JP5826435B1 - Copper powder - Google Patents
Copper powder Download PDFInfo
- Publication number
- JP5826435B1 JP5826435B1 JP2015515066A JP2015515066A JP5826435B1 JP 5826435 B1 JP5826435 B1 JP 5826435B1 JP 2015515066 A JP2015515066 A JP 2015515066A JP 2015515066 A JP2015515066 A JP 2015515066A JP 5826435 B1 JP5826435 B1 JP 5826435B1
- Authority
- JP
- Japan
- Prior art keywords
- copper powder
- plasma
- powder
- particle size
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 157
- 239000002245 particle Substances 0.000 claims abstract description 75
- 238000009826 distribution Methods 0.000 claims abstract description 20
- 230000001186 cumulative effect Effects 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims description 41
- 239000010949 copper Substances 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000000428 dust Substances 0.000 abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 43
- 239000007789 gas Substances 0.000 description 42
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 26
- 229910052757 nitrogen Inorganic materials 0.000 description 21
- 239000000523 sample Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- 229910052786 argon Inorganic materials 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 239000011231 conductive filler Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011164 primary particle Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 239000012798 spherical particle Substances 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 7
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 7
- 229940112669 cuprous oxide Drugs 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000003985 ceramic capacitor Substances 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 3
- 239000005750 Copper hydroxide Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910001956 copper hydroxide Inorganic materials 0.000 description 3
- 229960004643 cupric oxide Drugs 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000010301 surface-oxidation reaction Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- -1 hydrazine compound Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/12—Making metallic powder or suspensions thereof using physical processes starting from gaseous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/107—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
微粒銅粉であっても、圧粉抵抗が低く優れた導電性を確保することができる、新たな銅粉を提供せんとする。レーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50が0.20μm〜0.70μmであり、且つ、当該D50に対する結晶子径の比率(結晶子径/D50)が0.15〜0.60(μm/μm)であることを特徴とする銅粉を提案する。Even if it is a fine-grained copper powder, we will provide a new copper powder that has low dust resistance and can ensure excellent conductivity. The volume cumulative particle size D50 measured by a laser diffraction / scattering particle size distribution analyzer is 0.20 μm to 0.70 μm, and the ratio of crystallite diameter to D50 (crystallite diameter / D50) is 0.15 to 0.15. A copper powder characterized by 0.60 (μm / μm) is proposed.
Description
本発明は、各種用途の導電材として使用可能な銅粉、例えば、電気回路の形成や、セラミックコンデンサの外部電極の形成などに用いられる導電性ペーストに導電フィラーとして用いることができる銅粉に関する。 The present invention relates to a copper powder that can be used as a conductive material for various applications, for example, a copper powder that can be used as a conductive filler in a conductive paste used for forming an electric circuit or forming an external electrode of a ceramic capacitor.
電子部品等の電極や回路を形成する方法として、導電性材料である銅粉をペーストに分散させた導電性ペーストを基板に印刷した後、該ペーストを焼成又はキュアリングし硬化させて回路を形成する方法が知られている。
この種の導電性ペーストは、樹脂系バインダーと溶媒からなるビヒクル中に導電フィラーを分散させた流動性組成物であり、電気回路の形成や、セラミックコンデンサの外部電極の形成などに広く用いられている。As a method of forming electrodes and circuits for electronic components, etc., after a conductive paste in which copper powder, which is a conductive material, is dispersed in a paste is printed on a substrate, the paste is baked or cured to form a circuit. How to do is known.
This type of conductive paste is a fluid composition in which a conductive filler is dispersed in a vehicle composed of a resin binder and a solvent, and is widely used for the formation of electric circuits and the formation of external electrodes for ceramic capacitors. Yes.
この種の導電性ペーストには、樹脂の硬化によって導電性フィラーが圧着され導通を確保する樹脂硬化型と、焼成によって有機成分が揮発し、導電性フィラーが焼結して導通を確保する焼成型とがある。 This type of conductive paste includes a resin-curing mold that ensures electrical conduction when a conductive filler is pressed by curing the resin, and a firing mold that ensures electrical conduction when the organic component is volatilized by firing and the conductive filler is sintered. There is.
前者の樹脂硬化型導電性ペーストは、一般的に、金属粉末からなる導電フィラーと、エポキシ樹脂等の熱硬化性樹脂からなる有機バインダーとを含んだペースト状組成物であって、熱を加えることによって熱硬化型樹脂が導電フィラーとともに硬化収縮して、樹脂を介して導電フィラー同士が圧着され接触状態となり、導通性が確保されるものである。このような樹脂硬化型導電性ペーストは、100℃から精々200℃までの比較的低温域で処理可能であり、熱ダメージが少ないため、プリント配線基板や熱に弱い樹脂基板などに使用されている。 The former resin-curable conductive paste is generally a paste-like composition containing a conductive filler made of metal powder and an organic binder made of a thermosetting resin such as an epoxy resin, and is applied with heat. As a result, the thermosetting resin is cured and shrunk together with the conductive filler, and the conductive fillers are pressure-bonded through the resin so as to be in contact with each other, thereby ensuring conductivity. Such a resin curable conductive paste can be processed in a relatively low temperature range from 100 ° C. to 200 ° C. and has little thermal damage, so it is used for printed wiring boards and heat-sensitive resin substrates. .
他方、後者の焼成型導電性ペーストは、金属粉末からなる導電フィラーとガラスフリットとを有機ビヒクル中に分散させてなるペースト状組成物であり、500〜900℃にて焼成することにより、有機ビヒクルが揮発し、さらに導電フィラーが焼結することによって導通性が確保されるものである。この際、ガラスフリットは、この導電膜を基板に接着させる作用を有し、有機ビヒクルは、金属粉末およびガラスフリットを印刷可能にするための有機液体媒体として作用する。
焼成型導電性ペーストは、焼成温度が高いため、プリント配線基板や樹脂材料には使用できないが、焼結して金属が一体化することから低抵抗化を実現することができ、例えば積層セラミックコンデンサの外部電極などに使用されている。On the other hand, the latter baked conductive paste is a paste-like composition in which a conductive filler made of metal powder and glass frit are dispersed in an organic vehicle. By firing at 500 to 900 ° C., the organic vehicle Volatilizes and the conductive filler is sintered to ensure conductivity. At this time, the glass frit has a function of adhering the conductive film to the substrate, and the organic vehicle functions as an organic liquid medium for enabling printing of the metal powder and the glass frit.
Firing-type conductive paste cannot be used for printed wiring boards or resin materials because of its high firing temperature, but it can be reduced in resistance because it is sintered and the metal is integrated. It is used for external electrodes.
樹脂硬化型導電性ペースト及び高温焼成型導電性ペーストのいずれにおいても、導電フィラーとして、従来から、銅粉が多用されてきた。銅粉は安価である上、マイグレーションが生じ難く、耐ハンダ性にも優れているため、銅粉を用いた導電性ペーストが汎用化されつつある。
また、近年、電気回路などにおいてファインピッチ化が進められるのに伴い、導電性ペースト用の銅粉については微粉化が求められている。Conventionally, copper powder has been frequently used as the conductive filler in both the resin curable conductive paste and the high-temperature fired conductive paste. Since copper powder is inexpensive, migration is unlikely to occur, and solder resistance is excellent, conductive paste using copper powder is being widely used.
In recent years, as fine pitches have been advanced in electric circuits and the like, copper powder for conductive paste has been required to be finely divided.
銅粉の微粒化については、例えば特許文献1には、液中の水酸化銅を、還元剤を用いて金属銅粒子に還元する際、還元剤としてヒドラジンまたはヒドラジン化合物を使用すると共に、その還元反応を消泡剤存在下で行い、さらには、還元反応の前または後もしくは途中に表面処理剤を添加することにより、短径と長径がいずれも100nm未満の微粒子銅粉を得る方法が開示されている。 Regarding the atomization of copper powder, for example, in Patent Document 1, when reducing copper hydroxide in a liquid to metal copper particles using a reducing agent, hydrazine or a hydrazine compound is used as the reducing agent, and the reduction is performed. A method is disclosed in which the reaction is carried out in the presence of an antifoaming agent, and further, by adding a surface treatment agent before, after or during the reduction reaction, fine copper powder having a minor axis and a major axis both less than 100 nm is obtained. ing.
特許文献2には、微粒で均一な粒子の銅粉を湿式還元法により製造する方法として、銅イオン含有水溶液とアルカリ溶液とを反応させた水酸化銅スラリーを得て、当該水酸化銅スラリーに還元剤を添加して第1還元処理を行い亜酸化銅スラリーとし、当該亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させ、上澄液を除去して水を添加することにより亜酸化銅粒子を洗浄し洗浄亜酸化銅スラリーとし、当該洗浄亜酸化銅スラリーに還元剤を添加して第2還元処理を行い銅粉を得る銅粉製造方法において、第1還元処理は、水酸化銅スラリーに、還元剤であるヒドラジン類とpH調整剤であるアンモニア水溶液とを併用して添加することを特徴とする銅粉の製造方法が開示されている。 In Patent Document 2, as a method for producing fine and uniform copper powder by a wet reduction method, a copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution and an alkali solution is obtained, and the copper hydroxide slurry is obtained. A first reducing treatment is performed by adding a reducing agent to make a cuprous oxide slurry, the cuprous oxide slurry is allowed to stand to precipitate cuprous oxide particles, the supernatant is removed, and water is added to add sublimation. In the copper powder manufacturing method of washing copper oxide particles to obtain a washed cuprous oxide slurry, adding a reducing agent to the washed cuprous oxide slurry, and performing a second reduction treatment to obtain copper powder, the first reduction treatment comprises hydroxylation There is disclosed a method for producing copper powder, characterized in that a hydrazine as a reducing agent and an aqueous ammonia solution as a pH adjuster are added to a copper slurry in combination.
特許文献3には、微粒であっても、焼結開始温度をより高く調整することができる銅粉として、Al(アルミニウム)及びP(リン)を含有する導電性ペースト用銅粉であって、Al濃度が0.01atm%以上0.80atm%未満であり、且つ、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が、0.1μm〜10μmであることを特徴とする銅粉が開示されている。 Patent Document 3 discloses a copper powder for conductive paste containing Al (aluminum) and P (phosphorus) as a copper powder capable of adjusting the sintering start temperature even if it is fine, The Al concentration is 0.01 atm% or more and less than 0.80 atm%, and the D50 based on the volume-based particle size distribution obtained by measurement by a laser diffraction / scattering particle size distribution measurement method is 0.1 μm to 10 μm. A copper powder is disclosed.
特許文献4には、原料粉末(金属粉)を高周波プラズマ炎中に入れて蒸発させ、製造途中で表面処理を行うことにより、この熱プラズマでの表面処理によって、溶液中での銅粉末の分散性を向上させて、粒径数nm〜数十nmオーダーの銅粉を得る方法が開示されている。 In Patent Document 4, a raw material powder (metal powder) is put into a high-frequency plasma flame to evaporate, and surface treatment is performed in the middle of manufacture, whereby the dispersion of copper powder in the solution is achieved by surface treatment with this thermal plasma. A method for improving the properties and obtaining copper powder having a particle size of several nanometers to several tens of nanometers is disclosed.
