JP5851716B2 - 分岐化ポリカーボネート樹脂 - Google Patents

分岐化ポリカーボネート樹脂 Download PDF

Info

Publication number
JP5851716B2
JP5851716B2 JP2011108591A JP2011108591A JP5851716B2 JP 5851716 B2 JP5851716 B2 JP 5851716B2 JP 2011108591 A JP2011108591 A JP 2011108591A JP 2011108591 A JP2011108591 A JP 2011108591A JP 5851716 B2 JP5851716 B2 JP 5851716B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
bis
hydroxyphenyl
melt
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011108591A
Other languages
English (en)
Other versions
JP2012236956A (ja
Inventor
哲也 本吉
哲也 本吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011108591A priority Critical patent/JP5851716B2/ja
Publication of JP2012236956A publication Critical patent/JP2012236956A/ja
Application granted granted Critical
Publication of JP5851716B2 publication Critical patent/JP5851716B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、バイオマス資源であるデンプンなどの糖質から誘導することができる構成単位を含有するポリカーボネート樹脂を含有し、高荷重下での流動性が改良された分岐化ポリカーボネート樹脂に関する。
近年、石油資源の枯渇の懸念や、地球温暖化を引き起こす空気中の二酸化炭素の増加の問題から、原料を石油に依存せず、また燃焼させても二酸化炭素を増加させないカーボンニュートラルが成り立つバイオマス資源が大きく注目を集めるようになり、ポリマーの分野においても、バイオマス資源から生産されるバイオマスプラスチックが盛んに開発されている。
バイオマスプラスチックの代表例がポリ乳酸であり、バイオマスプラスチックの中でも比較的高い耐熱性、機械特性を有するため、食器、包装材料、雑貨などに用途展開が広がりつつあるが、更に、工業材料としての可能性も検討されるようになってきた。
しかしながら、ポリ乳酸は、工業材料として使用するに当っては、その耐熱性が不足し、また生産性の高い射出成形によって成形品を得ようとすると、結晶性ポリマーとしてはその結晶性が低いため成形性が劣るという問題がある。
バイオマス資源を原料として使用し、かつ耐熱性が高い非晶性のポリカーボネート樹脂として、糖質から製造可能なエーテルジオール残基から得られる原料を用いたポリカーボネート樹脂が検討されている。特に、モノマーとしてイソソルビドを中心に用いてポリカーボネートに組み込むことが検討されてきた。特にイソソルビドのホモポリカーボネートについて記載されている(特許文献1、非特許文献1)。このうち特許文献1では、溶融エステル交換法を用いて203℃の融点を持つホモポリカーボネートを報告している。また非特許文献1では、酢酸亜鉛を触媒として用いた溶融エステル交換法において、ガラス転移温度が166℃のホモポリカーボネートを得ているが、熱分解温度(5%重量減少温度)が283℃と熱安定性は充分でない。また、イソソルビドと脂肪族ジヒドロキシ化合物とを共重合することにより、耐熱性と成型性に優れたポリカーボネート樹脂が提案されている(特許文献2)。しかしながら得られたポリカーボネート樹脂は溶融成型時の溶融強度、ブロー成形性などに問題があった。
一般的にビスフェノールAからなるポリカーボネートの溶融強度の改良法として、分岐剤をポリマー骨格に導入する方法が知られている(特許文献3)。しかしながら、溶融法で分岐剤を用いて重合すると、分岐剤が高温で分解を起こして、目的の溶融強度が得られなかったり、色相が悪化する問題があった。
英国特許出願公開第1079686号明細書 国際公開第04/111106号パンフレット 特公昭44−17149号公報
"Journal of Applied Polymer Science",2002年, 第86巻, p.872〜880
本発明者は、上記目的を達成するために、鋭意検討した結果、植物由来のモノマーであるイソソルビドからなるポリカーボネート樹脂に分岐構造を導入することにより、溶融強度や色相が大幅に改良されることを見出し、本発明を完成するに至った。
上記課題は、次に挙げる手段を採用することにより達成することができる。すなわち、本発明によれば、
1.植物由来の下記式(1)で表されるエーテルジオール残基15〜100モル%を占め、比粘度が0.14〜0.50であり、ガラス転移温度(Tg)が80℃以上165℃以下である分岐化ポリカーボネート樹脂を溶融成形して得られた成型品。
Figure 0005851716
2.分岐剤が一分子中に3個以上のヒドロキシル基を含んでなる化合物である前記1記載のポリカーボネート樹脂を溶融成形して得られた成型品
