JP2012140281A - Method for producing aspheric silica particulate - Google Patents

Method for producing aspheric silica particulate Download PDF

Info

Publication number
JP2012140281A
JP2012140281A JP2010293624A JP2010293624A JP2012140281A JP 2012140281 A JP2012140281 A JP 2012140281A JP 2010293624 A JP2010293624 A JP 2010293624A JP 2010293624 A JP2010293624 A JP 2010293624A JP 2012140281 A JP2012140281 A JP 2012140281A
Authority
JP
Japan
Prior art keywords
component
fine particles
silica fine
spherical silica
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010293624A
Other languages
Japanese (ja)
Inventor
Koji Hosokawa
浩司 細川
Jun Yoshida
純 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2010293624A priority Critical patent/JP2012140281A/en
Publication of JP2012140281A publication Critical patent/JP2012140281A/en
Ceased legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing easily aspheric silica particulates whose volume average particle sizes (DLS particle sizes) measured by a dynamic light scattering method are in the range of 10-300 nm.SOLUTION: This method for producing aspheric silica particulates includes a step of performing a hydrolysis reaction and a condensation reaction of a hydrolyzable silane compound (component B) in a mixed liquid containing basic amino acid (component A), the hydrolyzable silane compound (component B) and an aqueous solvent (component C), wherein a mixing mole ratio (component B/component A) of the hydrolyzable silane compound (component B) to the basic amino acid (component A) is 200-2,000, and DLS particle sizes of the aspheric silica particulates are 10-300 nm.

Description

本発明は、非球状シリカ微粒子の製造方法に関する。   The present invention relates to a method for producing non-spherical silica fine particles.

シリカ微粒子は、セラミック原料、触媒担体、強度付与剤(フィラー)、増量剤、粘度調整剤、吸油剤、吸着剤、研磨剤など様々な用途に利用されている。特に、非球状のシリカ微粒子は、その粒子形状に依存した特異な物性を発現することから注目されている。   Silica fine particles are used in various applications such as ceramic raw materials, catalyst carriers, strength imparting agents (fillers), extenders, viscosity modifiers, oil absorbents, adsorbents, and abrasives. In particular, non-spherical silica fine particles are attracting attention because they exhibit unique physical properties depending on the particle shape.

例えば、特許文献1には、長径/短径比が1.2〜4の非球状シリカ微粒子の製造方法が開示されている。特許文献1に記載の製造方法では、アミノ酸の1種であるアルギニンをアルカリ剤として用いている。   For example, Patent Document 1 discloses a method for producing non-spherical silica fine particles having a major axis / minor axis ratio of 1.2 to 4. In the production method described in Patent Document 1, arginine, which is one type of amino acid, is used as an alkaline agent.

特開2009−184857号公報JP 2009-184857 A

しかし、特許文献1に開示された従来技術では、非球状シリカ微粒子におけるシリカ/アルギニンのモル比が10〜120であり、非球状シリカ微粒子の製造に多量のアルギニンが必要であること、さらに、アルカリ金属ケイ酸塩をシリカ源として用いていることから、アルカリ金属を除去するために、アルカリ金属ケイ酸塩の水溶液をカチオン交換樹脂に接触させる工程を要し、製造工程が煩雑であることが問題であった。   However, in the prior art disclosed in Patent Document 1, the molar ratio of silica / arginine in the non-spherical silica fine particles is 10 to 120, and a large amount of arginine is necessary for the production of the non-spherical silica fine particles. Since metal silicate is used as a silica source, it requires a step of contacting an aqueous solution of alkali metal silicate with a cation exchange resin in order to remove alkali metal, and the manufacturing process is complicated. Met.

本発明は、非球状シリカ微粒子を簡便に製造する方法を提供する。   The present invention provides a method for easily producing non-spherical silica fine particles.

本発明の非球状シリカ微粒子の製造方法は、
塩基性アミノ酸(成分A)と加水分解性シラン化合物(成分B)と水性溶媒(成分C)とを含む混合液中で、前記加水分解性シラン化合物(成分B)の加水分解反応および縮合反応を行う工程を含み、
塩基性アミノ酸(成分A)に対する加水分解性シラン化合物(成分B)の混合モル比(成分B/成分A)が200〜2000であり、
前記非球状シリカ微粒子の、動的光散乱法によって測定される体積平均粒子径が10〜300nmである。
The method for producing the non-spherical silica fine particles of the present invention includes:
In a mixed solution containing a basic amino acid (component A), a hydrolyzable silane compound (component B), and an aqueous solvent (component C), the hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) are performed. Including steps to perform,
The mixing molar ratio of the hydrolyzable silane compound (component B) to the basic amino acid (component A) (component B / component A) is 200 to 2000,
The non-spherical silica fine particles have a volume average particle diameter of 10 to 300 nm as measured by a dynamic light scattering method.

本発明によれば、非球状シリカ微粒子を簡便に製造できる。   According to the present invention, non-spherical silica fine particles can be easily produced.

図1は、実施例1の非球状シリカ微粒子のTEM写真である。FIG. 1 is a TEM photograph of non-spherical silica fine particles of Example 1. 図2は、実施例2の非球状シリカ微粒子のTEM写真である。FIG. 2 is a TEM photograph of the non-spherical silica fine particles of Example 2.

本発明において「非球状」とは、透過型電子顕微鏡(TEM)を用いて観察を行い、透過型電子顕微鏡(TEM)により観測される一次粒子の最大長さに対して、最大長さ方向に対して垂直な方向の長さが、少なくとも、最大長さと異なる長さを有する形状をいう。具体的な形状としては、凹凸状、楕円状、数珠状、マユ型、棒状、紡錘状、針状など様々な形状が挙げられる。   In the present invention, “non-spherical” means observation using a transmission electron microscope (TEM), and in the maximum length direction with respect to the maximum length of primary particles observed by the transmission electron microscope (TEM). A shape having a length in a direction perpendicular to the length at least different from the maximum length. Specific shapes include various shapes such as irregular shapes, elliptical shapes, beaded shapes, eyebrows, rods, spindles, and needles.

