JP5822526B2 - タッチ検出装置及び半導体装置 - Google Patents

タッチ検出装置及び半導体装置 Download PDF

Info

Publication number
JP5822526B2
JP5822526B2 JP2011104293A JP2011104293A JP5822526B2 JP 5822526 B2 JP5822526 B2 JP 5822526B2 JP 2011104293 A JP2011104293 A JP 2011104293A JP 2011104293 A JP2011104293 A JP 2011104293A JP 5822526 B2 JP5822526 B2 JP 5822526B2
Authority
JP
Japan
Prior art keywords
electrode
detection
touch
circuit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011104293A
Other languages
English (en)
Other versions
JP2012234473A (ja
Inventor
亮仁 赤井
亮仁 赤井
石井 達也
達也 石井
梶原 久芳
久芳 梶原
利一 立花
利一 立花
敏行 高荷
敏行 高荷
Original Assignee
シナプティクス・ディスプレイ・デバイス合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナプティクス・ディスプレイ・デバイス合同会社 filed Critical シナプティクス・ディスプレイ・デバイス合同会社
Priority to JP2011104293A priority Critical patent/JP5822526B2/ja
Publication of JP2012234473A publication Critical patent/JP2012234473A/ja
Application granted granted Critical
Publication of JP5822526B2 publication Critical patent/JP5822526B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Description

本発明は、タッチ検出装置及びそれに適用される半導体装置に係り、特にタッチセンサパネルの検出対象容量のオフセットを調整する技術に関し、例えばPDA(Personal Digital Assistant)やタブレットPC(Personal Computer)のタッチセンス入力システム等に適用して有効な技術に関する。
相互キャパシタンス方式によるマルチポイントタッチに対応するタッチセンサパネルは例えば駆動電極してのY電極と検出電極としてのX電極が誘電体を介在して直交するように配置され、それぞれの交差部分のクロス結合容量としての交差容量が交点容量を構成する。交点容量の近傍に指や手によるキャパシタンスが存在すると当該ノードの相互キャパシタンスは指や手による合成キャパシタンスの分だけ減少する。タッチセンサパネルコントローラは、この相互キャパシタンスの変化がどの交点容量で発生したかを検出するために、駆動電極を順次パルス駆動してパルス単位の充電動作を行ない、充電電荷の変化をそれぞれの検出電極から検出する動作を順次繰り返して、マトリクス配置された交点容量の相互キャパシタンスの変化に応ずる信号を取得する。このような相互キャパシタンス方式を用いてタッチセンサパネルを駆動して信号を検出するコントローラについて例えば特許文献1に記載がある。特許文献1においてX電極の信号を検出する検出回路はオペアンプを用いた積分回路によって構成される。積分回路はY電極の駆動電圧と交点容量の容量値との積で規定される電荷が交流パルス駆動に従って順次蓄積される。ところで、交点容量から積分回路に至る経路には寄生容量成分が存在し、その大きさはX電極の位置やレイアウトによってばらつきがある。このようなばらつきはX電極を介して検出回路に入力される電荷量のばらつきとなって現れる。特許文献1ではそのようなばらつきによる影響を補正するために積分回路の出力に対してオフセットをキャンセルするための信号を与える構成が示される。
米国特許公開第2009/0244014A1号明細書
本発明者は非タッチの状態においてタッチセンサパネルの全面で検出した検出データがばらつく状態をキャンセルするための技術について検討した。これによれば、交点容量毎に対応してオフセットの調整を行なうことの有用性を見出した。即ち、タッチ検出データと一対一対応でオフセット調整データによるオフセットキャンセルが可能になる。しかしながら、特許文献1にはそのような着眼はない。
また、特許文献1のように検出回路の出力に対し補正を行うと、アンプで増幅した後に補正することになるので、調整量を大きく取ってやらなければならない。その結果、オフセット補正を行う回路の規模や素子サイズが大きくなってしまう。