近年、電気回路などの分野において、近年ファインピッチ化が進むのに伴い、前述したように導電性ペースト用の銅粉にも微粉化が要求されてきている。
しかし、銅粉は、数十nmスケールに微粒化するほど、表面酸化が著しくなり圧粉抵抗が高くなる傾向があるため、ペースト印刷・キュアリングして回路形成した際に導電性が劣るようになり、導通信頼性が要求される部品には回路材料として採用できないという課題を抱えていた。In recent years, in the field of electrical circuits and the like, as fine pitches have been advanced in recent years, as described above, copper powder for conductive pastes has been required to be finely powdered.
However, as copper powder is atomized to a scale of several tens of nanometers, surface oxidation tends to increase and powder resistance tends to increase, so that the conductivity is inferior when a circuit is formed by paste printing and curing. Therefore, it has a problem that it cannot be used as a circuit material for components that require conduction reliability.
そこで本発明は、微粒銅粉であっても、圧粉抵抗が低く優れた導電性を確保することができる、新たな銅粉を提供せんとするものである。 Therefore, the present invention is intended to provide a new copper powder that can ensure excellent electrical conductivity even if it is a fine-grained copper powder.
本発明は、レーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50が0.20μm〜0.70μmであり、且つ、当該D50に対する結晶子径の比率(結晶子径/D50)が0.15〜0.60(μm/μm)であることを特徴とする銅粉を提案する。 In the present invention, the volume cumulative particle diameter D50 measured by a laser diffraction / scattering particle size distribution measuring apparatus is 0.20 μm to 0.70 μm, and the ratio of crystallite diameter to D50 (crystallite diameter / D50) is The copper powder characterized by being 0.15-0.60 (micrometer / micrometer) is proposed.
本発明が提案する銅粉は、D50が0.20μm〜0.70μmであるという微粒銅粉であるにもかかわらず、当該D50に対する結晶子径の比率(結晶子径/D50)が0.15〜0.60(μm/μm)というように結晶子径が大きいという特徴を有している。これにより、本発明が提案する銅粉は、微粒銅粉であっても、圧粉抵抗が低く優れた導電性を有し、この銅粉を用いた導電ペーストで形成された塗膜も同様に優れた導電性を得ることができる。
さらに、本発明が提案する銅粉は、優れた分散性を有しており、本発明の銅粉を用いた導電性ペーストの塗膜は、平滑性に優れたものとなる。
したがって、本発明が提案する銅粉は、例えばプリント配線板の導体回路、積層セラミックコンデンサの電極等に使われる導電性ペースト用銅粉として良好に適用することができる。Although the copper powder proposed by the present invention is a fine copper powder having a D50 of 0.20 μm to 0.70 μm, the ratio of the crystallite diameter to the D50 (crystallite diameter / D50) is 0.15. It has a feature that the crystallite diameter is large as ˜0.60 (μm / μm). Thereby, even if the copper powder proposed by the present invention is a fine copper powder, the powder resistance is excellent with low dust resistance, and the coating film formed with the conductive paste using this copper powder is also the same. Excellent conductivity can be obtained.
Furthermore, the copper powder proposed by the present invention has excellent dispersibility, and the coating film of the conductive paste using the copper powder of the present invention has excellent smoothness.
Therefore, the copper powder proposed by the present invention can be favorably applied as a copper powder for conductive paste used for, for example, a conductor circuit of a printed wiring board, an electrode of a multilayer ceramic capacitor, or the like.
次に、本発明を実施するための形態の例について説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the example of the form for implementing this invention is demonstrated. However, the present invention is not limited to the embodiment described below.
<本銅粉>
本実施形態に係る銅粉(以下、「本銅粉」と称する)は、レーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50が0.20μm〜0.70μmであり、且つ、当該D50に対する結晶子径の比率(結晶子径/D50)が0.15〜0.60(μm/μm)であることを特徴とする銅粉である。<Copper powder>
The copper powder according to the present embodiment (hereinafter referred to as “the present copper powder”) has a volume cumulative particle diameter D50 measured by a laser diffraction / scattering particle size distribution measuring device of 0.20 μm to 0.70 μm, and The copper powder is characterized in that the ratio of crystallite diameter to D50 (crystallite diameter / D50) is 0.15 to 0.60 (μm / μm).
(D50)
本銅粉のD50、すなわちレーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50は、上述のように0.20μm〜0.70μmであるのが好ましい。本銅粉のD50が0.70μm以下であれば、ペーストを印刷する際に細線を容易に形成することが可能であり、0.20μm以上であれば、高アスペクト印刷を容易に行うことが可能である。
よって、かかる観点から、本銅粉のD50は0.20μm〜0.70μmであるのが好ましく、中でも0.21μm以上或いは0.65μm以下、その中でも0.22μm以上或いは0.55μm以下、さらにその中でも0.25μm以上或いは0.40μm以下であるのがより一層好ましい。(D50)
It is preferable that D50 of this copper powder, ie, D50 by the volume standard particle size distribution obtained by measuring by the laser diffraction scattering type particle size distribution measuring method, is 0.20 μm to 0.70 μm as described above. If the D50 of this copper powder is 0.70 μm or less, it is possible to easily form fine lines when printing a paste, and if it is 0.20 μm or more, high aspect printing can be easily performed. It is.
Therefore, from this point of view, the D50 of the present copper powder is preferably 0.20 μm to 0.70 μm, particularly 0.21 μm or more or 0.65 μm or less, more preferably 0.22 μm or more or 0.55 μm or less, In particular, the thickness is more preferably 0.25 μm or more or 0.40 μm or less.
(D90)
本銅粉のD90、すなわちレーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D90が0.35μm〜12.0μmであることが好ましい。本銅粉のD90が0.35μm以上であれば、粒子表面エネルギーの影響が少ないためにペーストにした際の凝集を防ぎやすく、12.0μm以下であれば、粗粒が少ないために充填率を高くすることができ、圧粉抵抗を低くすることができる。
よって、かかる観点から、本銅粉のD90は0.35μm〜12.0μmであるのが好ましく、中でも0.38μm以上或いは9.00μm以下、その中でも0.40μm以上或いは2.00μm以下、さらにその中でも0.50μm以上或いは0.70μm以下であるのがより一層好ましい。(D90)
It is preferable that D90 of this copper powder, ie, the volume cumulative particle diameter D90 measured by a laser diffraction / scattering particle size distribution measuring apparatus, is 0.35 μm to 12.0 μm. If D90 of this copper powder is 0.35 μm or more, it is easy to prevent agglomeration when it is made into a paste because the influence of the particle surface energy is small. The dust resistance can be lowered.
Therefore, from this point of view, the D90 of the present copper powder is preferably 0.35 μm to 12.0 μm, more preferably 0.38 μm or more and 9.00 μm or less, particularly 0.40 μm or more or 2.00 μm or less, In particular, the thickness is more preferably 0.50 μm or more or 0.70 μm or less.
(D10)
本銅粉のD10、すなわちレーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D10が0.08μm〜0.30μmであるのが好ましい。本銅粉のD10が0.08μm以上であれば、導電ペーストとして混練した際に微粒粒子の凝集を防ぐことができ、0.30μm以下であれば、粒子の充填性の高い抵抗の低い導電ペーストを得ることができる。
よって、かかる観点から、本銅粉のD10は0.08μm〜0.30μmであるのが好ましく、中でも0.09μm以上或いは0.28μm以下、その中でも0.10μm以上或いは0.26μm以下、さらにその中でも0.12μm以上或いは0.20μm以下であるのがより一層好ましい。(D10)
It is preferable that D10 of this copper powder, ie, the volume cumulative particle diameter D10 measured by a laser diffraction / scattering particle size distribution measuring apparatus, is 0.08 μm to 0.30 μm. When D10 of the present copper powder is 0.08 μm or more, it is possible to prevent agglomeration of fine particles when kneaded as a conductive paste, and when it is 0.30 μm or less, the conductive paste has a high particle filling property and low resistance. Can be obtained.
Therefore, from this point of view, the D10 of the present copper powder is preferably 0.08 μm to 0.30 μm, more preferably 0.09 μm or more or 0.28 μm or less, especially 0.10 μm or more or 0.26 μm or less, In particular, the thickness is more preferably 0.12 μm or more or 0.20 μm or less.
((D90−D10)/D50)
本銅粉においては、((D90−D10)/D50)、すなわち前記D10、D50、D90の関係が、((D90−D10)/D50)=1.0〜7.0であるのが好ましい。
((D90−D10)/D50)は、粒度分布のシャープさを示す指標であるから、1.0〜7.0の範囲にあれば、粒度分布が十分にシャープであり、導電ペーストを印刷し回路を形成した際に、寸法バラつきを制御できるため、インピーダンスコントロールの優れた配線板を得るなどの利益を享受できる。
かかる観点から、本銅粉における((D90−D10)/D50)は、1.0〜7.0であるのが好ましく、中でも1.1以上或いは6.0以下、その中でも1.2以上或いは3.0以下、さらにその中でも1.3以上或いは2.0以下であるのがより一層好ましい。((D90-D10) / D50)
In this copper powder, it is preferable that ((D90-D10) / D50), that is, the relationship of D10, D50, and D90 is ((D90-D10) / D50) = 1.0 to 7.0.
((D90-D10) / D50) is an index indicating the sharpness of the particle size distribution, so if it is in the range of 1.0 to 7.0, the particle size distribution is sufficiently sharp and the conductive paste is printed. Since the variation in dimensions can be controlled when a circuit is formed, it is possible to enjoy benefits such as obtaining a wiring board with excellent impedance control.
From this point of view, ((D90-D10) / D50) in the present copper powder is preferably 1.0 to 7.0, particularly 1.1 or more, 6.0 or less, and 1.2 or more among them. 3.0 or less, more preferably 1.3 or more or 2.0 or less.
本銅粉において、((D90−D10)/D50)を1.0〜7.0の範囲に調整するには、後述するように、直流熱プラズマ(「DCプラズマ」と称する)装置を使用して原料銅粉を加熱噴射する際、プラズマガスとして、アルゴンと窒素の混合ガスを使用するのが好ましい。但し、その方法に限定するものではない。 In the present copper powder, in order to adjust ((D90-D10) / D50) to a range of 1.0 to 7.0, a direct current thermal plasma (referred to as “DC plasma”) apparatus is used as will be described later. When the raw material copper powder is heated and jetted, it is preferable to use a mixed gas of argon and nitrogen as the plasma gas. However, it is not limited to that method.