本発明の非球状シリカ微粒子の製造方法(以下、「本発明の製造方法」と略する場合もある。)は、動的光散乱法によって測定される体積平均粒子径(以下「DLS粒子径」と略称する場合もある。)が10〜300nmである非球状シリカ微粒子の製造方法である。本発明の製造方法では、塩基性アミノ酸(成分A)と加水分解性シラン化合物(成分B)と水性溶媒(成分C)とを含む混合液中で、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応を行って、シリカ微粒子を析出・成長させる析出・成長工程を含む。この工程において、混合液は、塩基性アミノ酸(成分A)に対する加水分解性シラン化合物(成分B)の混合モル比(成分B/成分A)が200〜2000となるように調製される。   The method for producing non-spherical silica fine particles of the present invention (hereinafter sometimes abbreviated as “the production method of the present invention”) is a volume average particle size (hereinafter “DLS particle size”) measured by a dynamic light scattering method. Is a method for producing non-spherical silica fine particles of 10 to 300 nm. In the production method of the present invention, hydrolysis of the hydrolyzable silane compound (component B) is carried out in a mixed solution containing a basic amino acid (component A), a hydrolyzable silane compound (component B), and an aqueous solvent (component C). It includes a precipitation / growth step in which a silica fine particle is precipitated / grown by performing a decomposition reaction and a condensation reaction. In this step, the mixed solution is prepared so that the mixing molar ratio (component B / component A) of the hydrolyzable silane compound (component B) to the basic amino acid (component A) is 200 to 2000.

本発明の製造方法において非球状シリカ微粒子が製造されるメカニズムは不明であるが、以下のように推定される。本発明の製造方法では、シリカ源である加水分解性シラン化合物(成分B)と、成分Bの加水分解反応および縮合反応の触媒(アルカリ剤)である塩基性アミノ酸(成分A)とを所定のモル比で混合している。これにより、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応が逐次的に起こり、粒子の核生成、粒子成長も逐次的に起こっているものと推察される。そのため、混合液内には、核生成時期の相違(時間差)により、様々な粒子径のシリカ微粒子やシリカ核が混在することとなる。これらのシリカ微粒子やシリカ核が相互に会合し、結果、比較的粒子径が大きく非球状なシリカ微粒子が生成されたと推察される。更に、非球状シリカ微粒子の生成後、本発明の製造方法により得られる、非球状シリカ微粒子と、塩基性アミノ酸と、水性溶媒とを含む、非球状シリカ微粒子分散液において、非球状シリカ微粒子と共存する塩基性アミノ酸(成分A)は、非球状シリカ微粒子表面に作用して非球状シリカ微粒子の構造を安定化させ、非球状シリカ微粒子の分散安定化にも寄与していると推察される。   The mechanism by which the non-spherical silica fine particles are produced in the production method of the present invention is unknown, but is estimated as follows. In the production method of the present invention, a hydrolyzable silane compound (component B), which is a silica source, and a basic amino acid (component A), which is a catalyst (alkali agent) for the hydrolysis reaction and condensation reaction of component B, are determined in a predetermined manner. Mixing in molar ratio. Thereby, it is surmised that the hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) occur sequentially, and particle nucleation and particle growth also occur sequentially. Therefore, silica fine particles and silica nuclei having various particle diameters are mixed in the mixed solution due to the difference in nucleation time (time difference). It is inferred that these silica fine particles and silica nuclei were associated with each other, and as a result, non-spherical silica fine particles having a relatively large particle size were generated. Further, after the production of the non-spherical silica fine particles, the non-spherical silica fine particle dispersion containing the non-spherical silica fine particles, the basic amino acid, and the aqueous solvent obtained by the production method of the present invention coexists with the non-spherical silica fine particles. It is inferred that the basic amino acid (component A) acting on the surface of the non-spherical silica fine particles stabilizes the structure of the non-spherical silica fine particles and contributes to the dispersion stabilization of the non-spherical silica fine particles.

また、本発明の製造方法では、特許文献1に開示されたような、アルカリ金属ケイ酸塩の水溶液をカチオン交換樹脂に接触させて活性珪酸水溶液を得る工程が不要である。本発明の製造方法では、混合液に含まれる全成分の混合と、加水分解性シラン化合物(成分B)の加水分解反応速度および縮合反応速度の制御とを行えばよいので、非球状シリカ微粒子を単一の反応容器内で製造できる。しかも、これらの反応速度の制御は、混合液の温度制御、各成分の濃度設定等の簡単な条件設定によって行えるので、本発明の製造方法によれば、分散性の優れた非球状シリカ微粒子を簡便に製造できる。   Moreover, in the manufacturing method of this invention, the process which makes the aqueous solution of an alkali metal silicate contact the cation exchange resin as disclosed by patent document 1 and obtains active silicic acid aqueous solution is unnecessary. In the production method of the present invention, the mixing of all components contained in the mixed solution and the control of the hydrolysis reaction rate and condensation reaction rate of the hydrolyzable silane compound (component B) can be performed. It can be produced in a single reaction vessel. Moreover, these reaction rates can be controlled by simple conditions such as temperature control of the liquid mixture and concentration setting of each component. Therefore, according to the production method of the present invention, non-spherical silica fine particles having excellent dispersibility can be obtained. It can be easily manufactured.

[塩基性アミノ酸(成分A)]
塩基性アミノ酸(成分A)は、加水分解性シラン化合物(成分B)の加水分解、縮合反応の触媒(アルカリ剤)として機能するとともに、シリカ核とシリカ微粒子の双方に作用して粒子成長制御に寄与し、且つ、得られた非球状シリカ微粒子の分散安定に寄与しているものと推察される。塩基性アミノ酸(成分A)のモル量が、加水分解性シラン化合物(成分B)のモル量に対して多すぎると、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応が一気に起こる。その結果、シリカ核が多量に生成し、粒子成長しにくいため、DLS粒子径が大きい非球状シリカ微粒子が得られない。一方、塩基性アミノ酸(成分A)のモル量が、加水分解性シラン化合物(成分B)のモル量に対して少なすぎると、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応の速度が遅く、製造効率が悪化するだけでなく、粒子成長しすぎて粗大なシリカ粒子が得られる。
[Basic amino acids (component A)]
The basic amino acid (component A) functions as a catalyst (alkali agent) for hydrolysis and condensation reaction of the hydrolyzable silane compound (component B), and acts on both the silica core and silica fine particles to control particle growth. It is presumed that this contributes to the dispersion stability of the obtained non-spherical silica fine particles. If the molar amount of the basic amino acid (component A) is too large relative to the molar amount of the hydrolyzable silane compound (component B), the hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) occur all at once. . As a result, a large amount of silica nuclei are generated and particle growth is difficult, so that non-spherical silica fine particles having a large DLS particle diameter cannot be obtained. On the other hand, if the molar amount of the basic amino acid (component A) is too small relative to the molar amount of the hydrolyzable silane compound (component B), the hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) will occur. Not only is the speed slow and the production efficiency deteriorates, but the particles grow too much to obtain coarse silica particles.

塩基性アミノ酸(成分A)としては、光学活性体でもラセミ体でも良いが、非球状シリカ微粒子の製造容易性およびコスト低減の観点から、光学活性体が好ましい。塩基性アミノ酸(成分A)としては、分子中に置換及び/又は無置換の、アミノ基及び/又はイミノ基を含み、アミノ基及び/又はイミノ基の数がカルボキシル基の数よりも多いものであれば良い。   The basic amino acid (component A) may be an optically active substance or a racemic substance, but an optically active substance is preferable from the viewpoint of ease of production of non-spherical silica fine particles and cost reduction. The basic amino acid (component A) includes a substituted and / or unsubstituted amino group and / or imino group in the molecule, and the number of amino groups and / or imino groups is larger than the number of carboxyl groups. I just need it.

塩基性アミノ酸(成分A)としては、非球状シリカ微粒子の構造(粒子径、形状等)制御の容易性およびコスト低減の観点から、アルギニン、ヒスチジンおよびリジンからなる群から選ばれる少なくとも1種が好ましいが、同様の理由から、アルギニンおよび/またはヒスチジンがより好ましい。また、混合液は、塩基性アミノ酸(成分A)の作用を十分に発揮させ、構造制御された非球状シリカ微粒子を収率良く製造するという観点から、塩基性アミノ酸(成分A)以外のアルカリ剤を含まないことが好ましい。   The basic amino acid (component A) is preferably at least one selected from the group consisting of arginine, histidine and lysine from the viewpoint of ease of control of the structure (particle diameter, shape, etc.) of the non-spherical silica fine particles and cost reduction. However, for the same reason, arginine and / or histidine is more preferable. In addition, the mixed solution exhibits an alkaline agent other than the basic amino acid (component A) from the viewpoint of sufficiently exerting the action of the basic amino acid (component A) and producing the structure-controlled non-spherical silica fine particles with high yield. It is preferable not to contain.

塩基性アミノ酸(成分A)に対する加水分解性シラン化合物(成分B)の混合モル比(成分B/成分A)は、非球状シリカ微粒子の製造の観点から、200〜2000であることを要するが、同様の観点から、300〜1000が好ましく、500〜800がより好ましい。塩基性アミノ酸(成分A)に対する加水分解性シラン化合物(成分B)のモル比(成分B/成分A)が200以上であれば、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応が一気に起こることなく、粒子径や形状が制御された非球状シリカ微粒子が製造でき好ましい。一方、塩基性アミノ酸(成分A)に対する加水分解性シラン化合物(成分B)のモル比(成分B/成分A)が2000以下であれば、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応が効率良く進行し、粒子径や形状が制御された非球状シリカ微粒子を効率良く製造でき好ましい。   The mixing molar ratio of the hydrolyzable silane compound (component B) to the basic amino acid (component A) (component B / component A) is required to be 200 to 2000 from the viewpoint of production of non-spherical silica fine particles. From the same viewpoint, 300-1000 are preferable and 500-800 are more preferable. If the molar ratio (component B / component A) of the hydrolyzable silane compound (component B) to the basic amino acid (component A) is 200 or more, the hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) This is preferable because non-spherical silica fine particles having a controlled particle size and shape can be produced without causing a sudden occurrence. On the other hand, if the molar ratio of the hydrolyzable silane compound (component B) to the basic amino acid (component A) (component B / component A) is 2000 or less, the hydrolysis reaction of the hydrolyzable silane compound (component B) and It is preferable because the condensation reaction proceeds efficiently and non-spherical silica fine particles having a controlled particle diameter and shape can be efficiently produced.

混合液中の塩基性アミノ酸(成分A)の濃度は、1〜500ppmが好ましく、10〜100ppmがより好ましく、50〜100ppmが更に好ましい。混合液中の塩基性アミノ酸(成分A)の濃度が1ppm以上であれば、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応が効率良く進行し、粒子径や形状が制御された非球状シリカ微粒子を効率良く製造でき好ましい。一方、混合液中の塩基性アミノ酸(成分A)の濃度が500ppm以下であれば、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応が一気に起こることなく、粒子径や形状が制御された非球状シリカ微粒子が高収率で製造でき好ましい。   1-500 ppm is preferable, as for the density | concentration of the basic amino acid (component A) in a liquid mixture, 10-100 ppm is more preferable, and 50-100 ppm is still more preferable. When the concentration of the basic amino acid (component A) in the mixed solution is 1 ppm or more, the hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) proceeded efficiently, and the particle size and shape were controlled. Non-spherical silica fine particles can be produced efficiently, which is preferable. On the other hand, if the concentration of the basic amino acid (component A) in the mixed solution is 500 ppm or less, the hydrolysis and condensation reactions of the hydrolyzable silane compound (component B) do not occur at once, and the particle size and shape are controlled. The produced non-spherical silica fine particles are preferable because they can be produced in a high yield.

[加水分解性シラン化合物(B)]
加水分解性シラン化合物(B)は、アルコキシシラン等の加水分解によりシラノール化合物を生成する物質であり、具体的には、下記一般式(1)〜(5)で示される化合物、又はこれらの組合せを挙げることができる。式中、R1はそれぞれ独立して、ケイ素原子に直接炭素原子が結合している有機基を示し、R2は炭素原子を1〜4個有する炭化水素基又はフェニレン基を示し、Yは加水分解によりヒドロキシ基になる1価の加水分解性基を示す。
SiY4 (1)
1SiY3 (2)
1 2SiY2 (3)
1 3SiY (4)
3Si−R2−SiY3 (5)
[Hydrolyzable silane compound (B)]
The hydrolyzable silane compound (B) is a substance that generates a silanol compound by hydrolysis of alkoxysilane or the like, specifically, a compound represented by the following general formulas (1) to (5), or a combination thereof: Can be mentioned. In the formula, each R 1 independently represents an organic group in which a carbon atom is directly bonded to a silicon atom, R 2 represents a hydrocarbon group or a phenylene group having 1 to 4 carbon atoms, and Y represents a hydrolyzed group. A monovalent hydrolyzable group that becomes a hydroxy group by decomposition is shown.
SiY 4 (1)
R 1 SiY 3 (2)
R 1 2 SiY 2 (3)
R 1 3 SiY (4)
Y 3 Si—R 2 —SiY 3 (5)

非球状シリカ微粒子の構造制御の容易性、コスト低減、および不要な副生成物の生成抑制の観点から、R1は、それぞれ独立して、水素原子の一部がフッ素原子に置換していてもよい炭素数1〜22の炭化水素基が好ましく、炭素数1〜12の炭化水素基がより好ましい。R2は、炭素数1〜4のアルカンジイル基(メチレン基、エチレン基、トリメチレン基、プロパン−1,2−ジイル基、テトラメチレン基等)又はフェニレン基が好ましい。Yは、非球状シリカ微粒子の構造制御の容易性、コスト、および不要な副生成物の生成抑制の観点から、好ましくは炭素数1〜22、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜4のアルコキシ基、又はフッ素を除くハロゲン基が好ましく、炭素数1〜4のアルコキシ基が更に好ましく、炭素数1〜2のアルコキシ基がより一層好ましい。非球状シリカ微粒子の構造制御の容易性、コスト低減、および不要な副生成物の生成抑制の観点から、加水分解性シラン化合物(B)は一般式(1)のシラン化合物であると好ましく、テトラアルコキシシランがより好ましく、テトラメトキシシランまたはテトラエトキシシランが更に好ましく、テトラエトキシシランが特に好ましい。 From the viewpoint of easy control of the structure of the non-spherical silica fine particles, cost reduction, and suppression of formation of unnecessary by-products, each R 1 is independently selected even if some of the hydrogen atoms are substituted with fluorine atoms. A good C1-C22 hydrocarbon group is preferable, and a C1-C12 hydrocarbon group is more preferable. R 2 is preferably a C 1-4 alkanediyl group (methylene group, ethylene group, trimethylene group, propane-1,2-diyl group, tetramethylene group, etc.) or a phenylene group. Y is preferably from 1 to 22 carbon atoms, more preferably from 1 to 8 carbon atoms, and still more preferably carbon from the viewpoint of ease of structure control of the non-spherical silica fine particles, cost, and suppression of generation of unnecessary by-products. A C 1-4 alkoxy group or a halogen group excluding fluorine is preferred, a C 1-4 alkoxy group is more preferred, and a C 1-2 alkoxy group is even more preferred. The hydrolyzable silane compound (B) is preferably a silane compound of the general formula (1) from the viewpoints of easy control of the structure of the non-spherical silica fine particles, cost reduction, and suppression of unnecessary by-product formation. Alkoxysilane is more preferable, tetramethoxysilane or tetraethoxysilane is still more preferable, and tetraethoxysilane is particularly preferable.

加水分解性シラン化合物(B)の混合液中の濃度は、SiO2質量換算濃度で表すと、0.5〜10質量%が好ましく、1〜5質量%がより好ましく、1〜3質量%がより好ましい。加水分解性シラン化合物(B)の混合液中の濃度が、SiO2質量換算濃度で0.5質量%以上であれば、非球状シリカ微粒子の生産性が向上するとともに、非球状シリカ微粒子の汎用性が高くなり好ましい。加水分解性シラン化合物(B)の混合液中の濃度が、SiO2質量換算濃度で10質量%以下であれば、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応の速度が制御され、非球状シリカ微粒子の粒子径や形状が制御しやすくなり好ましい。尚、本願において、SiO2質量換算濃度とは、加水分解性シラン化合物(成分B)が完全に加水分解し、縮合することにより得られるSiO2の混合液全体における質量%である。 The concentration of the hydrolyzable silane compound (B) in the mixed solution is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, and 1 to 3% by mass when expressed in terms of SiO 2 mass conversion concentration. More preferred. When the concentration of the hydrolyzable silane compound (B) in the mixed solution is 0.5 mass% or more in terms of SiO 2 mass, the productivity of the non-spherical silica fine particles is improved and the general use of the non-spherical silica fine particles is improved. It is preferable because of its high properties. If the concentration of the hydrolyzable silane compound (B) in the mixed solution is 10% by mass or less in terms of SiO 2 mass, the rate of hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) is controlled. The particle diameter and shape of the non-spherical silica fine particles can be easily controlled, which is preferable. In the present application, and the SiO 2 mass concentration in terms, hydrolyzable silane compound (component B) was completely hydrolyzed by mass% in the total mixture of SiO 2 obtained by condensing.

加水分解性シラン化合物(成分B)としてテトラエトキシシランを用いる場合、非球状シリカ微粒子の製造容易性、及びコスト低減の観点から、混合液中の成分Bの濃度は、1〜30質量%が好ましく、2〜20質量%がより好ましく、4〜10質量%が更に好ましい。   When tetraethoxysilane is used as the hydrolyzable silane compound (component B), the concentration of component B in the mixed solution is preferably 1 to 30% by mass from the viewpoint of easy production of non-spherical silica fine particles and cost reduction. 2-20 mass% is more preferable, and 4-10 mass% is still more preferable.

[水性溶媒(C)]
水性溶媒(成分C)は、水を主成分とする溶媒である。混合液中における水性溶媒(成分C)の含有量は、非球状シリカ微粒子の構造制御の容易性、コスト低減、汎用性拡大の観点から、80〜99質量%が好ましく、90〜99質量%がより好ましい。水性溶媒(成分C)中における水の含有量は、50質量%を超え100質量%以下であると好ましく、80〜100質量%であるとより好ましく、100質量%が更に好ましい。水性溶媒(成分C)中における水の含有量が50質量%を超えると、コストが低くなるだけでなく、エコロジーの観点からも好ましい。更に、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応が効率良く進行し、非球状シリカ微粒子の製造効率が向上することからも好ましい。
[Aqueous solvent (C)]
The aqueous solvent (component C) is a solvent mainly containing water. The content of the aqueous solvent (component C) in the mixed solution is preferably 80 to 99% by mass, and 90 to 99% by mass from the viewpoint of ease of structure control of the nonspherical silica fine particles, cost reduction, and versatility. More preferred. The content of water in the aqueous solvent (component C) is preferably more than 50% by mass and 100% by mass or less, more preferably 80 to 100% by mass, and still more preferably 100% by mass. When the content of water in the aqueous solvent (component C) exceeds 50% by mass, not only the cost is lowered, but also from the viewpoint of ecology. Furthermore, it is preferable because the hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) proceed efficiently and the production efficiency of the non-spherical silica fine particles is improved.