3.JIS K7120で求められる5%重量減少開始温度が240℃以上400℃以下である分岐剤を用いる前記1または2に記載のポリカーボネート樹脂を溶融成形して得られた成型品
4.分岐剤が原料のジヒドロキシ化合物に対して、0.01mol%以上3mol%以下である前記1〜3のいずれかに記載のポリカーボネート樹脂を溶融成形して得られた成型品
5.分岐剤がペンタエリトリトール、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1,1−トリス(4−ヒドロキシ−3,5−ジメチルフェニル)エタンで表される化合物である前記1〜4のいずれかに記載のポリカーボネート樹脂を溶融成形して得られた成型品
6.ポリカーボネート樹脂の構造粘性指数Nが1.4〜8である前記1〜5のいずれかに記載のポリカーボネート樹脂を溶融成形して得られた成型品
本発明は、バイオマス資源であるデンプンなどの糖質から誘導することができる構成単位を含有する分岐化ポリカーボネート樹脂であって、溶融強度やブロー成形性および色相が大幅に改良された分岐化ポリカーボネート樹脂を提供する。
以下、本発明のポリカーボネート樹脂について以下詳細に説明する。
本発明のポリカーボネート樹脂は、植物由来のエーテルジオール残基を含み、下記式(a)で表されるエーテルジオールおよび炭酸ジエステルと分岐剤から溶融重合法により製造したポリカーボネート樹脂である。
Figure 0005851716
エーテルジオールとしては、具体的には下記式(b)、(c)および(d)で表されるイソソルビド、イソマンニド、イソイディッドなどが挙げられる。
Figure 0005851716
Figure 0005851716
Figure 0005851716
これら糖質由来のエーテルジオールは、自然界のバイオマスからも得られる物質で、再生可能資源と呼ばれるものの1つである。イソソルビドは、でんぷんから得られるDーグルコースに水添した後、脱水を受けさせることにより得られる。その他のエーテルジオールについても、出発物質を除いて同様の反応により得られる。
特に、カーボネート構成単位がイソソルビド(1,4;3,6ージアンヒドローDーソルビトール)由来のカーボネート構成単位を含んでなるポリカーボネート樹脂が好ましい。イソソルビドはでんぷんなどから簡単に作ることができるエーテルジオールであり資源として豊富に入手することができる上、イソマンニドやイソイディッドと比べても製造の容易さ、性質、用途の幅広さの全てにおいて優れている。
全ジオール残基中、式(1)で表されるジオール残基が好ましくは15〜100モル%、より好ましくは30〜100モル%、さらに好ましくは40〜100モル%、特に好ましくは50〜100モル%を占めるポリカーボネートである。
一方、本発明に用いるに適した共重合構成単位のジオール化合物としては、直鎖脂肪族ジオール化合物、脂環式ジオール化合物、芳香族ジヒドロキシ化合物のいずれでも良い。
直鎖脂肪族ジオール化合物として、例えばエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、2−エチル−1,6−ヘキサンジオール、2,2,4−トリメチル−1,6−ヘキサンジオール、1,10−デカンジオール、水素化ジリノレイルグリコール,水素化ジオレイルグリコールなどを挙げることができる。これらのうち、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,10−デカンジオールが好ましい。これらの直鎖脂肪族ジオール類は単独または二種以上組み合わせて用いてもよい。
また、本発明に使用できる脂環式ジオールとしては、例えば1,2-シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、2−メチル−1,4−シクロヘキサンジオールなどのシクロヘキサンジオール類、1,2-シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールなどのシクロヘキサンジメタノール類、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノールなどのノルボルナンジメタノール類、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、1,3−アダマンタンジオール、2,2−アダマンタンジオール、デカリンジメタノール、及び3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンなどが挙げられる。これらのうち、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンが好ましい。これらの脂環式ジオール類は単独または二種以上組み合わせて用いてもよい。