(結晶子径)
本銅粉の結晶子径に関しては、前記D50に対する結晶子径の比率(結晶子径/D50)が0.15〜0.60(μm/μm)であるのが好ましい。本銅粉の結晶子径/D50が0.15(μm/μm)以上であれば、圧粉抵抗をより一層低くすることができ、0.60(μm/μm)以下であれば、粒子形状として略球状を保つことができる。
よって、かかる観点から、本銅粉の結晶子径/D50は0.15〜0.60(μm/μm)であるのが好ましく、中でも0.20(μm/μm)以上或いは0.58(μm/μm)以下、その中でも0.22(μm/μm)以上或いは0.55(μm/μm)以下であるのがより一層好ましい。
なお、「結晶子径」とは、粉末X線回折によって得られる回折パターンを解析し、Scherrerの式によって算出される、結晶面の回折角のピークの半価幅から求められる結晶子径の平均値のことをいう。(Crystallite diameter)
Regarding the crystallite diameter of the copper powder, the ratio of crystallite diameter to D50 (crystallite diameter / D50) is preferably 0.15 to 0.60 (μm / μm). If the crystallite diameter / D50 of the present copper powder is 0.15 (μm / μm) or more, the dust resistance can be further reduced, and if it is 0.60 (μm / μm) or less, the particle shape Can maintain a substantially spherical shape.
Therefore, from this viewpoint, the crystallite diameter / D50 of the present copper powder is preferably 0.15 to 0.60 (μm / μm), and more than 0.20 (μm / μm) or 0.58 (μm). / Μm) or less, more preferably 0.22 (μm / μm) or more or 0.55 (μm / μm) or less.
The “crystallite diameter” means an average of crystallite diameters obtained by analyzing a diffraction pattern obtained by powder X-ray diffraction and calculated from a half-value width of a diffraction angle peak on a crystal plane, which is calculated by Scherrer's equation. The value.
また、本銅粉は、一次粒子の平均粒径(Dsem)に対する結晶子径の比率(結晶子径/Dsem)が0.10〜0.70(μm/μm)であるのが好ましい。本銅粉の結晶子径/Dsemが0.10(μm/μm)以上であれば、圧粉抵抗をより一層低くすることができ、0.70(μm/μm)以下であれば、粒子形状として略球状を保つことができる。
よって、かかる観点から、本銅粉の結晶子径/Dsemは0.10〜0.70(μm/μm)であるのが好ましく、中でも0.15(μm/μm)以上或いは0.60(μm/μm)以下、その中でも0.20(μm/μm)以上或いは0.50(μm/μm)以下さらにその中でも0.30(μm/μm)以上或いは0.40(μm/μm)以下、であるのがより一層好ましい。
なお、「一次粒子の平均粒径」とは、走査型電子顕微鏡(倍率10,000倍又は30,000倍)で銅粉を撮影し、各粒子の一次粒子径を球換算して計測し、得られた球換算一次粒子径の平均値の意味である。The copper powder preferably has a crystallite diameter ratio (crystallite diameter / Dsem) to an average primary particle diameter (Dsem) of 0.10 to 0.70 (μm / μm). If the crystallite diameter / Dsem of the present copper powder is 0.10 (μm / μm) or more, the dust resistance can be further reduced, and if it is 0.70 (μm / μm) or less, the particle shape Can maintain a substantially spherical shape.
Therefore, from this point of view, the crystallite diameter / Dsem of the present copper powder is preferably 0.10 to 0.70 (μm / μm), among which 0.15 (μm / μm) or more or 0.60 (μm). / Μm) or less, among which 0.20 (μm / μm) or more or 0.50 (μm / μm) or less, and among these, 0.30 (μm / μm) or more or 0.40 (μm / μm) or less. Even more preferably.
The “average particle size of primary particles” means that copper powder is photographed with a scanning electron microscope (magnification 10,000 times or 30,000 times), and the primary particle size of each particle is measured in terms of a sphere, It means the average value of the obtained sphere-converted primary particle diameter.
本銅粉の粒度及び結晶子径を上記のように調製するには、後述するように、直流熱プラズマ(「DCプラズマ」と称する)装置を使用して原料銅粉を加熱噴射する際、プラズマガスとして、アルゴンと窒素の混合ガスを使用すると共に、プラズマフレームが層流状態で太く長くなるように調整する方法を採用すればよい。但し、このような製法に限定するものではない。
通常、銅粉を微粒化すると結晶子径は小さくなるが、上記のようにDCプラズマ法において、上記のように調製すれば結晶子径を大きくすることができる。In order to adjust the particle size and crystallite size of the copper powder as described above, as described later, when the raw material copper powder is heated and jetted using a direct current thermal plasma (referred to as “DC plasma”) apparatus, plasma is used. A mixed gas of argon and nitrogen may be used as the gas, and a method of adjusting the plasma flame to be thick and long in a laminar flow state may be employed. However, it is not limited to such a manufacturing method.
Usually, when the copper powder is atomized, the crystallite size decreases. However, in the DC plasma method as described above, the crystallite size can be increased if prepared as described above.
(酸素量)
本銅粉に関しては、比表面積(SSA)に対する酸素量(O量)の割合が0.10〜0.40(wt%・g/m2)であるのが好ましい。
比表面積に対する酸素量(O量)の割合が0.10(wt%・g/m2)以上であれば、粒子形状を略球状に保つことができ、他方、0.40(wt%・g/m2)以下であれば、粒子表面の酸素濃度を低くできるため、圧粉抵抗をより一層低く保つことが可能である。
よって、かかる観点から、本銅粉の比表面積に対する酸素量(O量)の割合が0.10〜0.40(wt%・g/m2)であるのが好ましく、中でも0.15(wt%・g/m2)以上或いは0.35(wt%・g/m2)以下、その中でも0.17(wt%・g/m2)以上或いは0.30(wt%・g/m2)以下であるのがより一層好ましい。(Oxygen content)
Regarding this copper powder, it is preferable that the ratio of the oxygen amount (O amount) to the specific surface area (SSA) is 0.10 to 0.40 (wt% · g / m 2 ).
If the ratio of the oxygen amount (O amount) to the specific surface area is 0.10 (wt% · g / m 2 ) or more, the particle shape can be kept substantially spherical, while 0.40 (wt% · g / M 2 ) or less, since the oxygen concentration on the particle surface can be lowered, the dust resistance can be kept even lower.
Therefore, from this viewpoint, the ratio of the oxygen amount (O amount) to the specific surface area of the copper powder is preferably 0.10 to 0.40 (wt% · g / m 2 ), and in particular, 0.15 (wt % · G / m 2 ) or more or 0.35 (wt% · g / m 2 ) or less, among which 0.17 (wt% · g / m 2 ) or more or 0.30 (wt% · g / m 2) It is even more preferable that:
本銅粉に関して、比表面積に対する酸素量(O量)の割合を上記範囲に調整するには、上述のように、DCプラズマ装置を使用して原料銅粉を加熱噴射する際、プラズマガスとして、アルゴンと窒素の混合ガスを使用すると共に、プラズマフレームが層流状態で太く長くなるように調整するようにすればよい。但し、このような製法に限定するものではない。 Regarding the copper powder, in order to adjust the ratio of the oxygen amount (O amount) to the specific surface area within the above range, as described above, when the raw copper powder is heated and jetted using a DC plasma device, as a plasma gas, A mixed gas of argon and nitrogen may be used, and the plasma flame may be adjusted to be thick and long in a laminar flow state. However, it is not limited to such a manufacturing method.
(粒子形状)
本銅粉に関しては、粒子形状を特に限定するものではない。但し、分散性の観点から、球形状或いは略球形状であるのが好ましい。例えば、本銅粉を電子顕微鏡(例えば85000倍)で観察した際に、多くの銅粉粒子が真球状又は略真球状を呈しているのが好ましい。より具体的には、銅粉を構成する銅粉粒子の50個数%以上、中でも80個数%以上、その中でも90個数%以上、さらにその中でも95個数%以上(100個数%含む)が球状若しくは略球状であるのが好ましい。
このように、球状又は略球状の銅粉粒子を含有する銅粉であれば、特に優れた分散性を得ることができ、例えばフレーク粉と混合することにより、緻密性をより一層高めることができる。
ここで、「略球状」とは、完全な球状ではないが、球として認識可能な形状を意味するものである。(Particle shape)
With respect to the present copper powder, the particle shape is not particularly limited. However, from the viewpoint of dispersibility, a spherical shape or a substantially spherical shape is preferable. For example, when this copper powder is observed with an electron microscope (for example, 85,000 times), it is preferable that many copper powder particles have a true spherical shape or a substantially true spherical shape. More specifically, 50% by number or more of the copper powder particles constituting the copper powder, especially 80% by number or more, of which 90% by number or more, and of which 95% by number or more (including 100% by number) are spherical or substantially It is preferably spherical.
Thus, if it is copper powder containing spherical or substantially spherical copper powder particles, particularly excellent dispersibility can be obtained. For example, by mixing with flake powder, denseness can be further enhanced. .
Here, “substantially spherical” means a shape that is not completely spherical but can be recognized as a sphere.
本銅粉の粒子形状を上記のように調整するには、上述のように、DCプラズマ装置を使用して原料銅粉を加熱噴射する際、プラズマガスとして、アルゴンと窒素の混合ガスを使用すると共に、プラズマフレームが層流状態で太く長くなるように調整する方法を採用すればよい。但し、このような製法に限定するものではない。 In order to adjust the particle shape of the copper powder as described above, as described above, a mixed gas of argon and nitrogen is used as the plasma gas when the raw copper powder is heated and jetted using the DC plasma apparatus. At the same time, a method of adjusting the plasma flame to be thick and long in a laminar flow state may be employed. However, it is not limited to such a manufacturing method.
なお、本銅粉に関しては、当該球形状粒子或いは略球形状の粒子を加工してなるフレーク状粒子であるのも好ましいし、また、前記球形状或いは略球形状の粒子と該フレーク状粒子の混合品であるのも好ましい。 The copper powder is preferably a flaky particle obtained by processing the spherical particle or the substantially spherical particle, and the spherical or substantially spherical particle and the flaky particle. A mixed product is also preferred.
(成分)
本銅粉は、Cu以外に、Si、P、Ni、Ti、Fe、Co、Cr、Mg、Mn、Mo、W、Ta、In、Zr、Nb、B、Ge、Sn、Zn、Bi等のうちの少なくとも一種以上の元素成分を含有してもよい。これらを含有することにより、例えば融点を低下させて焼結性を向上させるなど、導電性ペーストに求められる諸特性を調整することができる。(component)
In addition to Cu, this copper powder is made of Si, P, Ni, Ti, Fe, Co, Cr, Mg, Mn, Mo, W, Ta, In, Zr, Nb, B, Ge, Sn, Zn, Bi, etc. You may contain the element component of at least 1 or more types of them. By containing these, various properties required for the conductive paste can be adjusted, for example, by improving the sinterability by lowering the melting point.