本発明の目的は、タッチセンサパネルの交点容量毎に検出データのばらつきを高精度に調整することができるタッチ検出装置を提供することにある。
本発明の更に別の目的は、タッチセンサパネルの交点容量毎に検出データのばらつきを高精度に調整するのに好適な半導体装置を提供することにある。
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
すなわち、タッチセンサパネルコントローラに、タッチセンサパネルの複数のX電極に対応する複数の検出回路の入力信号に対して、オフセット調整を実施するキャリブレーション回路を設けると共に、前記キャリブレーション回路の調整パラメータを格納するメモリを設けた。
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、タッチセンサパネルの交点容量毎に検出データのばらつきを高精度に調整することができる。
図1は本発明が適用された表示及び入力装置の全体的な構成を示す説明図である。 図2はタッチセンサパネルの電極構成を例示する説明図である。 図3はタッチセンサパネルの等価回路及び検出回路としての積分回路の一例を示す回路図である。 図4はY電極Y1〜YMへの入力波形の一例を示す波形図である。 図5はY電極Y1〜YMへの入力パルス電圧と積分回路による検出動作のタイミングを例示するタイミングチャートである。 図6はタッチセンサパネルの実装例を示す説明図である。 図7は積分回路の出力電圧とそれに対するAD変換結果のデータ(検出データ)の目標値を例示する説明図である。 図8はタッチセンサパネルの具体例を示すブロック図である。 図9はタッチセンサパネルコントローラの動作を例示するフローチャートである。 図10はタッチセンサパネルとキャリブレーション用RAMが保有するキャリブレーションフレームデータC_Data[y1、x1]〜C_data[yM.xN]との対応を例示する説明図である。 図11はタッチセンサパネルの検出動作におけるY電極Y1〜Y3に関する動作タイミングを例示するタイミングチャートである。 図12はキャリブレーション回路の一例として調整パラメータに応じて定電流源の電流量を制御する構成を例示するブロック図である。 図13はキャリブレーション回路の一例として調整パラメータに応じて容量結合電圧を制御する構成を例示するブロック図である。 図14は図8の実施の形態1のタッチセンサパネルコントローラに比べて、キャリブレーション回路を検出回路の出力信号に対してオフセット調整を実施するようにされるように構成した変形例に係る概略説明図である。 図15は実施の形態1においてキャリブレーション回路による調整が未実施の場合に非タッチの状態で予想される検出結果を示す説明図である。 図16は実施の形態1においてキャリブレーション回路による調整が実施される場合に非タッチの状態で予想される検出結果を示す説明図である。 図17は本発明の実施の形態に係るタッチセンサパネルコントローラを例示するブロック図である。 図18はマイクロプロセッサによるキャリブレーションデータの更新制御を主体に示した動作のフローチャートである。
1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
〔1〕<オフセット調整パラメータを格納するメモリを内蔵>
本発明の代表的な実施の形態に係るタッチ検出装置は、複数のY電極(Y1〜YM)とX電極(X1〜XN)をマトリクス状に配置したタッチセンサパネル(1)と、前記タッチセンサパネルの前記Y電極を駆動すると共に前記Y電極と前記X電極の交点容量の容量値をX電極経由で計測するタッチセンサパネルコントローラ(3(3A))と、前記タッチセンサパネルコントローラから転送される前記Y電極と前記X電極の交点毎の容量分布データ(S_Data[y1、x1]〜S_Data[yM,xN])に基づいて座標計算を行なうマイクロプロセッサ(5)と、を有する。前記タッチセンサパネルコントローラは、前記複数のX電極に対応する複数の検出回路(301)と、前記複数のX電極に対応する、前記検出回路の入力信号に対して、オフセット調整を実施するキャリブレーション回路(304)と、前記キャリブレーション回路の調整パラメータを格納するメモリ(307(307A,307B))と、駆動するY電極を切り替える毎に前記調整パラメータを前記メモリから前記キャリブレーション回路に供給する制御回路(310(310A))と、を備える。
これによれば、Y電極を切り替える毎に前記調整パラメータが前記メモリから前記キャリブレーション回路に供給されるから、タッチセンサパネルの交点容量毎に検出データのばらつきを調整することができる。さらに、オフセット調整を行なうキャリブレーション回路は検出回路の入力側に配置され、検出回路による増幅前の入力信号に対してオフセット調整を行えばよいから、調整量を大きく取ることを要しない。
〔2〕<交点毎の調整パラメータ>