また本発明で使用きる芳香族ジヒドロキシ化合物としては、4’−ビフェノール、3,3’,5,5’−テトラフルオロ−4,4’−ビフェノール、α,α’−ビス(4−ヒドロキシフェニル)−o−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン(通常“ビスフェノールM”と称される)、α,α’−ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−m−ビス(1,1,1,3,3,3−ヘキサフルオロイソプロピル)ベンゼン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(3−フルオロ−4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−トリフルオロメチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(3−フルオロ−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)パーフルオロシクロヘキサン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルスルフィド、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルスルフォン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルスルホン、1,1−ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通常“ビスフェノールA”と称される)、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン(通常“ビスフェノールC”と称される)、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシー3−フェニルフェニル)プロパン、2,2−ビス(3−イソプロピル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、4,4−ビス(4−ヒドロキシフェニル)ヘプタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、1,1−ビス(4−ヒドロキシフェニル)デカン、1,1−ビス(3−メチル−4−ヒドロキシフェニル)デカン、1,1−ビス(2,3−ジメチルー4−ヒドロキシフェニル)デカン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン(通常“ビスフェノールAF”と称される)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(3−フルオロ−4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、および2,2−ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(3,5−ジブロモー4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジクロロー4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチルー4−ヒドロキシフェニル)プロパン、および2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパンが挙げられる。
上記の中でも、ビスフェノールM、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルスルフィド、ビスフェノールA、ビスフェノールC、ビスフェノールAF、および1,1−ビス(4−ヒドロキシフェニル)デカンが好ましい。これらの芳香族ジオール類は単独または二種以上組み合わせて用いてもよい。
分岐化剤として、一分子中に3個以上の官能基を有する化合物を用いる。官能基としては、ヒドロキシル基やカルボキシル基やカルボン酸エステル基またはハルカルボニル基やアミノ基、イミノ基を含む化合物が好ましい。具体的には、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,2,6−ヘキサントリオール、2,5−ジメチル−1.2.6−ヘキサントリオール、ジペンタエリトリトール、トリメチロールエタン、トリメチロールプロパン、1,3,5−シクロヘキサントリオールフロログルシン、メリト酸、トリメリト酸、トリメリト酸クロリド、無水トリメリト酸、没食子酸、没食子酸n−プロピル、プロトカテク酸、ピロメリト酸、ピロメリト酸第二無水物、α−レゾルシン酸、β−レゾルシン酸、レゾルシンアルデヒド、トリメリチルクロリド、トリメチルトリクロリド、4−クロロホルミルフタル酸無水物、ベンゾフェノンテトラカルボン酸、2,4,4'−トリヒドロキシベンゾフェノン、2,2',4,4'−テトラヒドロキシベンゾフェノン、2,4,4'−トリヒドロキシフェニルエーテル、2,2',4,4'−テトラヒドロキシフェニルエーテル、2,4,4'−トリヒドロキシジフェニル−2−プロパン、2,2'−ビス(2,4−ジヒドロキシ)プロパン、2,2', 4,4'−テトラヒドロキシジフェニルメタン、2,4,4'−トリヒドロキシジフェニルメタン、1−〔α−メチル−α−(4'−ヒドロキシフェニル)エチル〕−4−〔α',α'−ビス(4"−ヒドロキシフェニル)エチル〕ベンゼン、α,α', α"−トリス(4−ヒドロキシフェニル)−1,3,5−トリイソプロピルベンゼン、2,6−ビス(2'−ヒドロキシ−5'−メチルベンジル)−4−メチルフェノール、4,6−ジメチル−2,4,6−トリス(4'−ヒドロキシフェニル)−ヘプテン−2、4,6−ジメチル−2,4,6−トリス(4'−ヒドロキシフェニル)−ヘプタン−2、1,3,5−トリス(4'−ヒドロキシフェニル)−ベンゼン、1,1,1−トリス(4'−ヒドロキシフェニル)−エタン、1,1,1−トリス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1,1−