(圧粉抵抗)
本銅粉の圧粉抵抗は1.0×10−1Ω・cm以下、中でも5.0×10−2Ω・cm以下、その中でも1.0×10−2Ω・cm以下であるのが好ましい。本銅粉の圧粉抵抗がかかる範囲内であれば、粒子同士の接触抵抗が低く保てるために、導電性ペーストにした際の導電性に優れたものとすることができる。(Dust resistance)
The compaction resistance of the present copper powder is 1.0 × 10 −1 Ω · cm or less, especially 5.0 × 10 −2 Ω · cm or less, and among these, 1.0 × 10 −2 Ω · cm or less. preferable. Since the contact resistance between particles can be kept low as long as the powder resistance of the present copper powder is within the range, it can be made excellent in conductivity when made into a conductive paste.
本銅粉の圧粉抵抗を上記のように調整するには、上述のように、DCプラズマ装置を使用して原料銅粉を加熱噴射する際、プラズマガスとして、アルゴンと窒素の混合ガスを使用すると共に、プラズマフレームが層流状態で太く長くなるように調整するようにすればよい。但し、このような製法に限定するものではない。 In order to adjust the dust resistance of the copper powder as described above, as described above, when the raw copper powder is heated and sprayed using a DC plasma apparatus, a mixed gas of argon and nitrogen is used as the plasma gas. At the same time, the plasma flame may be adjusted to be thick and long in a laminar flow state. However, it is not limited to such a manufacturing method.
<製法>
次に、本銅粉の好ましい製造方法について説明する。<Production method>
Next, the preferable manufacturing method of this copper powder is demonstrated.
本銅粉は、DCプラズマ装置を使用して原料銅粉を加熱噴射する際、プラズマガスとして、アルゴンと窒素の混合ガスを使用すると共に、プラズマフレームが層流状態で太く長くなるように調整することで、製造することができる。但し、このような製法に限定するものではない。 This copper powder is adjusted so that the plasma flame becomes thick and long in a laminar flow state while using a mixed gas of argon and nitrogen as a plasma gas when the raw copper powder is heated and jetted using a DC plasma apparatus. Thus, it can be manufactured. However, it is not limited to such a manufacturing method.
ここで、プラズマフレームが層流状態であるか否かは、プラズマフレームを、フレーム幅が最も太く観察される側面から観察した際に、フレーム幅に対するフレーム長さの縦横比(以下、フレームアスペクト比)が3以上であるか否かによって判断することができ、フレームアスペクト比が3以上であれば層流状態、3未満であれば乱流状態と判断することができる。 Here, whether or not the plasma frame is in a laminar flow state is determined by observing the plasma frame from the side where the frame width is observed to be the thickest, the aspect ratio of the frame length to the frame width (hereinafter referred to as the frame aspect ratio). ) Is 3 or more. If the frame aspect ratio is 3 or more, a laminar flow state can be determined.
数十nmスケールに微粒化した銅粉粒子の表面酸化を防ぐために、比表面積を小さくする目的をもって、プラズマ法で数十nmよりも大きなサブミクロンオーダーの粒子を作る試みが行われているが、高周波プラズマを使った製造方法では、生成されるプラズマフレーム長に限界があり、100nm以上のサブミクロンオーダで制御された粒子を作製させることは至極困難であった。
また、湿式還元法では、サブミクロンオーダーの粒子を作成することは可能であるが、水溶液中で酸化還元反応を経て製造されるため、表面吸着水等の影響で粒子表面酸化を低減する程度に限界があり、圧粉抵抗を10−1Ω・cm≦のオーダーまで下げることは困難であった。
このような観点から、DCプラズマ装置を使用して銅粉粒子を微粒化するのが好ましい。In order to prevent surface oxidation of copper powder particles atomized to several tens of nanometers, an attempt to make submicron-order particles larger than several tens of nanometers by the plasma method has been made for the purpose of reducing the specific surface area. In the manufacturing method using high-frequency plasma, the length of the generated plasma frame is limited, and it is extremely difficult to produce particles controlled on the order of 100 nm or more in submicron order.
In addition, with the wet reduction method, it is possible to create sub-micron order particles. However, since it is manufactured through an oxidation-reduction reaction in an aqueous solution, the surface oxidation of the particles is reduced to the extent that it is affected by surface adsorbed water. There was a limit, and it was difficult to reduce the dust resistance to the order of 10 −1 Ω · cm ≦.
From such a viewpoint, it is preferable to atomize the copper powder particles using a DC plasma apparatus.
DCプラズマ装置としては、例えば図1に示すように、粉末供給装置2、チャンバー3、DCプラズマトーチ4、回収ポット5、粉末供給ノズル6、ガス供給装置7及び圧力調整装置8を備えたプラズマ装置1を挙げることができる。
この装置においては、原料粉末は、粉末供給装置2から粉末供給ノズル6を通してDCプラズマトーチ4内部を通ることになる。プラズマトーチ4には、ガス供給装置7よりアルゴンと窒素の混合ガスが供給されプラズマフレームが発生することになる。
また、DCプラズマトーチ4で発生させたプラズマフレーム内で、原料粉末はガス化され、チャンバー3に放出された後、冷却され微粉末となって回収ポット5内に蓄積回収される。
チャンバー3の内部は、圧力調整装置8によって粉末供給ノズル6よりも相対的に陰圧が保持されるように制御され、プラズマフレームを安定して発生する構造をとっている。
但し、これはDCプラズマ装置の一例であって、このような装置に限定するものではない。As the DC plasma device, for example, as shown in FIG. 1, a plasma device including a powder supply device 2, a chamber 3, a DC plasma torch 4, a recovery pot 5, a powder supply nozzle 6, a gas supply device 7, and a pressure adjustment device 8. 1 can be mentioned.
In this apparatus, the raw material powder passes through the DC plasma torch 4 from the powder supply apparatus 2 through the powder supply nozzle 6. The plasma torch 4 is supplied with a mixed gas of argon and nitrogen from the gas supply device 7 to generate a plasma flame.
Further, in the plasma flame generated by the DC plasma torch 4, the raw material powder is gasified, released into the chamber 3, cooled, and then accumulated and collected in the collection pot 5 as a fine powder.
The interior of the chamber 3 is controlled by the pressure adjusting device 8 so as to maintain a negative pressure relative to the powder supply nozzle 6 and has a structure that stably generates a plasma flame.
However, this is an example of a DC plasma apparatus, and is not limited to such an apparatus.
原料銅粉は、特に限定するものではない。但し、プラズマ噴射性の観点から、原料銅粉の粒度(D50)は3.0μm〜30μmであるのが好ましく、中でも5.0μm以上或いは15μm以下であるのがさらに好ましい。
また、原料銅粉の形状は、樹枝状、棒状、フレーク状、キュービック状、もしくは、球状乃至略球状など特に制限されるものではない。但し、プラズマトーチへの供給効率を安定化する観点からは、球状乃至略球状であるのが好ましい。The raw material copper powder is not particularly limited. However, from the viewpoint of plasma jetting property, the particle size (D50) of the raw material copper powder is preferably 3.0 μm to 30 μm, and more preferably 5.0 μm or more or 15 μm or less.
The shape of the raw material copper powder is not particularly limited, such as a dendritic shape, a rod shape, a flake shape, a cubic shape, or a spherical shape or a substantially spherical shape. However, from the viewpoint of stabilizing the supply efficiency to the plasma torch, it is preferably spherical or substantially spherical.
DCプラズマ装置を使用して原料銅粉を加熱噴射する際、プラズマガスとして、アルゴンと窒素の混合ガスを使用すると共に、プラズマフレームが層流状態で太く長くなるように調整するのが好ましい。このように調整すれば、投入した原料銅粉は、プラズマ炎中で瞬時に蒸発気化し、プラズマフレーム内で十分なエネルギーを供給することができるため、プラズマ尾炎部に向って核形成、凝集及び凝縮が生じて微粒子、中でもサブミクロンオーダーの微粒子を形成することができる。 When the raw material copper powder is heated and sprayed using a DC plasma apparatus, it is preferable to use a mixed gas of argon and nitrogen as the plasma gas and adjust the plasma flame to be thick and long in a laminar flow state. By adjusting in this way, the raw material copper powder can be instantly evaporated in the plasma flame and supply sufficient energy in the plasma flame, so that nucleation and aggregation toward the plasma tail flame part In addition, condensation occurs to form fine particles, in particular, submicron order fine particles.
上述のように、プラズマフレームが層流状態で太く長くなるように、プラズマ出力とガス流量を調整することが好ましい。かかる観点から、直流熱プラズマ装置のプラズマ出力は2kW〜30kWであるのが好ましく、中でも4kW以上或いは15kW以下であるのがさらに好ましい。また、プラズマガスのガス流量は、上述の観点から、0.1L/min〜20L/minであるのが好ましく、中でも0.5L/min以上或いは18L/min以下であるのがさらに好ましい。 As described above, it is preferable to adjust the plasma output and the gas flow rate so that the plasma flame becomes thick and long in a laminar flow state. From this point of view, the plasma output of the direct current thermal plasma apparatus is preferably 2 kW to 30 kW, and more preferably 4 kW or more or 15 kW or less. In addition, the gas flow rate of the plasma gas is preferably 0.1 L / min to 20 L / min from the above viewpoint, and more preferably 0.5 L / min or more or 18 L / min or less.
さらには、プラズマフレームを層流状態に安定的に保つには、上述のプラズマ出力、ガス流量の範囲を保ち、かつプラズマ出力(A)に対する、Arガス流量(B)とN2ガス流量(C)の和の比、計算式(B+C)/Aで算出した値(単位:L/(min・kW))が、0.50以上2.00以下とするのがより好ましい。原料粉体のガス化に必要な流速を得るためには(B+C)/A値が0.50以上とするのが好ましく、プラズマフレームを層流で安定した状態を保持するには2.00以下とするのが好ましい。
かかる加点から、(B+C)/Aが、0.70以上或いは1.70以下となるように調整するのが特に好ましく、その中でも0.75以上或いは1.50以下となるように調整するのがさらに好ましい。Furthermore, in order to stably maintain the plasma flame in a laminar flow state, the above-described plasma output and gas flow rate ranges are maintained, and the Ar gas flow rate (B) and the N 2 gas flow rate (C) with respect to the plasma output (A). ) And the value calculated by the formula (B + C) / A (unit: L / (min · kW)) is more preferably 0.50 or more and 2.00 or less. In order to obtain a flow rate necessary for gasification of the raw material powder, the (B + C) / A value is preferably 0.50 or more, and 2.00 or less in order to keep the plasma flame stable in a laminar flow. Is preferable.
From this additional point, it is particularly preferable that (B + C) / A is adjusted to be 0.70 or more or 1.70 or less, and among them, adjustment is made to be 0.75 or more or 1.50 or less. Further preferred.