水性溶媒(成分C)に含まれる水以外の溶媒としては、各種汎用性溶媒を使用できるが、非球状シリカ微粒子の構造制御の容易性及び入手容易性の観点から、アルコール溶媒が好ましく、メタノール、エタノール、2−プロパノールが更に好ましい。   As the solvent other than water contained in the aqueous solvent (component C), various general-purpose solvents can be used, but from the viewpoint of ease of structural control and availability of the non-spherical silica fine particles, an alcohol solvent is preferable, methanol, More preferred are ethanol and 2-propanol.

[反応条件]
上記成分A、成分B、および成分Cの混合順序は、特に制限は無いが、非球状シリカ微粒子の構造制御の容易性およびコスト低減の観点から、塩基性アミノ酸(成分A)を水性溶媒(成分C)に溶解した後、得られた溶液に加水分解性シラン化合物(成分B)を添加するのが好ましい。非球状シリカ微粒子の構造制御の容易性観点から、加水分解性シラン化合物(成分B)は上記溶液にゆっくり添加するのではなく、一気に全量添加するのが好ましい。尚、混合液に、上記成分A、成分B、および成分Cが含まれる場合、非球状シリカ微粒子の構造制御の容易性の観点から、混合液は、上記成分A、成分B、および成分Cからなると好ましい。
[Reaction conditions]
The mixing order of the above component A, component B, and component C is not particularly limited, but from the viewpoint of easy structure control of non-spherical silica fine particles and cost reduction, the basic amino acid (component A) is mixed with an aqueous solvent (component). After dissolving in C), it is preferable to add a hydrolyzable silane compound (component B) to the resulting solution. From the viewpoint of easy control of the structure of the non-spherical silica fine particles, it is preferable that the hydrolyzable silane compound (component B) is not added slowly to the solution but is added all at once. When the component A, component B, and component C are included in the mixed solution, from the viewpoint of ease of structure control of the non-spherical silica fine particles, the mixed solution is composed of the component A, component B, and component C. This is preferable.

水性溶媒(成分C)が100質量%水である場合、加水分解性シラン化合物(成分B)が疎水性であるため、混合液は二相に分離するが、縮合反応の進行とともに徐々に加水分解された加水分解性シラン化合物(成分B)は親水性の生成物を生成するので、混合液は二相分離の無い均一状態となる。非球状シリカ微粒子の収率向上の観点から、二相分離の無い均一な状態まで反応を継続させることが好ましい。   When the aqueous solvent (component C) is 100% by mass water, the hydrolyzable silane compound (component B) is hydrophobic, so the mixed solution separates into two phases, but gradually hydrolyzes as the condensation reaction proceeds. Since the hydrolyzable silane compound (component B) thus produced produces a hydrophilic product, the mixed solution is in a uniform state without two-phase separation. From the viewpoint of improving the yield of non-spherical silica fine particles, it is preferable to continue the reaction to a uniform state without two-phase separation.

混合液の温度が高くなると、加水分解性シラン化合物(成分B)の加水分解速度、および縮合反応の速度は速くなる。したがって、混合液の温度は、粒径が比較的大きい非球状のシリカ微粒子を製造する観点から、加水分解性シラン化合物(成分B)の加水分解速度および縮合反応の速度が速くなりすぎない温度であると好ましい。より具体的には、反応温度は、非球状シリカ微粒子の構造制御の容易化およびコスト低減の観点から、10〜100℃が好ましく、50〜90℃がより好ましい。   When the temperature of the mixed solution is increased, the hydrolysis rate of the hydrolyzable silane compound (component B) and the rate of the condensation reaction are increased. Therefore, the temperature of the mixed solution is a temperature at which the hydrolysis rate of the hydrolyzable silane compound (component B) and the rate of the condensation reaction are not too high from the viewpoint of producing non-spherical silica fine particles having a relatively large particle size. Preferably there is. More specifically, the reaction temperature is preferably 10 to 100 ° C., more preferably 50 to 90 ° C., from the viewpoint of facilitating the structure control of the non-spherical silica fine particles and cost reduction.

混合液の温度を、上記好ましい範囲内の値に維持する時間は、加水分解性シラン化合物(成分B)の加水分解速度、および縮合反応の速度等に応じて適宜設定されるものであるが、非球状シリカ微粒子の構造制御の容易性およびコスト低減の観点から、0.5〜5日が好ましく、1〜3日がより好ましい。反応の均一性向上の観点から、攪拌下で混合液を反応させることが好ましく、混合液の撹拌は、磁気攪拌器、プロペラ攪拌器等の攪拌装置を用いて行える。   The time for maintaining the temperature of the mixed liquid at a value within the above preferred range is appropriately set according to the hydrolysis rate of the hydrolyzable silane compound (component B), the rate of the condensation reaction, etc. From the viewpoint of ease of structure control of the non-spherical silica fine particles and cost reduction, 0.5 to 5 days is preferable, and 1 to 3 days is more preferable. From the viewpoint of improving the uniformity of the reaction, the mixed solution is preferably reacted under stirring. The mixed solution can be stirred using a stirring device such as a magnetic stirrer or a propeller stirrer.

混合液のpHは、混合液の温度に依存して若干変動するものの、ほぼ一定であるが、加水分解性シラン化合物(成分B)の加水分解反応および縮合反応後の、混合液の25℃におけるpHは、非球状シリカ微粒子の構造制御の容易化の観点から、7〜10が好ましく、8〜9がより好ましい。   Although the pH of the mixed solution varies slightly depending on the temperature of the mixed solution, it is almost constant, but after hydrolysis and condensation reaction of the hydrolyzable silane compound (component B), the mixed solution at 25 ° C. The pH is preferably 7 to 10 and more preferably 8 to 9 from the viewpoint of facilitating the structure control of the non-spherical silica fine particles.