トリス(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス〔4,4−ビス(4'−ヒドロキシフェニル)シクロヘキシル〕−プロパン、2,6−ビス(2'−ヒドロキシ−5'−イソプロピルベンジル)−4−イソプロピルフェノール、ビス〔2−ヒドロキシ−3−(2'−ヒドロキシ−5'−メチルベンジル)−5−メチルフェニル〕メタン、ビス〔2−ヒドロキシ−3−(2'−ヒドロキシ−5'−イソプロピルベンジル)−5−メチルフェニル〕メタン、テトラキス(4−ヒドロキシフェニル)メタン、トリス(4−ヒドロキシフェニル)フェニルメタン、2',4',7−トリヒドロキシフラバン、2,4,4−トリメチル−2',4',7−トリヒドロキシフラバン、1,3−ビス(2',4'−ジヒドロキシフェニルイソプロピル)ベンゼン、トリス(4'−ヒドロキシアリール)−アミル−s−トリアジン、1−〔α−メチル−α−(4'−ヒドロキシフェニル)エチル〕−3−〔α',α'−ビス(4"−ヒドロキシフェニル)エチル〕ベンゼン、イサチンビス(O−クレゾール)等があげられる。これらの中でも、ペンタエリトリトール、グリセリン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1,1−トリス(4−ヒドロキシ−3,5−ジメチルフェニル)エタンが特に好ましい。分岐剤はそれぞれ単独で用いてもよいし、二種以上組み合わせて用いてもよい。
分岐剤の5%重量減少温度の下限が240℃以上が好ましく、より好ましくは250℃以上であり、さらに好ましくは260℃以上である。5%重量減少温度が240℃以下であると、溶融重合中で分解し、目的の溶融強度が得られなかったり、色相が悪化する。また、5%重量減少温度の上限は400℃以下である。上限温度は高いほうが好ましいが、実際に重合や成型する温度は400℃以下であることと、400℃以上の化合物は分子量が高くなりやすく、分岐剤として好ましくない。
反応温度は、エーテルジオールの分解を抑え、着色が少なく高粘度の樹脂を得るために、できるだけ低温の条件を用いることが好ましいが、重合反応を適切に進める為には重合温度は180℃〜280℃の範囲であることが好ましく、より好ましくは180℃〜260℃の範囲である。ビスフェノールAからなるポリカーボネートの一般的な重合温度は280〜340℃と非常に高温のため、分岐剤が熱分解し、色相が悪化したり、目的の溶融強度が得られなかった。 また、反応初期にはエーテルジオールと炭酸ジエステルとを常圧で加熱し、予備反応させた後、徐々に減圧にして反応後期には系を1.3×10ー3〜1.3×10ー5MPa程度に減圧して生成するアルコールまたはフェノールの留出を容易にさせる方法が好ましい。反応時間は通常0.5〜4時間程度である。
炭酸ジエステルとしては、水素原子が置換されていてもよい炭素数6〜12のアリール基またはアラルキル基、もしくは炭素数1〜4のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ビス(クロロフェニル)カーボネート、mークレジルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられ、なかでも反応性、コスト面からジフェニルカーボネートが好ましい。
炭酸ジエステルはエーテルジオールに対してモル比で1.02〜0.98となるように混合することが好ましく、より好ましくは1.01〜0.98であり、さらに好ましくは1.01〜0.99である。炭酸ジエステルのモル比が1.02より多くなると、炭酸エステル残基が末端封止として働いてしまい充分な重合度が得られなくなってしまい好ましくない。また炭酸ジエステルのモル比が0.98より少ない場合でも、充分な重合度が得られず好ましくない。
重合触媒としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム、二価フェノールのナトリウム塩、カリウム塩またはセシウム塩等のアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム等のアルカリ土類金属化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン等の含窒素塩基性化合物、などが挙げられる。これらは単独で使用してもよいし、2種以上組み合わせて使用してもよい。なかでも、含窒素塩基性化合物とアルカリ金属化合物とを併用して使用することが好ましい。これらの触媒を用いて重合したものは、5%重量減少温度が十分高く保たれるため好ましい。
これらの重合触媒の使用量は、それぞれ炭酸ジエステル成分1モルに対し、好ましくは1×10-9〜1×10-3当量、より好ましくは1×10-8〜5×10-4当量の範囲で選ばれる。また反応系は窒素などの原料、反応混合物、反応生成物に対し不活性なガスの雰囲気に保つことが好ましい。窒素以外の不活性ガスとしては、アルゴンなどを挙げることができる。更に、必要に応じて酸化防止剤等の添加剤を加えてもよい。
上記のごとく反応を行う事により得られるイソソルビド系ポリカーボネート樹脂は、その末端構造はヒドロキシ基または、炭酸ジエステル残基となるが、本発明のベースポリマー基材で用いるポリカーボネート樹脂は、その特性を損なわない範囲で別途末端基を導入しても良い。かかる末端基は、モノヒドロキシ化合物を重合時に添加することにより導入することができる。モノヒドロキシ化合物としては下記式(2)または(3)で表されるヒドロキシ化合物が好ましく用いられる。
Figure 0005851716