熱プラズマを発生させる動作ガスとしてのプラズマガスは、上述のようにアルゴンと窒素の混合ガスを使用するのが好ましい。
ここで、アルゴンガスと窒素ガスとを混合したガスを使用すると、窒素(2原子分子)ガスにより、より大きな振動エネルギー(熱エネルギー)を銅粉粒子に付与することができ、凝集状態を均一にできるため、粒度分布がよりシャープなナノ微粒子を得ることができる。
但し、窒素の含有量が多すぎるとプラズマフレームが減退してしまい、粒度分布のシャープな粉体を得られない。
かかる観点から、プラズマガスにおけるアルゴンと窒素の割合は流量比で99:1〜10:90であるのが好ましく、中でも95:5〜60:40、その中でも95:5〜80:20であるのがさらに好ましい。また、粒度分布をシャープなものとする、言い換えれば(D90−D10)/D50をより小さくする観点からは、アルゴンと窒素の割合は、流量比で99:1〜50:50、中でも95:5〜50:50のように、窒素よりもアルゴンの流量の方が多い比率内で調整するのが好ましい。As described above, it is preferable to use a mixed gas of argon and nitrogen as the working gas for generating the thermal plasma.
Here, when a gas in which argon gas and nitrogen gas are mixed is used, larger vibration energy (thermal energy) can be imparted to the copper powder particles by the nitrogen (diatomic molecule) gas, and the aggregation state can be made uniform. Therefore, nanoparticles with a sharper particle size distribution can be obtained.
However, if the content of nitrogen is too large, the plasma flame is reduced, and a powder having a sharp particle size distribution cannot be obtained.
From this point of view, it is preferable that the ratio of argon and nitrogen in the plasma gas is 99: 1 to 10:90 in terms of flow rate ratio, especially 95: 5 to 60:40, and more preferably 95: 5 to 80:20. Is more preferable. Further, from the viewpoint of making the particle size distribution sharp, in other words, from the viewpoint of making (D90-D10) / D50 smaller, the ratio of argon to nitrogen is 99: 1 to 50:50 in flow rate ratio, especially 95: 5. It is preferable to adjust within a ratio in which the flow rate of argon is larger than that of nitrogen, such as ˜50: 50.
上記のようにして得られた銅粉は、そのままでも用いることができるが、コンタミネーションとして存在する粗大凝集粒子や異物の除去を行うためには分級するのがより望ましい。この際の分級は、適切な分級装置を用いて、目的とする粒度が中心となるように、粗粉や微粉を分離するようにすればよい。 The copper powder obtained as described above can be used as it is, but it is more desirable to classify it in order to remove coarse agglomerated particles and foreign substances present as contamination. In this classification, coarse powder and fine powder may be separated using an appropriate classifier so that the target particle size becomes the center.
(形状加工)
本銅粉は、そのまま利用することも可能であるが、本銅粉を形状加工処理した上で、利用することもできる。
例えば、球状粒子粉末(:80%以上が球状粒子からなる粉末)を、機械的に形状加工して、フレーク状、鱗片状、平板状などの非球状粒子粉末(:80%以上が非球状粒子からなる粉末)に加工することができる。
より具体的には、ビーズミル、ボールミル、アトライター、振動ミルなどを用いて機械的に偏平化加工(圧伸延または展伸)することにより、フレーク状粒子粉末(:80%以上がフレーク状粒子からなる粉末)に形状加工することができる。この際、粒子同士の凝集や結合を防止しながら各粒子を独立した状態で加工するために、例えばステアリン酸などの脂肪酸や、界面活性剤などの助剤を添加するのが好ましい。そして、このような形状加工処理した銅粉を利用することもできるし、また、形状加工しない元粉とこれとを混合して利用することもできる。(Shape processing)
Although this copper powder can be used as it is, it can also be used after the copper powder is subjected to shape processing.
For example, a spherical particle powder (powder consisting of 80% or more of spherical particles) is mechanically processed into non-spherical particle powders such as flakes, scales, and flat plates (: 80% or more of non-spherical particles) Powder).
More specifically, flaky particle powder (: 80% or more from flaky particles) is mechanically flattened (rolled or stretched) using a bead mill, ball mill, attritor, vibration mill or the like. Shape powder). At this time, in order to process each particle independently while preventing aggregation and bonding of the particles, it is preferable to add a fatty acid such as stearic acid or an auxiliary agent such as a surfactant. And the copper powder which carried out such shape processing can also be utilized, and the original powder which is not shape-processed and this can also be mixed and utilized.
<用途>
本銅粉は、単独で、或いは、フレーク粉などの他の銅粉と混合して、例えば樹脂硬化型導電性ペースト及び焼成型導電性ペーストのいずれに用いる導電フィラーとしても好適である。
また、本銅粉を用いたペーストから塗布膜を作製すれば、導電性が高く、平滑性の高い塗膜を作製することができる。これは、本銅粉が、結晶性が非常に高いため、電気伝導の阻害因子や酸化凝集の誘発因子となり得る結晶粒界が少ないという特徴に起因するものと考えられる。
よって、本銅粉単独、或いは、本銅粉とフレーク粉などの他の銅粉と混合して、例えばエポキシ樹脂等の熱硬化性樹脂からなる有機バインダーに配合して樹脂硬化型導電性ペーストを調製することもできる。また、本銅粉単独、或いは、本銅粉とフレーク粉などの他の銅粉と混合して、有機ビヒクル中に配合して焼成型導電性ペーストを調製することもできる。<Application>
The present copper powder is suitable as a conductive filler used alone or in combination with other copper powder such as flake powder, for example, in either a resin-cured conductive paste or a fired conductive paste.
Moreover, if a coating film is produced from the paste using this copper powder, a coating film having high conductivity and high smoothness can be produced. This is thought to be due to the fact that the present copper powder has very high crystallinity, so that there are few crystal grain boundaries that can be an inhibitor of electrical conduction or an inducer of oxidative aggregation.
Therefore, this copper powder alone or mixed with other copper powder such as this copper powder and flake powder, and blended with an organic binder made of a thermosetting resin such as epoxy resin, for example, to give a resin-curable conductive paste It can also be prepared. Alternatively, the present copper powder alone or mixed with other copper powder such as the present copper powder and flake powder and blended in an organic vehicle to prepare a fired conductive paste.
本銅粉或いは本銅粉を含んだ混合粉を、導電フィラーとして用いた導電性ペーストは、例えばスクリーン印刷アディティブ法による導体回路形成用や、積層セラミックコンデンサの外部電極用等の各種電気的接点部材用の導電性ペーストとして好適に使用することができる。 The conductive paste using the present copper powder or mixed powder containing the present copper powder as a conductive filler is, for example, various electrical contact members for forming a conductive circuit by a screen printing additive method or for an external electrode of a multilayer ceramic capacitor. It can be suitably used as a conductive paste.
その他、本銅粉或いは本銅粉を含んだ混合粉は、積層セラミックコンデンサの内部電極、インダクタやレジスター等のチップ部品の電極、単板コンデンサ電極、タンタルコンデンサ電極、樹脂多層基板の導体回路、セラミック(LTCC)多層基板の導体回路や、フレキブルプリント基板(FPC)の導体回路、アンテナスイッチモジュール回路、PAモジュール回路や高周波アクティブフィルター等のモジュール回路、PDP前面板及び背面板やPDPカラーフィルター用電磁遮蔽フィルム、結晶型太陽電池表面電極及び背面引き出し電極、導電性接着剤、EMIシールド、RF−ID、及びPCキーボード等のメンブレンスイッチ、異方性導電膜(ACF/ACP)、電子部品や半導体の接合部材、回路修復用ペースト等の導電材として使用可能である。 In addition, this copper powder or mixed powder containing this copper powder is used for internal electrodes of multilayer ceramic capacitors, electrodes of chip components such as inductors and resistors, single plate capacitor electrodes, tantalum capacitor electrodes, conductor circuits of resin multilayer boards, ceramics (LTCC) Conductor circuit of multilayer substrate, flexible printed circuit board (FPC) conductor circuit, antenna switch module circuit, module circuit such as PA module circuit and high frequency active filter, electromagnetic wave for PDP front and back plates and PDP color filter Shielding film, crystalline solar cell surface electrode and back lead electrode, conductive adhesive, EMI shield, RF-ID, membrane switch such as PC keyboard, anisotropic conductive film (ACF / ACP), electronic component and semiconductor As conductive materials such as bonding materials and circuit repair paste It is possible to use.
<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.
以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。 Hereinafter, the present invention will be further described in detail based on the following examples and comparative examples.
<実施例1>
本実施例では、DCプラズマ微粉製造装置を用いて下記に従い銅粉を製造した。
原料粉末供給口から、原料粉として銅粉(粒径10μm、球状粒子)を導入して、10g/分の原料供給量で、Ar流量13.0L/分及びN2流量0.7L/分をプラズマガスとしてプラズマフレーム(言い換えればプラズマ炎)の内部に供給した。この際、Ar流量(B)とN2流量(C)との比は95:5であった。また、プラズマ出力は10.0kWであり、プラズマ出力(A)、Ar流量(B)及びN2流量を調整して、(B+C)/A=1.37(L/(min・kW))とした。
このようにして得られた銅粉は、回収ポットに蓄積され、作製バッチを緩やかに大気開放した後、銅粉(サンプル)を回収した。<Example 1>
In this example, copper powder was produced according to the following using a DC plasma fine powder production apparatus.
Copper powder (particle size: 10 μm, spherical particles) is introduced as a raw material powder from the raw material powder supply port, and at a raw material supply rate of 10 g / min, an Ar flow rate of 13.0 L / min and an N 2 flow rate of 0.7 L / min Plasma gas was supplied to the inside of the plasma flame (in other words, plasma flame). At this time, the ratio of the Ar flow rate (B) to the N 2 flow rate (C) was 95: 5. The plasma output is 10.0 kW, and the plasma output (A), the Ar flow rate (B), and the N 2 flow rate are adjusted so that (B + C) /A=1.37 (L / (min · kW)) did.
The copper powder thus obtained was accumulated in a collection pot, and after the production batch was gently opened to the atmosphere, the copper powder (sample) was collected.
上記製造方法において、生成されたプラズマフレーム(言い換えればプラズマ炎)に関し、フレーム幅が最も太く観察される側面から該プラズマフレームを写真撮影し、二値化して、フレーム幅に対するフレーム長さの縦横比(フレームアスペクト比)を測定した(後述する実施例・比較例も同様。その結果、生成されたプラズマフレームのフレームアスペクト比が4であり、層流であることが確認された。 In the above manufacturing method, with respect to the generated plasma frame (in other words, a plasma flame), the plasma frame is photographed from the side where the frame width is observed to be the thickest, binarized, and the aspect ratio of the frame length to the frame width (Frame aspect ratio) was measured (the same applies to Examples and Comparative Examples described later. As a result, it was confirmed that the generated plasma flame had a frame aspect ratio of 4 and was laminar.