尚、本発明の製造方法により得られる非球状シリカ微粒子は、水性溶媒(成分C)に分散された状態で市場に提供されてもよいが、その用途に応じて、水性溶媒から分離された後、乾燥、又は焼成されてもよい。焼成により非球状シリカ微粒子に付着した塩基性アミノ酸(成分A)を除去できる。本発明の製造方法では、必要に応じて、分散媒から分離された非球状シリカ微粒子に対して、焼成前に、水洗および乾燥かなる群から選ばれる少なくとも1つの処理を行ってもよい。分離方法としては、ろ過法、遠心分離法等が挙げられる。焼成温度は、好ましくは350〜800℃、より好ましくは450〜700℃であり、焼成時間は、好ましくは1〜10時間である。乾燥温度は、好ましくは50〜150℃であり、より好ましくは80〜120℃である。   Incidentally, the non-spherical silica fine particles obtained by the production method of the present invention may be provided to the market in a state dispersed in an aqueous solvent (component C), but after being separated from the aqueous solvent depending on its use. , Dried, or fired. The basic amino acid (component A) attached to the non-spherical silica fine particles can be removed by firing. In the production method of the present invention, if necessary, the non-spherical silica fine particles separated from the dispersion medium may be subjected to at least one treatment selected from the group consisting of washing with water and drying before firing. Examples of the separation method include a filtration method and a centrifugal separation method. The firing temperature is preferably 350 to 800 ° C., more preferably 450 to 700 ° C., and the firing time is preferably 1 to 10 hours. A drying temperature becomes like this. Preferably it is 50-150 degreeC, More preferably, it is 80-120 degreeC.

[非球状シリカ微粒子]
本発明の製造方法により得られる非球状シリカ微粒子の粒子形状は、凹凸状、楕円状、数珠状、マユ型、棒状、紡錘状、針状など様々な粒子形状が挙げられる。非球状シリカ微粒子の形状は、非球状シリカ微粒子の用途にもよるが、汎用性や性能発現の観点から、凹凸状、楕円状、数珠状がより好ましく、凹凸状、楕円状が更に好ましく、凹凸状がより一層好ましい。本発明の製造方法により得られる非球状シリカ微粒子のDLS粒子径は10〜300nmである。
[Non-spherical silica fine particles]
Examples of the particle shape of the non-spherical silica fine particles obtained by the production method of the present invention include various particle shapes such as an uneven shape, an elliptical shape, a bead shape, a cocoon shape, a rod shape, a spindle shape, and a needle shape. The shape of the non-spherical silica fine particles depends on the use of the non-spherical silica fine particles, but from the viewpoint of versatility and performance expression, the uneven shape, the elliptical shape, the bead shape is more preferable, the uneven shape, the elliptical shape is more preferable, the uneven shape The shape is even more preferable. The DLS particle diameter of the non-spherical silica fine particles obtained by the production method of the present invention is 10 to 300 nm.

本発明の製造方法により得られる非球状シリカ微粒子は、塩基性アミノ酸(成分A)との共存により、水性媒体中において優れた分散安定性を示す。非球状シリカ微粒子の用途にもよるが、分散液中における非球状シリカ微粒子の分散安定性や汎用性の観点から、非球状シリカ微粒子分散液の25℃のpHは、7〜10が好ましく、8〜9がより好ましい。非球状シリカ微粒子の好ましいDLS粒子径は、非球状シリカ微粒子の用途に応じて異なるが、汎用性や性能発現の観点から、20〜100nmが好ましく、40〜60nmがより好ましい。尚、DLS粒子径は、25℃の非球状シリカ微粒子分散液を測定対象とし、動的光散乱法(DLS)によって測定される粒径分布中に観察される体積平均粒子径であり、後述する実施例に記載の方法により測定できる。   The non-spherical silica fine particles obtained by the production method of the present invention exhibit excellent dispersion stability in an aqueous medium due to the coexistence with a basic amino acid (component A). Although depending on the use of the non-spherical silica fine particles, from the viewpoint of dispersion stability and versatility of the non-spherical silica fine particles in the dispersion, the pH at 25 ° C. of the non-spherical silica fine particle dispersion is preferably 7 to 10, ~ 9 is more preferred. The preferred DLS particle size of the non-spherical silica fine particles varies depending on the application of the non-spherical silica fine particles, but is preferably 20 to 100 nm, and more preferably 40 to 60 nm from the viewpoint of versatility and performance. The DLS particle size is a volume average particle size observed in a particle size distribution measured by a dynamic light scattering method (DLS) using a nonspherical silica fine particle dispersion at 25 ° C. as will be described later. It can be measured by the method described in the examples.

本発明の製造方法によって製造された非球状シリカ微粒子は、セラミック原料、触媒担体、強度付与剤(フィラー)、増量剤、粘度調整剤、吸油剤、吸着剤、研磨剤など様々な用途に利用できる。   The non-spherical silica fine particles produced by the production method of the present invention can be used in various applications such as ceramic raw materials, catalyst carriers, strength imparting agents (fillers), extenders, viscosity modifiers, oil absorbents, adsorbents, and abrasives. .

以下、実施例により本発明の一例をより具体的に説明する。後述する実施例及び比較例において、シリカ微粒子の各種測定及び評価は、以下の方法で行った。   Hereinafter, an example of the present invention will be described more specifically with reference to examples. In Examples and Comparative Examples described later, various measurements and evaluations of silica fine particles were performed by the following methods.

<一次粒子形状の観察>
透過型電子顕微鏡(TEM)(日本電子株式会社製、商品名:JEM−2100)を用いてシリカ微粒子の観察を行った。加速電圧は160kVとした。
<Observation of primary particle shape>
The silica fine particles were observed using a transmission electron microscope (TEM) (manufactured by JEOL Ltd., trade name: JEM-2100). The acceleration voltage was 160 kV.

<DLS粒子径の測定>
動的光散乱光度計(DLS)(マルバーン株式会社製、商品名:データサイザーNano−ZS)を用いて、後述する実施例1〜2及び比較例1〜2で得たシリカ微粒子のDLS粒子径を測定した。測定にあたっては、実施例1〜2及び比較例1〜2で得られた反応終了原液をそのまま用いた。パラメーターとして、粒子にはシリカの屈折率1.45、吸収係数0.01を、溶媒には水の屈折率1.333、吸収係数0を用いた。測定温度は25℃、測定時間は10秒、測定回数は5回、平衡時間0分とし、装置付属の解析ソフトを用いてキュムラント法にて解析を行った。表1に記載のDLS粒子径は、測定数5の平均値である。
<Measurement of DLS particle size>
Using a dynamic light scattering photometer (DLS) (manufactured by Malvern Co., Ltd., trade name: Data Sizer Nano-ZS), the DLS particle diameter of silica fine particles obtained in Examples 1-2 and Comparative Examples 1-2 described later Was measured. In the measurement, the reaction-terminated stock solutions obtained in Examples 1-2 and Comparative Examples 1-2 were used as they were. As parameters, silica has a refractive index of 1.45 and an absorption coefficient of 0.01, and a solvent has a refractive index of water of 1.333 and an absorption coefficient of 0. The measurement temperature was 25 ° C., the measurement time was 10 seconds, the number of measurements was 5 times, and the equilibrium time was 0 minutes. The analysis was performed by the cumulant method using the analysis software attached to the apparatus. The DLS particle size shown in Table 1 is an average value of 5 measurements.