Figure 0005851716
上記式(2),(3)中、Rは炭素原子数4〜30のアルキル基、炭素原子数7〜30のアラルキル基、炭素原子数4〜30のパーフルオロアルキル基、または下記式(4)
Figure 0005851716
であり、好ましくは炭素原子数4〜20のアルキル基、炭素原子数4〜20のパーフルオロアルキル基、または上記式(4)であり、特に炭素原子数8〜20のアルキル基、または上記式(4)が好ましい。Xは単結合、エーテル結合、チオエーテル結合、エステル結合、アミノ結合およびアミド結合からなる群より選ばれる少なくとも一種の結合が好ましいが、より好ましくは単結合、エーテル結合およびエステル結合からなる群より選ばれる少なくとも一種の結合であり、なかでも単結合、エステル結合が好ましい。aは1〜5の整数であり、好ましくは1〜3の整数であり、特に1が好ましい。
また、上記式(4)中、R,R,R,R及びRは、夫々独立して炭素原子数1〜10のアルキル基、炭素原子数6〜20のシクロアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数6〜10のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる少なくとも一種の基であり、好ましくは夫々独立して炭素原子数1〜10のアルキル基及び炭素原子数6〜10のアリール基からなる群から選ばれる少なくとも一種の基であり、特に夫々独立してメチル基及びフェニル基からなる群から選ばれる少なくとも一種の基が好ましい。bは0〜3の整数であり、1〜3の整数が好ましく、特に2〜3の整数が好ましい。cは4〜100の整数であり、4〜50の整数が好ましく、特に8〜50の整数が好ましい。
本発明に用いるモノヒドロキシ化合物もまた植物などの再生可能資源から得られる原料であることが好ましい。植物から得られるモノヒドロキシ化合物としては、植物油から得られる炭素数14以上の長鎖アルキルアルコール類(セタノール、ステアリルアルコール、ベヘニルアルコール)などが挙げられる。
本発明のイソソルビド系ポリカーボネート樹脂は、ASTM D6866 05に準拠して測定された生物起源物質含有率が25%〜100%が好ましく、30%〜100%がより好ましい。
分岐剤を含まないイソソルビド系ポリカーボネート樹脂の構造粘性指数Nは1.2〜1.3であるのに対し、本発明のポリカーボネート樹脂の構造粘性指数Nは1.4〜8であるものが好ましく、より好ましくは1.4〜3である。この構造粘性指数Nはポリカーボネート樹脂の溶融特性は式Q=K・pN脂{式中Qは溶融樹脂の流動性(ml/sec)、Kは定数、pは圧力(kg/cm)、Nは構造粘性指数}から求められる。N=1のときニュートン流動挙動を示し、Nが大きくなるほど非ニュートン挙動を示す。
本発明のイソソルビド系ポリカーボネート樹脂は、樹脂0.7gを塩化メチレン100mlに溶解した溶液の20℃における比粘度としては0.14〜0.50のものを用いることができる。比粘度の好ましい範囲は、下限は0.20以上が好ましく、0.22以上がより好ましい。また上限は0.45以下が好ましく、0.37以下がより好ましく、0.35以下が特に好ましい。また比粘度が0.14より低くなると本発明のポリカーボネート樹脂より得られた積層フィルムが充分な機械強度を持たせることが困難となる。また比粘度が0.50より高くなると溶融流動性が高くなりすぎて、成形に必要な流動性を有する溶融温度が分解温度より高くなってしまう。
本発明のイソソルビド系ポリカーボネート樹脂は、そのガラス転移温度(Tg)の下限が80℃以上が好ましく、より好ましくは90℃以上であり、また上限は165℃以下が好ましい。Tgが80℃未満だと耐熱性に劣り、165℃を超えると本発明のポリカーボネート樹脂を用いて成形する際の溶融流動性に劣り、ポリマー分解が少ない温度範囲で射出成形ができなくなる。TgはTA Instruments社製 DSC (型式 DSC2910)により測定される。
また、イソソルビド系ポリカーボネート樹脂は、その5%重量減少温度の下限が330℃以上が好ましく、より好ましくは340℃以上であり、さらに好ましくは350℃以上である。5%重量減少温度が上記範囲内であると、本発明のポリカーボネート樹脂を用いて成形する際の樹脂の分解がほとんど無く好ましい。5%重量減少温度を上昇させるためには、前述の通り溶融重合触媒として好ましい化合物を選択することが有効である。5%重量減少温度はTA Instruments社製 TGA (型式 TGA2950)により測定される。
本発明のイソソルビド系ポリカーボネート樹脂においては、さらに良好な色相かつ安定した流動性を得るため、熱安定剤を含有する事が好ましい。熱安定剤としては、リン系安定剤を含有することが好ましく、殊にリン系安定剤として、下記一般式(5)に示すペンタエリスリトール型ホスファイト化合物を配合することが好ましい。
Figure 0005851716
[式中R21、R22はそれぞれ水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルキルアリール基、炭素数7〜30のアラルキル基、炭素数4〜20のシクロアルキル基、炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基を示す。なお、シクロアルキル基およびアリール基は、アルキル基で置換されていてもよい。]