<実施例2>
実施例1において、プラズマ出力(A)、Ar流量(B)及びN2流量(C)をそれぞれ表1に示すように調整し、Ar流量(B)とN2流量(C)とのガス比を90:10に変更した以外は、実施例1と同様に銅粉(サンプル)を得た。この時、生成されたプラズマフレームは、フレームアスペクト比が5であり、層流であった。<Example 2>
In Example 1, the plasma output (A), the Ar flow rate (B), and the N 2 flow rate (C) were adjusted as shown in Table 1, respectively, and the gas ratio between the Ar flow rate (B) and the N 2 flow rate (C) was adjusted. Was changed to 90:10, and copper powder (sample) was obtained in the same manner as in Example 1. At this time, the generated plasma flame had a flame aspect ratio of 5 and was a laminar flow.
<実施例3>
実施例1において、プラズマ出力(A)、Ar流量(B)及びN2流量(C)をそれぞれ表1に示すように調整し、Ar流量(B)とN2流量(C)とのガス比を85:15とした以外は、実施例1と同様に銅粉(サンプル)を得た。この時、生成されたプラズマフレームは、フレームアスペクト比が7であり、層流であった。<Example 3>
In Example 1, the plasma output (A), the Ar flow rate (B), and the N 2 flow rate (C) were adjusted as shown in Table 1, respectively, and the gas ratio between the Ar flow rate (B) and the N 2 flow rate (C) was adjusted. A copper powder (sample) was obtained in the same manner as in Example 1 except that the ratio was 85:15. At this time, the generated plasma flame had a flame aspect ratio of 7, and was a laminar flow.
<実施例4>
実施例1において、プラズマ出力(A)、Ar流量(B)及びN2流量(C)をそれぞれ表1に示すように調整し、Ar流量(B)とN2流量(C)とのガス比を80:20とした以外は、実施例1と同様に銅粉(サンプル)を得た。この時、生成されたプラズマフレームは、フレームアスペクト比が8であり、層流であった。<Example 4>
In Example 1, the plasma output (A), the Ar flow rate (B), and the N 2 flow rate (C) were adjusted as shown in Table 1, respectively, and the gas ratio between the Ar flow rate (B) and the N 2 flow rate (C) was adjusted. A copper powder (sample) was obtained in the same manner as in Example 1 except that the ratio was 80:20. At this time, the generated plasma flame had a flame aspect ratio of 8 and was a laminar flow.
<実施例5>
実施例1において、プラズマ出力(A)、Ar流量(B)及びN2流量(C)をそれぞれ表1に示すように調整し、Ar流量(B)とN2流量(C)とのガス比を70:30とした以外は、実施例1と同様に銅粉(サンプル)を得た。この時、生成されたプラズマフレームは、フレームアスペクト比が7であり、層流であった。<Example 5>
In Example 1, the plasma output (A), the Ar flow rate (B), and the N 2 flow rate (C) were adjusted as shown in Table 1, respectively, and the gas ratio between the Ar flow rate (B) and the N 2 flow rate (C) was adjusted. A copper powder (sample) was obtained in the same manner as in Example 1 except that the ratio was set to 70:30. At this time, the generated plasma flame had a flame aspect ratio of 7, and was a laminar flow.
<実施例6>
実施例1において、プラズマ出力(A)、Ar流量(B)及びN2流量(C)をそれぞれ表1に示すように調整し、Ar流量(B)とN2流量(C)とのガス比を60:40とした以外は、実施例1と同様に銅粉(サンプル)を得た。この時、生成されたプラズマフレームは、フレームアスペクト比が6であり、層流であった。<Example 6>
In Example 1, the plasma output (A), the Ar flow rate (B), and the N 2 flow rate (C) were adjusted as shown in Table 1, respectively, and the gas ratio between the Ar flow rate (B) and the N 2 flow rate (C) was adjusted. A copper powder (sample) was obtained in the same manner as in Example 1 except that the ratio was set to 60:40. At this time, the generated plasma flame had a flame aspect ratio of 6 and was a laminar flow.
<実施例7>
実施例1において、プラズマ出力(A)、Ar流量(B)及びN2流量(C)をそれぞれ表1に示すように調整し、Ar流量(B)とN2流量(C)とのガス比を40:60とした以外は、実施例1と同様に銅粉(サンプル)を得た。この時、生成されたプラズマフレームは、フレームアスペクト比が4であり、層流であった。<Example 7>
In Example 1, the plasma output (A), the Ar flow rate (B), and the N 2 flow rate (C) were adjusted as shown in Table 1, respectively, and the gas ratio between the Ar flow rate (B) and the N 2 flow rate (C) was adjusted. A copper powder (sample) was obtained in the same manner as in Example 1 except that the ratio was 40:60. At this time, the generated plasma flame had a flame aspect ratio of 4 and was a laminar flow.
<実施例8>
実施例1において、プラズマ出力(A)、Ar流量(B)及びN2流量(C)をそれぞれ表1に示すように調整し、Ar流量(B)とN2流量(C)とのガス比を10:90とした以外は、実施例1と同様に銅粉(サンプル)を得た。この時、生成されたプラズマフレームは、フレームアスペクト比が3であり、層流であった。<Example 8>
In Example 1, the plasma output (A), the Ar flow rate (B), and the N 2 flow rate (C) were adjusted as shown in Table 1, respectively, and the gas ratio between the Ar flow rate (B) and the N 2 flow rate (C) was adjusted. A copper powder (sample) was obtained in the same manner as in Example 1 except that the ratio was 10:90. At this time, the generated plasma flame had a flame aspect ratio of 3 and was a laminar flow.
<比較例1>
実施例1において、プラズマ出力(A)、Ar流量(B)及びN2流量(C)をそれぞれ表1に示すように調整し、Ar流量(B)とN2流量(C)とのガス比率を100:0に変更した以外は、実施例1と同様に銅粉(サンプル)を得た。
この際、生成されたプラズマフレームは乱流であり、フレームが左右に揺れた不安定な状態であった。<Comparative Example 1>
In Example 1, the plasma output (A), the Ar flow rate (B), and the N 2 flow rate (C) were adjusted as shown in Table 1, respectively, and the gas ratio between the Ar flow rate (B) and the N 2 flow rate (C). A copper powder (sample) was obtained in the same manner as in Example 1 except that was changed to 100: 0.
At this time, the generated plasma flame was turbulent and was in an unstable state in which the flame shook from side to side.
<比較例2>
湿式還元法により、次のように銅粉(サンプル)を得た。
65℃の純水6.5Lに、硫酸銅五水和物を、銅の濃度が3.7mol/Lとなるように添加して攪拌後、さらに銅1モルに対して0.61mmolのピロリン酸ナトリウムを添加し、このまま30分攪拌を続け、銅含有水溶液を得た。
この水溶液を攪拌した状態で、該水溶液に銅1モルに対して0.88molのアンモニア水と銅1モルに対して0.87molの水酸化ナトリウムを同時に添加して液中に酸化第二銅を生成させた。そして引き続き30分攪拌した。
次に、銅1モルに対して1.17molのヒドラジン及び銅1モルに対して0.40molのアンモニア水を添加して第1の還元反応を行い、酸化銅第二銅を酸化第一銅に還元させた。そして引き続き30分間攪拌した。
次に、液中に銅1モルに対して0.39molのヒドラジンを添加して第2の還元反応を行い、酸化第一銅を銅に還元させた。引き続き1時間攪拌を行って反応を終了させた。反応終了後、得られたスラリーを、ヌッチェを用いて濾過し、次いで純水で洗浄し、更に真空状態で70℃で5時間乾燥した後、緩やかに大気雰囲気に戻して目的とする銅粒子を得た。<Comparative Example 2>
Copper powder (sample) was obtained by the wet reduction method as follows.
To 6.5 L of pure water at 65 ° C., copper sulfate pentahydrate was added and stirred so that the concentration of copper was 3.7 mol / L, and then 0.61 mmol of pyrophosphoric acid with respect to 1 mol of copper. Sodium was added and stirring was continued for 30 minutes to obtain a copper-containing aqueous solution.
While stirring this aqueous solution, 0.88 mol of ammonia water with respect to 1 mol of copper and 0.87 mol of sodium hydroxide with respect to 1 mol of copper were simultaneously added to the aqueous solution, and cupric oxide was added to the solution. Generated. Subsequently, the mixture was stirred for 30 minutes.
Next, 1.17 mol of hydrazine is added to 1 mol of copper and 0.40 mol of ammonia water is added to 1 mol of copper to perform a first reduction reaction, and cupric oxide is converted into cuprous oxide. Reduced. Subsequently, the mixture was stirred for 30 minutes.
Next, 0.39 mol of hydrazine was added to 1 mol of copper in the liquid to perform a second reduction reaction, and cuprous oxide was reduced to copper. Subsequently, stirring was performed for 1 hour to complete the reaction. After completion of the reaction, the resulting slurry is filtered using a Nutsche, then washed with pure water, further dried in a vacuum at 70 ° C. for 5 hours, and then gently returned to the atmosphere to obtain the desired copper particles. Obtained.
<銅粉(サンプル)の評価>
実施例および比較例で得られた銅粉(サンプル)に関して、以下に示す方法で諸特性を評価した。<Evaluation of copper powder (sample)>
With respect to the copper powder (sample) obtained in Examples and Comparative Examples, various characteristics were evaluated by the following methods.
(1)粒子形状の観察
実施例・比較例で得た銅粉(サンプル)を、走査型電子顕微鏡(2,000倍)にて、任意の10視野において、それぞれ500個の粒子の形状を観察し、80個数%を占める形状が観察された場合、その形状を表2に示した。(1) Observation of particle shape The shape of 500 particles of each of the copper powders (samples) obtained in Examples and Comparative Examples was observed with a scanning electron microscope (2,000 times) in 10 arbitrary fields of view. When a shape occupying 80% by number was observed, the shape is shown in Table 2.
(2)一次粒子の平均粒径Dsem
実施例・比較例で得た銅粉(サンプル)を、走査型電子顕微鏡(倍率10,000倍又は30,000倍)を撮影し、視野中の任意の200個の粒子の一次粒子径を、画像解析ソフトにより球換算して計測し、得られた球換算一次粒子径の該200個の平均値を「一次粒子の平均粒径Dsem(μm)」とした。(2) Average particle diameter Dsem of primary particles
The copper powder (sample) obtained in Examples / Comparative Examples was photographed with a scanning electron microscope (magnification 10,000 times or 30,000 times), and the primary particle diameter of any 200 particles in the field of view, The average value of the 200 sphere-converted primary particle diameters obtained by sphere conversion using image analysis software was defined as “average particle diameter Dsem (μm) of primary particles”.
(3)粒度分布
銅粉(サンプル)0.2gを純水100ml中に入れて超音波を照射して(3分間)分散させた後、レーザー回折・散乱式粒度分布測定装置(日機装株式会社製「マイクロトラック(商品名)FRA(型番)」)により、体積累積粒径D10、D50及びD90を測定した。(3) Particle size distribution After 0.2g of copper powder (sample) is put into 100ml of pure water and irradiated with ultrasonic waves (for 3 minutes) and dispersed, a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd.) The volume cumulative particle diameters D10, D50, and D90 were measured by “Microtrack (trade name) FRA (model number)”.