項1のタッチ検出装置において、前記調整パラメータは、前記Y電極と前記X電極の交点毎のデータである。
これによれば、タッチセンサパネルの交点容量毎に固有の検出パラメータを用いて検出データのばらつきを調整することができる。
〔3〕<コマンドによる調整パラメータの最適化>
項1のタッチ検出装置において、前記調整パラメータは、前記マイクロプロセッサから入力されるコマンドに従って最適化される。
これによれば、マイクロプロセッサのソフトウェアを介して柔軟に調整パラメータを最適化することができる。
〔4〕<マイクロプロセッサに接続するバスインタフェース>
項1のタッチ検出装置において、前記メモリを前記マイクロプロセッサに接続するバスインタフェース(311)を更に有する。
これによれば、メモリに調整パラメータを初期設定したり、メモリが保有する調整パラメータを更新する処理が容易になる。
〔5〕<Y電極の切り替え毎にキャリブレーション回路が調整パラメータを取得>
項4のタッチ検出装置において、前記タッチセンサパネルコントローラは、前記複数のY電極に電極配列順にパルス信号を供給して駆動する駆動回路(300)を有する。前記検出回路は、駆動されるY電極単位で当該Y電極と交差する前記X電極との交点容量(Cxy)の容量値を検出する。前記キャリブレーション回路は、前記パルス信号が印加される前記Y電極の切り替え毎に、前記メモリから対応するアドレスの調整パラメータを入力する。
これによれば、電極順に駆動されるY電極の切り替えと同様に、調整パラメータもメモリからアドレス順に読み出してキャリブレーション回路に供給すればよい。
〔6〕<調整パラメータに応じた定電流源の電流制御>
項1のタッチ検出装置において、前記キャリブレーション回路は、X電極毎に接続された定電流源回路(310_n)の電流量を対応する調整パラメータによって調整する回路である。
これによれば、前記検出回路の入力に対する定電流源回路からの電流量制御によって容易にオフセットを調整することができる。
〔7〕<調整パラメータに応じた容量結合電圧の制御>
項1のタッチ検出装置において、前記キャリブレーション回路は、X電極毎に接続された容量素子(311_n)に印加される容量結合電圧を対応する調整パラメータによって調整する回路である。
これによれば、前記検出回路の入力ノードに対する容量結合電圧の制御によって容易にオフセットを調整することができる。
〔8〕<調整パラメータに応じた電圧の加減算量の制御>
本発明の別に実施の形態に係るタッチ検出装置は、項1のタッチ検出装置に比べて、キャリブレーション回路は前記検出回路の出力信号に対してオフセット調整を実施するようにされる点が相違され、このとき、
前記キャリブレーション回路は、前記検出回路の出力信号に対して加減算する加減算量を、対応する調整パラメータによって調整する回路とされる。
これによれば、前記検出回路の出力に対する電圧の加減算制御によって容易にオフセットを調整することができる。
〔9〕<複数の調整パラメータを格納可能なメモリ>
項1のタッチ検出装置において、前記メモリは調整パラメータの異なるセットを格納する複数の記憶領域(307A,307B)を有する。前記マイクロプロセッサは非タッチの検出データと期待値との差が許容値を越えたとき、現在使用している調整パラメータのセットに代えて新たな調整パラメータのセットを前記メモリに格納して、使用する調整パラメータのセットを更新する制御を行う。
これによれば、温度や湿度などの環境変動に起因する検出精度の低下に対して容易に対応できるようになる。
〔10〕<新たな調整パラメータの有効性判別後にパラメータセットを切り替え>
項9のタッチ検出装置において、前記更新する制御を行う前記マイクロプロセッサは、現在使用している調整パラメータのセットを有効な状態にしたままで、新たな調整パラメータのセットを演算して前記メモリ格納の別の記憶領域に格納し、格納完了した調整パラメータのセットが有効であるとき、使用する調整パラメータのセットを当該新たな調整パラメータのセットに切り換える制御を行う。
これによれば、新たな調整パラメータの演算途中で検出信号を参照するとき信号生成環境に非タッチだけでなくタッチの状態も混入して演算結果に信頼性を得ることができないような場合に、現在有効とされている調整パラメータを暫定的に使用して、タッチ検出精度の大幅な低下を回避する事ができるようになる。
〔11〕<調整パラメータ格納用のメモリを内蔵>
本発明の別の実施の形態に係る半導体装置(3(3A))は、複数のY電極とX電極をマトリクス状に配置したタッチセンサパネルの前記Y電極と前記X電極の交点容量の容量値を計測する装置である。この半導体装置は、前記Y電極をパルス駆動する駆動回路(300)と、前記複数のX電極に対応する複数の検出回路(301)と、前記検出回路の入力信号に対して、オフセット調整を実施するキャリブレーション回路(304)と、前記キャリブレーション回路の調整パラメータを格納するメモリ(307(307A,307B))と、駆動するY電極を切り替える毎に前記調整パラメータを前記メモリから前記キャリブレーション回路に供給する制御回路と、を備える。
これによれば、Y電極を切り替える毎に前記調整パラメータが前記メモリから前記キャリブレーション回路に供給されるから、タッチセンサパネルの交点容量毎に検出データのばらつきを調整することができる。さらに、オフセット調整を行なうキャリブレーション回路は検出回路の入力側に配置され、検出回路による増幅前の入力信号に対してオフセット調整を行えばよいから、調整量を大きく取ることを要しない。
〔12〕<Y電極の切り替え毎にキャリブレーション回路が調整パラメータを取得>
項11の半導体装置において、前記検出回路は、駆動されるY電極単位で当該Y電極と交差する前記X電極との交点容量(Cxy)の容量値を検出する。前記キャリブレーション回路は、電極配列順に駆動される前記Y電極の切り替え毎に、前記メモリから対応するアドレスの調整パラメータを入力する。
これによれば、電極順に駆動されるY電極の切り替えと同様に、調整パラメータもメモリからアドレス順に読み出してキャリブレーション回路に供給すればよい。
〔13〕<メモリに接続する外部バスバスインタフェース>
項12の半導体装置において、前記メモリを外部に接続するバスインタフェース(311)を更に有する。
これによれば、メモリに調整パラメータを初期設定したり、メモリが保有する調整パラメータを更新する処理が容易になる。
〔14〕<調整パラメータの更新>
項13の半導体措置において、前記メモリは調整パラメータの異なるセットを格納する複数の記憶領域(307A,307B)を有する。使用する調整パラメータのセットが格納されている記憶領域は外部からバスインタフェースを介して指定される。
外部から調整パラメータの設定や更新を行なう場合に、メモリのアクセス制御の便に供することができる。
〔15〕<マイクロプロセッサを内蔵>
項12の半導体装置は、前記検出回路の出力に基づいて得られた前記交点容量の容量分布データに基づいて座標計算を行なうマイクロプロセッサ(5)を更に有し、前記マイクロプロセッサは前記メモリに前記調整パラメータを格納する。
処理の高速化及び半導体装置の小型化に資することができる。
〔16〕<調整パラメータの更新>
項15の半導体装置において、前記メモリは調整パラメータの異なるセットを格納する複数の記憶領域(307A,307B)を有する。前記マイクロプロセッサは非タッチの検出データと期待値との差が許容値を越えたとき、現在使用している調整パラメータのセットに代えて新たな調整パラメータのセットを前記メモリに格納して、使用する調整パラメータのセットを更新する制御を行う。
これによれば、温度や湿度などの環境変動に起因する検出精度の低下に対して容易に対応できるようになる。
〔17〕<コマンドによる調整パラメータの更新>
項15の半導体装置において、前記メモリは調整パラメータの異なるセットを格納する複数の記憶領域を有する。前記マイクロプロセッサは、非タッチの検出に基づいてコマンドを発行することにより、現在使用している調整パラメータのセットに代えて新たな調整パラメータのセットを前記メモリに格納して次に使用する調整パラメータのセットを更新する制御を行う。
これによれば、マイクロプロセッサのソフトウェアを介して柔軟に調整パラメータを更新することができる。
〔18〕<新たな調整パラメータの有効性判別後にパラメータセットを切り替え>
項16の半導体装置において、前記更新する制御を行う前記マイクロプロセッサは、現在使用している調整パラメータのセットを有効な状態にしたままで、新たな調整パラメータのセットを演算して前記メモリ格納の別の記憶領域に格納し、格納完了した調整パラメータのセットが有効であるとき、使用する調整パラメータのセットを当該新たな調整パラメータのセットに切り換える制御を行う。
これによれば、新たな調整パラメータの演算途中で検出信号を参照するとき信号生成環境に非タッチだけでなくタッチの状態も混入して演算結果に全く信頼性を得ることができないような場合に、現在有効とされている調整パラメータを暫定的に使用して、タッチ検出制度の大幅な低下を回避する事ができるようになる。
2.実施の形態の詳細
実施の形態について更に詳述する。
≪実施の形態1≫
図1には本発明が適用された表示及び入力装置の全体的な構成を示す説明図である。同図に示される表示及び入力装置は例えばPDAやタブレットPCなどの携帯端末の一部を構成し、タッチセンサパネル(TP)1、ディスプレイパネルとしての液晶ディスプレイパネル(DSP)2、タッチセンサパネルコントローラ(TPC)3、及びディスプレイドライバとしての液晶ドライバ(DSPD)4を備える。
タッチセンサパネルコントローラ3は、サブシステム用のマイクロプロセッサ(SMPU)5の制御に基づいてタッチセンサパネル1を駆動してその交点容量のアレイから順次信号を取得して蓄積し、蓄積した信号を当該サブシステム用のマイクロプロセッサ5に返していく。
タッチセンサパネル1は透過性(透光性)の電極や誘電体膜を用いて構成され、例えばビットマップ表示形態の液晶ディスプレイ2の表示面に重ねて配置される。ホストプロセッサ(HMPU)6は表示データを生成し、液晶表示ドライバ4はホストプロセッサ6から受け取った表示データを液晶ディスプレイ2に表示するための表示制御を行う。
サブシステム用のマイクロプロセッサ5はタッチセンサパネルコントローラ3から受け取った信号に対してディジタルフィルタ演算を行い、これによってノイズが除去された信号に基づいてタッチセンサパネル3上で接触イベントが発生したときの座標を演算してホストプロセッサ6に与える。例えばホストプロセッサ6は液晶表示ドライバ4に与えて表示させた表示画面とサブシステム用のマイクロプロセッサ5から与えられた座標データとの関係から、タッチセンサパネル1による入力を解析する。
図2にはタッチセンサパネルの電極構成が例示される。タッチセンサパネル1は横方向に形成された多数のY電極Y1〜YMと、縦方向に形成された多数のX電極X1〜XNとが相互に電気的に絶縁されて構成される。各電極はその延在方向の途中が方形状に成形されて容量電極を構成する。X電極に接続する容量電極とY電極に接続する容量電極との間で交点容量(相互容量)が形成される。Y電極Y1〜YMは電極の配列順にパルスが印加されて駆動される。
図3にはタッチセンサパネル1の等価回路と検出回路としての積分回路301の一例が示される。タッチセンサパネルには、Y電極Y1〜YMとX電極X1〜XN電極がマトリクス状に配置され、その交点には、交点容量Cxyが形成される。
積分回路301は、X電極X1〜XNをチャージするための電源VHSPと、X電極X1〜XNへの電源VHSPのチャージを制御するスイッチSW2、オペアンプAMPit、積分コンデンサCs、積分コンデンサCsをリセットするためのスイッチSW1によって構成される。なおスイッチSW1は検出に使用するコンデンサCsに重畳された電荷をリセットするスイッチであり、スイッチSW2はX電極X1〜XNに電源VHSPをチャージするためのスイッチである。
図4にはY電極Y1〜YMへの入力波形の一例が示される。同図に例示されるようにY電極Y1〜YMには電極の配列順にパルス状に交流駆動電圧が入力される。ここでは、交流駆動電圧はY電極1本あたり9回パルス変化される例を便宜的に示す。
図5にはY電極Y1〜YMへの入力パルス電圧と積分回路301による検出動作のタイミングが例示される。まず、スイッチSW2がオン状態にされて、X電極Xn(n=1〜N)を電源VHSPにチャージする非検出状態aに遷移させ、スイッチSW1をオン状態にして、コンデンサCsをリセットする。次に、スイッチSW1とスイッチSW2をオフ状態にして、検出待受状態bに遷移する。検出待受状態bでは、X電極Xnは、電源VHSPに接続されない状況になり、仮想接地の構成である積分回路301で電圧レベルが保持される。そして、検出待受状態bに遷移した後に、Y電極Y1に振幅Vyの立ち上がりパルスを入力する(他のY電極Y2〜YMはローレベルに固定)。その結果、Y電極Y1上の交点容量Cxyを介してX電極Xnに電荷(=Vy×Cxy)が移動して検出回路301に入力され、オペアンプAMPitの出力VOUTnが変化する。なお、指でタッチすることで該当する交点容量Cxyが容量値Cfだけ減少するため、例えば、タッチしたX電極がX2だとした場合、X電極X2のオペアンプAMPitに入力される電荷はVy×(Cxy−Cf)となり、オペアンプAMPitの出力VOUT2は高電位になる。このVOUTn(n=1〜N)をAD変換回路304でデジタル値の検出データに変換して、座標演算などに供せられる。
図6にはタッチセンサパネル1の実装例が示される。タッチセンサパネル1とタッチセンサパネルコントローラ3との間において、例えばY電極Y1~YMについては、コントローラ3から近い側の電極と遠い側の電極までの配線長が異なっていたり、近い側は右手から接続されているのに対して、遠い側は左手から接続されていたりする。X電極X1~XNについては、最もタッチセンサパネルコントローラ3に近いタッチセンサパネル1の中央部に対して、左右に分かれて配線される端部は、配線が長かったり、Y電極Y1~YMとの間の配線間の配線環境の影響を受けたりする。また、図の例では、タッチセンサパネルコントローラ3はFPC(Flexible printed circuits)上に実装されているが、FPCを介してメイン基板上に実装する場合も考えられる。以上を考慮すれば、実装環境によって、タッチセンサパネル1の1面分から得られる検出データS_Dataはどの位置でも同一とはならず、ばらつくことが想定される。
図7には積分回路301の出力電圧VOUTnとそれに対するAD変換結果のデータ(検出データ)S_Dataの目標値が例示される。検出結果に対する理想としては、上述の実装環境による検出データS_Dataのばらつきをキャンセルして、タッチしていないときの1面分の検出データS_DataをVTG0の値の所定の許容幅に揃える(VTG0を中心にある範囲の許容幅±εに収まる)ことである。更に、タッチ時の検出データも含めて全ての検出データを、検出回路301の後段に設置されるAD変換回路の入力レンジに効率よく収めることを理想とする。同図では変換出力を10ビット精度とし入力電圧のフルレンジを4VとするAD変換回路を用いた場合を例示している。
本実施の形態では、検出データに対するそのような理想を実現するように検出データのばらつきをキャンセルするものであり、これを検出回路301の前段で実現する。以下、それについて詳述する。
図8にはタッチセンサパネル3の具体例が示される。同図においてタッチセンサパネル3は代表的に示された駆動回路300、検出回路301(301_1〜301_N)、AD変換回路302(302_1〜302N)、検出データ用のRAM303を備える。更にタッチセンサパネル3はオフセット補正のために、キャリブレーション回路304(304_1〜304N)、DA変換回路305(305_1〜305_N)、ラインラッチ306、及びキャリブレーションデータ用にRAM307を備える。タッチセンサパネル3の全体的な制御は制御部310が行ない、制御部310及びRAM303,307はバスインタフェース311を介してサブシステム用のマイクロプロセッサ5にインタフェースされる。
駆動回路300はY電極Y1〜YMをパルス状の交流駆動電圧によって電極の配列順に駆動する。要するに交点容量を走査駆動する。検出回路301は走査駆動された交点容量Cxyとしての交点容量から対応するX電極X1〜XNを介して検出信号を入力してその信号電荷を蓄積する。蓄積された信号電荷は対応するAD変換回路302によって検出データに変換される。特に制限されないが、ここではX電極X1〜XN毎にAD変換回路302(302_1〜302_N)を有するから、Y電極Y1〜YMの電極単位の走査駆動毎に、Y電極の本数に応ずる数の変換データが並列的に生成される。変換された検出データS_Data[y1,x1]〜S_Data[yM,xN]はRAM303に蓄積される。AD変換回路の変換精度を10ビットとすると、タッチセンサパネル3の一面分の検出データS_Data[y1,x1]〜S_Data[yM,xN]は交点容量Cxy毎に10ビットのデータとされ、そのデータ量は全部でM×N×10ビットとされる。RAM305に蓄積された検出データはバスインタフェース回路306を介してサブシステムのマイクプロセッサ5に供給され、ディジタルフィルタ演算及び座標演算に供される。
キャリブレーション回路304_1〜304_Nは前記検出回路301_1〜301_Mの入力信号に対して、オフセット調整を実施する。オフセット調整量を決める調整パラメータはRAM307にデータC_Data[y1,x1]〜C_Data[yM,xN]として格納される。ここでは調整パラメータは交点容量Cxy毎の8ビット単位のデータとされ、そのデータ量は全部で、M×N×8ビットとされる。調整パラメータC_Dataは電極順に走査駆動されるY電極単位の交点容量に応ずるデータ単位でラインラッチ306にラッチされていく。ラインラッチ306にラッチされた調整パラメータは対応するDA変換回路305_1〜3−305_Nでアナログ信号に変換されてキャリブレーション回路304_1〜304_Nに与えられる。キャリブレーション回路304_1〜304_Nは調整パラメータに従って対応するX電極X1〜XNの信号レベルから不所望なオフセット量をキャンセルするように動作する。
制御部310は図示を省略する制御信号を用いて駆動回路300、積分回路301、AD変換回路302、キャリブレーション回路304、DA変換回路305、ラインラッチ306の動作を制御し、また、RAM303,307のアクセス制御及びバスインタフェース311の入出力制御を行う。
図9にはタッチセンサパネルコントローラ3の動作フローが例示される。タッチセンサパネルコントローラ3は動作電源が投入されると(S1)、タッチセンサパネル一面分のキャリブレーション用の調整パラメータデータ(キャリブレーションフレームデータ)C_Data[y1,x1]〜C_Data[yM,xN]をマイクロプロセッサ5から取得してRAM307に格納する。次に、走査駆動するY電極の番号を示すカウンタmを初期値1に設定し、走査駆動対象にされる1本のY電極に対応する一列分の調整パラメータ(キャリブレーションラインデータ)C_Data[ym、x1]〜C_data[ym、xN]をラインラッチに転送し(S4)、Y電極Ymが走査駆動されてX電極X1〜XNに検出信号が現れる(S5)。検出信号はAD変換回路302でディジタルデータに変換され(S6)、変換された一列分のディジタルデータ(検出ラインデータ)は検出データS_Data[ym、x1]〜S_Data[ym、xN]としてRAM303に格納される(S7)。ステップS4からS7の動作はカウンタ値mが最終値Mになるまでカウンタ値mを順次インクリメントしながら繰り返される(S8,S9)。カウンタ値mが最終値Mになったところで、マイクロプロセッサ5がRAM303から検出データS_Data[y1、x1]〜S_Data[yM,xN]をリードし、必要な演算を行なってタッチの有無を判別し(S10)、タッチセンサパネル1の新たな一面の検出データを用いた座標演算を行なう(S11)。座標演算の後、カウンタ値mを初期値1に戻してステップS4から上記処理を繰り返す。