前記ペンタエリスリトール型ホスファイト化合物としては、より具体的には、例えば、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられ、中でも好適には、ジステアリルペンタエリスリトールジホスファイト、およびビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトが挙げられる。
他のリン系安定剤としては、前記以外の各種ホスファイト化合物、ホスホナイト化合物、およびホスフェート化合物が挙げられる。
ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、およびトリス(2,6−ジ−tert−ブチルフェニル)ホスファイトなどが挙げられる。
さらに他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイトなどを挙げることができる。
ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
上記のリン系安定剤は、単独でまたは2種以上を併用して使用することができ、少なくともペンタエリスリトール型ホスファイト化合物を有効量配合することが好ましい。リン系安定剤はポリカーボネート樹脂100重量部当たり、好ましくは0.001〜1重量部、より好ましくは0.01〜0.5重量部、さらに好ましくは0.01〜0.3重量部配合される。
本発明のイソソルビド系ポリカーボネート樹脂には各種帯電防止剤を添加、共重合することが好ましい。かかる帯電防止剤としては、アニオン系、カチオン系、非イオン系、両性の各種公知のものを用いることが可能である。中でも特に耐熱性などの点からはアニオン系帯電防止剤のアルキルスルホン酸Na、アルキルベンゼンスルホン酸Naを用いることが好ましい。
またこれらの帯電防止剤を重合時に添加する際には、併せて酸化防止剤を添加することが、取り扱い性などの点から好ましい。かかる酸化防止剤としては、フェノール系酸化防止剤、フォスファイト系酸化防止剤、チオエーテル系酸化防止剤などの各種公知のものを用いることができ、さらにこれらの混合の化合物なども用いることが可能である。
本発明のイソソルビド系ポリカーボネート中には、目的や用途に応じて各種の粒子を添加することができる。添加する粒子は、本発明のイソソルビド系ポリカーボネート樹脂に不活性なものであれば特に限定されないが、無機粒子、有機粒子、架橋高分子粒子、重合系内で生成させる内部粒子などを挙げることができる。これらの粒子を2種以上添加しても構わない。かかる粒子の添加量は、フィルムの全重量に対して0.01〜10重量%が好ましく、さらに好ましくは0.05〜3重量%である。
以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。なお参考例、実施例および比較例中の物性測定は以下のようにして行ったものである。
(1)比粘度
ペレットを塩化メチレンに溶解、濃度を約0.7g/dLとして、温度20℃にて、オストワルド粘度計(装置名:RIGO AUTO VISCOSIMETER TYPE VMR−0525・PC)を使用して測定した。なお、比粘度ηspは下記式から求められる。
ηsp=t/t−1
t :試料溶液のフロータイム
:溶媒のみのフロータイム
(2)色相(b値)
ポリカーボネートペレット(短径×長径×長さ(mm)=2.5×3.3×3.0)のL,a,b値を日本電色工業製ND−1001DPを用いて反射法で測定した結果の内、黄色度の尺度としてb値を用いた。
(3)構造粘性指数
構造粘性指数は、ポリカーボネートのペレットを高化式フローテスター(島津製作所(株)製)シリンダー;ノズル径1mmノズル長10mmに仕込み、温度280℃に一定にして、加えた圧力、P(100〜200kg/cm)と、それに対する溶融樹脂の留出量Q(mL/sec)を測定し、それぞれの値を両対数グラフにプロットして得られる回帰直線の勾配から求めた。
(4)ブロー成形性
80℃で、24時間乾燥したポリカーボネート組成物を、押出機により溶融し、金型に供給した後、18Lのボトルをブロー成形し、成形性を評価した。得られた成型品の外観を評価した。成型品を通して文字を目視したときにはっきりと見えるものを良好とし、ぼやけて見えるものを目視不良とし、ボトルの形状が不良の場合、成型不良とした。
[実施例1]
イソソルビド1096重量部とヘキサンジオール295重量部とジフェニルカーボネート2138重量部とペンタエリトリトール(5%重量減少温度 262℃)4.1重量部とを反応器に入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドを0.36重量部、および水酸化ナトリウムを4×10−4重量部仕込んで窒素雰囲気下常圧で180℃に加熱し溶融させた。
撹拌下、反応槽内を30分かけて徐々に減圧し、生成するフェノールを留去しながら13.3×10−3MPaまで減圧した。この状態で20分反応させた後に200℃に昇温した後、20分かけて徐々に減圧し、フェノールを留去しながら4.00×10−3MPaで20分間反応させ、さらに、220℃に昇温し30分間、250℃に昇温し30分間反応させた。
次いで、徐々に減圧し、2.67×10−3MPaで10分間、1.33×10−3MPaで10分間反応を続行し、さらに減圧し、4.00×10−5MPaに到達したら、徐々に260℃まで昇温し、最終的に260℃、6.66×10−5MPaで1時間反応せしめた。反応後のポリマーをペレット化した。得られたポリマーの比粘度、ガラス転移温度を測定し、その結果を表1に示した。また、得られたポリマーを用いて、シリンダー温度250℃の条件で金型に供給した後、18Lのボトルをブロー成形し、成形性を評価した。18Lのボトルをブロー成形し、成形性を評価した。