(4)結晶子径
(株)リガク製のRINT−TTRIIIを用いて銅粉のX線回折測定より得られた(111)面の回折ピークを解析し、シェラー(Scherrer)法によって結晶子径(nm)を算出した。(4) Crystallite diameter The diffraction peak of (111) plane obtained by X-ray diffraction measurement of copper powder was analyzed using RINT-TTRIII manufactured by Rigaku Corporation, and the crystallite diameter (Scherrer method) nm).
(5)BET比表面積(SSA)
ユアサアイオニクス(株)製のモノソーブ(商品名)を用いて、JISR1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2流動法の(3.5)一点法」に準拠して、BET比表面積(SSA)の測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。(5) BET specific surface area (SSA)
Using monosorb (trade name) manufactured by Yuasa Ionics Co., Ltd., “6.2 Flow Method (3.5)” in JIS R1626-1996 (Method for Measuring Specific Surface Area by Gas Adsorption BET Method of Fine Ceramics Powder) The BET specific surface area (SSA) was measured according to “one-point method”. At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used.
(6)酸素・窒素量
酸素・窒素分析装置(株式会社堀場製作所製「EMGA−520(型番)」)を用いて銅粉(サンプル)の酸素量及び窒素量を分析した。(6) Oxygen / Nitrogen Content The oxygen content and the nitrogen content of the copper powder (sample) were analyzed using an oxygen / nitrogen analyzer (“EMGA-520 (model number)” manufactured by Horiba, Ltd.).
(7)圧粉抵抗
圧粉抵抗測定システム(三菱化学アナリティック社製 PD−41)と抵抗率測定器(三菱化学アナリティック社製 MCP−T600)を用いて圧粉抵抗値を測定した。
銅粉(サンプル)5gをプローブシリンダへ投入し、プローブユニットをPD−41へセットした。油圧ジャッキによって18kNの荷重をかけたときの抵抗値を、抵抗率測定器を用いて測定した。測定した抵抗値と試料厚みから、体積抵抗率(圧粉抵抗)を算出した。(7) Powder resistance The dust resistance value was measured using a powder resistance measurement system (PD-41 manufactured by Mitsubishi Chemical Analytic Co.) and a resistivity meter (MCP-T600 manufactured by Mitsubishi Chemical Analytic Co.).
5 g of copper powder (sample) was put into the probe cylinder, and the probe unit was set on PD-41. The resistance value when a load of 18 kN was applied by a hydraulic jack was measured using a resistivity meter. From the measured resistance value and sample thickness, the volume resistivity (dust resistance) was calculated.
(8) 塗膜の導電性評価
=導電性評価用ペースト調整=
銅粉20gと、エチルセルロースポリマー(日新化成社製エトセル)0.3gと、テルピネオール3.7gとを秤量し、ヘラで予備混練した後、自転・公転真空ミキサー(シンキー社製 ARE−500)を用いて、撹拌モード(1000rpm×1分間)と脱泡モード(2000rpm×30秒間)を1サイクルとした処理を2サイクル行い、ペーストとした。このペーストを、さらに3本ロールミルを用いて合計5回処理することで更に分散混合を行い、ペーストAを調製した。(8) Conductivity evaluation of coating film = Paste adjustment for conductivity evaluation =
After weighing 20 g of copper powder, 0.3 g of ethyl cellulose polymer (Etocel manufactured by Nisshin Kasei Co., Ltd.) and 3.7 g of terpineol, and pre-kneading with a spatula, a rotating / revolving vacuum mixer (ARE-500 manufactured by Shinky Corporation) was used. The paste was subjected to 2 cycles of treatment with 1 cycle of stirring mode (1000 rpm × 1 minute) and defoaming mode (2000 rpm × 30 seconds) to obtain a paste. This paste was further processed 5 times in total using a 3 roll mill to further disperse and mix to prepare paste A.
=導電性評価用塗膜形成=
このようにして調製したペーストAを、アプリケーターを用いて、ギャップを35μmでスライドガラス基板上に塗布した。その後、窒素オーブンで150℃10分間加熱乾燥した後、さらに窒素オーブンで300℃で1時間焼成し、塗膜を作製した。= Conductivity evaluation coating film formation =
The paste A thus prepared was applied onto a slide glass substrate with an gap of 35 μm using an applicator. Then, after heat-drying at 150 degreeC for 10 minute (s) in nitrogen oven, it further baked at 300 degreeC for 1 hour in nitrogen oven, and produced the coating film.
=体積抵抗率の測定=
抵抗率計(三菱化学アナリテック社製 ロレスタGP:MCP−T610)及びプローブ(日置電機社製 QPP)を使用し、四探針法にて、塗膜の体積抵抗率(Ω・cm)を測定した。この時、膜厚は膜厚ゲージにて測定した値を用いた。
この体積抵抗率(Ω・cm)の値に基づき、下記の通りの判定を行った。
AA:1×10−5未満 (最良)
A :1×10−5以上かつ1×10−4未満(良)
B :1×10−4以上 (不良)= Measurement of volume resistivity =
Using a resistivity meter (Loresta GP manufactured by Mitsubishi Chemical Analytech Co., Ltd .: MCP-T610) and a probe (QPP manufactured by Hioki Electric Co., Ltd.), the volume resistivity (Ω · cm) of the coating film is measured by the four-probe method. did. At this time, the value measured with the film thickness gauge was used for the film thickness.
Based on the value of the volume resistivity (Ω · cm), the following determination was performed.
AA: less than 1 × 10 −5 (best)
A: 1 × 10 −5 or more and less than 1 × 10 −4 (good)
B: 1 × 10 −4 or more (defect)
(9) 塗膜の平滑性評価
=平滑性評価用のペースト調整=
銅粉20gと、エチルセルロースポリマー(日新化成社製 エトセル)1.9gと、テルピネオール11.7gとを秤量した以外は上記ペーストAと同じ方法を採用した。(これにより得られたペーストを、ペーストBと称する。)(9) Coating film smoothness evaluation = Paste adjustment for smoothness evaluation =
The same method as the paste A was adopted except that 20 g of copper powder, 1.9 g of ethyl cellulose polymer (Ethcel, manufactured by Nisshin Kasei Co., Ltd.) and 11.7 g of terpineol were weighed. (The paste thus obtained is referred to as paste B.)
=平滑性評価用の塗膜形成=
上記のペーストBを、アプリケーターを用いて、ギャップを35μmでスライドガラス基板上に塗布した。その後、窒素オーブンで150℃10分間加熱乾燥して平滑性評価用の塗膜を得た。= Formation of coating film for smoothness evaluation =
The paste B was applied on a slide glass substrate using an applicator with a gap of 35 μm. Then, the coating film for smoothness evaluation was obtained by heating and drying in a nitrogen oven at 150 ° C. for 10 minutes.
=表面粗さの測定=
上記の塗膜をJIS B 0601−1982に準拠し表面粗さ計(東京精密社製 サーフコム480B−12)を用いて、中心線平均粗さRa(μm)を測定した。
また、この中心線平均粗さRa(μm)の値から、下記の通り判定を行った。
AA:0.1未満 (最良)
A :0.1以上0.2未満 (良)
B :0.2以上 (不良)= Surface roughness measurement =
The center line average roughness Ra (μm) of the above-mentioned coating film was measured using a surface roughness meter (Surfcom 480B-12, manufactured by Tokyo Seimitsu Co., Ltd.) according to JIS B 0601-1982.
Moreover, the following determination was performed from the value of this center line average roughness Ra (micrometer).
AA: less than 0.1 (best)
A: 0.1 or more and less than 0.2 (good)
B: 0.2 or more (defect)
=総合評価=
上述した塗膜の導電性及び平滑性について、下記の基準で総合判定を行った。
AA:導電性及び平滑性ともにAA (最良)
A :導電性及び平滑性ともにA以上 (良)
B :導電性または平滑性がB (不良)= Comprehensive evaluation =
About the electroconductivity and smoothness of the coating film mentioned above, the comprehensive determination was performed on the following reference | standard.
AA: AA (best) for both conductivity and smoothness
A: Both conductivity and smoothness are A or more (good)
B: conductivity or smoothness is B (defect)
上記実施例の結果並びにこれまで発明者が行ってきた試験結果から、実施例の銅粉は、D50に対する結晶子径の比率(結晶子径/D50)が0.15〜0.60(μm/μm)というように結晶子径が大きく、D50が0.20μm〜0.70μmであるという微粒銅粉であっても結晶子径が大きいため、これらの銅粉を用いた導電ペーストは塗膜の導電性及び平滑性に優れることがわかった。 From the results of the above examples and the test results conducted by the inventors so far, the copper powder of the examples has a ratio of crystallite diameter to D50 (crystallite diameter / D50) of 0.15 to 0.60 (μm / Even if the fine copper powder has a large crystallite diameter such as (μm) and D50 is 0.20 μm to 0.70 μm, the crystallite diameter is large. It turned out that it is excellent in electroconductivity and smoothness.