キャリブレーションフレームデータC_Data[y1、x1]〜C_data[yM.xN]は、タッチセンサパネルコントローラ3とタッチセンサパネル1を実装した際に決定され、実装環境により、電極毎に異なる配線容量負荷、あるいは異なる配線抵抗負荷であっても、非タッチ時の検出結果VTG0が均一になるように調整するためのマトリクスデータである。
図10にはタッチセンサパネル1とキャリブレーション用RAM307が保有するキャリブレーションフレームデータC_Data[y1、x1]〜C_data[yM.xN]との対応が例示される。例えば、タッチセンサパネルの左上(y1、x1)に対応するキャリブレーションデータがキャリブレーションRAM307の左上のアドレスに格納される。
図11にはタッチセンサパネル3の検出動作におけるY電極Y1〜Y3に関する動作タイミングが例示される。特に、検出動作とキャリブレーションデータと検出データとの関係が示される。まず、電極Y1に駆動パルスが入力される直前に、対応するキャリブレーションデータL1(C_Data[y1、x1]〜C_Data[y1、xN])をキャリブレーション用RAM307からラインラッチ306に転送し、DA変換回路301がアナログデータに変換する。キャリブレーション回路304は、DA変換されたアナログデータに基づいて動作して検出回路301の入力信号のオフセットをキャンセルし、オフセットがキャンセルされた信号を入力する検出回路301は図3乃至図5で説明した動作によって検出電圧VOUT1〜VOUTNを出力し、出力された検出電圧VOUT1〜VOUTNはAD変換回路302に転送されて検出データS_Data[y1、x1]〜S_Data[y1,xN]に変換され、RAM303に格納される。次に電極Y2に駆動パルスが入力され、このときもそのパルス駆動の直前に対応するキャリブレーションデータL2(C_Data[y2、x1]〜C_Data[y2、xN])をキャリブレーション用RAM307からラインラッチ306に転送する。以下同様にして、パルス駆動するY電極が切り替わる度にラインラッチ306に対応するキャリブレーションデータを転送しながら、検出動作を行なう。
キャリブレーション用のRAM307がタッチセンサパネルコントローラ3に内蔵されない場合は、サブシステムのマイクロプロセッサ5から随時キャリブレーションデータを転送することになり、その間、バスインタフェース311を占有すると共に、転送電力が大きくなることが懸念される。
図12にはキャリブレーション回路の一例として調整パラメータに応じて定電流源の電流量を制御する構成が例示される。模式的に図示された定電流源310_nの電流量をDA変換回路305_nの出力電流によって制御するように構成される。
図13にはキャリブレーション回路の一例として調整パラメータに応じて容量結合電圧を制御する構成が例示される。模式的に図示された容量素子311_nの一方の容量電極をバッファアンプ312_nで駆動し、駆動量に応じて他方の容量電極に印加する容量結合電圧を制御するように構成される。バッファアンプ312_nの出力電圧はDA変換回路305_nの出力によって制御される。
図14は図8の実施の形態1のタッチセンサパネルコントローラに比べて、キャリブレーション回路314を検出回路301の出力信号に対してオフセット調整を実施するようにされるように構成した変形例に係る概略説明図である。特にこの実施の形態1の変形例では、前記キャリブレーション回路314は、前記検出回路301の出力信号に対して加減算する加減算量を、対応する調整パラメータによって調整する回路として構成される。これによれば、前記検出回路の出力に対する電圧の加減算制御によって容易にオフセットを調整することができる。
図15には実施の形態1においてキャリブレーション回路304による調整が未実施の場合に非タッチの状態で予想される検出結果を示す説明図である。図15において、キャリブレーション用のRAM307には同一データ(例えば8’h7F)が格納され、キャリブレーション回路によるオフセット調整は実質的に未実施とされる。Y電極Y1を駆動したときのX電極X1〜XNに関する検出データS_Data[y1,x1]〜S_Data[y1、xN]と、Y電極YMを駆動したときのX電極X1〜XNに関する検出データS_Data[yM,x1]〜S_Data[yM、xN]とに代表されるように、X電極毎に検出データの値がばらついている。