<実施例1>
300mLナス型フラスコ中において、L(+)−アルギニン(和光純薬製)0.025gを水280gに溶解させた後、当該溶解液にテトラエトキシシラン(和光純薬製)20gを添加した。得られた混合液中のテトラエトキシシランの濃度は、SiO2質量換算濃度で表すと、1.9質量%である。この混合液を磁気攪拌器で撹拌しながら、85℃で3日間反応させることにより、二相分離の無い均一な微白色混合液(シリカ微粒子分散液)を得た。微白色混合液(反応終了原液)の25℃におけるpHは8.5であった。得られたシリカ微粒子のDLS粒子径を表1に示す。
<Example 1>
In a 300 mL eggplant-shaped flask, 0.025 g of L (+)-arginine (manufactured by Wako Pure Chemical Industries) was dissolved in 280 g of water, and then 20 g of tetraethoxysilane (manufactured by Wako Pure Chemical Industries) was added to the solution. The concentration of tetraethoxysilane in the obtained mixed liquid is 1.9% by mass when expressed in terms of SiO 2 mass. The mixture was reacted at 85 ° C. for 3 days while stirring with a magnetic stirrer to obtain a uniform fine white mixture (silica fine particle dispersion) without two-phase separation. The pH at 25 ° C. of the slightly white mixed solution (reaction finished stock solution) was 8.5. Table 1 shows the DLS particle diameter of the obtained silica fine particles.

<実施例2>
L(+)−アルギニンの代わりにL−ヒスチジン(和光純薬製)0.025gを用いたこと以外は、実施例1と同様にしてシリカ微粒子を製造した。得られた混合液中のテトラエトキシシランの濃度は、SiO2質量換算濃度で表すと、1.9質量%である。得られたシリカ微粒子のDLS粒子径を表1に示す。反応終了原液の25℃におけるpHは8.1であった。
<Example 2>
Silica fine particles were produced in the same manner as in Example 1, except that 0.025 g of L-histidine (manufactured by Wako Pure Chemical Industries) was used instead of L (+)-arginine. The concentration of tetraethoxysilane in the obtained mixed liquid is 1.9% by mass when expressed in terms of SiO 2 mass. Table 1 shows the DLS particle diameter of the obtained silica fine particles. The pH of the finished reaction stock solution at 25 ° C. was 8.1.

<比較例1>
L(+)−アルギニン1gを用いたこと以外は、実施例1と同様にしてシリカ微粒子を製造した。得られたシリカ微粒子のDLS粒子径を表1に示す。反応終了原液の25℃におけるpHは9.7であった。
<Comparative Example 1>
Silica fine particles were produced in the same manner as in Example 1 except that 1 g of L (+)-arginine was used. Table 1 shows the DLS particle diameter of the obtained silica fine particles. The pH of the reaction-terminated stock solution at 25 ° C. was 9.7.

<比較例2>
L(+)−アルギニンの代わりに28%アンモニア水溶液(シグマアルドリッチ製)0.2gを用いたこと以外は、実施例1と同様にしてシリカ微粒子を製造した。得られたシリカ微粒子のDLS粒子径を表1に示す。反応終了原液の25℃におけるpHは8.6であった。
<Comparative example 2>
Silica fine particles were produced in the same manner as in Example 1, except that 0.2 g of 28% aqueous ammonia (manufactured by Sigma-Aldrich) was used instead of L (+)-arginine. Table 1 shows the DLS particle diameter of the obtained silica fine particles. The pH of the reaction-terminated stock solution at 25 ° C. was 8.6.

透過型電子顕微鏡(TEM)(日本電子株式会社製、商品名:JEM−2100)を用いて実施例1〜2の非球状シリカ微粒子の粒子形状の観察を行った。図1〜図2に、実施例1〜2の非球状シリカ微粒子のTEM写真を示している。   The shape of the nonspherical silica fine particles of Examples 1 and 2 was observed using a transmission electron microscope (TEM) (trade name: JEM-2100, manufactured by JEOL Ltd.). 1 to 2 show TEM photographs of the non-spherical silica fine particles of Examples 1-2.

図1および図2に示すように、実施例1および実施例2の非球状シリカ微粒子は、各々、その表面に凹凸を有しており、金平糖のような形状をしている。   As shown in FIGS. 1 and 2, each of the non-spherical silica fine particles of Examples 1 and 2 has irregularities on the surface thereof, and has a shape like konpeito.

表1および図1〜図2から分かるように、加水分解性シラン化合物(成分B)の加水分解および縮合反応の触媒として、塩基性アミノ酸(成分A)であるアルギニンまたはヒスチジンを用い、モル比(成分B/成分A)が200〜2000の範囲内の値である、実施例1、2では、モル比(成分B/成分A)が200よりも小さい比較例1、触媒としてアンモニア水溶液を用いた比較例2よりも、DLS粒子径が大きい非球状のシリカ微粒子を製造できた。すなわち、実施例1、2では、比較例1よりも、より少量のアルギニンの使用により非球状のシリカ微粒子を製造できた。   As can be seen from Table 1 and FIGS. 1 to 2, arginine or histidine, which is a basic amino acid (component A), is used as a catalyst for the hydrolysis and condensation reaction of the hydrolyzable silane compound (component B), and the molar ratio ( In Examples 1 and 2 where Component B / Component A) is a value in the range of 200 to 2000, Comparative Example 1 in which the molar ratio (Component B / Component A) is smaller than 200, an aqueous ammonia solution was used as the catalyst Compared to Comparative Example 2, nonspherical silica fine particles having a larger DLS particle diameter could be produced. That is, in Examples 1 and 2, non-spherical silica fine particles could be produced by using a smaller amount of arginine than Comparative Example 1.

Figure 2012140281
Figure 2012140281

以上説明したとおり、本発明は、簡便に非球状シリカ微粒子を製造できるので、非球状シリカ微粒子の製造方法として有用である。   As described above, the present invention is useful as a method for producing non-spherical silica fine particles because non-spherical silica fine particles can be easily produced.

Claims (4)

非球状シリカ微粒子の製造方法であって、
塩基性アミノ酸(成分A)と加水分解性シラン化合物(成分B)と水性溶媒(成分C)とを含む混合液中で、前記加水分解性シラン化合物(成分B)の加水分解反応および縮合反応を行う工程を含み、
前記塩基性アミノ酸(成分A)に対する前記加水分解性シラン化合物(成分B)の混合モル比(成分B/成分A)が200〜2000であり、
前記非球状シリカ微粒子の、動的光散乱法によって測定される体積平均粒子径が10〜300nmである、非球状シリカ微粒子の製造方法。
A method for producing non-spherical silica fine particles,
In a mixed solution containing a basic amino acid (component A), a hydrolyzable silane compound (component B), and an aqueous solvent (component C), the hydrolysis reaction and condensation reaction of the hydrolyzable silane compound (component B) are performed. Including steps to perform,
The mixing molar ratio of the hydrolyzable silane compound (component B) to the basic amino acid (component A) (component B / component A) is 200 to 2000,
A method for producing non-spherical silica fine particles, wherein the non-spherical silica fine particles have a volume average particle diameter measured by a dynamic light scattering method of 10 to 300 nm.
上記(成分A)が、アルギニン、ヒスチジンおよびリジンからなる群から選ばれる少なくとも1種である請求項1記載の非球状シリカ微粒子の製造方法。   The method for producing non-spherical silica fine particles according to claim 1, wherein the (component A) is at least one selected from the group consisting of arginine, histidine and lysine. 前記混合液に含まれる全成分混合直後の前記混合液中における上記(成分A)の濃度が、1〜500ppmである請求項1または2に記載の非球状シリカ微粒子の製造方法。   The method for producing non-spherical silica fine particles according to claim 1 or 2, wherein the concentration of (component A) in the mixed solution immediately after mixing all the components contained in the mixed solution is 1 to 500 ppm. 上記(成分B)がテトラアルコキシシランである請求項1〜3のいずれかの項に記載の非球状シリカ微粒子の製造方法。   The method for producing non-spherical silica fine particles according to any one of claims 1 to 3, wherein (Component B) is tetraalkoxysilane.
JP2010293624A 2010-12-28 2010-12-28 Method for producing aspheric silica particulate Ceased JP2012140281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293624A JP2012140281A (en) 2010-12-28 2010-12-28 Method for producing aspheric silica particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293624A JP2012140281A (en) 2010-12-28 2010-12-28 Method for producing aspheric silica particulate

Publications (1)

Publication Number Publication Date
JP2012140281A true JP2012140281A (en) 2012-07-26

Family

ID=46676991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293624A Ceased JP2012140281A (en) 2010-12-28 2010-12-28 Method for producing aspheric silica particulate

Country Status (1)

Country Link
JP (1) JP2012140281A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248845A (en) * 2005-03-10 2006-09-21 Japan Science & Technology Agency Regularly arrayed nanoparticle silica, and its manufacturing method
JP2007137972A (en) * 2005-11-16 2007-06-07 Catalysts & Chem Ind Co Ltd Silica sol for polishing and polishing composition containing the sol
JP2009263484A (en) * 2008-04-24 2009-11-12 Nippon Chem Ind Co Ltd Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same
JP2010058985A (en) * 2008-09-01 2010-03-18 Jgc Catalysts & Chemicals Ltd Silica sol and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248845A (en) * 2005-03-10 2006-09-21 Japan Science & Technology Agency Regularly arrayed nanoparticle silica, and its manufacturing method
JP2007137972A (en) * 2005-11-16 2007-06-07 Catalysts & Chem Ind Co Ltd Silica sol for polishing and polishing composition containing the sol
JP2009263484A (en) * 2008-04-24 2009-11-12 Nippon Chem Ind Co Ltd Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same
JP2010058985A (en) * 2008-09-01 2010-03-18 Jgc Catalysts & Chemicals Ltd Silica sol and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.YOKOI ET AL.: "Mechanism of Formation of Uniform-Sized Silica Nanospheres Catalyzed by Basic Amino Acids", CHEM.MATER., vol. 21, no. 15, JPN6014009228, 11 October 2009 (2009-10-11), pages 3719 - 3729, XP002736862, ISSN: 0002759186, DOI: 10.1021/ja065071y *
T.YOKOI ET AL.: "Synthesis of well-ordered nanospheres with uniform mesopores assisted by basic amino acids", STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 170, JPN6014047314, 2007, pages 1774 - 1780, ISSN: 0003080517 *

Similar Documents

Publication Publication Date Title
TWI436947B (en) Colloidal silica and process for producing the same
JP6284443B2 (en) Method for producing colloidal silica containing core-shell type silica particles
JP4577755B2 (en) Process for producing modified colloidal silica
JPH0465006B2 (en)
TWI741116B (en) Silica particle dispersion liquid and its manufacturing method
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JPWO2015186596A1 (en) Method for producing surface-modified silica nanoparticles, and surface-modified silica nanoparticles
JP2926915B2 (en) Elongated silica sol and method for producing the same
JP3584485B2 (en) Method for producing silica sol
JP2019116396A (en) Silica-based particle dispersion and production method thereof
JPH02160613A (en) Production of surface-modified silica
CN113651336A (en) Silica microspheres and preparation method thereof
JP5603566B2 (en) Spherical mesoporous carbon and method for producing the same
JP5041625B2 (en) Method for producing polyorganosiloxane particles and method for producing silica particles
JP5583574B2 (en) Method for producing non-spherical silica fine particles
JP3746301B2 (en) Method for producing spherical silica particles
JP2012140281A (en) Method for producing aspheric silica particulate
US9212193B2 (en) Amine-accelerated process for the surface treatment of colloidal silica and products thereof
JP5462770B2 (en) Method for producing hollow silica nanoparticles
JP2000226453A (en) Hollow particle and preparation thereof
JP6338280B2 (en) Chiral solid metals and solid composites and methods for their production
JP2015113306A (en) Method for producing inorganic composite powder
JP6203625B2 (en) Method for producing silica particles
JP5505900B2 (en) High concentration silica sol
JP2013220976A (en) Method for stabilizing dispersion of neutral colloidal silica dispersion liquid, and neutral colloidal silica dispersion liquid having excellent dispersion stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20150917