[実施例2]
ペンタエリトリトール4.1重量部の代わりに1,1,1−トリス(4−ヒドロキシフェニル)エタン(5%重量減少温度 334℃)9.2重量部を用いた以外は実施例1と同様にしてポリカーボネートの溶融重合を行った。得られたポリマーを実施例1と同様に評価した。
[実施例3]
イソソルビド731重量部とシクロヘキサンジメタノール720重量部とジフェニルカーボネート2138重量部とペンタエリトリトール4.1重量部以外は実施例1と同様にしてポリカーボネートの溶融重合を行った。得られたポリマーを実施例1と同様に評価した。
[実施例4]
ペンタエリトリトール4.1重量部の代わりに1,1,1−トリス(4−ヒドロキシフェニル)エタン9.2重量部を用いた以外は実施例3と同様にしてポリカーボネートの溶融重合を行った。得られたポリマーを実施例1と同様に評価した。
[実施例5]
ペンタエリトリトール6.8重量部を用いた以外は実施例1と同様にしてポリカーボネートの溶融重合を行った。得られたポリマーを実施例1と同様に評価した。
[比較例1]
ペンタエリトリトール4.1重量部を用いなかった以外は実施例1と同様にしてポリカーボネートの溶融重合を行った。得られたポリマーを実施例1と同様に評価した。
[比較例2]
ビスフェノールA1140重量部とジフェニルカーボネート1103重量部と1,1,1−トリス(4−ヒドロキシフェニル)エタン9.2重量部とを反応器に入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドを0.36重量部、および水酸化ナトリウムを4×10−4重量部仕込んで窒素雰囲気下常圧で180℃に加熱し溶融させた。
撹拌下、反応槽内を30分かけて徐々に減圧し、生成するフェノールを留去しながら13.3×10−3MPaまで減圧した。この状態で20分反応させた後に200℃に昇温した後、20分かけて徐々に減圧し、フェノールを留去しながら4.00×10−3MPaで20分間反応させ、さらに、240℃に昇温し、30分間反応させた。
次いで、徐々に減圧し、2.67×10−3MPaで10分間、1.33×10−3MPaで10分間反応を続行し、さらに減圧し、4.00×10−5MPaに到達したら、徐々に300℃まで昇温し、6.66×10−5MPaで1時間反応せしめた。反応後のポリマーをペレット化した。得られたポリマーの比粘度、ガラス転移温度を測定し、その結果を表1に示した。また、得られたポリマーを用いて、シリンダー温度300℃にした以外は実施例1と同様にブロー成型し、評価した。
[比較例3]
ビスフェノールA1140重量部とジフェニルカーボネート1103重量部とを反応器に入れ、重合触媒としてテトラメチルアンモニウムヒドロキシドを0.36重量部、および水酸化ナトリウムを4×10−4重量部仕込んで窒素雰囲気下常圧で180℃に加熱し溶融させた。
撹拌下、反応槽内を30分かけて徐々に減圧し、生成するフェノールを留去しながら13.3×10−3MPaまで減圧した。この状態で20分反応させた後に200℃に昇温した後、20分かけて徐々に減圧し、フェノールを留去しながら4.00×10−3MPaで20分間反応させ、さらに、240℃に昇温し、30分間反応させた。
次いで、徐々に減圧し、2.67×10−3MPaで10分間、1.33×10−3MPaで10分間反応を続行し、さらに減圧し、4.00×10−5MPaに到達したら、徐々に300℃まで昇温し、6.66×10−5MPaで1時間反応せしめた。反応後のポリマーをペレット化した。得られたポリマーの比粘度、ガラス転移温度を測定し、その結果を表1に示した。また、得られたポリマーを用いて、シリンダー温度300℃にした以外は実施例1と同様にブロー成型し、評価した。
Figure 0005851716
本発明によれば、重合温度を制御し、特定の分岐剤を導入することにより、大幅に色相が改善され、通常の溶融法でのポリカーボネートでは得られない溶融強度が得られた。
また、ブロー成形が良好な上に、バイオマス由来のため、カーボンニュートラルな成形品を効率良く生産することが可能な、分岐化ポリカーボネート樹脂が得ることができる。

Claims (6)

  1. 植物由来の下記式(1)で表されるエーテルジオール残基15〜100モル%を占め、比粘度が0.14〜0.50であり、ガラス転移温度(Tg)が80℃以上165℃以下である分岐化ポリカーボネート樹脂を溶融成形して得られた成型品。
    Figure 0005851716
  2. 分岐剤が一分子中に3個以上のヒドロキシル基を含んでなる化合物である請求項1記載のポリカーボネート樹脂を溶融成形して得られた成型品
  3. JIS K7120で求められる5%重量減少開始温度が240℃以上400℃以下である分岐剤を用いる請求項1または2に記載のポリカーボネート樹脂を溶融成形して得られた成型品
  4. 分岐剤が原料のジヒドロキシ化合物に対して、0.01mol%以上3mol%以下である請求項1〜3のいずれか1項に記載のポリカーボネート樹脂を溶融成形して得られた成型品
  5. 分岐剤がペンタエリトリトール、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(4−ヒドロキシ−3−メチルフェニル)エタン、1,1,1−トリス(4−ヒドロキシ−3,5−ジメチルフェニル)エタンで表される化合物である請求項1〜4のいずれか1項に記載のポリカーボネート樹脂を溶融成形して得られた成型品