1:プラズマ装置、2:粉末供給装置、3:チャンバー、4:DCプラズマトーチ、5:回収ポット、6:粉末供給ノズル、7:ガス供給装置、8:圧力調整装置 1: Plasma device, 2: Powder supply device, 3: Chamber, 4: DC plasma torch, 5: Recovery pot, 6: Powder supply nozzle, 7: Gas supply device, 8: Pressure adjustment device
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015515066A JP5826435B1 (en) | 2014-02-14 | 2015-01-21 | Copper powder |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014026198 | 2014-02-14 | ||
JP2014026198 | 2014-02-14 | ||
JP2015515066A JP5826435B1 (en) | 2014-02-14 | 2015-01-21 | Copper powder |
PCT/JP2015/051512 WO2015122251A1 (en) | 2014-02-14 | 2015-01-21 | Copper powder |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015160813A Division JP5937730B2 (en) | 2014-02-14 | 2015-08-18 | Method for producing copper powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5826435B1 true JP5826435B1 (en) | 2015-12-02 |
JPWO2015122251A1 JPWO2015122251A1 (en) | 2017-03-30 |
Family
ID=53799999
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015515066A Active JP5826435B1 (en) | 2014-02-14 | 2015-01-21 | Copper powder |
JP2015160813A Active JP5937730B2 (en) | 2014-02-14 | 2015-08-18 | Method for producing copper powder |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015160813A Active JP5937730B2 (en) | 2014-02-14 | 2015-08-18 | Method for producing copper powder |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP5826435B1 (en) |
KR (1) | KR101671324B1 (en) |
CN (1) | CN105705276B (en) |
TW (1) | TWI580800B (en) |
WO (1) | WO2015122251A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6762718B2 (en) * | 2016-01-05 | 2020-09-30 | Dowaエレクトロニクス株式会社 | Surface-treated copper powder and its manufacturing method |
JP2017179428A (en) * | 2016-03-29 | 2017-10-05 | Dowaエレクトロニクス株式会社 | Conductive material, forming method of conducive film, circuit board, semiconductor device, and manufacturing method of semiconductor device |
JP2017218633A (en) * | 2016-06-08 | 2017-12-14 | 積水化学工業株式会社 | Production method of composite particle |
JP6130616B1 (en) * | 2017-02-07 | 2017-05-17 | 大陽日酸株式会社 | Copper fine particles, production method thereof, and sintered body |
JP6812615B2 (en) | 2017-03-24 | 2021-01-13 | 大陽日酸株式会社 | Copper fine particles, method for producing copper fine particles, and method for producing sintered body |
CN110325303B (en) * | 2017-03-31 | 2022-01-11 | 三井金属矿业株式会社 | Copper particles and method for producing same |
JP7194544B2 (en) * | 2017-10-03 | 2022-12-22 | 三井金属鉱業株式会社 | Particle manufacturing method |
WO2020027874A2 (en) * | 2018-03-05 | 2020-02-06 | Global Advanced Metals Usa, Inc. | Spherical tantalum powder, products containing the same, and methods of making the same |
JP6787364B2 (en) * | 2018-05-16 | 2020-11-18 | 株式会社村田製作所 | Conductive paste |
JP6884729B2 (en) * | 2018-05-23 | 2021-06-09 | 大陽日酸株式会社 | Joining material and manufacturing method of joining material |
JP7374932B2 (en) * | 2019-01-28 | 2023-11-07 | 三井金属鉱業株式会社 | Metal particles, magnetic paste using the same, powder magnetic core and inductor, and method for producing metal particles |
JP6738460B1 (en) * | 2019-04-24 | 2020-08-12 | 東邦チタニウム株式会社 | Method for producing copper powder |
JP6738459B1 (en) * | 2019-04-24 | 2020-08-12 | 東邦チタニウム株式会社 | Method for producing copper powder |
JP2021051913A (en) * | 2019-09-25 | 2021-04-01 | Dowaエレクトロニクス株式会社 | Joint material, method for manufacturing joint material, joining method, and semiconductor device |
JP6704083B1 (en) * | 2019-11-22 | 2020-06-03 | 東邦チタニウム株式会社 | Copper powder and its manufacturing method |
JP7490528B2 (en) * | 2020-01-10 | 2024-05-27 | 東邦チタニウム株式会社 | Copper Powder |
US11980935B2 (en) | 2020-03-31 | 2024-05-14 | Mitsui Mining & Smelting Co., Ltd. | Copper particles and method for producing same |
WO2022185600A1 (en) * | 2021-03-02 | 2022-09-09 | 三井金属鉱業株式会社 | Conductive composition, conductive member, and method for producing same |
CN115188589B (en) * | 2021-04-02 | 2023-08-01 | 北京元六鸿远电子科技股份有限公司 | Copper external electrode slurry for MLCC printing |
WO2023074827A1 (en) * | 2021-10-28 | 2023-05-04 | 三井金属鉱業株式会社 | Copper particles and method for producing same |
KR20240041514A (en) * | 2022-09-23 | 2024-04-01 | 주식회사 화인세라텍 | Multilayer ceramic substrate, and method for manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001089803A (en) * | 1999-09-20 | 2001-04-03 | Sakai Chem Ind Co Ltd | Method of fabricating fine spherical metal powder |
JP2005133119A (en) * | 2003-10-28 | 2005-05-26 | Mitsui Mining & Smelting Co Ltd | Double layer-coated metal powder, method of producing the double layer-coated metal powder, and electrically conductive paste obtained by using the double layer-coated metal powder |
JP2005154861A (en) * | 2003-11-27 | 2005-06-16 | Mitsui Mining & Smelting Co Ltd | Double layer-coated copper powder, method of producing the double layer-coated copper powder, and electrically conductive paste using the double layer-coated copper powder |
JP2010018880A (en) * | 2008-04-01 | 2010-01-28 | Dowa Electronics Materials Co Ltd | Copper powder for conductive paste, and method for producing the same |
JP2014034697A (en) * | 2012-08-08 | 2014-02-24 | Furukawa Co Ltd | Method for producing copper fine particle, conductive paste and method for producing conductive paste |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6156209A (en) * | 1984-08-27 | 1986-03-20 | Natl Res Inst For Metals | Production of ultrafine noble metal particle |
JP3254278B2 (en) * | 1992-12-09 | 2002-02-04 | 高周波熱錬株式会社 | Method for producing mixed / composite ultrafine particles and apparatus for producing the same |
JP2002220601A (en) * | 2001-01-29 | 2002-08-09 | Hitachi Metals Ltd | Production method for low oxygen spherical metal powder using dc thermal plasma processing |
JP4204849B2 (en) | 2002-11-12 | 2009-01-07 | Dowaエレクトロニクス株式会社 | Production method of fine copper powder |
JP4145127B2 (en) * | 2002-11-22 | 2008-09-03 | 三井金属鉱業株式会社 | Flake copper powder, method for producing the flake copper powder, and conductive paste using the flake copper powder |
JP4868716B2 (en) * | 2004-04-28 | 2012-02-01 | 三井金属鉱業株式会社 | Flake copper powder and conductive paste |
JP2006169559A (en) * | 2004-12-14 | 2006-06-29 | Sumitomo Metal Mining Co Ltd | Copper alloy fine-particle and method for producing the same |
JP5144022B2 (en) | 2006-03-24 | 2013-02-13 | 三井金属鉱業株式会社 | Copper powder manufacturing method and copper powder obtained by the manufacturing method |
JP4687599B2 (en) * | 2006-07-26 | 2011-05-25 | 住友金属鉱山株式会社 | Copper fine powder, method for producing the same, and conductive paste |
JP5052291B2 (en) | 2006-11-02 | 2012-10-17 | 株式会社日清製粉グループ本社 | Alloy fine particles and method for producing the same |
JP4697643B2 (en) * | 2009-09-07 | 2011-06-08 | 福田金属箔粉工業株式会社 | Aggregate of electrolytic copper powder and method for producing the electrolytic copper powder |
KR101143890B1 (en) * | 2009-12-18 | 2012-05-11 | 인하대학교 산학협력단 | Preparation method of copper nano powder using transfeered arc or non-transferred arc plasma system |
JP2012067327A (en) | 2010-09-21 | 2012-04-05 | Mitsui Mining & Smelting Co Ltd | Copper powder for conductive paste, and conductive paste |
JP2012126942A (en) * | 2010-12-14 | 2012-07-05 | Jx Nippon Mining & Metals Corp | Fine spherical copper powder and method for producing the same |
TWI544977B (en) * | 2011-09-09 | 2016-08-11 | 同和電子科技有限公司 | Copper powder for conductive paste and method for producing same |
JP2014001443A (en) * | 2012-06-21 | 2014-01-09 | Kyoritsu Kagaku Sangyo Kk | Oxide coated copper fine particle and production method of the same |
-
2015
- 2015-01-21 KR KR1020167009321A patent/KR101671324B1/en active IP Right Grant
- 2015-01-21 CN CN201580002507.3A patent/CN105705276B/en active Active
- 2015-01-21 JP JP2015515066A patent/JP5826435B1/en active Active
- 2015-01-21 WO PCT/JP2015/051512 patent/WO2015122251A1/en active Application Filing
- 2015-02-10 TW TW104104354A patent/TWI580800B/en active
- 2015-08-18 JP JP2015160813A patent/JP5937730B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001089803A (en) * | 1999-09-20 | 2001-04-03 | Sakai Chem Ind Co Ltd | Method of fabricating fine spherical metal powder |
JP2005133119A (en) * | 2003-10-28 | 2005-05-26 | Mitsui Mining & Smelting Co Ltd | Double layer-coated metal powder, method of producing the double layer-coated metal powder, and electrically conductive paste obtained by using the double layer-coated metal powder |
JP2005154861A (en) * | 2003-11-27 | 2005-06-16 | Mitsui Mining & Smelting Co Ltd | Double layer-coated copper powder, method of producing the double layer-coated copper powder, and electrically conductive paste using the double layer-coated copper powder |
JP2010018880A (en) * | 2008-04-01 | 2010-01-28 | Dowa Electronics Materials Co Ltd | Copper powder for conductive paste, and method for producing the same |
JP2014034697A (en) * | 2012-08-08 | 2014-02-24 | Furukawa Co Ltd | Method for producing copper fine particle, conductive paste and method for producing conductive paste |
Also Published As
Publication number | Publication date |
---|---|
WO2015122251A1 (en) | 2015-08-20 |
TW201538757A (en) | 2015-10-16 |
TWI580800B (en) | 2017-05-01 |
CN105705276B (en) | 2018-01-19 |
CN105705276A (en) | 2016-06-22 |
JP5937730B2 (en) | 2016-06-22 |
JP2016028176A (en) | 2016-02-25 |
KR101671324B1 (en) | 2016-11-02 |
JPWO2015122251A1 (en) | 2017-03-30 |
KR20160052723A (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5937730B2 (en) | Method for producing copper powder | |
JP6274444B2 (en) | Method for producing copper powder | |
JP5872063B2 (en) | Copper powder | |
JP5941082B2 (en) | Copper powder | |
JP5181434B2 (en) | Fine copper powder and method for producing the same | |
KR20100096111A (en) | Copper powder for electrically conductive paste, and electrically conductive paste | |
WO2018169012A1 (en) | Dispersion, method for producing conductive pattern-equipped structure by using dispersion, and conductive pattern-equipped structure | |
JP2010013730A (en) | Copper powder for conductive paste, and conductive paste | |
JP2010196105A (en) | Copper powder for electroconductive paste, and electroconductive paste | |
JP2011006740A (en) | Copper powder for conductive paste, and conductive paste | |
JP4296347B2 (en) | Flaked copper powder and method for producing the same | |
JP5932638B2 (en) | Copper powder for conductive paste and conductive paste | |
TW201202447A (en) | Copper powder for conductive paste and conductive paste | |
JP4879762B2 (en) | Silver powder manufacturing method and silver powder | |
JP2007191752A (en) | Tin-coated silver powder and method for producing the tin-coated silver powder | |
JP2012067327A (en) | Copper powder for conductive paste, and conductive paste | |
JP5756694B2 (en) | Flat metal particles | |
JP6060225B1 (en) | Copper powder and method for producing the same | |
JP2021152216A (en) | Phosphorus-containing silver powder and conductive paste containing the silver powder | |
WO2017179524A1 (en) | Silver-coated copper powder and method for producing same | |
WO2023042771A1 (en) | Method for producing silver powder | |
JP3727904B2 (en) | Metal powder and method for producing the same | |
KR20120021704A (en) | Copper powder for conductive paste and conductive paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151013 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5826435 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |