WO2022185600A1 - Conductive composition, conductive member, and method for producing same - Google Patents

Conductive composition, conductive member, and method for producing same Download PDF

Info

Publication number
WO2022185600A1
WO2022185600A1 PCT/JP2021/038153 JP2021038153W WO2022185600A1 WO 2022185600 A1 WO2022185600 A1 WO 2022185600A1 JP 2021038153 W JP2021038153 W JP 2021038153W WO 2022185600 A1 WO2022185600 A1 WO 2022185600A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
particles
conductive composition
copper particles
mass
Prior art date
Application number
PCT/JP2021/038153
Other languages
French (fr)
Japanese (ja)
Inventor
良憲 清水
貴彦 坂上
圭 穴井
真一 山内
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2023503366A priority Critical patent/JPWO2022185600A1/ja
Publication of WO2022185600A1 publication Critical patent/WO2022185600A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention relates to a conductive composition, a conductive member, and a method for producing the same.
  • Devices using SiC and GaN are being developed as next-generation power devices.
  • devices using SiC are expected to have excellent high-temperature operability and high-speed operability.
  • peripheral members such as die bonding materials may not have sufficient heat resistance and bonding reliability due to the heat generated within the device.
  • Patent Document 1 discloses a copper alloy powder containing alloy particles of copper and silver, in which the silver concentration on the surface of the particles is higher than the average silver concentration of the particles, for the purpose of reducing the resistance of the conductive circuit.
  • This copper alloy powder can be produced by an inert gas atomization method.
  • Patent Document 2 for the purpose of increasing the bonding strength, Cu nanoparticles made of Cu particles having a particle size of 1000 nm or less and having an average particle size of 50 nm to 1000 nm and fine particles having an average particle size of 1 nm to 50 nm A metal nanoparticle mixture consisting of CuNi alloy nanoparticles is disclosed.
  • Both the particles of Patent Documents 1 and 2 are not sufficient from the viewpoint of bonding reliability when used as a constituent material of a device, and further improvement is desired.
  • an object of the present invention is to provide a conductive composition that can exhibit high bonding reliability with other members.
  • the present invention provides first copper particles made of a copper element, a second copper particle containing a copper element as a main component and containing a second element other than copper, oxygen, carbon and nitrogen; a dispersion medium,
  • the copper element and the second element are present in at least a part of the second copper particles in the state of one or more of alloys and mixtures,
  • the integrated value of the ratio of the detected intensity P2 of the second element to the detected intensity P1 of the copper element (P2/P1) is 7 or more and 20 or less when measured in a region from the outermost surface to a depth of 50 nm by X-ray photoelectron spectroscopy. It provides a conductive composition.
  • FIG. 1 is a schematic diagram showing an example of a DC plasma apparatus capable of suitably producing the cupric particles contained in the conductive composition of the present invention.
  • 2 is an ultrasonic image of a bonded structure formed using the conductive composition of Example 1.
  • FIG. 3 is an ultrasonic image of a joint structure formed using the conductive composition of Comparative Example 1.
  • the present invention will be described below based on its preferred embodiments.
  • the conductive composition of the present invention contains two types of copper particles, first copper particles and second copper particles, and a dispersion medium.
  • the first copper particles are composed of the copper element and do not contain other elements other than the copper element except for inevitable impurities. That is, the first copper particles inevitably contain other elements other than the copper element, and the surface of the first copper particles is inevitably slightly oxidized, so that the oxygen element is inevitably Containment is allowed.
  • the content of elements other than the copper element in the first copper particles is 5% by mass or less. The content of these elements can be measured by, for example, ICP emission spectrometry or inert gas fusion/non-dispersive infrared absorption method.
  • the cupric particles mainly contain a copper element, and further contain a second element that is an element other than copper (Cu), oxygen (O), carbon (C) and nitrogen (N).
  • the second copper particles inevitably contain an element other than the copper element and the second element, or the surface of the second copper particles is inevitably slightly oxidized, so that the oxygen element is inevitably included. is allowed.
  • the content of the copper element in the cupric particles is 50 mass % or more, preferably 60 mass % or more and 99 mass % or less, more preferably 80 mass % or more and 97 mass % or less.
  • the copper element content can be measured, for example, by ICP emission spectrometry.
  • the content of the second element with respect to 100% by mass of the copper element in the second copper particles is preferably 1% by mass or more and 40% by mass or less, more preferably 3% by mass or more and 20% by mass or less.
  • the second copper particles exhibit excessive thermal expansion and heat caused by rapid temperature changes while exhibiting high electrical conductivity and thermal conductivity derived from copper. Since the function of relieving shrinkage is exhibited, the conductive composition has high heat resistance and high bonding reliability.
  • the content of the second element can be measured, for example, by ICP emission spectrometry.
  • the second element that can be contained in the cupric particles includes, for example, one or more metal elements other than copper or metalloid elements.
  • the metal elements include gold (Au), silver (Ag), palladium (Pd), yttrium (Y), titanium (Ti), zirconium (Zr), niobium (Nb), tantalum (Ta), molybdenum ( Mo), tungsten (W), cobalt (Co), transition metal elements such as nickel (Ni), alkaline earth metal elements such as magnesium (Mg), and other metal elements such as aluminum (Al). .
  • silicon (Si) etc. are mentioned as a metalloid element.
  • the second element contained in the second copper particles preferably exists in at least a part of the particles in one or more states of an alloy and a mixture, depending on the type of element.
  • the alloy includes at least one aspect of solid solution, eutectic, and intermetallic compound.
  • a specific mode of existence of the copper element and the second element in the second copper particles is, for example, a solid solution in which the second element is dissolved in copper, or a single substance of copper or a copper compound and a single substance of the second element or a second element.
  • One or more of aspects such as a mixture with a two-element compound are included.
  • the second element compound include oxides, nitrides, and carbides.
  • the second element in such a manner alleviates excessive thermal expansion and contraction caused by temperature changes when the conductive composition is subjected to firing, resulting in excellent bonding reliability.
  • the mode of existence of these elements can be measured, for example, by a method such as X-ray diffraction analysis.
  • the second copper particles containing the second element in the manner described above can be suitably produced, for example, by the production method described below.
  • the metal element When a metal element is included as the second element contained in the cupric particles, the metal element may exist as a single substance, or may exist as a copper-based alloy as a solid solution. Intermetallic compounds can also be taken as one form of copper-based alloys. In addition to or instead of this, the metal element and semimetal element contained as the second element are present in the form of one or more oxides, nitrides or carbides, and in the second copper particles, It may be copper alone, a copper-containing alloy, or a mixture with a copper-containing compound.
  • Examples of the second element that can form an alloy with copper include one or more metal elements selected from Au, Ag, Pd, Ti, Mo, W, Co, Ni, and Al.
  • Examples of the second element capable of forming an oxide include metal elements such as Y, Ti, Zr, Nb, Mg, and Al, and metalloid elements such as Si, and at least one element.
  • Specific examples of oxides of the second element include Y 2 O 3 , TiO 2 , ZrO 2 , Nb 2 O 5 , MgO, Al 2 O 3 and SiO 2 .
  • Examples of the second element capable of forming carbides include metal elements such as Nb and Ta, and metalloid elements such as Si.
  • Specific examples of carbides of the second element include NbC, TaC, SiC, and the like.
  • Examples of the second element capable of forming a nitride include one or more of metal elements such as Al and metalloid elements such as Si.
  • Specific examples of the nitride of the second element include AlN, Si3N4 , and the like.
  • the second element is more preferably one or more of Ag, Co, and Zr from the viewpoint of further increasing the bonding strength and improving the reliability of bonding with the member to be bonded. More preferably, it is one or more elements of Co.
  • the mode of existence of the copper element and the second element in the second copper particles may be an alloy with copper or a mixture of copper and the oxide of the second element.
  • the second element is Ag, good electrical conductivity and thermal conductivity are maintained, and the solid solubility of Ag in copper is good, so that heat resistance and bonding strength are likely to be higher. Therefore, it is possible to form a bonding layer with less crack generation even when an excessive temperature change occurs.
  • the abundance ratios of the copper element and the second element in the particles are different between the particle surface and the inside.
  • the region from the outermost surface of the conductive composition to a sputtering depth of 50 nm in terms of SiO 2 is measured by X-ray photoelectron spectroscopic analysis.
  • the integrated value of the ratio of the detection intensity P2 of the second element to the detection intensity P1 of the copper element (hereinafter also referred to as "P2/P1 ratio”) is preferably 7 or more, more preferably 9 or more, It is more preferably 10 or more.
  • the integrated value of the P2/P1 ratio is preferably 20 or less, more preferably 16 or less.
  • the integral value of the P2/P1 ratio described above indicates that the relative abundance of the copper element increases continuously or stepwise when the conductive composition is observed from the surface toward the inside. . This means that the relative existence ratio of the copper element increases continuously or stepwise from the surface to the center of the second copper particles existing on the outermost surface of the conductive composition.
  • the integrated value of the P2/P1 ratio tends to exceed 20 and increase as the copper element and the second element are uniformly present in the second copper particles. In the case of copper particles in which a shell layer containing a second element is clearly observed on the surface of a core particle made of copper, the integrated value of the P2/P1 ratio tends to be small.
  • the second element is relatively abundant on the surface of the second copper particles, and the copper element is relatively present in the center of the second copper particles. This indicates that there are many Due to this, it is possible to alleviate excessive thermal expansion and contraction due to temperature changes when the conductive composition is subjected to firing while expressing high conductivity and thermal conductivity derived from copper. .
  • the conductive composition containing the second copper particles is used to join objects to be joined, the conductivity is sufficiently exhibited, the heat resistance is high, and structural destruction is less likely to occur. , the bonding reliability is further increased.
  • the cupric particles having the integral value of the ratio described above can be suitably produced, for example, by the production method described below.
  • X-ray photoelectron spectroscopy can be performed, for example, by the following method. That is, the conductive composition is introduced into an X-ray photoelectron spectrometer (Ulvac-Phi, VersaProbe III) and measured under the following conditions, and the sputtering depth in terms of SiO2 from the outermost surface of the conductive composition The P2/P1 ratio in each region down to 50 nm is obtained respectively.
  • the P2/P1 ratio at each sputtering depth when the measured value of the P2/P1 ratio at the outermost surface is converted to 1 is taken on the vertical axis
  • the integral value of the P2 / P1 ratio from the outermost surface of the conductive composition (corresponding to a sputtering depth of 0 mm) to a sputtering depth of 50 nm is calculated. This is the integral value of the present invention.
  • Various shapes such as spherical, scale-like (flake-like), dendrite-like (dendritic) and polyhedral-like shapes can be independently adopted for each shape of the first copper particles and the second copper particles.
  • the particle diameter of the cuprous particles contained in the conductive composition is preferably 30 nm or more and 600 nm or less, more preferably 80 nm or more and 400 nm or less, and still more preferably 100 nm or more and 200 nm or less when the shape is spherical.
  • the cuprous particles have such a particle diameter, high sinterability at low temperatures is achieved while exhibiting high dispersibility between particles.
  • the particles are spherical means that the circularity coefficient measured by the following method is preferably 0.85 or more, more preferably 0.90 or more.
  • the circularity coefficient is obtained by observing the particles by a method similar to the method for measuring the particle diameter described below, where S is the area of the two-dimensional projected image of the particle, and L is the peripheral length. is calculated from the formula “4 ⁇ S/L 2 ”. Let the arithmetic mean value of the circularity coefficient of each particle be the circularity coefficient mentioned above. If the two-dimensional projection image of the particle is a perfect circle, the circularity coefficient of the particle is 1.
  • the particle size of the cuprous particles contained in the conductive composition is preferably 0.5 ⁇ m or more and 50 ⁇ m or less, more preferably 1 ⁇ m or more and 30 ⁇ m or less when the shape is flake-like.
  • the main surfaces of the flake particles are likely to be oriented substantially parallel to the bonding surface, so after sintering volume shrinkage of the joined body can be suppressed, and the joint strength with other members can be improved.
  • the particle size of the cupric particles contained in the conductive composition is preferably 30 nm or more and 1000 nm or less, more preferably 50 nm or more and 500 nm or less, and still more preferably 60 nm or more and 400 nm or less.
  • the second copper particles have such a particle size, when mixed with the first copper particles, the second copper particles can be easily present in the gaps between the first copper particles, and high filling properties can be obtained. As a result, when the conductive composition is fired, the bonding strength with other members can be further increased.
  • the particle size of each copper particle in the conductive composition can be measured by the following method. First, a conductive composition is applied on a flat plate. Thereafter, an elemental analysis is performed with a field emission scanning electron microscope (SU7000, manufactured by Hitachi High-Tech Co., Ltd.), and the first copper particles and the second copper particles are individually identified based on whether or not the second element is contained. Targeting the first copper particles or second copper particles thus separated, 200 or more particles are randomly selected from a scanning electron microscope image of each particle at a magnification of 150,000 times, and the particle size (Heywood diameter) is obtained. to measure. Next, the particle size distribution based on the number standard is obtained from the obtained particle size of each particle. Then, the particle size of the median value of the particle size distribution based on the number standard is defined as the particle size in the present invention.
  • SU7000 field emission scanning electron microscope
  • the crystallite size of the cuprous particles contained in the conductive composition is preferably 5 nm or more and 35 nm or less, more preferably 10 nm or more and 20 nm or less, and still more preferably 12 nm or more and 18 nm or less.
  • the cuprous particles have such a crystallite size, the sintering effect can be exhibited at a low temperature.
  • the crystallite size of the cupric particles contained in the conductive composition is preferably 40 nm or more, more preferably 42 nm or more and 300 nm or less, and still more preferably 42 nm or more and 250 nm or less.
  • the crystallite size of the second copper particles is based on the crystallite size of the alloy of copper with the second element when the second element is a metallic element capable of forming an alloy with copper. Also, if the secondary element is present in a mixture with copper, it is based on the crystallite size of metallic copper.
  • the crystallite size of the second copper particles is larger than the crystallite size of the first copper particles.
  • the crystal structure derived from the second copper particle having a large crystallite size can reduce expansion and contraction due to a rapid temperature change. Therefore, the conductive layer obtained from the conductive composition can sufficiently maintain the bonding strength with the member, and the bonding reliability can be further improved. This effect is exhibited more remarkably by satisfying the above-mentioned P2/P1 ratio.
  • Each copper particle that can easily achieve these relationships can be obtained, for example, by the manufacturing method described below.
  • the crystallite size can be calculated, for example, from the peak width (half width) of the X-ray diffraction peak in the crystal plane with the highest intensity within the measurement range, using the Scherrer formula shown below.
  • the crystallite size is measured by subjecting the conductive composition to X-ray diffraction measurement under the following conditions. Under the following conditions, the diffraction peaks of the first copper particles and the second copper particles appear at similar angles, respectively. A fitting is made to the copper particles, respectively.
  • the scan axis is 2 ⁇ / ⁇
  • the scan range is 0 to 150 deg
  • the step width is 0.01 deg
  • the scan speed is 1 deg/min
  • X-rays are CuK ⁇ 1 rays.
  • the scan rate is chosen such that the maximum peak of the scan range is over 10000 counts.
  • the crystallite size is calculated by WPPF using analysis software PDXL2 manufactured by Rigaku.
  • As an X-ray diffraction measurement device for example, SmartLab manufactured by Rigaku Corporation can be used.
  • the ratio of the first copper particles to the total mass of the first copper particles and the second copper particles in the conductive composition is preferably 20% by mass or more and 80% by mass or less, more preferably 40% by mass or more and 80% by mass or less, More preferably, it is 60% by mass or more and 80% by mass or less.
  • the ratio of the second copper particles to the total mass of the first copper particles and the second copper particles is preferably 20% by mass or more and 80% by mass or less, more preferably 20% by mass or more and 60% by mass or less, still more preferably It is 20 mass % or more and 40 mass % or less.
  • the conductive composition contains a dispersion medium. That is, the form of the conductive composition is, for example, conductive slurry, conductive ink, or conductive paste.
  • the conductive composition may further contain a binder resin and a reducing agent, if necessary.
  • Dispersion media used in conductive compositions include, for example, water, alcohols, ketones, esters, ethers and hydrocarbons.
  • alcohols such as terpineol and dihydroterpineol
  • polyhydric alcohols such as polyethylene glycol and hexylene glycol
  • ethers such as ethyl carbitol and butyl carbitol
  • acrylic resin, epoxy resin, polyester resin, polycarbonate resin, cellulose resin, and the like can be used as the binder resin used in the conductive composition.
  • Examples of reducing agents used in the conductive composition include bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane, 2-amino-2-(hydroxymethyl)-1,3-propanediol, 1,3 - aminoalcohol compounds such as bis(tris(hydroxymethyl)methylamino)propane.
  • the first copper particles and the second copper particles are produced separately, and then the first copper particles, the second copper particles and the dispersion medium are mixed at the same time, or in any order A step of mixing the first copper particles, the second copper particles and the dispersion medium is included.
  • the first copper particles are produced.
  • the first copper particles can be produced by a wet reduction method, for example, according to the method described in JP-A-2003-34802, JP-A-2015-168878 or JP-A-2017-179555.
  • a liquid medium containing water and preferably a monohydric alcohol having from 1 to 5 carbon atoms is added with one such as copper chloride, copper acetate, copper hydroxide, copper sulfate, copper oxide or cuprous oxide.
  • a reaction solution containing a valent or divalent copper source is prepared.
  • This reaction solution and hydrazine are mixed so that the ratio is preferably 0.5 mol or more and 50 mol or less with respect to 1 mol of copper, and the copper ions derived from the copper source are reduced, and the particle size and crystallites are reduced.
  • the obtained copper particles may be washed by a washing method such as a decantation method or a rotary filter method, if necessary.
  • the cuprous particles obtained by this method are a slurry containing the aggregates or a dry powder comprising the aggregates.
  • the surface of the first copper particles may inevitably be slightly oxidized. Note that commercially available cuprous particles may be used.
  • the second copper particles are produced.
  • the second copper particles can be produced by a wet method, an atomization method, an RF plasma method, a DC plasma method, or the like. It is preferable to use the DC plasma method from the viewpoint of easily obtaining particles capable of efficiently exhibiting high bonding reliability with other members.
  • An embodiment of a method for producing second copper particles by a DC plasma method will be described below.
  • the method for producing the second copper particles includes supplying a mother powder containing a copper element and a second element to a plasma flame generated in a chamber, gasifying the mother powder, and gasifying the gasified mother powder is cooled to produce cupric particles.
  • mother powder containing the copper element and the second element to be gasified one kind of mother powder containing the copper element and the second element having the same elemental composition as the composition of the target second copper particles may be supplied.
  • the mother powder containing the copper element and the second element a mother powder made of copper and containing no other elements other than copper except for unavoidable impurities (hereinafter also referred to as copper mother powder);
  • a mother powder containing two elements (hereinafter also referred to as a second mother powder) is mixed at a ratio such that the elemental composition of the desired cupric particles is the same and supplied.
  • the second mother powder When using two types of mother powder, a copper mother powder and a second mother powder, as the mother powder, the second mother powder consists of the second element and does not contain other elements other than the second element except for inevitable impurities.
  • the mother powder may be a single substance of the second element, or may be a mother powder made of an oxide, carbide or nitride of the second element.
  • mother flour the mother powder of each of the above embodiments will be generically referred to simply as "mother flour”.
  • Fig. 1 shows a DC plasma apparatus suitable for use in this manufacturing method.
  • the DC plasma apparatus 1 includes a powder supply device 2, a chamber 3, a DC plasma torch 4, a recovery pot 5, a powder supply nozzle 6, a gas supply device 7 and a pressure adjustment device 8.
  • the mother powder passes through the inside of the DC plasma torch 4 from the powder feeder 2 through the powder feed nozzle 6 .
  • a plasma gas is supplied to the DC plasma torch 4 from a gas supply device 7 to generate a plasma flame.
  • the gasified mother powder is cooled to form a powder that is an aggregate of cupric particles.
  • the inside of the chamber 3 is controlled by a pressure regulator 8 so that a negative pressure is maintained relative to the powder supply nozzle 6, which facilitates the supply of the mother powder to the DC plasma torch 4, and the plasma It has a structure that stably generates frames.
  • the apparatus shown in FIG. 1 is an example of a DC plasma apparatus, and production of the second copper particles is not limited to this apparatus.
  • the plasma flame is It is preferable to create a laminar flow state in which the aspect ratio of the frame length to the frame width is 3 or more when viewed from the side with the widest width.
  • the plasma output of the DC plasma apparatus is preferably 2 kW or more and 100 kW or less, more preferably 2 kW or more and 40 kW or less.
  • the gas flow rate of the plasma gas is preferably 0.1 L/min or more and 25 L/min or less, more preferably 0.5 L/min or more and 21 L/min or less.
  • a reducing gas such as hydrogen gas, an inert gas such as nitrogen gas and argon gas, or a mixed gas thereof can be used.
  • the gas flow rate is the total value of each gas flow rate.
  • the chamber 3 has a reducing gas atmosphere containing hydrogen gas or the like, or an inert gas atmosphere containing nitrogen gas, argon gas or the like.
  • a gas atmosphere is preferred.
  • a cooling gas is supplied to the inside of the chamber 3 to cool each gasified mother powder.
  • the cooling gas can be supplied, for example, by a cooling gas supply unit (not shown) connected through the wall of the chamber 3 .
  • reducing gas such as hydrogen gas, inert gas such as nitrogen gas and argon gas, or mixed gas thereof can be used.
  • the cooling gas has a temperature of, for example, 0° C. or higher and 30° C. or lower on the condition that the pressure inside the chamber 3 is negative, and is applied near the tip of the plasma flame inside the chamber 3 and in the plasma. 1 L/min or more and 400 L/min or less can be supplied to the circumference that does not interfere with the formation of the frame.
  • the copper element and the second element It is sufficient to use a mother flour containing
  • the particle diameter of the mother powder is preferably 3 independently regardless of whether a plurality of types of mother powder are used. 0 ⁇ m or more and 50 ⁇ m or less, more preferably 5.0 ⁇ m or more and 30 ⁇ m or less.
  • the particle size of the mother powder can be measured by the same method as the measurement of the particle size of each copper particle described above.
  • the shape of the mother powder is not particularly limited, and examples include dendritic, rod-like, scale-like, cubic, and spherical shapes. From the viewpoint of stabilizing the supply efficiency of the mother powder to the plasma torch, it is preferable to use spherical mother powder.
  • the supply amount of the mother powder is preferably 5 g/min or more and 200 g/min or less in terms of the total amount, regardless of whether a plurality of types of mother powder are used. More preferably, it is 5 g/min or more and 100 g/min or less.
  • the supply ratio of these mother powders can be appropriately changed according to the target elemental composition of the second copper particles.
  • the mass ratio of the second mother powder to 100% by mass of the copper mother powder is preferably 0.1% by mass or more and 20% by mass or less, more preferably 0.1% by mass or more and 15% by mass or less.
  • the elemental copper and the elemental second element or compound have a boiling point of are preferably in a specific relationship. Specifically, it is advantageous to use a second element element or compound having a boiling point lower than that of elemental copper.
  • the vaporized copper is cooled, and the second element simple substance or compound in the vaporized mother powder is similarly cooled, and the nuclei are formed in a state in which both the copper element and the second element are contained on the surface of the fine particles. It is formed. Furthermore, cooling of the secondary element inclusions in the mother powder causes nucleation, agglomeration and condensation to occur on the surface of the particles, forming a state in which the secondary element is present in greater abundance than the copper element. In this way, the second element is formed so that the abundance of the second element increases continuously or stepwise from the inside of the particle toward the surface, that is, the second element formed so as to satisfy a predetermined P2/P1 ratio. Copper particles can be obtained efficiently. Further, since nucleation of the cupric particles proceeds efficiently, large crystallites can be formed, and the crystallite size is relatively large.
  • the second element may be selected to be easily stabilized with oxygen. good.
  • the second element reacts and precipitates in a stable state with external oxygen in the process of producing cupric particles, so that it moves to the outside of the particles and concentrates.
  • the copper element is precipitated in such a manner as to be a metal, the copper element can be kept as a metal, and the preferable physical properties such as the integral value of the P2/P1 ratio, the particle size, and the crystallite size can be easily obtained.
  • Preferred examples of such a second element include Zr, Al, Co, and the like.
  • the cupric particles thus obtained are accumulated and recovered in the recovery pot 5 in the form of powder, which is an aggregate of the particles.
  • the recovered cupric particles may be used as they are, or may be classified or pulverized to remove coarsely aggregated particles present as contamination. Classification and pulverization may be carried out by using an appropriate classifier or pulverizer to separate coarse powder and fine powder so that the target particle size is the center. Since the recovered cupric particles are typically exposed to the atmosphere, the surface of the cupric particles may inevitably be slightly oxidized.
  • the cupric particles thus produced satisfy the above P2/P1 ratio and easily satisfy the above particle diameter and crystallite size.
  • the mother powder is evaporated and vaporized at a high temperature and then cooled.
  • the inclination of the element abundance ratio tends to become larger toward this direction.
  • cupric particles that satisfy the above-described P2/P1 ratio and that can mitigate excessive thermal expansion and thermal contraction caused by rapid temperature changes.
  • the resulting cupric particles have high dispersibility between particles, and the particles are easy to handle, and the formed coating film has good smoothness.
  • Various mother powders used in the DC plasma method may be particles obtained by a wet method, an atomization method, or an RF plasma method.
  • the conductive composition of the present invention can be obtained by mixing the cuprous particles and the cupric particles obtained by the above method with a dispersion medium.
  • a method for mixing each copper particle and a dispersion medium a method commonly used in this technical field can be adopted.
  • a binder resin and a reducing agent may be mixed.
  • the mixing ratio of the first copper particles and the second copper particles in the conductive composition can be mixed in the same range as the above-described mass ratio range.
  • the mixing ratio of the dispersion medium in the conductive composition can be appropriately changed according to the desired properties of the conductive composition. , preferably 10 parts by mass or more and 40 parts by mass or less.
  • the conductive composition obtained through the above steps forms a conductive film having a desired pattern by, for example, applying it to the surface of an object to be applied by a predetermined means to form a coating film. be able to. If necessary, the coating film may be pressurized and heated to form a conductive film.
  • the conductive composition of the present invention is suitably used as a conductive bonding material such as a die-bonding material for bonding electronic parts.
  • a conductive bonding material such as a die-bonding material for bonding electronic parts.
  • it can also be used as a material for filling vias in a printed wiring board, or as an adhesive for surface-mounting an electronic device on a printed wiring board.
  • Examples of electronic parts as bonding objects include spacers and heat sinks made of various conductive metals such as gold, silver, or copper, metal wires, substrates having such metals on their surfaces, and semiconductor elements. Electronic components may be conductors or insulators.
  • the method includes a step of interposing a conductive composition between two electronic components and sintering the conductive composition, and through the steps, a conductive member can be obtained.
  • a conductive composition is applied to the surface of the first electronic component to form a coating film.
  • the coating film to be formed may be formed over the entire surface of the first electronic component, or may be formed discontinuously on the surface of the first electronic component. From the viewpoint of developing a higher bonding strength, it is preferable that the coating film is formed over the entire region where the second electronic component, which will be described later, is to be arranged.
  • the thickness of the coating film to be formed is preferably set to 1 ⁇ m or more and 500 ⁇ m or less, more preferably 5 ⁇ m or more and 300 ⁇ m or less, immediately after coating, from the viewpoint of forming a joint structure having high joint strength stably. .
  • the formed coating film is dried to obtain a dry coating film.
  • at least part of the dispersion medium is removed from the coating film by drying to obtain a dry coating film in which the amount of the dispersion medium in the coating film is reduced.
  • a dry coating film is one in which the ratio of the dispersion medium to the total weight of the film is 9% by weight or less. Since the content of each constituent material other than the dispersion medium is substantially the same in the coating film and the dried coating film obtained by drying the coating film, the proportion of the dispersion medium is, for example, the ratio of the coating film before and after drying. Mass change can be measured and calculated.
  • the dispersion medium may be volatilized by using a drying method such as natural drying, hot air drying, infrared irradiation, hot plate drying, etc., which utilizes the volatility of the dispersion medium. .
  • the drying conditions can be appropriately changed according to the composition of the conductive composition to be used.
  • a second conductor is then laminated onto the dried coating. Specifically, after the dry coating film is obtained through the above-described steps, the second electronic component is laminated on the dry coating film, and the first electronic component and the second electronic component are interposed therebetween. A conductive member is obtained in which the dry coating film as the conductive composition is arranged adjacently.
  • the first electronic component and the second electronic component may be of the same type or of different types.
  • the conductive member is heat-treated with no pressure or under pressure to sinter the metal powder contained in the dried coating film, thereby forming a bonding portion between the first electronic component and the second electronic component. forming a formed junction structure;
  • non-pressurized means that no pressure is applied other than the pressure load caused by changes in the atmospheric pressure or the weight of the constituent members.
  • Pressure refers to intentionally applying a pressure of 0.001 MPa or more to the members to be joined from the outside, and the pressure load due to changes in atmospheric pressure and the weight of the constituent members alone The purpose is to exclude
  • the atmosphere during sintering is preferably a reducing gas atmosphere such as hydrogen or formic acid, or an inert gas atmosphere such as nitrogen or argon.
  • the sintering temperature is preferably less than 300°C, more preferably 150°C or more and less than 300°C, still more preferably 200°C or more and less than 300°C, still more preferably 230°C or more and less than 300°C.
  • the pressure applied during sintering is preferably 0.001 MPa or more, more preferably 0.001 MPa or more and 20 MPa or less, and still more preferably 0.01 MPa or more and 15 MPa or less.
  • the sintering time is preferably 20 minutes or less, more preferably 0.5 minutes or more and 20 minutes or less, and still more preferably 1 minute or more and 20 minutes or less, provided that the sintering temperature is within the above range.
  • the bonding portion formed through the above steps is formed by sintering the conductive composition, and the dispersion medium does not substantially exist due to volatilization or the like.
  • the joint site is a sintered body of copper particles that constitute the conductive composition, and has electrical conductivity.
  • a bonding structure having such a bonding site can be used in environments exposed to high temperatures, such as automotive electronic circuits and electronic circuits mounted with power devices, by taking advantage of its high bonding strength, thermal conductivity, and heat resistance. It is preferably used for
  • Example 1 (1) Production of first copper particles According to the method described in Example 1 of JP-A-2015-168878, a slurry in which spherical first copper particles made of copper and containing inevitable impurities are dispersed in water is prepared. Obtained. The particle diameter of the cuprous particles measured by the method described above was 150 nm, and the crystallite size was 13 nm.
  • Second Copper Particles were produced by the following method. Atomized copper powder (particle size: 10 ⁇ m, spherical) was used as the copper mother powder. Atomized silver powder (particle size: 5 to 20 ⁇ m, spherical) was used as the second mother powder.
  • a mixed mother powder obtained by mixing both mother powders with a mass ratio of 10.7 mass % of the second mother powder to 100 mass % of the copper mother powder used was supplied to the apparatus 1 .
  • the supply amount of the mixed mother powder was set to 15 g/min, and the mixed mother powder was supplied to the DC plasma torch 4 through the powder supply nozzle 6 .
  • a mixed gas of nitrogen gas and argon gas was used as the plasma gas.
  • the flow rate of nitrogen gas was set to 4.5 L/min, and the flow rate of argon gas was set to 15 L/min.
  • the plasma output was set to 30 kW.
  • the flame aspect ratio of the generated plasma flame was 4, and it was confirmed that the plasma flame was in a laminar flow state.
  • the pressure inside the chamber 3 was set to a negative pressure rather than the atmospheric pressure.
  • nitrogen gas at 25° C. was supplied at a flow rate of 140 L/min as a cooling gas during production.
  • the second copper particles of this example are copper particles comprising a copper element, Ag as a second element, and inevitable impurities. Also, the cupric particles were an alloy of copper and Ag. The content ratio of Ag element to 100% by mass of copper element in the second copper particles was 10.7% by mass. The particle diameter of the cupric particles measured by the method described above was 300 nm, the copper crystallite size was 45 nm, and the P2/P1 ratio was 14.5.
  • Example 2 In the production of the second copper particles, Co powder (particle size: 5 to 20 ⁇ m, spherical) is used as the second mother powder, and the mass ratio of the second mother powder to 100% by mass of the copper mother powder used is 4.8 mass. %, and the mixed mother powder obtained by mixing both mother powders was supplied to a DC plasma apparatus.
  • a conductive composition was produced in the same manner as in Example 1 except for this.
  • the second copper particles were an alloy of copper and Co.
  • the Co element content relative to 100% by mass of copper element in the second copper particles was 4.8% by mass.
  • the particle diameter of the cupric particles measured by the method described above was 320 nm, the copper crystallite size was 81.7 nm, and the P2/P1 ratio was 10.8.
  • Example 3 In the production of the second copper particles, ZrO 2 powder (particle size: 5 to 20 ⁇ m, spherical) is used as the second mother powder, and the mass ratio of the second mother powder to 100% by mass of the copper mother powder used is 0.5. % by mass, and the mixed mother powder obtained by mixing both mother powders was supplied to a DC plasma apparatus.
  • a conductive composition was produced in the same manner as in Example 1 except for this.
  • the cupric particles were a mixture of copper and ZrO2.
  • the Zr element content in the second copper particles was 0.5% by mass with respect to 100% by mass of the copper element.
  • the particle diameter of the cupric particles measured by the method described above was 320 nm, the copper crystallite size was 73 nm, and the P2/P1 ratio was 9.13.
  • Example 4 In the preparation of the conductive composition, in the same manner as in Example 1, except that the content of the first copper particles in the total copper particles was 50% by mass and the content of the second copper particles was mixed so that the content was 50% by mass. A conductive composition was prepared.
  • Example 5 In the preparation of the conductive composition, in the same manner as in Example 2, except that the content of the first copper particles in the total copper particles was 50% by mass and the content of the second copper particles was mixed so that the content was 50% by mass. A conductive composition was prepared.
  • Example 6 In the preparation of the conductive composition, in the same manner as in Example 3, except that the content of the first copper particles in the total copper particles was 50% by mass and the content of the second copper particles was mixed so that the content was 50% by mass. A conductive composition was prepared.
  • Comparative Example 2 In the preparation of the conductive composition, in the same manner as in Comparative Example 1, except that the content of the first copper particles in the total copper particles was 50% by mass and the content of the second copper particles was mixed so that the content was 50% by mass. A conductive composition was prepared.
  • Example 7 In the preparation of the conductive composition, in the same manner as in Example 1, except that the content of the first copper particles in the total copper particles was 30% by mass and the content of the second copper particles was 70% by mass. A conductive composition was prepared.
  • Example 8 In the preparation of the conductive composition, in the same manner as in Example 2, except that the content of the first copper particles in the total copper particles was 30% by mass and the content of the second copper particles was mixed so that the content was 70% by mass. A conductive composition was prepared.
  • Example 9 In the preparation of the conductive composition, in the same manner as in Example 3, except that the content of the first copper particles in the total copper particles was 30% by mass and the content of the second copper particles was mixed to 70% by mass. A conductive composition was prepared.
  • Comparative Example 3 In the preparation of the conductive composition, in the same manner as in Comparative Example 1, except that the content of the first copper particles in the total copper particles was 30% by mass and the content of the second copper particles was mixed to 70% by mass. A conductive composition was prepared.
  • Example 10 In the preparation of the conductive composition, the first copper particles in the total copper particles were flaky copper particles manufactured by Mitsui Kinzoku Mining Co., Ltd. (1200YF: the particle diameter of the first copper particles measured by the above method was 3 ⁇ m, the crystal A conductive composition was prepared in the same manner as in Example 4, except that the particle size was changed to 31.4 nm).
  • a copper plate (20 mm long x 20 mm wide x 2 mm thick) was used as the first electronic component, and the conductive compositions of Examples and Comparative Examples were applied to the center of the surface of the copper plate with a size of 5 mm long x 5 mm wide x 100 ⁇ m thick.
  • a coating film was formed by printing. After that, the coating film was dried at 110° C. for 20 minutes to obtain a dry coating film.
  • an alumina plate (5 mm long ⁇ 5 mm wide ⁇ 0.5 mm thick) whose surface is Ag-plated is placed on the dry coating film to form a laminate, and each electronic component is adjacent to the coating film.
  • a conductive member was formed that was arranged in such a way as to The conductive member is heated to 280° C. at a heating rate of 120° C./min under a nitrogen atmosphere under a pressure of 6 MPa, and sintered at 280° C. for 20 minutes to sinter the conductive composition.
  • a joint structure was obtained in which a copper plate and an alumina plate were joined together while forming a solid joint portion.
  • TCT thermal cycle test
  • Example 1 the image data of Example 1 and Comparative Example 1 are shown in FIGS. Also, from the obtained image data, the black area ratio (bonding ratio after 1000 cycles of TCT; %) in the observed area was calculated. A higher bonding rate indicates a higher bonding reliability even when excessive temperature changes occur. Table 1 shows the results.
  • the joint structure after TCT of each example was observed to have a higher black area ratio than that of the comparative example.
  • the bonding reliability was high.
  • a conductive composition that can exhibit high bonding reliability with other members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

This conductive composition includes: first copper particles composed of a copper element; second copper particles composed of a copper element as a main component, and a second element other than a copper element, an oxygen element, a carbon element, and a nitrogen element; and a dispersion medium. The copper element and the second element are present, in a state of at least one among an alloy and a mixture, in at least a portion of the second copper particles. An integral value of the ratio (P2/P1) of a detection intensity P2 of the second element to a detection intensity P1 of the copper element is 7 to 20, when the conductive composition is measured in a region down to a depth of 50 nm from an outermost surface by X-ray photoelectron spectroscopy.

Description

導電性組成物、導電性部材及びその製造方法Conductive composition, conductive member and manufacturing method thereof
 本発明は、導電性組成物、導電性部材及びその製造方法に関する。 The present invention relates to a conductive composition, a conductive member, and a method for producing the same.
 次世代パワーデバイスとして、SiCやGaNを用いたデバイスの開発が進められている。特に、SiCを用いたデバイスは、高温動作性及び高速動作性に優れ、有望視されている。一方で、SiCを用いたデバイスは高温での動作が可能となるので、デバイス内で発生する熱に起因して、ダイボンド材等の周辺部材の耐熱性や接合信頼性が十分でないことがある。 Devices using SiC and GaN are being developed as next-generation power devices. In particular, devices using SiC are expected to have excellent high-temperature operability and high-speed operability. On the other hand, since devices using SiC can operate at high temperatures, peripheral members such as die bonding materials may not have sufficient heat resistance and bonding reliability due to the heat generated within the device.
 特許文献1には、導体回路の低抵抗化を目的として、銅と銀との合金粒子を含み、粒子表面の銀濃度が粒子の平均の銀濃度より高い銅合金粉末が開示されている。この銅合金粉末は、不活性ガスアトマイズ法によって製造できることも同文献に開示されている。 Patent Document 1 discloses a copper alloy powder containing alloy particles of copper and silver, in which the silver concentration on the surface of the particles is higher than the average silver concentration of the particles, for the purpose of reducing the resistance of the conductive circuit. The document also discloses that this copper alloy powder can be produced by an inert gas atomization method.
 また特許文献2には、接合強度の増大を目的として、粒子径が1000nm以下のCu粒子からなりかつ平均粒子径が50nm~1000nmであるCuナノ粒子と、平均粒子径が1nm~50nmである微細CuNi合金ナノ粒子とからなる金属ナノ粒子混合物が開示されている。 Further, in Patent Document 2, for the purpose of increasing the bonding strength, Cu nanoparticles made of Cu particles having a particle size of 1000 nm or less and having an average particle size of 50 nm to 1000 nm and fine particles having an average particle size of 1 nm to 50 nm A metal nanoparticle mixture consisting of CuNi alloy nanoparticles is disclosed.
特開平07-331360号公報JP-A-07-331360 特開2015-141860号公報JP 2015-141860 A
 特許文献1及び2の粒子はいずれも、デバイスの構成材料として用いたときに、接合信頼性の観点から十分なものとはいえず、更なる改良が望まれている。 Both the particles of Patent Documents 1 and 2 are not sufficient from the viewpoint of bonding reliability when used as a constituent material of a device, and further improvement is desired.
 したがって、本発明の課題は、他の部材との高い接合信頼性が発現できる導電性組成物を提供することにある。 Therefore, an object of the present invention is to provide a conductive composition that can exhibit high bonding reliability with other members.
 本発明は、銅元素からなる第1銅粒子と、
 銅元素を主体として含み、且つ銅、酸素、炭素及び窒素以外の第2元素を含む第2銅粒子と、
 分散媒とを含み、
 第2銅粒子中の少なくとも一部に、前記銅元素及び第2元素が、合金及び混合物のうち一種以上の状態で存在しており、
 X線光電子分光分析によって最表面から深さ50nmまでの領域において測定したときに、銅元素の検出強度P1に対する第2元素の検出強度P2の比(P2/P1)の積分値が7以上20以下である、導電性組成物を提供するものである。
The present invention provides first copper particles made of a copper element,
a second copper particle containing a copper element as a main component and containing a second element other than copper, oxygen, carbon and nitrogen;
a dispersion medium,
The copper element and the second element are present in at least a part of the second copper particles in the state of one or more of alloys and mixtures,
The integrated value of the ratio of the detected intensity P2 of the second element to the detected intensity P1 of the copper element (P2/P1) is 7 or more and 20 or less when measured in a region from the outermost surface to a depth of 50 nm by X-ray photoelectron spectroscopy. It provides a conductive composition.
図1は、本発明の導電性組成物に含まれる第2銅粒子を好適に製造可能なDCプラズマ装置の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a DC plasma apparatus capable of suitably producing the cupric particles contained in the conductive composition of the present invention. 図2は、実施例1の導電性組成物を用いて形成した接合構造の超音波画像である。2 is an ultrasonic image of a bonded structure formed using the conductive composition of Example 1. FIG. 図3は、比較例1の導電性組成物を用いて形成した接合構造の超音波画像である。3 is an ultrasonic image of a joint structure formed using the conductive composition of Comparative Example 1. FIG.
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の導電性組成物は、第1銅粒子及び第2銅粒子の二種類の銅粒子と、分散媒とを含む。 The present invention will be described below based on its preferred embodiments. The conductive composition of the present invention contains two types of copper particles, first copper particles and second copper particles, and a dispersion medium.
 第1銅粒子は銅元素からなり、不可避不純物を除いて銅元素以外の他の元素を含まないものである。つまり、第1銅粒子は、第1銅粒子が銅元素以外の他の元素を不可避的に含むことや、第1銅粒子表面が不可避的に微量酸化されることで、酸素元素を不可避的に含むことは許容される。
 通常、第1銅粒子における銅元素以外の他の元素の含有量は、5質量%以下である。これらの元素の含有量は、例えばICP発光分光分析法や、不活性ガス融解・非分散型赤外線吸収法で測定することができる。
The first copper particles are composed of the copper element and do not contain other elements other than the copper element except for inevitable impurities. That is, the first copper particles inevitably contain other elements other than the copper element, and the surface of the first copper particles is inevitably slightly oxidized, so that the oxygen element is inevitably Containment is allowed.
Usually, the content of elements other than the copper element in the first copper particles is 5% by mass or less. The content of these elements can be measured by, for example, ICP emission spectrometry or inert gas fusion/non-dispersive infrared absorption method.
 第2銅粒子は銅元素を主体として含み、且つ銅(Cu)、酸素(O)、炭素(C)及び窒素(N)以外の元素である第2元素を更に含む。なお、第2銅粒子は、銅元素及び第2元素以外の他の元素を不可避的に含むことや、第2銅粒子表面が不可避的に微量酸化されることで、酸素元素を不可避的に含むことは許容される。 The cupric particles mainly contain a copper element, and further contain a second element that is an element other than copper (Cu), oxygen (O), carbon (C) and nitrogen (N). In addition, the second copper particles inevitably contain an element other than the copper element and the second element, or the surface of the second copper particles is inevitably slightly oxidized, so that the oxygen element is inevitably included. is allowed.
 第2銅粒子中の銅元素の含有量は、50質量%以上であり、好ましくは60質量%以上99質量%以下、より好ましくは80質量%以上97質量%以下である。第2銅粒子の銅元素の含有量がこのような範囲であることによって、銅に由来する高い導電性及び熱伝導性を発現させ、且つ他の部材との接合信頼性がより向上した導電性組成物となる。銅元素の含有量は、例えばICP発光分光分析法で測定することができる。 The content of the copper element in the cupric particles is 50 mass % or more, preferably 60 mass % or more and 99 mass % or less, more preferably 80 mass % or more and 97 mass % or less. When the content of the copper element in the second copper particles is within such a range, high electrical conductivity and thermal conductivity derived from copper are exhibited, and electrical conductivity with improved bonding reliability with other members It becomes a composition. The copper element content can be measured, for example, by ICP emission spectrometry.
 第2銅粒子中の銅元素100質量%に対する第2元素の含有量は、好ましくは1質量%以上40質量%以下、より好ましくは3質量%以上20質量%以下である。第2元素の含有量がこのような範囲であることによって、銅に由来する高い導電性及び熱伝導性を発現させつつ、第2銅粒子が急激な温度変化に起因する過度な熱膨張や熱収縮を緩和する機能を発揮するので、耐熱性が高く、且つ接合信頼性も高い導電性組成物となる。第2元素の含有量は、例えばICP発光分光分析法で測定することができる。 The content of the second element with respect to 100% by mass of the copper element in the second copper particles is preferably 1% by mass or more and 40% by mass or less, more preferably 3% by mass or more and 20% by mass or less. When the content of the second element is in such a range, the second copper particles exhibit excessive thermal expansion and heat caused by rapid temperature changes while exhibiting high electrical conductivity and thermal conductivity derived from copper. Since the function of relieving shrinkage is exhibited, the conductive composition has high heat resistance and high bonding reliability. The content of the second element can be measured, for example, by ICP emission spectrometry.
 第2銅粒子中に含まれ得る第2元素は、例えば、銅以外の金属元素又は半金属元素のうち一種以上が挙げられる。詳細には、金属元素は、金(Au)、銀(Ag)、パラジウム(Pd)、イットリウム(Y)、チタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、コバルト(Co)、ニッケル(Ni)等の遷移金属元素、マグネシウム(Mg)等のアルカリ土類金属元素、及びアルミニウム(Al)等の他の金属元素等が挙げられる。また半金属元素としては、ケイ素(Si)等が挙げられる。 The second element that can be contained in the cupric particles includes, for example, one or more metal elements other than copper or metalloid elements. Specifically, the metal elements include gold (Au), silver (Ag), palladium (Pd), yttrium (Y), titanium (Ti), zirconium (Zr), niobium (Nb), tantalum (Ta), molybdenum ( Mo), tungsten (W), cobalt (Co), transition metal elements such as nickel (Ni), alkaline earth metal elements such as magnesium (Mg), and other metal elements such as aluminum (Al). . Moreover, silicon (Si) etc. are mentioned as a metalloid element.
 第2銅粒子中に含まれる第2元素は、元素の種類に応じて、該粒子中の少なくとも一部に、合金及び混合物のうち一種以上の状態で存在することが好ましい。合金としては、固溶体、共晶体や金属間化合物のうち少なくとも一種の態様が挙げられる。第2銅粒子中の銅元素及び第2元素の具体的な存在態様は、例えば、第2元素が銅中に固溶してなる固溶体、又は、銅単体若しくは銅化合物と第2元素単体若しくは第2元素化合物との混合物等の態様の一種以上が挙げられる。第2元素化合物としては、例えば酸化物、窒化物、又は炭化物等が挙げられる。
 第2元素がこのような態様で存在することによって、導電性組成物を焼成に供したときの温度変化に起因する過度な熱膨張や収縮を緩和させ、接合信頼性に優れるものとなる。これらの元素の存在態様は、例えばX線回折分析などの方法で測定することができる。上述の態様で第2元素が含まれる第2銅粒子は、例えば後述する製造方法によって好適に製造することができる。
The second element contained in the second copper particles preferably exists in at least a part of the particles in one or more states of an alloy and a mixture, depending on the type of element. The alloy includes at least one aspect of solid solution, eutectic, and intermetallic compound. A specific mode of existence of the copper element and the second element in the second copper particles is, for example, a solid solution in which the second element is dissolved in copper, or a single substance of copper or a copper compound and a single substance of the second element or a second element. One or more of aspects such as a mixture with a two-element compound are included. Examples of the second element compound include oxides, nitrides, and carbides.
Existence of the second element in such a manner alleviates excessive thermal expansion and contraction caused by temperature changes when the conductive composition is subjected to firing, resulting in excellent bonding reliability. The mode of existence of these elements can be measured, for example, by a method such as X-ray diffraction analysis. The second copper particles containing the second element in the manner described above can be suitably produced, for example, by the production method described below.
 第2銅粒子中に含まれる第2元素として金属元素を含む場合には、該金属元素は単体として存在するか、又は、固溶体としての銅基合金となって存在し得る。銅基合金の一形態として金属間化合物も取り得る。これに加えて、又はこれに代えて、第2元素として含まれる金属元素及び半金属元素は、酸化物、窒化物又は炭化物のいずれか一種以上の態様で存在し、第2銅粒子中において、銅単体又は銅含有合金若しくは銅含有化合物との混合物となっていてもよい。 When a metal element is included as the second element contained in the cupric particles, the metal element may exist as a single substance, or may exist as a copper-based alloy as a solid solution. Intermetallic compounds can also be taken as one form of copper-based alloys. In addition to or instead of this, the metal element and semimetal element contained as the second element are present in the form of one or more oxides, nitrides or carbides, and in the second copper particles, It may be copper alone, a copper-containing alloy, or a mixture with a copper-containing compound.
 銅とともに合金を形成し得る第2元素としては、例えば、Au、Ag、Pd、Ti、Mo、W、Co、Ni及びAlのうち一種以上の金属元素が挙げられる。 Examples of the second element that can form an alloy with copper include one or more metal elements selected from Au, Ag, Pd, Ti, Mo, W, Co, Ni, and Al.
 酸化物を形成し得る第2元素としては、例えば、Y、Ti、Zr、Nb、Mg及びAl等の金属元素や、Si等の半金属元素のうち一種以上の元素が挙げられる。第2元素の酸化物の具体例としては、例えばY、TiO、ZrO、Nb、MgO、Al、SiO等が挙げられる。 Examples of the second element capable of forming an oxide include metal elements such as Y, Ti, Zr, Nb, Mg, and Al, and metalloid elements such as Si, and at least one element. Specific examples of oxides of the second element include Y 2 O 3 , TiO 2 , ZrO 2 , Nb 2 O 5 , MgO, Al 2 O 3 and SiO 2 .
 炭化物を形成し得る第2元素としては、例えば、Nb、Ta等の金属元素や、Si等の半金属元素のうち一種以上の元素が挙げられる。第2元素の炭化物の具体例としては、例えばNbC、TaC、SiC等が挙げられる。 Examples of the second element capable of forming carbides include metal elements such as Nb and Ta, and metalloid elements such as Si. Specific examples of carbides of the second element include NbC, TaC, SiC, and the like.
 窒化物を形成し得る第2元素としては、例えば、Al等の金属元素や、Si等の半金属元素のうち一種以上の元素が挙げられる。第2元素の窒化物の具体例としては、例えばAlN、Si等が挙げられる。 Examples of the second element capable of forming a nitride include one or more of metal elements such as Al and metalloid elements such as Si. Specific examples of the nitride of the second element include AlN, Si3N4 , and the like.
 これらのうち、接合強度を更に高めて、接合対象部材との接合信頼性を向上させる観点から、第2元素は、Ag、Co、Zrのうち一種以上の元素であることがより好ましく、Ag、Coのうち一種以上の元素であることが更に好ましい。この場合、第2銅粒子中の銅元素と第2元素との存在態様は、銅との合金であるか、又は銅と第2元素酸化物との混合物であり得る。特に、第2元素がAgである場合、導電性や熱伝導性が良好に維持されるとともに、Agの銅への固溶性が良好となるので、耐熱性及び接合強度がより高く発現しやすくなり、過度な温度変化が生じた場合であってもクラック発生が少ない接合層を形成することができる。 Among these, the second element is more preferably one or more of Ag, Co, and Zr from the viewpoint of further increasing the bonding strength and improving the reliability of bonding with the member to be bonded. More preferably, it is one or more elements of Co. In this case, the mode of existence of the copper element and the second element in the second copper particles may be an alloy with copper or a mixture of copper and the oxide of the second element. In particular, when the second element is Ag, good electrical conductivity and thermal conductivity are maintained, and the solid solubility of Ag in copper is good, so that heat resistance and bonding strength are likely to be higher. Therefore, it is possible to form a bonding layer with less crack generation even when an excessive temperature change occurs.
 第2銅粒子は、粒子中における銅元素及び第2元素の存在割合が粒子表面と内部とで互いに異なっていることが好ましい。詳細には、X線光電子分光分析によって導電性組成物の最表面からSiO換算でのスパッタ深さ50nmまでの領域を測定する。このとき、銅元素の検出強度P1に対する第2元素の検出強度P2の比(以下、これを「P2/P1比」ともいう。)の積分値が、好ましくは7以上、より好ましくは9以上、更に好ましくは10以上である。また、P2/P1比の積分値が、好ましくは20以下、より好ましくは16以下である。 In the second copper particles, it is preferable that the abundance ratios of the copper element and the second element in the particles are different between the particle surface and the inside. Specifically, the region from the outermost surface of the conductive composition to a sputtering depth of 50 nm in terms of SiO 2 is measured by X-ray photoelectron spectroscopic analysis. At this time, the integrated value of the ratio of the detection intensity P2 of the second element to the detection intensity P1 of the copper element (hereinafter also referred to as "P2/P1 ratio") is preferably 7 or more, more preferably 9 or more, It is more preferably 10 or more. Also, the integrated value of the P2/P1 ratio is preferably 20 or less, more preferably 16 or less.
 上述したP2/P1比の積分値は、導電性組成物を表面から内部に向かって観察したときに、銅元素の相対的な存在割合が連続的に又は段階的に多くなることを示している。このことは、導電性組成物の最表面に存在する第2銅粒子の表面から中心に向かうにつれて銅元素の相対的な存在割合が連続的に又は段階的に多くなることを意味する。なお、銅元素と第2元素とが第2銅粒子中に均一に存在しているほど、P2/P1比の積分値は20を超えて大きくなる傾向にある。また銅からなるコア粒子の表面に第2元素を含むシェル層が明瞭に確認される態様で存在する銅粒子である場合には、P2/P1比の積分値は小さくなる傾向にある。
 したがって、P2/P1比の積分値が上述した範囲となっていることによって、第2銅粒子の表面に第2元素が相対的に多く存在し、且つ第2銅粒子の中心に銅元素が相対的に多く存在することを示している。これに起因して、銅に由来する高い導電性及び熱伝導性を発現させつつ、導電性組成物を焼成に供したときの温度変化に起因する過度な熱膨張や収縮を緩和させることができる。その結果、第2銅粒子を含む導電性組成物を、接合対象物どうしを接合するために用いたときに、導電性が十分に発現しながらも耐熱性が高く、且つ構造破壊が発生しづらく、接合信頼性が更に高いものとなる。上述した比の積分値を有する第2銅粒子は、例えば後述する製造方法によって好適に製造することができる。
The integral value of the P2/P1 ratio described above indicates that the relative abundance of the copper element increases continuously or stepwise when the conductive composition is observed from the surface toward the inside. . This means that the relative existence ratio of the copper element increases continuously or stepwise from the surface to the center of the second copper particles existing on the outermost surface of the conductive composition. The integrated value of the P2/P1 ratio tends to exceed 20 and increase as the copper element and the second element are uniformly present in the second copper particles. In the case of copper particles in which a shell layer containing a second element is clearly observed on the surface of a core particle made of copper, the integrated value of the P2/P1 ratio tends to be small.
Therefore, since the integrated value of the P2/P1 ratio is within the range described above, the second element is relatively abundant on the surface of the second copper particles, and the copper element is relatively present in the center of the second copper particles. This indicates that there are many Due to this, it is possible to alleviate excessive thermal expansion and contraction due to temperature changes when the conductive composition is subjected to firing while expressing high conductivity and thermal conductivity derived from copper. . As a result, when the conductive composition containing the second copper particles is used to join objects to be joined, the conductivity is sufficiently exhibited, the heat resistance is high, and structural destruction is less likely to occur. , the bonding reliability is further increased. The cupric particles having the integral value of the ratio described above can be suitably produced, for example, by the production method described below.
 X線光電子分光分析は、例えば以下の方法で行うことができる。すなわち、導電性組成物をX線光電子分光分析装置(アルバック・ファイ社製、VersaProbeIII)に導入して、以下の条件で測定して、導電性組成物の最表面からSiO換算でのスパッタ深さ50nmまでの各領域におけるP2/P1比をそれぞれ得る。
 その後、P2/P1比の最小値をゼロに換算した上で、最表面でのP2/P1比の測定値を1に換算したときの各スパッタ深さでのP2/P1比を縦軸にとり、スパッタ深さ(nm)を横軸にとったグラフから、導電性組成物の最表面(スパッタ深さ0mmに相当)からスパッタ深さ50nmまでのP2/P1比の積分値を算出し、これを本発明の積分値とする。
X-ray photoelectron spectroscopy can be performed, for example, by the following method. That is, the conductive composition is introduced into an X-ray photoelectron spectrometer (Ulvac-Phi, VersaProbe III) and measured under the following conditions, and the sputtering depth in terms of SiO2 from the outermost surface of the conductive composition The P2/P1 ratio in each region down to 50 nm is obtained respectively.
After that, after converting the minimum value of the P2/P1 ratio to zero, the P2/P1 ratio at each sputtering depth when the measured value of the P2/P1 ratio at the outermost surface is converted to 1 is taken on the vertical axis, From the graph in which the sputtering depth (nm) is taken on the horizontal axis, the integral value of the P2 / P1 ratio from the outermost surface of the conductive composition (corresponding to a sputtering depth of 0 mm) to a sputtering depth of 50 nm is calculated. This is the integral value of the present invention.
<X線光電子分光分析の測定条件>
 X線源としてAlKα1線(1486.8eV)を使用し、X線照射面積:200μmφ、パスエネルギー:23.5eV、試料と検出器のなす角度15°、測定スパッタ深さ:50nm(SiO換算)、測定間隔:0.1eV、管電圧:15kV、管電流:2.67mA、スキャン回数は各元素10回の条件で行う。データ解析にはアルバック・ファイ社製「マルチパックVer6.1A」を用いる。
<Measurement conditions for X-ray photoelectron spectroscopy>
AlKα1 ray (1486.8 eV) was used as the X-ray source, X-ray irradiation area: 200 μmφ, pass energy: 23.5 eV, angle between sample and detector: 15°, measured sputter depth: 50 nm (in terms of SiO 2 ). , measurement interval: 0.1 eV, tube voltage: 15 kV, tube current: 2.67 mA, and scanning is performed 10 times for each element. For data analysis, "Multipack Ver6.1A" manufactured by ULVAC-PHI is used.
 第1銅粒子及び第2銅粒子の各形状は、それぞれ独立して、例えば球状、鱗片状(フレーク状)、デンドライト状(樹枝状)及び多面体状など種々の形状を採用することができる。 Various shapes such as spherical, scale-like (flake-like), dendrite-like (dendritic) and polyhedral-like shapes can be independently adopted for each shape of the first copper particles and the second copper particles.
 導電性組成物中に含まれる第1銅粒子の粒子径は、形状が球状である場合、好ましくは30nm以上600nm以下、より好ましくは80nm以上400nm以下、更に好ましくは100nm以上200nm以下である。第1銅粒子がこのような粒子径を有することによって、粒子どうしの高い分散性を発現させつつ、低温での焼結性が高いものとなる。 The particle diameter of the cuprous particles contained in the conductive composition is preferably 30 nm or more and 600 nm or less, more preferably 80 nm or more and 400 nm or less, and still more preferably 100 nm or more and 200 nm or less when the shape is spherical. When the cuprous particles have such a particle diameter, high sinterability at low temperatures is achieved while exhibiting high dispersibility between particles.
 粒子が球状であるとは、以下の方法で測定した円形度係数が好ましくは0.85以上、更に好ましくは0.90以上であることをいう。円形度係数は、後述する粒子径の測定方法と同様の方法で粒子を観察したときに、粒子の二次元投影像の面積をSとし、周囲長をLとしたときに、粒子の円形度係数を「4πS/L」の式から算出する。各粒子の円形度係数の算術平均値を上述した円形度係数とする。粒子の二次元投影像が真円である場合は、粒子の円形度係数は1となる。 That the particles are spherical means that the circularity coefficient measured by the following method is preferably 0.85 or more, more preferably 0.90 or more. The circularity coefficient is obtained by observing the particles by a method similar to the method for measuring the particle diameter described below, where S is the area of the two-dimensional projected image of the particle, and L is the peripheral length. is calculated from the formula “4πS/L 2 ”. Let the arithmetic mean value of the circularity coefficient of each particle be the circularity coefficient mentioned above. If the two-dimensional projection image of the particle is a perfect circle, the circularity coefficient of the particle is 1.
 また、導電性組成物中に含まれる第1銅粒子の粒子径は、形状がフレーク状である場合、好ましくは0.5μm以上50μm以下、より好ましくは1μm以上30μm以下である。第1銅粒子がこのような粒子径を有することによって、導電性組成物を焼成したときに、フレーク状粒子が有する主面が接合面に対して略平行に配向しやすくなるため、焼結後の接合体の体積収縮を抑制することができ、他の部材との接合強度を向上させることができる。 In addition, the particle size of the cuprous particles contained in the conductive composition is preferably 0.5 μm or more and 50 μm or less, more preferably 1 μm or more and 30 μm or less when the shape is flake-like. When the first copper particles have such a particle diameter, when the conductive composition is fired, the main surfaces of the flake particles are likely to be oriented substantially parallel to the bonding surface, so after sintering volume shrinkage of the joined body can be suppressed, and the joint strength with other members can be improved.
 導電性組成物中に含まれる第2銅粒子の粒子径は、好ましくは30nm以上1000nm以下、より好ましくは50nm以上500nm以下、更に好ましくは60nm以上400nm以下である。第2銅粒子がこのような粒子径を有することによって、第1銅粒子と混合させた際に第1銅粒子どうしの間隙に第2銅粒子を存在させやすくして高い充填性を得ることができ、その結果、導電性組成物を焼成したときに、他の部材との接合強度を更に高めることができる。 The particle size of the cupric particles contained in the conductive composition is preferably 30 nm or more and 1000 nm or less, more preferably 50 nm or more and 500 nm or less, and still more preferably 60 nm or more and 400 nm or less. When the second copper particles have such a particle size, when mixed with the first copper particles, the second copper particles can be easily present in the gaps between the first copper particles, and high filling properties can be obtained. As a result, when the conductive composition is fired, the bonding strength with other members can be further increased.
 導電性組成物中の各銅粒子の粒子径は、以下の方法で測定することができる。まず、導電性組成物を平板上に塗布する。その後、電界放出形走査型電子顕微鏡(日立ハイテク社製SU7000)にて元素分析し、第2元素を含んでいるか否かで第1銅粒子と第2銅粒子とをそれぞれ別個に識別する。このように分離して得られた第1銅粒子又は第2銅粒子を対象として、倍率15万倍における各粒子の走査型電子顕微鏡像から無作為に200個以上選んで粒径(ヘイウッド径)を測定する。次いで、得られた各粒子の粒径から、個数基準に基づく粒度分布を得る。そして、個数基準に基づく粒度分布の中央値の粒径を本発明における粒子径とする。 The particle size of each copper particle in the conductive composition can be measured by the following method. First, a conductive composition is applied on a flat plate. Thereafter, an elemental analysis is performed with a field emission scanning electron microscope (SU7000, manufactured by Hitachi High-Tech Co., Ltd.), and the first copper particles and the second copper particles are individually identified based on whether or not the second element is contained. Targeting the first copper particles or second copper particles thus separated, 200 or more particles are randomly selected from a scanning electron microscope image of each particle at a magnification of 150,000 times, and the particle size (Heywood diameter) is obtained. to measure. Next, the particle size distribution based on the number standard is obtained from the obtained particle size of each particle. Then, the particle size of the median value of the particle size distribution based on the number standard is defined as the particle size in the present invention.
 導電性組成物中に含まれる第1銅粒子の結晶子サイズは、好ましくは5nm以上35nm以下、より好ましくは10nm以上20nm以下、更に好ましくは12nm以上18nm以下である。第1銅粒子がこのような結晶子サイズを有することによって、低温で焼結効果を発現させることができる。 The crystallite size of the cuprous particles contained in the conductive composition is preferably 5 nm or more and 35 nm or less, more preferably 10 nm or more and 20 nm or less, and still more preferably 12 nm or more and 18 nm or less. When the cuprous particles have such a crystallite size, the sintering effect can be exhibited at a low temperature.
 導電性組成物中に含まれる第2銅粒子の結晶子サイズは、好ましくは40nm以上、より好ましくは42nm以上300nm以下、更に好ましくは42nm以上250nm以下である。第2銅粒子がこのような結晶子サイズを有することによって、低温焼結性と高い充填性を両立させることができ、その結果、導電性組成物を焼成したときに、他の部材との接合強度を更に高めることができる。
 第2銅粒子の結晶子サイズは、第2元素が銅との合金が形成可能な金属元素である場合には、銅と第2元素との合金の結晶子サイズに基づく。また、第2元素が銅との混合物で存在する場合には、金属銅の結晶子サイズに基づく。
The crystallite size of the cupric particles contained in the conductive composition is preferably 40 nm or more, more preferably 42 nm or more and 300 nm or less, and still more preferably 42 nm or more and 250 nm or less. By having such a crystallite size of the second copper particles, it is possible to achieve both low-temperature sinterability and high filling properties, and as a result, when the conductive composition is fired, bonding with other members Strength can be further increased.
The crystallite size of the second copper particles is based on the crystallite size of the alloy of copper with the second element when the second element is a metallic element capable of forming an alloy with copper. Also, if the secondary element is present in a mixture with copper, it is based on the crystallite size of metallic copper.
 また、第2銅粒子の結晶子サイズが第1銅粒子の結晶子サイズよりも大きいことが好ましい。このような結晶子サイズの関係となるように各銅粒子を含有させることによって、結晶子サイズが大きい第2銅粒子由来の結晶構造が急激な温度変化に起因する膨張や収縮を低減することができるので、導電性組成物から得られる導電層は部材との接合強度を十分に維持して、接合信頼性をより高めることができる。この効果は、上述したP2/P1比を満たすことによって、より顕著に奏される。これらの関係を容易に達成可能な各銅粒子は、例えば後述する製造方法によって得ることができる。 In addition, it is preferable that the crystallite size of the second copper particles is larger than the crystallite size of the first copper particles. By containing each copper particle so as to have such a crystallite size relationship, the crystal structure derived from the second copper particle having a large crystallite size can reduce expansion and contraction due to a rapid temperature change. Therefore, the conductive layer obtained from the conductive composition can sufficiently maintain the bonding strength with the member, and the bonding reliability can be further improved. This effect is exhibited more remarkably by satisfying the above-mentioned P2/P1 ratio. Each copper particle that can easily achieve these relationships can be obtained, for example, by the manufacturing method described below.
 結晶子サイズは、例えば、測定範囲内で最も強度の高い結晶面におけるX線回折ピークのピーク幅(半値幅)から、以下に示すシェラーの式により算出することができる。 The crystallite size can be calculated, for example, from the peak width (half width) of the X-ray diffraction peak in the crystal plane with the highest intensity within the measurement range, using the Scherrer formula shown below.
 シェラーの式:D=Kλ/βcosθ
 D:結晶子サイズ(単位:nm)
 K:シェラー定数(0.94)
 λ:X線の波長(単位:1.54056Å(Kα1))
 β:半値全幅(単位:rad)
 θ:回折角(単位:rad)
Scherrer's formula: D=Kλ/β cos θ
D: crystallite size (unit: nm)
K: Scherrer constant (0.94)
λ: X-ray wavelength (unit: 1.54056 Å (Kα1))
β: full width at half maximum (unit: rad)
θ: diffraction angle (unit: rad)
 結晶子サイズは、導電性組成物を以下の条件でX線回折測定に供することによって測定される。以下の条件では、第1銅粒子及び第2銅粒子の回折ピークがそれぞれ同様の角度に現れるため、銅元素のピークが確認できる任意の角度にてXRD装置を用いて第1銅粒子と第2銅粒子とにそれぞれフィッティングをする。
 例えば、金属銅を測定対象とする場合、スキャン軸を2θ/θとし、スキャン範囲を0~150deg、ステップ幅を0.01deg、スキャン速度を1deg/min、X線をCuKα1線で測定する。スキャン速度は、スキャン範囲の最大ピークが10000カウントを超えるように選択する。
 結晶子サイズの算出は、リガク社製の分析ソフトPDXL2を用い、WPPFで解析を行う。X線回折測定装置としては、例えば、リガク社製のSmartLabを用いることができる。
The crystallite size is measured by subjecting the conductive composition to X-ray diffraction measurement under the following conditions. Under the following conditions, the diffraction peaks of the first copper particles and the second copper particles appear at similar angles, respectively. A fitting is made to the copper particles, respectively.
For example, when metallic copper is to be measured, the scan axis is 2θ/θ, the scan range is 0 to 150 deg, the step width is 0.01 deg, the scan speed is 1 deg/min, and X-rays are CuKα1 rays. The scan rate is chosen such that the maximum peak of the scan range is over 10000 counts.
The crystallite size is calculated by WPPF using analysis software PDXL2 manufactured by Rigaku. As an X-ray diffraction measurement device, for example, SmartLab manufactured by Rigaku Corporation can be used.
 導電性組成物中の第1銅粒子及び第2銅粒子の合計質量に対する第1銅粒子の割合は、好ましくは20質量%以上80質量%以下、より好ましくは40質量%以上80質量%以下、更に好ましくは60質量%以上80質量%以下である。
 同様に、第1銅粒子及び第2銅粒子の合計質量に対する第2銅粒子の割合は、好ましくは20質量%以上80質量%以下、より好ましくは20質量%以上60質量%以下、更に好ましくは20質量%以上40質量%以下である。
 このような配合割合となっていることによって、高い接合強度を均一に発現させることができる。特に、第1銅粒子の含有割合を第2銅粒子の含有割合よりも多くすることによって、低温焼結性を発現させるとともに、高い接合強度が得られる利点がある。
The ratio of the first copper particles to the total mass of the first copper particles and the second copper particles in the conductive composition is preferably 20% by mass or more and 80% by mass or less, more preferably 40% by mass or more and 80% by mass or less, More preferably, it is 60% by mass or more and 80% by mass or less.
Similarly, the ratio of the second copper particles to the total mass of the first copper particles and the second copper particles is preferably 20% by mass or more and 80% by mass or less, more preferably 20% by mass or more and 60% by mass or less, still more preferably It is 20 mass % or more and 40 mass % or less.
By having such a blending ratio, it is possible to uniformly develop a high bonding strength. In particular, by making the content of the first copper particles higher than the content of the second copper particles, there is an advantage that low-temperature sinterability can be exhibited and high bonding strength can be obtained.
 導電性組成物は、分散媒を含む。つまり、導電性組成物の形態としては、例えば導電性スラリー、導電性インク又は導電性ペーストである。導電性組成物は、必要に応じて、バインダ樹脂や還元剤が更に含まれていてもよい。 The conductive composition contains a dispersion medium. That is, the form of the conductive composition is, for example, conductive slurry, conductive ink, or conductive paste. The conductive composition may further contain a binder resin and a reducing agent, if necessary.
 導電性組成物に用いられる分散媒としては、例えば水、アルコール、ケトン、エステル、エーテル及び炭化水素が挙げられる。それらの中でも、ターピネオール及びジヒドロターピネオール等のアルコール、ポリエチレングリコール及びへキシレングリコール等の多価アルコール、並びにエチルカルビトール及びブチルカルビトール等のエーテルのうち少なくとも一種が好ましい。
 また、導電性組成物に用いられるバインダ樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリカーボネート樹脂及びセルロース樹脂等のうち少なくとも一種が挙げられる。
 また、導電性組成物に用いられる還元剤としては、例えばビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン、2-アミノ-2-(ヒドロキシメチル)-1,3-プロパンジオール、1,3-ビス(トリス(ヒドロキシメチル)メチルアミノ)プロパンなどのアミノアルコール化合物が挙げられる。
Dispersion media used in conductive compositions include, for example, water, alcohols, ketones, esters, ethers and hydrocarbons. Among them, at least one of alcohols such as terpineol and dihydroterpineol, polyhydric alcohols such as polyethylene glycol and hexylene glycol, and ethers such as ethyl carbitol and butyl carbitol is preferable.
At least one of acrylic resin, epoxy resin, polyester resin, polycarbonate resin, cellulose resin, and the like can be used as the binder resin used in the conductive composition.
Examples of reducing agents used in the conductive composition include bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane, 2-amino-2-(hydroxymethyl)-1,3-propanediol, 1,3 - aminoalcohol compounds such as bis(tris(hydroxymethyl)methylamino)propane.
 次に、導電性組成物の好適な製造方法について説明する。本製造方法は、第1銅粒子と第2銅粒子とをそれぞれ別個に製造し、然る後で、第1銅粒子、第2銅粒子及び分散媒を同時に混合するか、又は任意の順序で第1銅粒子、第2銅粒子及び分散媒を混合する工程を有する。 Next, a suitable method for producing a conductive composition will be described. In this production method, the first copper particles and the second copper particles are produced separately, and then the first copper particles, the second copper particles and the dispersion medium are mixed at the same time, or in any order A step of mixing the first copper particles, the second copper particles and the dispersion medium is included.
 まず、第1銅粒子を製造する。第1銅粒子は、例えば特開2003-34802号公報、特開2015-168878号公報又は特開2017-179555号公報に記載の方法に従い、湿式還元法によって製造することできる。
 詳細には、水と、好ましくは炭素原子数が1以上5以下の一価アルコールとを含む液媒体に、塩化銅、酢酸銅、水酸化銅、硫酸銅、酸化銅又は亜酸化銅等の一価又は二価の銅源を含む反応液を調製する。この反応液とヒドラジンとを、銅1モルに対して好ましくは0.5モル以上50モル以下の割合となるように混合し、該銅源由来の銅イオンを還元して、粒子径や結晶子サイズの制御が容易となった第1銅粒子を得る。得られた銅粒子は、必要に応じて、デカンテーション法や、ロータリーフィルター法等の洗浄方法により洗浄してもよい。
 この方法で得られる第1銅粒子は、その集合体を含むスラリーであるか、又は該集合体からなる乾燥粉末である。いずれの形態であっても、第1銅粒子は典型的には大気下に曝されるので、第1銅粒子の表面は不可避的に微量酸化され得る。なお、第1銅粒子は、市販のものを用いてもよい。
First, the first copper particles are produced. The first copper particles can be produced by a wet reduction method, for example, according to the method described in JP-A-2003-34802, JP-A-2015-168878 or JP-A-2017-179555.
Specifically, a liquid medium containing water and preferably a monohydric alcohol having from 1 to 5 carbon atoms is added with one such as copper chloride, copper acetate, copper hydroxide, copper sulfate, copper oxide or cuprous oxide. A reaction solution containing a valent or divalent copper source is prepared. This reaction solution and hydrazine are mixed so that the ratio is preferably 0.5 mol or more and 50 mol or less with respect to 1 mol of copper, and the copper ions derived from the copper source are reduced, and the particle size and crystallites are reduced. To obtain cuprous particles whose size is easily controlled. The obtained copper particles may be washed by a washing method such as a decantation method or a rotary filter method, if necessary.
The cuprous particles obtained by this method are a slurry containing the aggregates or a dry powder comprising the aggregates. In any form, since the first copper particles are typically exposed to the atmosphere, the surface of the first copper particles may inevitably be slightly oxidized. Note that commercially available cuprous particles may be used.
 また、第1銅粒子とは別に、第2銅粒子を製造する。第2銅粒子は、湿式法、アトマイズ法、RFプラズマ法、DCプラズマ法等により製造することができるが、これらの中でも、所望のP2/P1比が得やすく、導電性組成物とした際の他の部材との高い接合信頼性が効率的に発現できる粒子が得やすい観点から、DCプラズマ法を用いることが好ましい。以下に、DCプラズマ法による第2銅粒子の製造方法の一実施形態を説明する。 Separately from the first copper particles, the second copper particles are produced. The second copper particles can be produced by a wet method, an atomization method, an RF plasma method, a DC plasma method, or the like. It is preferable to use the DC plasma method from the viewpoint of easily obtaining particles capable of efficiently exhibiting high bonding reliability with other members. An embodiment of a method for producing second copper particles by a DC plasma method will be described below.
 詳細には、第2銅粒子の製造方法は、銅元素及び第2元素を含む母粉をチャンバー内に発生させたプラズマフレームに供給して、該母粉をガス化させ、ガス化した母粉を冷却して、第2銅粒子を生成させる。 Specifically, the method for producing the second copper particles includes supplying a mother powder containing a copper element and a second element to a plasma flame generated in a chamber, gasifying the mother powder, and gasifying the gasified mother powder is cooled to produce cupric particles.
 ガス化に供する銅元素及び第2元素を含む母粉としては、目的とする第2銅粒子の組成と同じ元素組成を有する銅元素及び第2元素を含む母粉を一種類供給してもよい。これに代えて、銅元素及び第2元素を含む母粉として、銅からなり、不可避不純物を除き銅以外の他の元素を含まない母粉(以下、これを銅母粉ともいう)と、第2元素を含む母粉(以下、これを第2母粉ともいう)との2種類の母粉を、目的とする第2銅粒子の元素組成と同じとなるような比率で混合して供給してもよい。 As the mother powder containing the copper element and the second element to be gasified, one kind of mother powder containing the copper element and the second element having the same elemental composition as the composition of the target second copper particles may be supplied. . Instead of this, as the mother powder containing the copper element and the second element, a mother powder made of copper and containing no other elements other than copper except for unavoidable impurities (hereinafter also referred to as copper mother powder); A mother powder containing two elements (hereinafter also referred to as a second mother powder) is mixed at a ratio such that the elemental composition of the desired cupric particles is the same and supplied. may
 母粉として、銅母粉と第2母粉との二種類の母粉を用いる場合、第2母粉は、第2元素からなり、不可避不純物を除き第2元素以外の他の元素を含まない第2元素単体の母粉であってもよく、第2元素の酸化物、炭化物又は窒化物からなる母粉であってもよい。
 以下の説明では、特に断りのない限り、上述した各態様の母粉を総称して、単に「母粉」ともいう。
When using two types of mother powder, a copper mother powder and a second mother powder, as the mother powder, the second mother powder consists of the second element and does not contain other elements other than the second element except for inevitable impurities. The mother powder may be a single substance of the second element, or may be a mother powder made of an oxide, carbide or nitride of the second element.
In the following description, unless otherwise specified, the mother powder of each of the above embodiments will be generically referred to simply as "mother flour".
 本製造方法に好適に用いられるDCプラズマ装置を図1に示す。同図に示すように、DCプラズマ装置1は、粉末供給装置2、チャンバー3、DCプラズマトーチ4、回収ポット5、粉末供給ノズル6、ガス供給装置7及び圧力調整装置8を備えている。この装置においては、母粉は、粉末供給装置2から粉末供給ノズル6を通してDCプラズマトーチ4内部を通過する。DCプラズマトーチ4には、プラズマガスがガス供給装置7から供給されプラズマフレームが発生する。また、DCプラズマトーチ4で発生させたプラズマフレーム内で母粉がガス化されてチャンバー3に放出された後、ガス化された母粉が冷却され、第2銅粒子の集合体である粉末となって回収ポット5内に蓄積回収される。チャンバー3の内部は、圧力調整装置8によって粉末供給ノズル6よりも相対的に陰圧が保持されるように制御されており、母粉のDCプラズマトーチ4への供給を容易にするとともに、プラズマフレームを安定して発生する構造をとっている。なお図1に示す装置は、DCプラズマ装置の一例であって、第2銅粒子の製造はこの装置に限定されるものではない。 Fig. 1 shows a DC plasma apparatus suitable for use in this manufacturing method. As shown in the figure, the DC plasma apparatus 1 includes a powder supply device 2, a chamber 3, a DC plasma torch 4, a recovery pot 5, a powder supply nozzle 6, a gas supply device 7 and a pressure adjustment device 8. In this apparatus, the mother powder passes through the inside of the DC plasma torch 4 from the powder feeder 2 through the powder feed nozzle 6 . A plasma gas is supplied to the DC plasma torch 4 from a gas supply device 7 to generate a plasma flame. In addition, after the mother powder is gasified in the plasma flame generated by the DC plasma torch 4 and discharged into the chamber 3, the gasified mother powder is cooled to form a powder that is an aggregate of cupric particles. As a result, it is accumulated and collected in the collection pot 5 . The inside of the chamber 3 is controlled by a pressure regulator 8 so that a negative pressure is maintained relative to the powder supply nozzle 6, which facilitates the supply of the mother powder to the DC plasma torch 4, and the plasma It has a structure that stably generates frames. The apparatus shown in FIG. 1 is an example of a DC plasma apparatus, and production of the second copper particles is not limited to this apparatus.
 プラズマフレーム内で母粉に十分なエネルギーを供給して、上述した好適なP2/P1比、粒子径、及び結晶子サイズを有する第2銅粒子を生産性高く得る観点から、プラズマフレームを、フレーム幅が最も太く観察される側面から観察したときに、フレーム幅に対するフレーム長さの縦横比が3以上である層流状態にすることが好ましい。 From the viewpoint of supplying sufficient energy to the mother powder in the plasma flame to obtain cupric particles having the above-described suitable P2/P1 ratio, particle diameter, and crystallite size with high productivity, the plasma flame is It is preferable to create a laminar flow state in which the aspect ratio of the frame length to the frame width is 3 or more when viewed from the side with the widest width.
 プラズマフレームが層流状態で太く長くなるようにするためには、プラズマ出力とプラズマガス流量を調整することが有利である。詳細には、DCプラズマ装置のプラズマ出力は、好ましくは2kW以上100kW以下、更に好ましくは2kW以上40kW以下である。
 プラズマガスのガス流量に関しては、好ましくは0.1L/min以上25L/min以下、更に好ましくは0.5L/min以上21L/min以下である。
 プラズマガスとしては、水素ガス等の還元ガスや、窒素ガス及びアルゴンガス等の不活性ガス、あるいはこれらの混合ガスを用いることができる。混合ガスを用いる場合、ガス流量は、各ガス流量の合計値とする。
In order to make the plasma flame thicker and longer in a laminar flow state, it is advantageous to adjust the plasma power and the plasma gas flow rate. Specifically, the plasma output of the DC plasma apparatus is preferably 2 kW or more and 100 kW or less, more preferably 2 kW or more and 40 kW or less.
The gas flow rate of the plasma gas is preferably 0.1 L/min or more and 25 L/min or less, more preferably 0.5 L/min or more and 21 L/min or less.
As the plasma gas, a reducing gas such as hydrogen gas, an inert gas such as nitrogen gas and argon gas, or a mixed gas thereof can be used. When using a mixed gas, the gas flow rate is the total value of each gas flow rate.
 上述した構造を有するDCプラズマ装置を用いて第2銅粒子を製造する場合、チャンバー3は、その内部が水素ガス等を含む還元ガス雰囲気であるか、又は窒素ガス及びアルゴンガス等を含む不活性ガス雰囲気であることが好ましい。このような構成とすることによって、第2銅粒子の粒成長が効率的に進行しながら、粒子どうしの凝集を抑制して、粒子どうしの凝集が少なく、且つ所定のP2/P1比を満たす第2銅粒子を生産性高く得ることができる。 When producing cupric particles using the DC plasma apparatus having the structure described above, the chamber 3 has a reducing gas atmosphere containing hydrogen gas or the like, or an inert gas atmosphere containing nitrogen gas, argon gas or the like. A gas atmosphere is preferred. By adopting such a configuration, while the grain growth of the second copper particles proceeds efficiently, the aggregation of the particles is suppressed, the aggregation of the particles is small, and the predetermined P2/P1 ratio is satisfied. 2 copper particles can be obtained with high productivity.
 母粉のガス化から冷却までの時間を一層短縮して、第2銅粒子を効率よく製造する観点から、チャンバー3の内部に冷却用ガスを供給して、ガス化した各母粉を冷却することが好ましい。冷却用ガスの供給は、例えばチャンバー3の壁部を介して接続された冷却用ガス供給部(図示せず)によって行うことができる。冷却用ガスとしては、例えば水素ガス等の還元ガスや、窒素ガス及びアルゴンガス等の不活性ガス、あるいはこれらの混合ガスを用いることができる。冷却用ガスは、チャンバー3内部の圧力が陰圧となっていることを条件として、例えば0℃以上30℃以下の温度の冷却用ガスを、チャンバー3内部におけるプラズマフレームの先端近傍であり且つプラズマフレームの形成に干渉しない周囲に、1L/min以上400L/min以下供給することができる。 From the viewpoint of further shortening the time from gasification of mother powder to cooling and efficiently producing cupric particles, a cooling gas is supplied to the inside of the chamber 3 to cool each gasified mother powder. is preferred. The cooling gas can be supplied, for example, by a cooling gas supply unit (not shown) connected through the wall of the chamber 3 . As the cooling gas, for example, reducing gas such as hydrogen gas, inert gas such as nitrogen gas and argon gas, or mixed gas thereof can be used. The cooling gas has a temperature of, for example, 0° C. or higher and 30° C. or lower on the condition that the pressure inside the chamber 3 is negative, and is applied near the tip of the plasma flame inside the chamber 3 and in the plasma. 1 L/min or more and 400 L/min or less can be supplied to the circumference that does not interfere with the formation of the frame.
 図1に示すDCプラズマ装置1を用いて、第2銅粒子を製造する場合には、上述のとおり、目的とする第2銅粒子の組成と同じ組成となるように、銅元素と第2元素とを含む母粉を用いればよい。 When producing the second copper particles using the DC plasma apparatus 1 shown in FIG. 1, as described above, the copper element and the second element It is sufficient to use a mother flour containing
 母粉のプラズマ噴射効率の向上と製造コストの低減との両立を達成する観点から、母粉の粒子径は、母粉を複数種類用いるか否かを問わず、それぞれ独立して、好ましくは3.0μm以上50μm以下、更に好ましくは5.0μm以上30μm以下である。母粉の粒子径の測定は、上述した各銅粒子の粒子径の測定と同様の方法で行うことができる。 From the viewpoint of achieving both improvement of the plasma injection efficiency of the mother powder and reduction of the manufacturing cost, the particle diameter of the mother powder is preferably 3 independently regardless of whether a plurality of types of mother powder are used. 0 μm or more and 50 μm or less, more preferably 5.0 μm or more and 30 μm or less. The particle size of the mother powder can be measured by the same method as the measurement of the particle size of each copper particle described above.
 母粉の形状に特に制限はなく、例えば樹枝状、棒状、鱗片状、キュービック状、球状などが挙げられる。プラズマトーチへの母粉の供給効率を安定化させる観点から、球状の母粉を用いることが好ましい。 The shape of the mother powder is not particularly limited, and examples include dendritic, rod-like, scale-like, cubic, and spherical shapes. From the viewpoint of stabilizing the supply efficiency of the mother powder to the plasma torch, it is preferable to use spherical mother powder.
 得られる金属粒子の製造効率の観点から、母粉の供給量は、母粉を複数種類用いるか否かを問わず、総量で表して、5g/min以上200g/min以下であることが好ましく、5g/min以上100g/min以下であることが更に好ましい。 From the viewpoint of the production efficiency of the metal particles to be obtained, the supply amount of the mother powder is preferably 5 g/min or more and 200 g/min or less in terms of the total amount, regardless of whether a plurality of types of mother powder are used. More preferably, it is 5 g/min or more and 100 g/min or less.
 銅母粉と第2母粉との2種類の母粉を用いる場合、これらの母粉の供給割合に関しては、目的とする第2銅粒子の元素組成に応じて適宜変更可能である。具体的には、銅母粉100質量%に対する第2母粉の質量割合が、好ましくは0.1質量%以上20質量%以下、更に好ましくは0.1質量%以上15質量%以下となるように供給する。 When using two types of mother powders, the copper mother powder and the second mother powder, the supply ratio of these mother powders can be appropriately changed according to the target elemental composition of the second copper particles. Specifically, the mass ratio of the second mother powder to 100% by mass of the copper mother powder is preferably 0.1% by mass or more and 20% by mass or less, more preferably 0.1% by mass or more and 15% by mass or less. supply to
 また、上述したP2/P1比を満たし、且つ上述の粒子径及び結晶子サイズを兼ね備えて満たす第2銅粒子を効率よく得る観点から、銅単体と第2元素単体又は化合物とは、それらの沸点が特定の関係にあることが好ましい。詳細には、銅単体よりも低い沸点の第2元素単体又は化合物を用いることが有利である。
 このような温度関係を有する元素を用いることによって、第2銅粒子の生成過程において、まず、蒸発気化した母粉中の銅が冷却されて、核形成、凝集及び凝縮が起こり、銅元素が多く存在する微小粒子が形成される。また、蒸発気化した銅が冷却されるとともに、蒸発気化した母粉中の第2元素単体又は化合物も同様に冷却され、微小粒子の表面に銅元素と第2元素とがともに含まれる状態で核形成される。更に、母粉中の第2元素含有物の冷却によって核形成、凝集及び凝縮が粒子の表面で起こり、第2元素が銅元素よりも多く存在するような状態で形成される。このようにして、第2元素の存在量が粒子内部から表面に向かって連続的に又は段階的に増加するように形成された、すなわち所定のP2/P1比を満たすように形成された第2銅粒子を効率よく得ることができる。またこの第2銅粒子は核形成が効率的に進行するので、結晶子を大きく形成させることができ、結晶子サイズが比較的大きいものとなる。
In addition, from the viewpoint of efficiently obtaining secondary copper particles that satisfy the above-described P2/P1 ratio and also satisfy the above-described particle diameter and crystallite size, the elemental copper and the elemental second element or compound have a boiling point of are preferably in a specific relationship. Specifically, it is advantageous to use a second element element or compound having a boiling point lower than that of elemental copper.
By using elements having such a temperature relationship, in the process of producing cupric particles, copper in the vaporized mother powder is first cooled, causing nucleation, agglomeration and condensation, resulting in a large amount of copper element. Existing microparticles are formed. In addition, the vaporized copper is cooled, and the second element simple substance or compound in the vaporized mother powder is similarly cooled, and the nuclei are formed in a state in which both the copper element and the second element are contained on the surface of the fine particles. It is formed. Furthermore, cooling of the secondary element inclusions in the mother powder causes nucleation, agglomeration and condensation to occur on the surface of the particles, forming a state in which the secondary element is present in greater abundance than the copper element. In this way, the second element is formed so that the abundance of the second element increases continuously or stepwise from the inside of the particle toward the surface, that is, the second element formed so as to satisfy a predetermined P2/P1 ratio. Copper particles can be obtained efficiently. Further, since nucleation of the cupric particles proceeds efficiently, large crystallites can be formed, and the crystallite size is relatively large.
 また、上述したP2/P1比を満たし、且つ上述の粒子径及び結晶子サイズを兼ね備えて満たす第2銅粒子を効率よく得る観点から、第2元素が酸素と安定化しやすいものを選択しても良い。第2元素として酸素と安定化しやすいものとすることで、第2銅粒子の生成過程において第2元素が外部の酸素と安定な状態で反応析出するために、粒子の外側に移動して濃化するように析出するため銅元素が金属のまま保つことができ、上述したP2/P1比の積分値、粒子径や結晶子サイズなどの好適な物性が得られやすくなる。このような第2元素としては、例えばZr、Al、Co等が好ましく挙げられる。 In addition, from the viewpoint of efficiently obtaining cupric particles that satisfy both the above-described P2/P1 ratio and the above-described particle size and crystallite size, the second element may be selected to be easily stabilized with oxygen. good. By using an element that is easily stabilized with oxygen as the second element, the second element reacts and precipitates in a stable state with external oxygen in the process of producing cupric particles, so that it moves to the outside of the particles and concentrates. Since the copper element is precipitated in such a manner as to be a metal, the copper element can be kept as a metal, and the preferable physical properties such as the integral value of the P2/P1 ratio, the particle size, and the crystallite size can be easily obtained. Preferred examples of such a second element include Zr, Al, Co, and the like.
 このようにして得られた第2銅粒子は、該粒子の集合体である粉末となって回収ポット5内に蓄積回収される。回収された第2銅粒子は、そのまま用いてもよく、コンタミネーションとして存在する粗大凝集粒子の除去を行うために分級や解砕してもよい。分級や解砕は、適切な分級装置や解砕装置を用いて、目的とする粒度が中心となるように、粗粉や微粉を分離するようにすればよい。回収された第2銅粒子は、典型的には大気下に曝されるので、第2銅粒子の表面は、不可避的に微量酸化され得る。このように製造された第2銅粒子は、上述したP2/P1比を満たし、且つ上述の粒子径及び結晶子サイズを容易に満たすものとなる。 The cupric particles thus obtained are accumulated and recovered in the recovery pot 5 in the form of powder, which is an aggregate of the particles. The recovered cupric particles may be used as they are, or may be classified or pulverized to remove coarsely aggregated particles present as contamination. Classification and pulverization may be carried out by using an appropriate classifier or pulverizer to separate coarse powder and fine powder so that the target particle size is the center. Since the recovered cupric particles are typically exposed to the atmosphere, the surface of the cupric particles may inevitably be slightly oxidized. The cupric particles thus produced satisfy the above P2/P1 ratio and easily satisfy the above particle diameter and crystallite size.
 第2銅粒子の好適な製造方法であるDCプラズマ法を用いた製造方法では、高温で母粉を蒸発気化させた後冷却させるので、これによって得られる第2銅粒子は、粒子表面から内部に向かって元素存在割合の傾斜がより大きくなりやすい。その結果、上述したP2/P1比を満たし、且つ急激な温度変化に起因する過度な熱膨張や熱収縮を緩和可能な第2銅粒子を生産性高く得ることができる。そして得られる第2銅粒子は、粒子どうしの分散性が高く、粒子の取り扱い性が良好となり、形成した塗膜の平滑性も良好となる。なお、DCプラズマ法において用いられる各種母粉は、湿式法やアトマイズ法、RFプラズマ法によって得られる粒子を用いても良い。 In the production method using the DC plasma method, which is a suitable method for producing the second copper particles, the mother powder is evaporated and vaporized at a high temperature and then cooled. The inclination of the element abundance ratio tends to become larger toward this direction. As a result, it is possible to obtain, with high productivity, cupric particles that satisfy the above-described P2/P1 ratio and that can mitigate excessive thermal expansion and thermal contraction caused by rapid temperature changes. The resulting cupric particles have high dispersibility between particles, and the particles are easy to handle, and the formed coating film has good smoothness. Various mother powders used in the DC plasma method may be particles obtained by a wet method, an atomization method, or an RF plasma method.
 上述の方法で得られた第1銅粒子及び第2銅粒子は、これを分散媒とともに混合することによって、本発明の導電性組成物を得ることができる。各銅粒子並びに分散媒の混合方法は、本技術分野において通常用いられる方法を採用することができる。これに加えて、必要に応じて、バインダ樹脂や還元剤を混合してもよい。 The conductive composition of the present invention can be obtained by mixing the cuprous particles and the cupric particles obtained by the above method with a dispersion medium. As a method for mixing each copper particle and a dispersion medium, a method commonly used in this technical field can be adopted. In addition to this, if necessary, a binder resin and a reducing agent may be mixed.
 導電性組成物中の第1銅粒子及び第2銅粒子の混合割合は、上述の質量割合の範囲と同様の範囲で混合することができる。
 また導電性組成物中の分散媒の混合割合は、目的とする導電性組成物の性状に応じて適宜変更可能であるが、第1銅粒子及び第2銅粒子の合計100質量部に対して、好ましくは10質量部以上40質量部以下とすることができる。
The mixing ratio of the first copper particles and the second copper particles in the conductive composition can be mixed in the same range as the above-described mass ratio range.
In addition, the mixing ratio of the dispersion medium in the conductive composition can be appropriately changed according to the desired properties of the conductive composition. , preferably 10 parts by mass or more and 40 parts by mass or less.
 以上の工程を経て得られた導電性組成物は、例えばこれを所定の手段によって適用対象物の表面に塗布する等して塗膜を形成することで、所望のパターンを有する導電膜を形成することができる。必要に応じて、該塗膜を加圧するとともに加熱して導電膜としてもよい。 The conductive composition obtained through the above steps forms a conductive film having a desired pattern by, for example, applying it to the surface of an object to be applied by a predetermined means to form a coating film. be able to. If necessary, the coating film may be pressurized and heated to form a conductive film.
 本発明の導電性組成物は、電子部品どうしを接合するためのダイボンディング用材料などといった導電性の接合材料として好適に用いられる。またこのほかに、プリント配線基板中のビア充填用材料や、プリント配線基板に電子デバイスを表面実装するときの接着剤として用いることもできる。 The conductive composition of the present invention is suitably used as a conductive bonding material such as a die-bonding material for bonding electronic parts. In addition, it can also be used as a material for filling vias in a printed wiring board, or as an adhesive for surface-mounting an electronic device on a printed wiring board.
 接合対象物としての電子部品としては、例えば金、銀、又は銅等の導電性の各種金属からなるスペーサーや放熱板、金属線、該金属を表面に有する基板、及び半導体素子などが挙げられる。電子部品は導電体であってもよく、絶縁体であってもよい。 Examples of electronic parts as bonding objects include spacers and heat sinks made of various conductive metals such as gold, silver, or copper, metal wires, substrates having such metals on their surfaces, and semiconductor elements. Electronic components may be conductors or insulators.
 電子部品どうしを接合するための接合材料として導電性組成物を用いる方法の一例を以下に説明する。本方法は、導電性組成物を2つの電子部品の間に介在させ、前記導電性組成物を焼結させる工程を備え、当該工程を経ることによって、導電性部材を得ることができる。 An example of a method of using a conductive composition as a bonding material for bonding electronic components is described below. The method includes a step of interposing a conductive composition between two electronic components and sintering the conductive composition, and through the steps, a conductive member can be obtained.
 まず、第1の電子部品の表面に導電性組成物を塗布して塗膜を形成する。接合用組成物の塗布の手段に特に制限はなく、公知の塗布手段を用いることができる。形成する塗膜は、第1の電子部品の表面の全域に形成されていてもよく、あるいは第1の電子部品の表面に不連続に形成されていてもよい。接合強度をより高く発現させる観点から、後述する第2の電子部品の配置予定領域の全域に塗膜が形成されることが好ましい。 First, a conductive composition is applied to the surface of the first electronic component to form a coating film. There is no particular limitation on the means for applying the bonding composition, and known application means can be used. The coating film to be formed may be formed over the entire surface of the first electronic component, or may be formed discontinuously on the surface of the first electronic component. From the viewpoint of developing a higher bonding strength, it is preferable that the coating film is formed over the entire region where the second electronic component, which will be described later, is to be arranged.
 形成する塗膜の厚みは、高い接合強度を安定的に有する接合構造を形成する観点から、塗布直後において、1μm以上500μm以下に設定することが好ましく、5μm以上300μm以下に設定することが更に好ましい。 The thickness of the coating film to be formed is preferably set to 1 μm or more and 500 μm or less, more preferably 5 μm or more and 300 μm or less, immediately after coating, from the viewpoint of forming a joint structure having high joint strength stably. .
 次に、形成した塗膜を乾燥させて乾燥塗膜を得る。本工程では、乾燥により該塗膜から分散媒の少なくとも一部を除去して、塗膜中の分散媒の量が低減した乾燥塗膜を得る。塗膜から分散媒を除去することで、乾燥塗膜の保形性を一層高めることができる。乾燥塗膜とは、膜の全質量に対する分散媒の割合が9質量%以下のものである。塗膜と、該塗膜を乾燥させた乾燥塗膜とは、分散媒以外の各構成材料の含有量は実質的に同一であるので、分散媒の割合は、例えば、乾燥前後の塗膜の質量変化を測定して算出することができる。 Next, the formed coating film is dried to obtain a dry coating film. In this step, at least part of the dispersion medium is removed from the coating film by drying to obtain a dry coating film in which the amount of the dispersion medium in the coating film is reduced. By removing the dispersion medium from the coating film, the shape retention of the dried coating film can be further enhanced. A dry coating film is one in which the ratio of the dispersion medium to the total weight of the film is 9% by weight or less. Since the content of each constituent material other than the dispersion medium is substantially the same in the coating film and the dried coating film obtained by drying the coating film, the proportion of the dispersion medium is, for example, the ratio of the coating film before and after drying. Mass change can be measured and calculated.
 分散媒を乾燥して除去するためには、該分散媒の揮発性を利用した自然乾燥、熱風乾燥、赤外線の照射、ホットプレート乾燥等の乾燥方法を用いて、分散媒を揮発させればよい。乾燥条件は、用いる導電性組成物の組成に応じて適宜変更可能であるが、例えば大気雰囲気下で、60℃以上150℃未満、大気圧、1分以上30分以下で行うことができる。 In order to dry and remove the dispersion medium, the dispersion medium may be volatilized by using a drying method such as natural drying, hot air drying, infrared irradiation, hot plate drying, etc., which utilizes the volatility of the dispersion medium. . The drying conditions can be appropriately changed according to the composition of the conductive composition to be used.
 続いて、乾燥塗膜上に第2の導電体を積層する。詳細には、上述の工程を経て乾燥塗膜が得られたら、第2の電子部品を該乾燥塗膜上に積層して、第1の電子部品と第2の電子部品と、これらの間に導電性組成物としての乾燥塗膜が隣接して配された導電性部材を得る。
 第1の電子部品及び第2の電子部品はそれぞれ、同種であってもよく、あるいは異種であってもよい。
A second conductor is then laminated onto the dried coating. Specifically, after the dry coating film is obtained through the above-described steps, the second electronic component is laminated on the dry coating film, and the first electronic component and the second electronic component are interposed therebetween. A conductive member is obtained in which the dry coating film as the conductive composition is arranged adjacently.
The first electronic component and the second electronic component may be of the same type or of different types.
 最後に、導電性部材を無加圧若しくは加圧下で加熱処理して、乾燥塗膜に含まれる金属粉を焼結させることで、第1の電子部品と第2の電子部品との接合部位が形成された接合構造を形成する。
 「無加圧」とは、大気圧の変化や構成部材の自重に起因した圧力負荷以外の圧力付与を行わない趣旨である。「加圧」とは、接合対象の部材に対して、0.001MPa以上の圧力を部材の外部から意図的に加えることをいい、大気圧の変化や構成部材の自重に起因した圧力負荷のみからなるものを除く趣旨である。
Finally, the conductive member is heat-treated with no pressure or under pressure to sinter the metal powder contained in the dried coating film, thereby forming a bonding portion between the first electronic component and the second electronic component. forming a formed junction structure;
The term "non-pressurized" means that no pressure is applied other than the pressure load caused by changes in the atmospheric pressure or the weight of the constituent members. "Pressure" refers to intentionally applying a pressure of 0.001 MPa or more to the members to be joined from the outside, and the pressure load due to changes in atmospheric pressure and the weight of the constituent members alone The purpose is to exclude
 焼結時の雰囲気は、水素やギ酸等の還元ガス雰囲気や、窒素やアルゴン等の不活性ガス雰囲気であることが好ましい。焼結温度は、好ましくは300℃未満、より好ましくは150℃以上300℃未満、更に好ましくは200℃以上300℃未満、一層好ましくは230℃以上300℃未満である。
 焼結時に加える圧力は、好ましくは0.001MPa以上、より好ましくは0.001MPa以上20MPa以下、更に好ましくは0.01MPa以上15MPa以下である。
 焼結時間は、焼結温度が前記範囲であることを条件として、好ましくは20分以下、より好ましくは0.5分以上20分以下、更に好ましくは1分以上20分以下である。
The atmosphere during sintering is preferably a reducing gas atmosphere such as hydrogen or formic acid, or an inert gas atmosphere such as nitrogen or argon. The sintering temperature is preferably less than 300°C, more preferably 150°C or more and less than 300°C, still more preferably 200°C or more and less than 300°C, still more preferably 230°C or more and less than 300°C.
The pressure applied during sintering is preferably 0.001 MPa or more, more preferably 0.001 MPa or more and 20 MPa or less, and still more preferably 0.01 MPa or more and 15 MPa or less.
The sintering time is preferably 20 minutes or less, more preferably 0.5 minutes or more and 20 minutes or less, and still more preferably 1 minute or more and 20 minutes or less, provided that the sintering temperature is within the above range.
 以上の工程を経て形成された接合部位は、導電性組成物の焼結によって形成されるものであり、分散媒は揮発等により実質的に存在していない。詳細には、接合部位は、導電性組成物を構成する各銅粒子の焼結体であり、導電性を有する。 The bonding portion formed through the above steps is formed by sintering the conductive composition, and the dispersion medium does not substantially exist due to volatilization or the like. Specifically, the joint site is a sintered body of copper particles that constitute the conductive composition, and has electrical conductivity.
 このような接合部位を有する接合構造は、その高い接合強度や熱伝導性、耐熱性の特性を活かして、高温に曝される環境、例えば車載用電子回路や、パワーデバイスが実装された電子回路に好適に用いられる。 A bonding structure having such a bonding site can be used in environments exposed to high temperatures, such as automotive electronic circuits and electronic circuits mounted with power devices, by taking advantage of its high bonding strength, thermal conductivity, and heat resistance. It is preferably used for
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 The present invention will be described in more detail below with reference to examples. However, the scope of the invention is not limited to such examples.
〔実施例1〕
(1)第1銅粒子の生成
 特開2015-168878号公報の実施例1に記載の方法に準じて、銅からなり、且つ不可避不純物を含む球状の第1銅粒子が水に分散したスラリーを得た。上述の方法で測定した第1銅粒子の粒子径は150nmであり、結晶子サイズは13nmであった。
[Example 1]
(1) Production of first copper particles According to the method described in Example 1 of JP-A-2015-168878, a slurry in which spherical first copper particles made of copper and containing inevitable impurities are dispersed in water is prepared. Obtained. The particle diameter of the cuprous particles measured by the method described above was 150 nm, and the crystallite size was 13 nm.
(2)第2銅粒子の生成
 図1に示すDCプラズマ装置を用いて、以下の方法で第2銅粒子を製造した。
 銅母粉としてアトマイズ銅粉(粒子径:10μm、球状)を用いた。第2母粉としてアトマイズ銀粉(粒子径:5~20μm、球状)を用いた。
(2) Generation of Second Copper Particles Using the DC plasma apparatus shown in FIG. 1, second copper particles were produced by the following method.
Atomized copper powder (particle size: 10 μm, spherical) was used as the copper mother powder. Atomized silver powder (particle size: 5 to 20 μm, spherical) was used as the second mother powder.
 銅母粉の使用量100質量%に対する第2母粉の質量割合を10.7質量%とし、両母粉を混合して得られた混合母粉を装置1に供給した。混合母粉の供給量を15g/minに設定し、粉末供給ノズル6を通じてDCプラズマトーチ4に混合母粉を供給した。プラズマガスとしては、窒素ガスとアルゴンガスとの混合ガスを用いた。窒素ガスの流量は4.5L/minに設定し、アルゴンガスの流量は15L/minに設定した。また、プラズマ出力は30kWに設定した。生成したプラズマフレームのフレームアスペクト比は4であり、プラズマフレームは層流状態であることが確認された。チャンバー3内部の圧力は大気圧よりも陰圧とした。また、製造時において、冷却用ガスとして25℃の窒素ガスを140L/minの流量で供給した。 A mixed mother powder obtained by mixing both mother powders with a mass ratio of 10.7 mass % of the second mother powder to 100 mass % of the copper mother powder used was supplied to the apparatus 1 . The supply amount of the mixed mother powder was set to 15 g/min, and the mixed mother powder was supplied to the DC plasma torch 4 through the powder supply nozzle 6 . A mixed gas of nitrogen gas and argon gas was used as the plasma gas. The flow rate of nitrogen gas was set to 4.5 L/min, and the flow rate of argon gas was set to 15 L/min. Also, the plasma output was set to 30 kW. The flame aspect ratio of the generated plasma flame was 4, and it was confirmed that the plasma flame was in a laminar flow state. The pressure inside the chamber 3 was set to a negative pressure rather than the atmospheric pressure. In addition, nitrogen gas at 25° C. was supplied at a flow rate of 140 L/min as a cooling gas during production.
 次いで、DCプラズマ装置を用いて生成した粒子を、粒子濃度が30質量%となるように2-プロパノールを添加した後、Nanomizer markII(湿式解砕装置、吉田機械興業株式会社製 品名:NM2-2000AR)で解砕した。解砕条件は、75MPa、10パスとした。解砕後のスラリーを、目開き3μmのフィルター(TCP-3)でろ過した後、ろ液の上澄みを除去し、残った固形分を真空乾燥機(ADVANTEC製)で40℃にて乾燥した。その後、目開き150μmの篩で解砕し、本実施例における第2銅粒子とした。
 本実施例の第2銅粒子は、銅元素と、第2元素としてのAgと、不可避不純物とからなる銅粒子である。また、第2銅粒子は、銅とAgとの合金であった。第2銅粒子中における銅元素100質量%に対するAg元素の含有割合は10.7質量%であった。上述の方法で測定した第2銅粒子の粒子径は300nmであり、銅の結晶子サイズは45nmであり、P2/P1比は14.5であった。
Next, 2-propanol was added to the particles generated using a DC plasma device so that the particle concentration was 30% by mass, and then Nanomizer mark II (wet crushing device, Yoshida Kikai Kogyo Co., Ltd. product name: NM2-2000AR ). The crushing conditions were 75 MPa and 10 passes. The slurry after pulverization was filtered through a filter (TCP-3) with an opening of 3 μm, the supernatant of the filtrate was removed, and the remaining solid content was dried at 40° C. with a vacuum dryer (manufactured by ADVANTEC). Thereafter, the particles were pulverized with a sieve having an opening of 150 μm to obtain the second copper particles in the present example.
The second copper particles of this example are copper particles comprising a copper element, Ag as a second element, and inevitable impurities. Also, the cupric particles were an alloy of copper and Ag. The content ratio of Ag element to 100% by mass of copper element in the second copper particles was 10.7% by mass. The particle diameter of the cupric particles measured by the method described above was 300 nm, the copper crystallite size was 45 nm, and the P2/P1 ratio was 14.5.
(3)導電性組成物の調製
 全銅粒子中の第1銅粒子含有量が70質量%、第2銅粒子含有量が30質量%となるように混合するとともに、第1銅粒子及び第2銅粒子の合計100質量部に対して、還元剤(ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン)を0.1質量部用い、分散媒としてポリエチレングリコール及びへキシレングリコールの混合物を用い、ペースト全質量に対して全銅粒子量が80質量%になるように調製した。
(3) Preparation of conductive composition Mix so that the content of the first copper particles in the total copper particles is 70% by mass and the content of the second copper particles is 30% by mass, and the first copper particles and the second copper particles are mixed. Using 0.1 parts by mass of a reducing agent (bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane) with respect to a total of 100 parts by mass of copper particles, using a mixture of polyethylene glycol and hexylene glycol as a dispersion medium, It was prepared so that the total amount of copper particles was 80% by mass with respect to the total mass of the paste.
 〔実施例2〕
 第2銅粒子の製造において、第2母粉としてCo粉(粒子径:5~20μm、球状)を用い、銅母粉の使用量100質量%に対する第2母粉の質量割合を4.8質量%とし、両母粉を混合して得られた混合母粉をDCプラズマ装置に供給した。これ以外は、実施例1と同様に導電性組成物を製造した。第2銅粒子は、銅とCoとの合金であった。第2銅粒子中における銅元素100質量%に対するCo元素含有量は4.8質量%であった。上述の方法で測定した第2銅粒子の粒子径は320nmであり、銅の結晶子サイズは81.7nmであり、P2/P1比は10.8であった。
[Example 2]
In the production of the second copper particles, Co powder (particle size: 5 to 20 μm, spherical) is used as the second mother powder, and the mass ratio of the second mother powder to 100% by mass of the copper mother powder used is 4.8 mass. %, and the mixed mother powder obtained by mixing both mother powders was supplied to a DC plasma apparatus. A conductive composition was produced in the same manner as in Example 1 except for this. The second copper particles were an alloy of copper and Co. The Co element content relative to 100% by mass of copper element in the second copper particles was 4.8% by mass. The particle diameter of the cupric particles measured by the method described above was 320 nm, the copper crystallite size was 81.7 nm, and the P2/P1 ratio was 10.8.
 〔実施例3〕
 第2銅粒子の製造において、第2母粉としてZrO粉(粒子径:5~20μm、球状)を用い、銅母粉の使用量100質量%に対する第2母粉の質量割合を0.5質量%とし、両母粉を混合して得られた混合母粉をDCプラズマ装置に供給した。これ以外は、実施例1と同様に導電性組成物を製造した。第2銅粒子は、銅とZrOとの混合物であった。第2銅粒子中における銅元素100質量%に対するZr元素含有量は0.5質量%であった。上述の方法で測定した第2銅粒子の粒子径は320nmであり、銅の結晶子サイズは73nmであり、P2/P1比は9.13であった。
[Example 3]
In the production of the second copper particles, ZrO 2 powder (particle size: 5 to 20 μm, spherical) is used as the second mother powder, and the mass ratio of the second mother powder to 100% by mass of the copper mother powder used is 0.5. % by mass, and the mixed mother powder obtained by mixing both mother powders was supplied to a DC plasma apparatus. A conductive composition was produced in the same manner as in Example 1 except for this. The cupric particles were a mixture of copper and ZrO2. The Zr element content in the second copper particles was 0.5% by mass with respect to 100% by mass of the copper element. The particle diameter of the cupric particles measured by the method described above was 320 nm, the copper crystallite size was 73 nm, and the P2/P1 ratio was 9.13.
 〔比較例1〕
 第2銅粒子の製造において、第2母粉としてP粉(粒子径:5~20μm、球状)を用い、銅母粉の使用量100質量%に対する第2母粉の質量割合を0.05質量%とし、両母粉を混合して得られた混合母粉をDCプラズマ装置に供給した。これ以外は、実施例1と同様に導電性組成物を製造した。第2銅粒子は、銅とリンとの合金であった。第2銅粒子中における銅元素100質量%に対するリン(P)元素含有量は0.05質量%であった。上述の方法で測定した第2銅粒子の粒子径は310nmであり、銅の結晶子サイズは95nmであり、P2/P1比は5.5であった。
[Comparative Example 1]
In the production of the second copper particles, P 2 O 5 powder (particle size: 5 to 20 μm, spherical) is used as the second mother powder, and the mass ratio of the second mother powder to 100% by mass of the copper mother powder used is 0. 05% by mass, and the mixed mother powder obtained by mixing both mother powders was supplied to a DC plasma apparatus. A conductive composition was produced in the same manner as in Example 1 except for this. The cupric particles were an alloy of copper and phosphorus. The phosphorus (P) element content relative to 100% by mass of copper element in the second copper particles was 0.05% by mass. The particle diameter of the cupric particles measured by the method described above was 310 nm, the copper crystallite size was 95 nm, and the P2/P1 ratio was 5.5.
 〔実施例4〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子含有量を50質量%とし、第2銅粒子含有量を50質量%となるように混合した以外は、実施例1と同様に導電性組成物を調製した。
[Example 4]
In the preparation of the conductive composition, in the same manner as in Example 1, except that the content of the first copper particles in the total copper particles was 50% by mass and the content of the second copper particles was mixed so that the content was 50% by mass. A conductive composition was prepared.
 〔実施例5〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子含有量を50質量%とし、第2銅粒子含有量を50質量%となるように混合した以外は、実施例2と同様に導電性組成物を調製した。
[Example 5]
In the preparation of the conductive composition, in the same manner as in Example 2, except that the content of the first copper particles in the total copper particles was 50% by mass and the content of the second copper particles was mixed so that the content was 50% by mass. A conductive composition was prepared.
 〔実施例6〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子含有量を50質量%とし、第2銅粒子含有量を50質量%となるように混合した以外は、実施例3と同様に導電性組成物を調製した。
[Example 6]
In the preparation of the conductive composition, in the same manner as in Example 3, except that the content of the first copper particles in the total copper particles was 50% by mass and the content of the second copper particles was mixed so that the content was 50% by mass. A conductive composition was prepared.
 〔比較例2〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子含有量を50質量%とし、第2銅粒子含有量を50質量%となるように混合した以外は、比較例1と同様に導電性組成物を調製した。
[Comparative Example 2]
In the preparation of the conductive composition, in the same manner as in Comparative Example 1, except that the content of the first copper particles in the total copper particles was 50% by mass and the content of the second copper particles was mixed so that the content was 50% by mass. A conductive composition was prepared.
 〔実施例7〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子含有量を30質量%とし、第2銅粒子含有量を70質量%となるように混合した以外は、実施例1と同様に導電性組成物を調製した。
[Example 7]
In the preparation of the conductive composition, in the same manner as in Example 1, except that the content of the first copper particles in the total copper particles was 30% by mass and the content of the second copper particles was 70% by mass. A conductive composition was prepared.
 〔実施例8〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子含有量を30質量%とし、第2銅粒子含有量を70質量%となるように混合した以外は、実施例2と同様に導電性組成物を調製した。
[Example 8]
In the preparation of the conductive composition, in the same manner as in Example 2, except that the content of the first copper particles in the total copper particles was 30% by mass and the content of the second copper particles was mixed so that the content was 70% by mass. A conductive composition was prepared.
 〔実施例9〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子含有量を30質量%とし、第2銅粒子含有量を70質量%となるように混合した以外は、実施例3と同様に導電性組成物を調製した。
[Example 9]
In the preparation of the conductive composition, in the same manner as in Example 3, except that the content of the first copper particles in the total copper particles was 30% by mass and the content of the second copper particles was mixed to 70% by mass. A conductive composition was prepared.
 〔比較例3〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子含有量を30質量%とし、第2銅粒子含有量を70質量%となるように混合した以外は、比較例1と同様に導電性組成物を調製した。
[Comparative Example 3]
In the preparation of the conductive composition, in the same manner as in Comparative Example 1, except that the content of the first copper particles in the total copper particles was 30% by mass and the content of the second copper particles was mixed to 70% by mass. A conductive composition was prepared.
 〔実施例10〕
 導電性組成物の調製において、全銅粒子中の第1銅粒子を三井金属鉱業株式会社製のフレーク状の銅粒子(1200YF:上述の方法で測定した第1銅粒子の粒子径は3μm、結晶子サイズは31.4nm)に変更した以外は、実施例4と同様に導電性組成物を調製した。
[Example 10]
In the preparation of the conductive composition, the first copper particles in the total copper particles were flaky copper particles manufactured by Mitsui Kinzoku Mining Co., Ltd. (1200YF: the particle diameter of the first copper particles measured by the above method was 3 μm, the crystal A conductive composition was prepared in the same manner as in Example 4, except that the particle size was changed to 31.4 nm).
〔接合強度の評価〕
 第1の電子部品として銅板(縦20mm×横20mm×厚み2mm)を用い、銅板の表面中央部に、実施例及び比較例の導電性組成物を縦5mm×横5mm×厚み100μmの寸法でスクリーン印刷して塗膜を形成した。その後、該塗膜を110℃で20分間乾燥させて、乾燥塗膜を得た。
 次に、第2の電子部品として、表面がAgメッキされたアルミナ板(縦5mm×横5mm×厚み0.5mm)を乾燥塗膜上に載せて積層体とし、各電子部品が塗膜に隣接して配された導電性部材を形成した。
 この導電性部材を、窒素雰囲気下で、6MPaの加圧状態で、昇温速度120℃/分で280℃まで昇温し、280℃で20分間焼結させて、導電性組成物の焼結体からなる接合部位を形成させつつ、銅板とアルミナ板とを接合させた接合構造を得た。
[Evaluation of bonding strength]
A copper plate (20 mm long x 20 mm wide x 2 mm thick) was used as the first electronic component, and the conductive compositions of Examples and Comparative Examples were applied to the center of the surface of the copper plate with a size of 5 mm long x 5 mm wide x 100 µm thick. A coating film was formed by printing. After that, the coating film was dried at 110° C. for 20 minutes to obtain a dry coating film.
Next, as a second electronic component, an alumina plate (5 mm long × 5 mm wide × 0.5 mm thick) whose surface is Ag-plated is placed on the dry coating film to form a laminate, and each electronic component is adjacent to the coating film. A conductive member was formed that was arranged in such a way as to
The conductive member is heated to 280° C. at a heating rate of 120° C./min under a nitrogen atmosphere under a pressure of 6 MPa, and sintered at 280° C. for 20 minutes to sinter the conductive composition. A joint structure was obtained in which a copper plate and an alumina plate were joined together while forming a solid joint portion.
〔接合信頼性の評価〕
 接合構造に対して、冷熱サイクル試験(TCT)を1000サイクル行い、そのときの焼結体からの剥離の状態を超音波探傷装置(日立パワーソリューションズ社製、型番:FineSATIII)を用い、75MHzのプローブにて反射法によって、アルミナ板の外面から観察した。TCTでは、(1)-40℃・7分間、(2)+175℃・7分間、を1サイクルとした。
 上述の装置では、接合状態が良好であるものは色が濃く(黒色に)観察され、クラックや剥離が発生し接合状態が悪い領域は色が薄く(白色に)観察される。このうち、実施例1及び比較例1の画像データを図2及び図3に示す。
 また、得られた画像データから、観察した面積中における黒色の面積割合(TCT1000サイクル後の接合率;%)を算出した。接合率が高いほど、過度な温度変化が発生した場合でも接合信頼性が高いことを示す。結果を表1に示す。
[Evaluation of bonding reliability]
A thermal cycle test (TCT) is performed for 1000 cycles on the bonded structure, and the state of peeling from the sintered body at that time is checked using an ultrasonic flaw detector (manufactured by Hitachi Power Solutions, model number: FineSATIII) using a 75 MHz probe. was observed from the outer surface of the alumina plate by a reflection method at . In TCT, one cycle was (1) -40°C for 7 minutes and (2) +175°C for 7 minutes.
With the apparatus described above, a good bonding state is observed in a dark color (black), and a region where a crack or peeling occurs and the bonding state is poor is observed in a light color (white). Among them, the image data of Example 1 and Comparative Example 1 are shown in FIGS.
Also, from the obtained image data, the black area ratio (bonding ratio after 1000 cycles of TCT; %) in the observed area was calculated. A higher bonding rate indicates a higher bonding reliability even when excessive temperature changes occur. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各実施例のTCTを行った後の接合構造は、比較例のものと比較して黒色の面積比率が高く観察されており、接合状態が良く、他の部材との接合信頼性が高いものであった。 As shown in Table 1, the joint structure after TCT of each example was observed to have a higher black area ratio than that of the comparative example. The bonding reliability was high.
 本発明によれば、他の部材との高い接合信頼性が発現できる導電性組成物が提供される。 According to the present invention, a conductive composition is provided that can exhibit high bonding reliability with other members.

Claims (12)

  1.  銅元素からなる第1銅粒子と、
     銅元素を主体として含み、且つ銅、酸素、炭素及び窒素以外の第2元素を含む第2銅粒子と、
     分散媒とを含み、
     第2銅粒子中の少なくとも一部に、前記銅元素及び第2元素が、合金及び混合物のうち一種以上の状態で存在しており、
     X線光電子分光分析によって最表面から深さ50nmまでの領域において測定したときに、銅元素の検出強度P1に対する第2元素の検出強度P2の比(P2/P1)の積分値が7以上20以下である、導電性組成物。
    First copper particles made of a copper element;
    a second copper particle containing a copper element as a main component and containing a second element other than copper, oxygen, carbon and nitrogen;
    a dispersion medium,
    The copper element and the second element are present in at least a part of the second copper particles in the state of one or more of alloys and mixtures,
    The integrated value of the ratio of the detected intensity P2 of the second element to the detected intensity P1 of the copper element (P2/P1) is 7 or more and 20 or less when measured in a region from the outermost surface to a depth of 50 nm by X-ray photoelectron spectroscopy. A conductive composition.
  2.  第2銅粒子中の少なくとも一部に、第2元素が酸化物、窒化物又は炭化物の状態で存在する、請求の範囲第1項に記載の導電性組成物。 The conductive composition according to claim 1, wherein the second element is present in the state of oxide, nitride or carbide in at least part of the cupric particles.
  3.  第2元素が、ケイ素、ジルコニウム、アルミニウム、マグネシウム、イットリウム、チタン、ニオブ又はタンタルのいずれか1種以上である、請求の範囲第2項に記載の導電性組成物。 The conductive composition according to claim 2, wherein the second element is at least one of silicon, zirconium, aluminum, magnesium, yttrium, titanium, niobium, and tantalum.
  4.  第2元素が金属であり、
     第2銅粒子中の少なくとも一部に、前記銅元素及び第2元素が合金の状態で存在する、請求の範囲第1項に記載の導電性組成物。
    the second element is a metal,
    2. The electrically conductive composition according to claim 1, wherein the copper element and the second element are present in the form of an alloy in at least a portion of the second copper particles.
  5.  第2元素が、金、銀、パラジウム、コバルト、ニッケル、タングステン、アルミニウム、チタン又はモリブデンのいずれか1種以上である、請求の範囲第4項に記載の導電性組成物。 The conductive composition according to claim 4, wherein the second element is at least one of gold, silver, palladium, cobalt, nickel, tungsten, aluminum, titanium and molybdenum.
  6.  第1銅粒子及び第2銅粒子の合計質量に対する第1銅粒子の割合が、20質量%以上80質量%以下である、請求の範囲第1項ないし第5項のいずれか一項に記載の導電性組成物。 The ratio of the first copper particles to the total mass of the first copper particles and the second copper particles is 20% by mass or more and 80% by mass or less, according to any one of claims 1 to 5 Conductive composition.
  7.  走査型電子顕微鏡観察によって測定された第1銅粒子の粒子径が30nm以上600nm以下であり、
     走査型電子顕微鏡観察によって測定された第2銅粒子の粒子径が30nm以上1000nm以下である、請求の範囲第1項ないし第6項のいずれか一項に記載の導電性組成物。
    The particle diameter of the cuprous particles measured by scanning electron microscope observation is 30 nm or more and 600 nm or less,
    7. The conductive composition according to any one of claims 1 to 6, wherein the cupric particles have a particle size of 30 nm or more and 1000 nm or less as measured by scanning electron microscopy.
  8.  第2銅粒子の結晶子サイズが第1銅粒子の結晶子サイズよりも大きい、請求の範囲第1項ないし第7項のいずれか一項に記載の導電性組成物。 The conductive composition according to any one of claims 1 to 7, wherein the crystallite size of the second copper particles is larger than the crystallite size of the first copper particles.
  9.  第2銅粒子の結晶子サイズが40nm以上である、請求の範囲第1項ないし第8項のいずれか一項に記載の導電性組成物。 The conductive composition according to any one of claims 1 to 8, wherein the crystallite size of the cupric particles is 40 nm or more.
  10.  電子部品どうしの接合に用いられる、請求の範囲第1項ないし第9項のいずれか一項に記載の導電性組成物。 The conductive composition according to any one of claims 1 to 9, which is used for bonding electronic parts.
  11.  請求の範囲第1項ないし第10項のいずれか一項に記載の導電性組成物の焼結体が2つの電子部品の間に隣接して配された、導電性部材。 A conductive member in which a sintered body of the conductive composition according to any one of claims 1 to 10 is arranged adjacently between two electronic components.
  12.  請求の範囲第1項ないし第10項のいずれか一項に記載の導電性組成物を2つの電子部品の間に介在させ、前記導電性組成物を焼結させる工程を有する導電性部材の製造方法。 Manufacture of a conductive member having a step of interposing the conductive composition according to any one of claims 1 to 10 between two electronic components and sintering the conductive composition Method.
PCT/JP2021/038153 2021-03-02 2021-10-15 Conductive composition, conductive member, and method for producing same WO2022185600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503366A JPWO2022185600A1 (en) 2021-03-02 2021-10-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-032337 2021-03-02
JP2021032337 2021-03-02

Publications (1)

Publication Number Publication Date
WO2022185600A1 true WO2022185600A1 (en) 2022-09-09

Family

ID=83154206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038153 WO2022185600A1 (en) 2021-03-02 2021-10-15 Conductive composition, conductive member, and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2022185600A1 (en)
WO (1) WO2022185600A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180563A (en) * 2011-03-01 2012-09-20 Mitsui Mining & Smelting Co Ltd Copper particle
JP2015141860A (en) * 2014-01-30 2015-08-03 株式会社豊田中央研究所 Joint material and semiconductor device using the same
WO2015122251A1 (en) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 Copper powder
JP2017002406A (en) * 2011-11-16 2017-01-05 エム・テクニック株式会社 Solid metal alloy
JP2020035718A (en) * 2018-08-31 2020-03-05 戸田工業株式会社 Conductive paste, manufacturing method of conductive paste, printed circuit plate, and manufacturing method of printed circuit plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180563A (en) * 2011-03-01 2012-09-20 Mitsui Mining & Smelting Co Ltd Copper particle
JP2017002406A (en) * 2011-11-16 2017-01-05 エム・テクニック株式会社 Solid metal alloy
JP2015141860A (en) * 2014-01-30 2015-08-03 株式会社豊田中央研究所 Joint material and semiconductor device using the same
WO2015122251A1 (en) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 Copper powder
JP2020035718A (en) * 2018-08-31 2020-03-05 戸田工業株式会社 Conductive paste, manufacturing method of conductive paste, printed circuit plate, and manufacturing method of printed circuit plate

Also Published As

Publication number Publication date
JPWO2022185600A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
JP5937730B2 (en) Method for producing copper powder
JP4613362B2 (en) Metal powder for conductive paste and conductive paste
US7066980B2 (en) Method for manufacturing metal powder
US6391084B1 (en) Metal nickel powder
US20170306170A1 (en) Composition comprising nanoparticles with desired sintering and melting point temperatures and methods of making thereof
KR102278500B1 (en) Metal powder and its manufacturing method
CA2345804C (en) Method for preparing metal powder
WO2018181482A1 (en) Copper particles and manufacturing method therefor
KR20130079315A (en) Copper powder for conductive paste, and conductive paste
Kumar et al. Synthesis and structural characterization of nanocrystalline aluminium oxide
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
WO2022185600A1 (en) Conductive composition, conductive member, and method for producing same
JP3812359B2 (en) Method for producing metal powder
KR101096059B1 (en) Method for manufacturing of copper nanopowders
JP7194544B2 (en) Particle manufacturing method
WO2021199694A1 (en) Nickel-containing particle, electroconductive composition including same, and method for manufacturing nickel-containing particle
JPH1192805A (en) Copper alloy powder and its production
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
WO2020158685A1 (en) Sn particles, conductive composition using the same, and method for producing sn particles
JP2008095184A (en) Oxide-coated nickel fine particle and method for producing the same
JP2022180322A (en) Copper powder and conductive composition comprising the same, and wiring structure comprising the same and method for producing conductive member using the same
JP5440647B2 (en) Oxide coated nickel fine particles
JP6367013B2 (en) Tin powder and method for producing the same
WO2024070098A1 (en) Nickel particles and method for manufacturing nickel particles
JPH02276104A (en) Manufacture of conductive paste for ceramics substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929161

Country of ref document: EP

Kind code of ref document: A1