  6. ポリカーボネート樹脂の構造粘性指数Nが1.4〜8である請求項1〜5のいずれか1項に記載のポリカーボネート樹脂を溶融成形して得られた成型品
JP2011108591A 2011-05-13 2011-05-13 分岐化ポリカーボネート樹脂 Active JP5851716B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108591A JP5851716B2 (ja) 2011-05-13 2011-05-13 分岐化ポリカーボネート樹脂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108591A JP5851716B2 (ja) 2011-05-13 2011-05-13 分岐化ポリカーボネート樹脂

Publications (2)

Publication Number Publication Date
JP2012236956A JP2012236956A (ja) 2012-12-06
JP5851716B2 true JP5851716B2 (ja) 2016-02-03

Family

ID=47460151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108591A Active JP5851716B2 (ja) 2011-05-13 2011-05-13 分岐化ポリカーボネート樹脂

Country Status (1)

Country Link
JP (1) JP5851716B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818499B1 (en) * 2012-02-20 2022-01-12 Mitsubishi Chemical Corporation Resin composition and molded body of same
JP6163297B2 (ja) * 2012-11-30 2017-07-12 出光興産株式会社 ポリカーボネート樹脂、ポリカーボネート樹脂組成物及び成形品
KR101679596B1 (ko) 2013-07-02 2016-11-25 주식회사 삼양사 아이소소바이드-방향족 폴리카보네이트 공중합체 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036937A1 (en) * 2007-09-13 2009-03-18 Stichting Dutch Polymer Institute Polycarbonate and process for producing the same

Also Published As

Publication number Publication date
JP2012236956A (ja) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5323688B2 (ja) ポリカーボネート樹脂組成物
JP5543147B2 (ja) ポリカーボネート樹脂の製造方法
JP2009102536A (ja) 共重合ポリカーボネート樹脂およびその製造方法
KR20120117756A (ko) 폴리카보네이트 수지 조성물 그리고 이것을 성형하여 얻어지는 성형체, 필름, 플레이트 및 사출 성형품
JP5732529B2 (ja) 共重合ポリカーボネートおよびそれらからなる透明成形品
JP5577942B2 (ja) ポリカーボネートからなる車両用ランプレンズ
JP2009062501A (ja) 光学素子成形品およびそのための成形材料
JPWO2008093860A1 (ja) ポリカーボネート樹脂およびその製造方法
JPWO2010119574A1 (ja) 共重合ポリカーボネートおよびその製造方法
TW201433589A (zh) 高分子量化的芳香族聚碳酸酯樹脂之製造方法
JP5001110B2 (ja) ポリカーボネート樹脂およびその製造方法
JP2008291055A (ja) 末端変性ポリカーボネート樹脂組成物
JP5851716B2 (ja) 分岐化ポリカーボネート樹脂
JP5674802B2 (ja) ポリカーボネート樹脂からなる成形品
JP2010043244A (ja) 難燃性共重合ポリカーボネート樹脂
KR20180022712A (ko) 폴리카보네이트 수지 조성물, 그 제조 방법, 성형체
JP6139368B2 (ja) 植物由来成分を有するポリカーボネート樹脂の製造方法
JP6671114B2 (ja) ポリカーボネート樹脂組成物、その製造方法、成形体、及びその製造方法
JP2008291053A (ja) 末端変性ポリカーボネート樹脂組成物
JP2008274009A (ja) ポリカーボネート樹脂組成物
JP6247515B2 (ja) 成形品およびその製造方法
JP6211803B2 (ja) 容器
JP6139293B2 (ja) 耐熱容器
JP6027068B2 (ja) ポリカーボネート樹脂ペレット
JP5471348B2 (ja) ポリカーボネートよりなる嵌合部およびヒンジ部から選ばれる少なくとも1つを有する容器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5851716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150