、必要に応じてアルカリを加え、pH9〜12.5に調整し、温度60〜200℃の条件下、珪酸液を連続的にまたは断続的に添加することにより異方形状シリカゾルを調製するものである。
As a preferred method for producing the polishing silica sol of the present invention, there can be mentioned a production method in which a silica sol prepared by such a peptization method is grown as necessary.
Specifically, silica hydrogel obtained by neutralizing silicate with acid is washed, salts are removed, alkali is added, and the silica hydrogel is peptized by heating in the range of 60 to 200 ° C. Then, a silica sol is prepared. Then, this is used as a seed sol, an alkali is added as necessary, the pH is adjusted to 9 to 12.5, and the silicic acid solution is added continuously or intermittently at a temperature of 60 to 200 ° C. A silica sol is prepared.

この製造方法で原料として使用する珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましい。
アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
The silicate used as a raw material in this production method is preferably one or more silicates selected from alkali metal silicates, ammonium silicates, and organic base silicates.
Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, amines such as monoethanolamine, diethanolamine, and triethanolamine. In addition, the ammonium silicate or the organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound, or the like to a silicic acid solution.

本発明に係る研磨用シリカゾルの製造方法においては、珪酸塩の水溶液を調製し、酸で中和してヒドロゲルを調製する。珪酸塩の水溶液の濃度は、SiO2として1〜10重量%、さらには2〜8重量%が好ましい。
この濃度がSiO2として1重量%未満の場合は、珪酸の重合(ゲル化)が不充分で、実用的な条件でヒドロゲルを得ることが容易ではなくなる。他方、この濃度がSiO2として10重量%を越えると、均一に中和することができず珪酸の重合が不均一となり、最終的に得られる異方形状シリカゾルの大きさのばらつきが増大する。
In the method for producing a polishing silica sol according to the present invention, an aqueous solution of silicate is prepared and neutralized with an acid to prepare a hydrogel. The concentration of the silicate aqueous solution is preferably 1 to 10% by weight, more preferably 2 to 8% by weight as SiO 2 .
When this concentration is less than 1% by weight as SiO 2 , the polymerization (gelation) of silicic acid is insufficient, and it is not easy to obtain a hydrogel under practical conditions. On the other hand, when this concentration exceeds 10% by weight as SiO 2 , neutralization cannot be performed uniformly, and the polymerization of silicic acid becomes non-uniform, and the variation in the size of the anisotropically shaped silica sol finally obtained increases.

中和後のpHは3〜7の範囲にあることが好ましい。中和後のpHが3〜7の場合、均一なヒドロゲルを得ることが容易であり、pHが3未満の場合は、ヒドロゲル構造が弱く、洗浄時にシリカが、ろ布から溶出し易く、7を超える場合は、一部シロキサン結合が起こり、解膠し難いという欠点がある。尚、中和に使用される酸としては、塩酸、硝酸、硫酸などが使用される。
こうして、酸で中和した後、好適には、15〜35℃にて、最大10時間程度静置して熟成される。熟成時間については、通常は10分〜3時間の範囲が推奨される。
The pH after neutralization is preferably in the range of 3-7. When the pH after neutralization is 3 to 7, it is easy to obtain a uniform hydrogel. When the pH is less than 3, the hydrogel structure is weak, and silica is easily eluted from the filter cloth during washing. When exceeding, there exists a fault that a part siloxane bond occurs and it is difficult to peptize. As the acid used for neutralization, hydrochloric acid, nitric acid, sulfuric acid and the like are used.
Thus, after neutralizing with an acid, it is preferably aged by standing at 15 to 35 ° C. for about 10 hours at the maximum. Regarding the aging time, a range of 10 minutes to 3 hours is usually recommended.

このように中和して得られるシリカヒドロゲルを洗浄して、主として中和により生成する塩類を除去する目的で行う。通常は、オリバーフィルター等の濾過機にて、純水またはアンモニア水などで洗浄を行なう。 例えば、硫酸ナトリウムが生成した場合、洗浄後の硫酸ナトリウムの濃度は、望ましくは、SiO2の固形分に対して、0.05%以下が好ましく、少ないほど解膠時間が短い。尚、塩類の濃度が高いと解膠しても、ゾル粒子の負電位が小さく、凝集体が出来易いために、安定なゾル液を得ることが出来ない。 The silica hydrogel obtained by neutralization in this way is washed for the purpose of mainly removing salts generated by neutralization. Usually, it is washed with pure water or ammonia water using a filter such as an Oliver filter. For example, when sodium sulfate is produced, the concentration of sodium sulfate after washing is desirably 0.05% or less with respect to the solid content of SiO 2 , and the smaller the amount, the shorter the peptization time. If the salt concentration is high, the negative potential of the sol particles is small and agglomerates are easily formed even when peptized, so that a stable sol solution cannot be obtained.

洗浄が終了したシリカヒドロゲルにアルカリを加えて、シリカヒドロゲルを解膠する。通常は、シリカヒドロゲルに水を添加し、強力攪拌機にて流動性のあるスラリー状態としたシリカヒドロゲル分散液を調製し、これに適度のアルカリを加え、更に攪拌することによりシリカヒドロゲルを解膠する方法がとられる。   An alkali is added to the silica hydrogel which has been washed to pept the silica hydrogel. Usually, water is added to silica hydrogel and a silica hydrogel dispersion is prepared in a fluid slurry state with a strong stirrer. A moderate amount of alkali is added to the silica hydrogel dispersion, and the mixture is further stirred to peptize the silica hydrogel. The method is taken.

アルカリとしては、KOH、NaOH等のアルカリ金属水酸化物や水酸化アンモニウム、さらにはアミン水溶液等を用いることができる。
アルカリの使用量は、望ましくはpH5〜11となるように添加される。pH5未満では、分散液が高粘度化するため、安定なシリカゾルが得にくくなる。pH11を超えると、シリカが溶解しやすくなり不安定となる。
As the alkali, alkali metal hydroxides such as KOH and NaOH, ammonium hydroxide, and an aqueous amine solution can be used.
The amount of alkali used is preferably added so that the pH is 5-11. If the pH is less than 5, the dispersion becomes highly viscous, making it difficult to obtain a stable silica sol. When it exceeds pH 11, silica is easily dissolved and becomes unstable.

上記シリカヒドロゲルをアルカリで解膠する際の温度は60〜200℃、さらには70〜170℃の範囲にあることが好ましい。60℃未満の場合は、充分に均一な解膠ができないことがある。温度が200℃を越えると、得られるシリカゾルの粒子径の形状が球状となり易い傾向がある。アルカリをシリカヒドロゲルに添加してから、60〜200℃の温度範囲で、通常は10分〜3時間程度攪拌することにより、シリカヒドロゲルの解膠を行なう。   The temperature at which the silica hydrogel is peptized with an alkali is preferably in the range of 60 to 200 ° C, more preferably 70 to 170 ° C. When the temperature is lower than 60 ° C., sufficiently uniform peptization may not be possible. When the temperature exceeds 200 ° C., the particle size of the silica sol obtained tends to be spherical. After the alkali is added to the silica hydrogel, the silica hydrogel is peptized by stirring in a temperature range of 60 to 200 ° C., usually for about 10 minutes to 3 hours.

このとき、シリカヒドロゲルの分散液の濃度は、SiO2として好ましくは0.5〜10重量%、さらに好ましくは3〜7重量%の範囲が推奨される。この濃度が0.5重量%未満の場合は、溶解するシリカの割合が増加し、得られるシリカ微粒子の平均粒子径が小さくなるため、次の工程で行う粒子成長の際の粒子成長速度が著しく遅くなる傾向がある。また、この濃度がSiO2として10重量%を越えると、解膠して得られるシリカ微粒子の平均粒子径が不均一となりやすい。
なお、解膠後にシリカゾルを安定化させる目的で、60〜200℃の温度で10分〜3時間静置しても良い。
At this time, the concentration of the silica hydrogel dispersion is preferably in the range of 0.5 to 10 wt%, more preferably 3 to 7 wt% as SiO 2 . When this concentration is less than 0.5% by weight, the ratio of dissolved silica increases, and the average particle size of the silica fine particles obtained decreases, so that the particle growth rate during the particle growth performed in the next step is remarkably high. Tends to slow down. On the other hand, if this concentration exceeds 10% by weight as SiO 2 , the average particle diameter of silica fine particles obtained by peptization tends to be non-uniform.
In addition, for the purpose of stabilizing the silica sol after peptization, it may be allowed to stand at a temperature of 60 to 200 ° C. for 10 minutes to 3 hours.

解膠して得られたシリカゾルをシードゾルとし、60〜200℃の範囲にて、珪酸液を連続的にまたは断続的に添加することにより非球状シリカ微粒子からなるシリカゾルを調製する。
シードゾルについては、必要に応じて、純水による希釈とアルカリまたは珪酸塩の添加を行い、シリカ固形分濃度を好ましくは、1〜10重量%に、pHを9〜12.5の範囲に調整する。pHが9未満の場合は、粒子の電位が小さくなり、凝集し、粒子径分布が広がる傾向が強くなる。12.5を超えると粒子の溶解性が増加するため、粒子の成長が阻害される傾向が強くなる。
The silica sol obtained by peptization is used as a seed sol, and a silica sol composed of non-spherical silica fine particles is prepared by continuously or intermittently adding a silicic acid solution in the range of 60 to 200 ° C.
For the seed sol, if necessary, dilution with pure water and addition of alkali or silicate are performed, and the silica solid content concentration is preferably adjusted to 1 to 10% by weight, and the pH is adjusted to the range of 9 to 12.5. . When the pH is less than 9, the electric potential of the particles becomes small, the particles tend to aggregate and the particle size distribution tends to spread. If it exceeds 12.5, the solubility of the particles increases, so that the tendency to inhibit the growth of the particles becomes strong.

アルカリの種類としては、格別に限定されるものではないが、KOH、NaOH等のアルカリ金属水酸化物や水酸化アンモニウム、アミン水溶液、アンモニア水等が使用される。ケイ酸塩についても格別に限定されるものではないが、前記で例示されたような珪酸塩が使用できる。好適には、珪酸ナトリウム、珪酸カリウム等を水溶液の状態で使用することが推奨される。アルカリまたは珪酸塩の添加後は、充分に攪拌を行なう。   The type of alkali is not particularly limited, but alkali metal hydroxides such as KOH and NaOH, ammonium hydroxide, aqueous amine solution, aqueous ammonia and the like are used. Although the silicate is not particularly limited, a silicate as exemplified above can be used. Preferably, it is recommended to use sodium silicate, potassium silicate or the like in the form of an aqueous solution. After adding the alkali or silicate, stir well.

次に、シ−ドゾルの温度を、60〜200℃の範囲に保持しながら、珪酸液を連続的に、または断続的に添加して、シリカ微粒子を成長させる。珪酸液の添加量については、所望する非球状シリカ微粒子の粒子径の大きさに応じて、調整される。
前記シ−ドゾルの温度が60℃未満では、珪酸液が添加されたシードゾル中での珪酸の溶解速度およびシリカのシ−ド上への析出速度などが遅くなる。一方、シ−ドゾルの温度を200℃より高くすれば、前述の溶解速度および析出速度を速くすることができるので有利であるが、粒子径や粒子形状を制御することが困難となるばかりでなく、高価なプロセスとなるために、好ましくない。珪酸液を連続的にまたは断続的に添加する際の温度については、好適には60〜100℃の範囲が推奨される。
Next, silica fine particles are grown by continuously or intermittently adding a silicic acid solution while maintaining the temperature of the seed sol in the range of 60 to 200 ° C. About the addition amount of a silicic acid liquid, it adjusts according to the magnitude | size of the particle diameter of the desired nonspherical silica fine particle.
When the temperature of the seed sol is less than 60 ° C., the dissolution rate of silicic acid in the seed sol to which the silicic acid solution is added, the deposition rate of silica on the seed, and the like become slow. On the other hand, if the temperature of the seed sol is higher than 200 ° C., it is advantageous because the dissolution rate and precipitation rate described above can be increased, but it is not only difficult to control the particle diameter and particle shape. This is not preferable because it is an expensive process. About the temperature at the time of adding a silicic acid liquid continuously or intermittently, the range of 60-100 degreeC is recommended suitably.

ここで珪酸液を連続的に添加する場合であっても、珪酸液を断続的に添加する場合であっても、シリカ微粒子を成長させるために、珪酸液を徐々に添加する。具体的には、前記いずれの場合であっても、好ましくは30分〜72時間かけて添加することが推奨される。   Here, even when the silicic acid solution is continuously added or when the silicic acid solution is intermittently added, the silicic acid solution is gradually added to grow the silica fine particles. Specifically, in any of the above cases, it is recommended to add it preferably over 30 minutes to 72 hours.

ここでシードゾルとして使用する解膠して得られたシリカゾルとしては、好適にはBET法により測定される平均粒子径が5〜30nmのシリカゾルが使用される。この範囲のシリカゾルをシードゾルとして使用した場合、粒子成長を経て、最終的に、BET法により測定される平均粒子径が10〜150nmの範囲のシリカゾルとなり易い。なお、前記範囲の平均粒子径のシードゾルを用いるために、所望により、解膠して得られたシリカゾルを遠心分離装置にかけて選別しても良い。   Here, as a silica sol obtained by peptization used as a seed sol, a silica sol having an average particle diameter of 5 to 30 nm measured by a BET method is preferably used. When a silica sol in this range is used as a seed sol, it tends to be a silica sol having an average particle diameter measured by the BET method in the range of 10 to 150 nm after particle growth. In addition, in order to use the seed sol having an average particle diameter in the above range, the silica sol obtained by peptization may be selected by a centrifugal separator, if desired.

ここで使用する珪酸液については、望ましくは、珪酸アルカリ塩を脱アルカリして得られる珪酸液が使用される。このような珪酸液は、通常は珪酸アルカリ塩の水溶液を陽イオン交換樹脂で処理することによって、アルカリを除去して得られる珪酸の低重合物の溶液であり、一般に酸性珪酸液とも称される。通常はSiO2濃度が1〜10重量%の珪酸液が使用される。
珪酸アルカリ塩としては、例えば、珪酸ナトリウム、珪酸カリウム、珪酸リチウム、第4級アンモニウムシリケートなどが何れも使用可能であり、好適には1号水ガラス、2号水ガラス、3号水ガラス等の名称で市販されている珪酸ナトリウムまたは珪酸カリウムが選ばれる。また、テトラエチルオルソシリケート(TEOS)などの加水分解性有機化合物を過剰のNaOHなどを用いて加水分解して得られる珪酸アルカリ水溶液なども好適である。
As for the silicic acid solution used here, desirably, a silicic acid solution obtained by dealkalizing an alkali silicate salt is used. Such a silicic acid solution is a low polymer solution of silicic acid obtained by removing an alkali by treating an aqueous solution of an alkali silicate salt with a cation exchange resin, and is generally also called an acidic silicic acid solution. . Usually, a silicic acid solution having a SiO 2 concentration of 1 to 10% by weight is used.
As the silicate alkali salt, for example, any of sodium silicate, potassium silicate, lithium silicate, quaternary ammonium silicate, etc. can be used, preferably No. 1 water glass, No. 2 water glass, No. 3 water glass, etc. Sodium silicate or potassium silicate marketed by name is selected. In addition, an alkali silicate aqueous solution obtained by hydrolyzing a hydrolyzable organic compound such as tetraethylorthosilicate (TEOS) using excess NaOH or the like is also suitable.

珪酸液を添加する際に、新たなシ−ドを発生しないようにしなければならない。このためシ−ド液中への珪酸液の添加速度は、最終製品のシリカ微粒子の粒径、粒度分布、形状に大きな影響を与える。本発明の製造方法においては、30分〜72時間かけて連続的にまたは断続的に珪酸液を添加することが望ましい。これにより、非球状シリカ微粒子からなるシリカゾルを得ることができる。   When adding the silicic acid solution, a new seed must not be generated. For this reason, the addition rate of the silicic acid solution into the seed solution has a great influence on the particle size, particle size distribution, and shape of the silica fine particles of the final product. In the production method of the present invention, it is desirable to add the silicic acid solution continuously or intermittently over 30 minutes to 72 hours. Thereby, a silica sol composed of non-spherical silica fine particles can be obtained.

なお、本発明の研磨用シリカゾルについては、解膠法で調製されたシリカゾルが、動的光散乱法により測定された平均粒子径(D1)が40〜70nmの範囲にあり、BET法により測定された平均粒子径(D2)が10〜50nmの範囲にあり、異形度(D1/D2)が1.55〜4.00の範囲にある非球状シリカ微粒子が分散してなる異方形状シリカゾルであって、該異方形状シリカゾルの動的光散乱法により測定された粒子径分布において30〜70nmの粒子径範囲Aと71〜150nmの粒子径範囲Bにそれぞれ粒子径分布のピークがあり(但し、両ピークに相当する粒子径の差の絶対値が50〜100nmの範囲にある場合に限る)、該粒子径範囲Aに存在する粒子の体積%と該粒子径範囲Bに存在する粒子の体積%の比が、60:40〜95:5の範囲にある場合は、粒子成長させることなく、本発明の研磨用シリカゾルとして使用することができる。   As for the polishing silica sol of the present invention, the silica sol prepared by the peptization method has an average particle diameter (D1) measured by the dynamic light scattering method in the range of 40 to 70 nm, and measured by the BET method. An anisotropic silica sol in which non-spherical silica fine particles having an average particle diameter (D2) in the range of 10 to 50 nm and an irregularity (D1 / D2) in the range of 1.55 to 4.00 are dispersed. In the particle size distribution measured by the dynamic light scattering method of the anisotropic shaped silica sol, there is a particle size distribution peak in each of the particle size range A of 30 to 70 nm and the particle size range B of 71 to 150 nm (however, The absolute value of the difference in particle diameter corresponding to both peaks is in the range of 50 to 100 nm), the volume% of particles present in the particle diameter range A and the volume% of particles present in the particle diameter range B The ratio of 0: 40 to 95: when in the range of 5, without grain growth, can be used as a polishing silica sol of the present invention.

(2)第2製造方法
本発明に係る研磨用シリカゾルの別の製造方法としては、前記粒子径範囲Aに単分散相を示す異方形状シリカゾルと前記粒子径範囲Bに単分散相を示す異方形状シリカゾルとを混合することにより、前記各条件を満たす研磨用シリカゾルを調製することも可能である。なお、粒子径分布の調整の目的で遠心分離処理を併用しても良い。
(2) Second Production Method Another method for producing the polishing silica sol according to the present invention includes an anisotropic silica sol showing a monodisperse phase in the particle size range A and a different shape showing a monodisperse phase in the particle size range B. It is also possible to prepare a polishing silica sol that satisfies the above-mentioned conditions by mixing with a rectangular silica sol. Centrifugation may be used in combination for the purpose of adjusting the particle size distribution.

本発明の製造方法によって得られる非球状シリカ微粒子からなるシリカゾルは、減圧蒸留、限外濾過法などの公知の方法により、分散媒としての水を有機溶媒に置換してオルガノゾルとすることも可能である。
このような有機溶媒としては、アルコール類、グリコール類、エステル類、ケトン類、窒素化合物類、芳香族類などの溶媒を使用することができ、具体的には、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール、グリセリン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、アセトン、メチルエチルケトン、ジメチルホルムアミド、N−メチル−2−ピロリドン、などの有機溶媒を例示することができる。
また、ポリエチレングリコール、シリコーンオイルなどの高分子化合物を分散媒として用いることもできる。
The silica sol composed of non-spherical silica fine particles obtained by the production method of the present invention can be converted into an organosol by replacing water as a dispersion medium with an organic solvent by a known method such as vacuum distillation or ultrafiltration. is there.
As such an organic solvent, solvents such as alcohols, glycols, esters, ketones, nitrogen compounds, and aromatics can be used. Specifically, methanol, ethanol, propanol, ethylene glycol, and the like can be used. And organic solvents such as propylene glycol, glycerin, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, acetone, methyl ethyl ketone, dimethylformamide, and N-methyl-2-pyrrolidone.
Further, a polymer compound such as polyethylene glycol and silicone oil can be used as a dispersion medium.

研磨用組成物
本発明の研磨用シリカゾルは、研磨用組成物の成分として配合されて、優れた研磨効果を発揮するものである。本発明の研磨用シリカゾルは、アルミニウムディスク(アルミニウムまたはその基材上のメッキ層)や半導体多層配線基板のアルミニウム配線、光ディスクや磁気ディスク用ガラス基板、液晶ディスプレイ用ガラス基板、フォトマスク用ガラス基板、ガラス質材料の鏡面加工などへの研磨用途に適用する研磨用組成物の成分として使用することができる。
Polishing Composition The polishing silica sol of the present invention is blended as a component of the polishing composition and exhibits an excellent polishing effect. The polishing silica sol of the present invention includes an aluminum disk (aluminum or a plating layer on a substrate thereof), an aluminum wiring of a semiconductor multilayer wiring board, an optical disk, a glass substrate for a magnetic disk, a glass substrate for a liquid crystal display, a glass substrate for a photomask, It can be used as a component of a polishing composition applied to polishing applications such as mirror finishing of glassy materials.

研磨用組成物の組成については、本発明の研磨用シリカゾル(水系)を濃縮または、希釈して、更に必要に応じて他の成分を配合し、所望によりスラリー状にすることにより調製される。ここで、研磨用シリカゾルに添加される他の成分としては、研磨促進剤、界面活性剤、緩衝剤、安定剤、水系媒体などが挙げられる。また、本発明の研磨用シリカゾル以外の研磨剤を併用しても良い。
本発明の研磨用組成物において、本発明の研磨用シリカゾルとともに使用される他の成分の例を以下に列挙するが、これらに限定されるものではない。
The composition of the polishing composition is prepared by concentrating or diluting the polishing silica sol (aqueous system) of the present invention, further blending other components as necessary, and making it into a slurry if desired. Here, examples of other components added to the polishing silica sol include polishing accelerators, surfactants, buffers, stabilizers, and aqueous media. An abrasive other than the polishing silica sol of the present invention may be used in combination.
Examples of other components used together with the polishing silica sol of the present invention in the polishing composition of the present invention are listed below, but are not limited thereto.

シリコンウエーハ、アルミニウムディスク、ガラスディスクなどを対象とする研磨用組成物の場合、上記他の成分としては、研磨促進剤として、アルカリ系では、水酸化カリウム、水酸化ナトリウムなどの金属水酸化物、炭酸ナトリウム、炭酸アンモニウムなどの金属炭酸塩、アンモニア、モノエタノールアミン、ピペラジンなどのアミン類、テトラメチルアンモニウムなどの第4級アンモニウム水酸化物など、酸化物系では、過酸化水素、塩素化合物などが挙げられる。
界面活性剤としては、アニオン系、カチオン系、ノニオン系、両性の界面活性剤を使用することができる。
In the case of a polishing composition intended for silicon wafers, aluminum disks, glass disks, etc., as the other components, as a polishing accelerator, in the alkaline system, metal hydroxides such as potassium hydroxide and sodium hydroxide, Metal oxides such as sodium carbonate and ammonium carbonate, amines such as ammonia, monoethanolamine and piperazine, quaternary ammonium hydroxides such as tetramethylammonium, etc. In the oxide system, hydrogen peroxide, chlorine compounds, etc. Can be mentioned.
As the surfactant, anionic, cationic, nonionic or amphoteric surfactants can be used.

緩衝剤として利用されるイオンとしては、調整するpH範囲にもよるが、陽イオンが第四級アンモニウムイオン及びアルカリ金属イオンの少なくとも1種以上であり、陰イオンが炭酸イオン、炭酸水素イオン、ホウ酸イオン、及びフェノールの少なくとも1種以上であることが好ましい。特に好適なのは炭酸イオンと炭酸水素イオンの混合物、あるいはホウ酸イオンなどを挙げることができる。   As ions used as a buffering agent, although depending on the pH range to be adjusted, the cation is at least one of quaternary ammonium ion and alkali metal ion, and the anion is carbonate ion, bicarbonate ion, boron. It is preferable that it is at least 1 type or more of an acid ion and phenol. Particularly preferred are a mixture of carbonate ions and bicarbonate ions, borate ions, and the like.

安定剤としては、カルボキシメチルセルロース、ヒドロキシエチルセルロースのようなセルロース類、ポリビニルアルコールのような水溶性高分子類、エタノール、エチレングリコール、プロピレングリコール、グリセリンのような水溶性アルコール類、アルキルベンゼンスルホン酸ソーダなどの界面活性剤、ポリアクリル酸塩のような有機系ポリアニオン系物質、塩化マグネシウム、酢酸カリウムのような無機塩等を挙げることができる。
研磨用組成物における、SiO2濃度は、通常は3〜20重量%で使用されるが、必ずしもこの範囲に限定されるものではない。
Examples of the stabilizer include celluloses such as carboxymethyl cellulose and hydroxyethyl cellulose, water-soluble polymers such as polyvinyl alcohol, water-soluble alcohols such as ethanol, ethylene glycol, propylene glycol and glycerin, and sodium alkylbenzene sulfonate. Examples thereof include surfactants, organic polyanionic substances such as polyacrylates, inorganic salts such as magnesium chloride and potassium acetate.
The SiO 2 concentration in the polishing composition is usually 3 to 20% by weight, but is not necessarily limited to this range.

[研磨用シリカゾルの調製]
SiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)33.4gを純水126.6Kgで希釈して、SiO2濃度が5重量%の珪酸ナトリウム水溶液(pH11)を160Kg調製した。この珪酸ナトリウム水溶液のpHが4.5になるように硫酸濃度25%の硫酸水溶液を加えて中和し、常温で5時間保持することにより、熟成して、シリカヒドロゲルを調製した。(以下、特に断りのない限り「%」は「重量%」を意味する。)
このシリカヒドロゲルを濾布を張った濾過機を用いて、純水(SiO2固形分の約120倍相当量)で充分に洗浄し、シリカヒドロゲルに含まれる塩類を除去した。洗浄後のシリカヒドロゲル中の硫酸ナトリウム濃度は、シリカヒドロゲルのSiO2固形分に対して、0.01重量%未満だった。
[Preparation of silica sol for polishing]
A sodium silicate aqueous solution having a SiO 2 concentration of 24% by weight (SiO 2 / Na 2 O molar ratio: 3.1) 33.4 g was diluted with 126.6 Kg of pure water to obtain a sodium silicate aqueous solution having a SiO 2 concentration of 5% by weight. 160 kg of (pH 11) was prepared. The aqueous solution of sodium silicate was neutralized by adding an aqueous sulfuric acid solution having a sulfuric acid concentration of 25% so that the pH of the aqueous solution of sodium silicate was 4.5, and was aged by maintaining at room temperature for 5 hours to prepare a silica hydrogel. (Hereinafter, “%” means “% by weight” unless otherwise specified.)
This silica hydrogel was sufficiently washed with pure water (an amount equivalent to about 120 times the SiO 2 solid content) using a filter with a filter cloth, to remove salts contained in the silica hydrogel. The concentration of sodium sulfate in the silica hydrogel after washing was less than 0.01% by weight based on the SiO 2 solid content of the silica hydrogel.

このシリカヒドロゲルを純水に分散し、SiO2濃度3重量%の分散液を調製し、強力攪拌機を使用して、流動性のスラリー状態になるまで攪拌した。
このスラリー状のシリカヒドロゲル分散液のpHが10.5になるように濃度15%のアンモニア水を添加し、95℃で1時間かけて攪拌を続け、シリカヒドロゲルの解膠操作を行い、シリカゾルを得た。
This silica hydrogel was dispersed in pure water to prepare a dispersion having a SiO 2 concentration of 3% by weight, and the mixture was stirred using a powerful stirrer until a fluid slurry was obtained.
Ammonia water having a concentration of 15% was added so that the pH of the slurry-like silica hydrogel dispersion was 10.5, and stirring was continued at 95 ° C. for 1 hour to perform a peptization operation of the silica hydrogel. Obtained.

得られたシリカゾルを150℃で1時間加熱して、安定化させた後、シリカゾルを限外濾過膜(品番:SIP−1013、旭化成株式会社製)を用いて、SiO2濃度が13重量%になるまで濃縮した。次に、ロータリーエバポレーターで30重量%まで濃縮した後、44μmメッシュのナイロンフィルターで濾過した。
得られたシリカゾルの粘度は、6.3mPa・s、シリカ微粒子の比表面積は、164m2/gであり、BET法により比表面積から求めた平均粒子径(D2)は17nmであった。また、動的光散乱法により測定された平均粒子径(D1)は44nmであり、異形度(D1/D2)の値は2.59となった。
After the obtained silica sol was stabilized by heating at 150 ° C. for 1 hour, the silica sol was made to have an SiO 2 concentration of 13% by weight using an ultrafiltration membrane (product number: SIP-1013, manufactured by Asahi Kasei Corporation). Concentrated to Next, after concentrating to 30% by weight with a rotary evaporator, it was filtered with a 44 μm mesh nylon filter.
The viscosity of the obtained silica sol was 6.3 mPa · s, the specific surface area of the silica fine particles was 164 m 2 / g, and the average particle diameter (D2) determined from the specific surface area by the BET method was 17 nm. Moreover, the average particle diameter (D1) measured by the dynamic light scattering method was 44 nm, and the value of the degree of irregularity (D1 / D2) was 2.59.

このシリカゾルが、粒子径範囲A(30〜70nm)と粒子径範囲B(71〜150nm)のそれぞれに存在する粒子について、ピーク位置の平均粒子径及び体積%を測定した。
また、このシリカゾルの平均粒子径および比表面積、ゼータ電位、粒度分布の測定には、以下に示す装置を使用した。
For the particles in which this silica sol is present in each of the particle size range A (30 to 70 nm) and the particle size range B (71 to 150 nm), the average particle size and volume% at the peak position were measured.
Moreover, the apparatus shown below was used for the measurement of the average particle diameter of this silica sol, a specific surface area, a zeta potential, and a particle size distribution.

・粒度分布測定器: Particle Sizing Systems社製、NICOMP−380/ZLS
・ゼータ電位測定装置: マルバーン社製、ゼータサイザー3000HS
・光学顕微鏡 オリンパス株式会社製、MX50
・比表面積: ゾル50mlをHNO3でpH3.5に調整し、n−プロピルアルコール40mlを加え、110℃で20時間乾燥した試料について、比表面積測定装置(湯浅アイオニクス製、マルチソープ12)を用いて、窒素吸着法(BET法)により測定した。
・ Particle size distribution measuring instrument: manufactured by Particle Sizing Systems, NICOMP-380 / ZLS
・ Zeta potential measuring device: Malvern, Zetasizer 3000HS
・ Optical microscope Olympus Corporation, MX50
Specific surface area: A specific surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Multisoap 12) was prepared for a sample prepared by adjusting 50 ml of sol to pH 3.5 with HNO 3 , adding 40 ml of n-propyl alcohol and drying at 110 ° C. for 20 hours. And measured by a nitrogen adsorption method (BET method).

[研磨特性試験]
研磨用スラリーの調製
実施例1で得たシリカ濃度20重量%の研磨用シリカゾルに、5%水酸化ナトリウム水溶液および超純水を加え、シリカ濃度9重量%、pH10.5の研磨用スラリーを調製した。
被研磨基板
被研磨基板として、65mmφの強化ガラス製のハードディスク用ガラス基板を使用した。このハードディスク用ガラス基板は、一次研磨済みであり、表面粗さは最大で0.21μmである。
[Polishing property test]
Preparation of polishing slurry A 5% aqueous sodium hydroxide solution and ultrapure water were added to the polishing silica sol having a silica concentration of 20% by weight obtained in Example 1 to prepare a polishing slurry having a silica concentration of 9% by weight and pH 10.5. did.
Polished substrate A glass substrate for hard disk made of 65 mmφ tempered glass was used as the substrate to be polished. This glass substrate for hard disk has been subjected to primary polishing and has a maximum surface roughness of 0.21 μm.

研磨試験
上記被研磨基板を、研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッドとして、ロデール社製「アポロン」を使用し、基板荷重0.18MPa、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度で10分間供給して研磨を行った。
研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。そして、後記比較例4における研磨速度を1としたときの、研磨速度の比率を研磨レートとした。
Polishing test The substrate to be polished is set in a polishing apparatus (NF300 manufactured by Nano Factor Co., Ltd.), and “Apollon” manufactured by Rodel is used as a polishing pad, and polished at a substrate load of 0.18 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 10 minutes at a rate of 20 g / min.
The polishing rate was calculated by determining the weight change of the substrate to be polished before and after polishing. The ratio of the polishing rate when the polishing rate in Comparative Example 4 described later was 1 was defined as the polishing rate.

また、研磨表面を観察し、表面の平滑性を光学顕微鏡で観察し、以下の基準で評価した。
A: スクラッチが認められなかった。
B: 小さなスクラッチが僅かに認められた。
C: 小さなスクラッチが広範囲に認められた。
D: 大きなスクラッチが点在して認められた。
Further, the polished surface was observed, the smoothness of the surface was observed with an optical microscope, and the following criteria were evaluated.
A: No scratch was observed.
B: Small scratches were slightly observed.
C: Small scratches were widely recognized.
D: Large scratches were observed.

上記で得られた各測定値を[表1]および[表2]に示した。また、以下に示す実施例2〜5および比較例1〜7においても同様に研磨用スラリーを調製し、研磨特性試験を実施した。
The measured values obtained above are shown in [Table 1] and [Table 2]. Also, in Examples 2 to 5 and Comparative Examples 1 to 7 shown below, polishing slurries were similarly prepared, and polishing characteristic tests were performed.

実施例1で最終的に得られたシリカゾル6.7Kgに純水65.1Kgおよび24重量%珪酸ナトリウム水溶液0.5Kgを加えて、室温にて10分間攪拌し、シードゾルとした。このシードゾル(72.3Kg)のSiO2濃度は、2.9重量%、BET法で測定された平均粒子径(D2)は17nmだった。
次に、このシードゾルを83℃に維持し、これにSiO2濃度3.0重量%の珪酸液117Kgを14時間かけて添加し、粒子を成長させた。添加終了後、室温まで冷却させ、得られたシリカゾルを限外濾過膜でSiO2濃度20重量%まで濃縮した。
To 6.7 kg of silica sol finally obtained in Example 1, 65.1 kg of pure water and 0.5 kg of 24 wt% sodium silicate aqueous solution were added and stirred at room temperature for 10 minutes to obtain a seed sol. This seed sol (72.3 Kg) had a SiO 2 concentration of 2.9% by weight and an average particle size (D2) measured by the BET method of 17 nm.
Next, this seed sol was maintained at 83 ° C., and 117 kg of silicic acid solution having a SiO 2 concentration of 3.0% by weight was added thereto over 14 hours to grow particles. After completion of the addition, the mixture was cooled to room temperature, and the obtained silica sol was concentrated to an SiO 2 concentration of 20% by weight with an ultrafiltration membrane.

得られたシリカゾルの粘度は、2.8mPa・s、比表面積は、116m2/gであり、BET法により比表面積から求めた平均粒子径(D2)は24nmであった。また、動的光散乱法により測定された平均粒子径(D1)は47nmであった。(D1/D2)の値は1.96となった。
The resulting silica sol had a viscosity of 2.8 mPa · s, a specific surface area of 116 m 2 / g, and an average particle diameter (D2) determined from the specific surface area by the BET method was 24 nm. Moreover, the average particle diameter (D1) measured by the dynamic light scattering method was 47 nm. The value of (D1 / D2) was 1.96.

実施例1で得られたシリカゾル2.4Kgに純水12.1Kgおよび24重量%珪酸ナトリウム水溶液0.8Kgを加えて、室温にて10分間攪拌し、シードゾルとした。このシードゾル(15.3Kg)のSiO2濃度は、5.0重量%、BET法で測定された平均粒子径(D2)は17nmだった。
次に、このシードゾルを87℃に維持しながら、これにSiO2濃度3.0重量%の珪酸液173Kgを14時間かけて添加し、粒子を成長させた。添加終了後、室温まで冷却させ、得られたシリカゾルを限外濾過膜でSiO2濃度20重量%まで濃縮した。
得られたシリカゾルの粘度は、2.1mPa・s、比表面積は、87m2/gであり、BET法により比表面積から求めた平均粒子径(D2)は31nmであった。また、動的光散乱法により測定された平均粒子径(D1)は50nmであった。(D1/D2)の値は1.6となった。
To 2.4 kg of silica sol obtained in Example 1, 12.1 kg of pure water and 0.8 kg of 24 wt% sodium silicate aqueous solution were added and stirred at room temperature for 10 minutes to obtain a seed sol. This seed sol (15.3 Kg) had a SiO 2 concentration of 5.0% by weight and an average particle size (D2) measured by the BET method of 17 nm.
Next, while maintaining the seed sol at 87 ° C., 173 kg of a silicic acid solution having a SiO 2 concentration of 3.0% by weight was added thereto over 14 hours to grow particles. After completion of the addition, the mixture was cooled to room temperature, and the obtained silica sol was concentrated to an SiO 2 concentration of 20% by weight with an ultrafiltration membrane.
The obtained silica sol had a viscosity of 2.1 mPa · s, a specific surface area of 87 m 2 / g, and an average particle diameter (D2) determined from the specific surface area by the BET method was 31 nm. Moreover, the average particle diameter (D1) measured by the dynamic light scattering method was 50 nm. The value of (D1 / D2) was 1.6.

実施例1で得られたシリカゾル2.1Kgに純水10.8Kgおよび24重量%珪酸ナトリウム水溶液0.8Kgを加えて、室温にて10分間攪拌し、シードゾルとした。このシードゾル(13.7Kg)のSiO2濃度は4.9重量%、BET法で測定された平均粒子径(D2)は17nmだった。
次に、このシードゾルを87℃に維持しながら、これにSiO2濃度3.0重量%の珪酸液176Kgを14時間かけて添加し、粒子を成長させた。添加終了後、室温まで冷却させ、得られたシリカゾルを限外濾過膜でSiO2濃度20重量%まで濃縮した。
得られたシリカゾルの粘度は、2.1mPa・s、比表面積は、84m2/gであり、BET法により比表面積から求めた平均粒子径(D2)は33nmであった。また、動的光散乱法により測定された平均粒子径(D1)は54nmであった。(D1/D2)の値は1.6となった。
10.8 kg of pure water and 0.8 kg of a 24 wt% aqueous sodium silicate solution were added to 2.1 kg of the silica sol obtained in Example 1, and the mixture was stirred at room temperature for 10 minutes to obtain a seed sol. The seed sol (13.7 Kg) had a SiO 2 concentration of 4.9% by weight and an average particle size (D2) measured by the BET method of 17 nm.
Next, while maintaining the seed sol at 87 ° C., 176 kg of a silicic acid solution having a SiO 2 concentration of 3.0% by weight was added thereto over 14 hours to grow particles. After completion of the addition, the mixture was cooled to room temperature, and the obtained silica sol was concentrated to an SiO 2 concentration of 20% by weight with an ultrafiltration membrane.
The resulting silica sol had a viscosity of 2.1 mPa · s, a specific surface area of 84 m 2 / g, and an average particle diameter (D2) determined from the specific surface area by the BET method was 33 nm. Moreover, the average particle diameter (D1) measured by the dynamic light scattering method was 54 nm. The value of (D1 / D2) was 1.6.

実施例1で得られたシリカゾル1.1Kgに純水17.0Kgおよび24重量%珪酸ナトリウム水溶液0.9Kgを加えて、室温にて10分間攪拌し、シードゾルとした。このシードゾル(18.9Kg)のSiO2濃度は、1.8重量%、BET法で測定された平均粒子径(D2)は17nmだった。
次に、このシードゾルを87℃に維持しながら、これに後記するSiO2濃度3.2重量%の珪酸液176Kgを14時間かけて添加し、粒子を成長させた。添加終了後、室温まで冷却させ、得られたシリカゾルを限外濾過膜でSiO2濃度20重量%まで濃縮した。
得られたシリカゾルの粘度は、2.0mPa・s、比表面積は、73m2/gであり、BET法により比表面積から求めた平均粒子径(D2)は37nmであった。また、動的光散乱法により測定された平均粒子径(D1)は59nmであった。(D1/D2)の値は1.6となった。
To 1 kg of the silica sol obtained in Example 1, 17.0 kg of pure water and 0.9 kg of a 24 wt% sodium silicate aqueous solution were added and stirred at room temperature for 10 minutes to obtain a seed sol. The seed sol (18.9 Kg) had a SiO 2 concentration of 1.8% by weight and an average particle size (D2) measured by the BET method of 17 nm.
Next, while maintaining the seed sol at 87 ° C., 176 kg of a silicic acid solution having a SiO 2 concentration of 3.2 wt% described later was added over 14 hours to grow particles. After completion of the addition, the mixture was cooled to room temperature, and the obtained silica sol was concentrated to an SiO 2 concentration of 20% by weight with an ultrafiltration membrane.
The resulting silica sol had a viscosity of 2.0 mPa · s, a specific surface area of 73 m 2 / g, and an average particle diameter (D2) determined from the specific surface area by the BET method was 37 nm. Moreover, the average particle diameter (D1) measured by the dynamic light scattering method was 59 nm. The value of (D1 / D2) was 1.6.

比較例1Comparative Example 1

実施例3で得られたシリカゾル6.9Kgに純水56.3Kgおよび24重量%珪酸ナトリウム水溶液0.9Kgを加えて、室温にて10分間攪拌し、シードゾルとした。このシードゾル(64.1Kg)のSiO2濃度は、3.2重量%、BET法で測定された平均粒子径(D2)は31nmだった。
次に、このシードゾルを98℃に維持しながら、これにSiO2濃度4.7重量%の珪酸液117Kgを5時間かけて添加し、粒子を成長させた。添加終了後、室温まで冷却させ、得られたシリカゾルを限外濾過膜でSiO2濃度20重量%まで濃縮した。
得られたシリカゾルの粘度は、1.8mPa・s、比表面積は、61m2/gであり、BET法により比表面積から求めた平均粒子径(D2)は45nmであった。また、動的光散乱法により測定された平均粒子径(D1)は65nmであった。(D1/D2)の値は1.4となった。
56.3 kg of pure water and 0.9 kg of a 24 wt% sodium silicate aqueous solution were added to 6.9 kg of the silica sol obtained in Example 3, and stirred at room temperature for 10 minutes to obtain a seed sol. The seed sol (64.1 Kg) had a SiO 2 concentration of 3.2% by weight and an average particle size (D2) measured by the BET method of 31 nm.
Next, while maintaining the seed sol at 98 ° C., 117 kg of a silicic acid solution having a SiO 2 concentration of 4.7% by weight was added thereto over 5 hours to grow particles. After completion of the addition, the mixture was cooled to room temperature, and the obtained silica sol was concentrated to an SiO 2 concentration of 20% by weight with an ultrafiltration membrane.
The obtained silica sol had a viscosity of 1.8 mPa · s, a specific surface area of 61 m 2 / g, and an average particle diameter (D2) determined from the specific surface area by the BET method was 45 nm. Moreover, the average particle diameter (D1) measured by the dynamic light scattering method was 65 nm. The value of (D1 / D2) was 1.4.

比較例2Comparative Example 2

粒子径分布が単分散相からなるシリカゾルA(商品名:カタロイドPPS−50Y[BET法により測定された平均粒子径(D2)25nm、触媒化成工業株式会社製])について、比較例1と同様に測定を行なった。
About silica sol A (trade name: Cataloid PPS-50Y [average particle diameter (D2) measured by BET method: 25 nm, manufactured by Catalyst Kasei Kogyo Co., Ltd.]) having a particle size distribution of a monodisperse phase, as in Comparative Example 1. Measurements were made.

比較例3Comparative Example 3

粒子径分布が単分散相からなるシリカゾルB(商品名:カタロイドSI−45P[BET法により測定された平均粒子径(D2)45nm、触媒化成工業株式会社製])について、比較例1と同様に測定を行なった。
About silica sol B (trade name: Cataloid SI-45P [average particle diameter (D2) measured by BET method: 45 nm, manufactured by Catalyst Chemical Industry Co., Ltd.]) having a particle size distribution of a monodisperse phase, as in Comparative Example 1. Measurements were made.

比較例4Comparative Example 4

粒子径分布が単分散相からなるシリカゾルC(商品名:カタロイドSI−80P[BET法により測定された平均粒子径(D2)80nm、触媒化成工業株式会社製])について、比較例1と同様に測定を行なった。
About silica sol C (trade name: Cataloid SI-80P [average particle diameter (D2) measured by BET method: 80 nm, manufactured by Catalyst Kasei Kogyo Co., Ltd.]) having a particle size distribution of a monodisperse phase, as in Comparative Example 1. Measurements were made.

比較例5Comparative Example 5

動的光散乱法により測定される平均粒子径が41nmの球状シリカゾルと、同じく平均粒子径が111nmの球状シリカゾルを体積比率60:40で混合した。この混合シリカゾルについて、比較例1と同様に測定を行なった。
A spherical silica sol having an average particle diameter of 41 nm measured by a dynamic light scattering method and a spherical silica sol having an average particle diameter of 111 nm were mixed at a volume ratio of 60:40. The mixed silica sol was measured in the same manner as in Comparative Example 1.

比較例6Comparative Example 6

比較例2のシリカゾルAと比較例4のシリカゾルCとを、体積比率74:26で混合した。この混合シリカゾルについて、比較例1と同様に測定を行なった。
Silica sol A of Comparative Example 2 and Silica sol C of Comparative Example 4 were mixed at a volume ratio of 74:26. The mixed silica sol was measured in the same manner as in Comparative Example 1.

比較例7Comparative Example 7

比較例3のシリカゾルBと比較例4のシリカゾルCとを、体積比率60:40で混合した。この混合シリカゾルについて、比較例1と同様に測定を行なった。   Silica sol B of Comparative Example 3 and Silica sol C of Comparative Example 4 were mixed at a volume ratio of 60:40. The mixed silica sol was measured in the same manner as in Comparative Example 1.

Figure 0004963825
Figure 0004963825

Figure 0004963825
Figure 0004963825

Claims (6)

動的光散乱法により測定された平均粒子径(D1)が40〜70nmの範囲にあり、BET法により測定された平均粒子径(D2)が10〜50nmの範囲にあり、異形度(D1/D2)が1.55〜4.00の範囲にある非球状シリカ微粒子が分散してなる異方形状シリカゾルであって、該異方形状シリカゾルの動的光散乱法により測定された粒子径分布において30〜70nmの粒子径範囲Aと71〜150nmの粒子径範囲Bにそれぞれ粒子径分布のピークがあり(但し、両ピークに相当する粒子径の差の絶対値が50〜100nmの範囲にある場合に限る。)、該粒子径範囲Aに存在する粒子の体積%と該粒子径範囲Bに存在する粒子の体積%の比が60:40〜95:5の範囲にあることを特徴とする研磨用シリカゾル。
The average particle size (D1) measured by the dynamic light scattering method is in the range of 40 to 70 nm, the average particle size (D2) measured by the BET method is in the range of 10 to 50 nm, and the degree of irregularity (D1 / D2) is an anisotropic silica sol in which non-spherical silica fine particles having a range of 1.55 to 4.00 are dispersed, and the particle size distribution measured by the dynamic light scattering method of the anisotropic silica sol There is a particle size distribution peak in each of the particle size range A of 30 to 70 nm and the particle size range B of 71 to 150 nm (provided that the absolute value of the difference in particle size corresponding to both peaks is in the range of 50 to 100 nm) The polishing is characterized in that the ratio of the volume% of the particles existing in the particle diameter range A to the volume% of the particles existing in the particle diameter range B is in the range of 60:40 to 95: 5. Silica sol for use.
前記粒子径範囲A内の30〜50nmの範囲と、前記粒子径範囲B内の90〜130nmの範囲とのそれぞれに粒子径分布のピークがあることを特徴とする請求項1記載の研磨用シリカゾル。
2. The silica sol for polishing according to claim 1, wherein there is a peak of particle size distribution in each of a range of 30 to 50 nm in the particle size range A and a range of 90 to 130 nm in the particle size range B. .
珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加した後、60〜200℃の範囲に加熱してシリカゾルを調製し、これをシードゾルとして、pH9〜12.5の範囲にて、温度60〜200℃の条件下、珪酸液を連続的にまたは断続的に添加することを特徴とする請求項1または請求項2記載の研磨用シリカゾルの製造方法。
Silica hydrogel obtained by neutralizing silicate with acid is washed to remove salts, and after adding alkali, it is heated to a range of 60 to 200 ° C. to prepare a silica sol. The method for producing a silica sol for polishing according to claim 1 or 2, wherein the silicic acid solution is continuously or intermittently added in a range of -12.5 in a temperature range of 60-200 ° C. .
前記シードゾルにpH調整剤を添加することにより、pH9〜12.5に調整することを特徴とする請求項3記載の研磨用シリカゾルの製造方法。
The method for producing a polishing silica sol according to claim 3, wherein the pH is adjusted to 9 to 12.5 by adding a pH adjusting agent to the seed sol.
前記粒子径範囲Aの単分散相からなる異方形状シリカゾルと、前記粒子径範囲Bの単分散相からなる異方形状シリカゾルとを混合することにより請求項1または請求項2記載の研磨用シリカゾルを得る研磨用シリカゾルの製造方法。
3. The polishing silica sol according to claim 1, wherein the anisotropic silica sol composed of a monodispersed phase having a particle size range A and the anisotropic silica sol composed of a monodispersed phase having a particle size range B are mixed. The manufacturing method of the silica sol for grinding | polishing which obtains.
請求項1または請求項2記載の研磨用シリカゾルを含有する研磨用組成物。
A polishing composition comprising the polishing silica sol according to claim 1.
JP2005331807A 2005-11-16 2005-11-16 Polishing silica sol and polishing composition containing the same Active JP4963825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331807A JP4963825B2 (en) 2005-11-16 2005-11-16 Polishing silica sol and polishing composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331807A JP4963825B2 (en) 2005-11-16 2005-11-16 Polishing silica sol and polishing composition containing the same

Publications (2)

Publication Number Publication Date
JP2007137972A JP2007137972A (en) 2007-06-07
JP4963825B2 true JP4963825B2 (en) 2012-06-27

Family

ID=38201252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331807A Active JP4963825B2 (en) 2005-11-16 2005-11-16 Polishing silica sol and polishing composition containing the same

Country Status (1)

Country Link
JP (1) JP4963825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088088A1 (en) 2016-11-14 2018-05-17 日揮触媒化成株式会社 Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094982A (en) * 2006-10-12 2008-04-24 Kao Corp Polishing liquid composition for memory hard disk substrate
TWI436947B (en) 2007-03-27 2014-05-11 Fuso Chemical Co Ltd Colloidal silica and process for producing the same
JP5084670B2 (en) * 2008-09-01 2012-11-28 日揮触媒化成株式会社 Silica sol and method for producing the same
KR101121576B1 (en) * 2009-08-05 2012-03-06 한국세라믹기술원 A manufacturing method of colloidal silica for chemical mechenical polishing
JP5615529B2 (en) * 2009-11-16 2014-10-29 日揮触媒化成株式会社 Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition
CN102834480B (en) * 2010-04-26 2015-02-18 花王株式会社 Polishing fluid composition for glass hard disc substrates
JP5941612B2 (en) 2010-08-31 2016-06-29 株式会社フジミインコーポレーテッド Polishing composition
JP5631699B2 (en) * 2010-11-08 2014-11-26 信越化学工業株式会社 Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
TWI568541B (en) * 2010-12-22 2017-02-01 Jsr Corp Chemical mechanical grinding method
JP2012140281A (en) * 2010-12-28 2012-07-26 Kao Corp Method for producing aspheric silica particulate
JP5979872B2 (en) * 2011-01-31 2016-08-31 花王株式会社 Manufacturing method of magnetic disk substrate
JP5979871B2 (en) * 2011-03-09 2016-08-31 花王株式会社 Manufacturing method of magnetic disk substrate
JP6156207B2 (en) * 2013-04-02 2017-07-05 信越化学工業株式会社 Method for producing synthetic quartz glass substrate
JP6148932B2 (en) * 2013-08-20 2017-06-14 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP6316680B2 (en) * 2014-06-30 2018-04-25 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP6846193B2 (en) * 2016-12-26 2021-03-24 ニッタ・デュポン株式会社 Polishing slurry
US11891307B2 (en) 2018-10-10 2024-02-06 Jgc Catalysts And Chemicals Ltd. Silica-based particle dispersion and production method therefor
WO2023136331A1 (en) * 2022-01-13 2023-07-20 日産化学株式会社 Silica sol having particle size distribution, and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926915B2 (en) * 1990-07-05 1999-07-28 日産化学工業株式会社 Elongated silica sol and method for producing the same
US20030061766A1 (en) * 2000-03-31 2003-04-03 Kristina Vogt Polishing agent and method for producing planar layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088088A1 (en) 2016-11-14 2018-05-17 日揮触媒化成株式会社 Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion

Also Published As

Publication number Publication date
JP2007137972A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4963825B2 (en) Polishing silica sol and polishing composition containing the same
KR100641348B1 (en) Slurry for cmp and method of fabricating the same and method of polishing substrate
JP5022195B2 (en) Slurry composition for chemical mechanical polishing and precursor composition thereof
US6027669A (en) Polishing composition
US5759917A (en) Composition for oxide CMP
JP5287174B2 (en) Abrasive and polishing method
US6527818B2 (en) Aqueous dispersion for chemical mechanical polishing
JP3721497B2 (en) Method for producing polishing composition
KR20070105301A (en) Aqueous slurry containing metallate-modified silica particles
JPWO2004074180A1 (en) Alkali-resistant cocoon-type colloidal silica particles and method for producing the same
JP4911960B2 (en) Method for producing anisotropic silica sol
JP2008273780A (en) Modified silica-based sol and method for preparing the same
CN111566785A (en) Method for bulk polishing of tungsten with improved morphology
JP6207345B2 (en) Method for producing silica particles
WO2012036087A1 (en) Polishing agent and polishing method
TW202122523A (en) Composition and method for silicon oxide and carbon doped silicon oxide cmp
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP2007153692A (en) Method for manufacturing anisotropic-shape silica sol
JP7356932B2 (en) Polishing composition and polishing method
JP7508275B2 (en) Polishing composition, polishing method, and method for producing semiconductor substrate
TW201615778A (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP3754986B2 (en) Abrasive composition and method for preparing the same
JP2000243733A (en) Element isolation forming method
WO2022130839A1 (en) Polishing composition and polishing method using same
JP4291665B2 (en) Abrasive composition for siliceous material and polishing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4963825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250