図16には実施の形態1においてキャリブレーション回路304による調整が実施される場合に非タッチの状態で予想される検出結果を示す説明図である。図16において、キャリブレーション用のRAM307にはキャリブレーションデータの最適値が格納され、キャリブレーション回路によるオフセット調整が実質的に実施される。図16において、Y電極Y1を駆動したときのX電極X1〜XNに関する検出データS_Data[y1,x1]〜S_Data[y1、xN]と、Y電極YMを駆動したときのX電極X1〜XNに関する検出データS_Data[yM,x1]〜S_Data[yM、xN]とに代表されるように、X電極毎の検出データの値は均一になっている。
キャリブレーションデータの最適化は、RAM303に格納される検出データをモニタしながら最適値を探索する動作を数回繰り返すことによって容易に得ることができる。また、検出データをモニタしながら最適値を探索する動作を繰り返す方法以外に、実際の回路構成及び回路定数が既知であれば、それらに基づいて図15で説明したようにキャリブレーションデータを一定としたときに得られる検出データS_Dataの分布と上記既知の情報とに基づいてキャリブレーションデータの最適値を予測することも可能である。キャリブレーションデータの最適化は、マイクロプロセッサ5が制御部310に発行する所定のコマンドに基づいて実施されるものとし、例えば、当該コマンドに発行タイミングで最適化の処理が実施されるものとする。
上記本実施の形態1に係るタッチセンサパネルコントローラ3によれば、タッチセンサパネルの実装形態などによって生ずるX電極から見たそれぞれの交点容量毎の容量成分のばらつきに起因してX電極に現れる、不所望なオフセットをキャンセルするための、調整パラメータをタッチセンサパネルコントローラ3にオンチップされたRAM307に保有する。RAM307が保有する調整パラメータは、Y電極を切り替える毎にメモリ307からキャリブレーション回路304に供給されるから、タッチセンサパネル1の交点容量毎に検出データのばらつきを調整することができる。
さらに、そのようなRAM307をサブシステム用のマイクロプロセッサ5が保有することを要しないので、マイクロプロセッサ5からタッチセンサパネルコントローラ3に逐次調整パラメータを転送するためのバスアクセスを頻繁に起動することを要しない。
また、オフセット調整を行なうキャリブレーション回路は検出回路301の入力側に配置され、検出回路301による増幅前の入力信号に対してオフセット調整を行えばよいから、調整量を大きく取ることを必要としない。
《実施の形態2》
図17には本発明の実施の形態2に係るタッチセンサパネルコントローラ3Aが例示される。図8の実施の形態1で説明したタッチセンサパネルコントローラ3と異なる点は、キャリブレーション用のRAMとしてRAM307AとRAM307Bを2面分有していることであり、特に、実装環境だけではなく、温度や湿度変化などによる環境変動により、キャリブレーションデータの最適値が変わってしまった場合に、キャリブレーションデータC_Dataの更新を容易に行なえるようにしたことを特徴とするものである。
RAM307A,307Bのそれぞれは前記RAM307と同様にM×N×8ビットの記憶領域を有し、キャリブレーションデータC_Data[y1、x1]〜C_Data[yM,xN]を格納する。バスインタフェース311を介するRAM307A,307Bへの書き込み経路は選択信号WSとその反転信号によって相補的にスイッチ制御されるスイッチSW1_B,SW2_Bで選択される。ラインラッチ306へのRAM307A,307Bからの読み出し経路は選択信号RSとその反転信号によって相補的にスイッチ制御されるスイッチSW1_A,SW2_Aで選択される。選択信号RS,WSの制御は、特に制限されないが、マイクロプロセッサ5から供給されるコマンドに基づいて制御部310Aが行う。
ここでは、RAM307A又はRAM307Bに対するキャリブレーションデータの更新制御、タッチ検出動作に用いるRAM307Aと307Bとの間での切り替え制御はマイクロプロセッサ5が行なう。即ち、マイクロプロセッサ5は非タッチの検出データS_Data[nc]と期待値VTG0との差が許容値を越えたとき(|VTG0−S_Data[nc]|>ε)、現在使用している調整パラメータのセットに代えて新たな調整パラメータのセットを、現在使用中でないRAM307A又は307Bに格納して、それ以降に使用する調整パラメータのセットを更新する制御を行う。この更新する制御において、マイクロプロセッサ5は、現在使用している調整パラメータのセットを有効な状態にしたままで、新たな調整パラメータのセットを演算して非使用状態のRAM307A又は307Bに格納し、格納完了した調整パラメータのセットが有効であるとき、使用する調整パラメータのセットを当該新たな調整パラメータのセットに切り換える制御を行う。
これによれば、新たな調整パラメータの演算途中で検出信号を参照するとき信号生成環境に非タッチだけでなくタッチの状態も混入して演算結果に信頼性を得ることができないような場合に、現在有効とされている調整パラメータを暫定的に使用して、タッチ検出精度の大幅な低下を回避する事ができるようになる。これについて更に詳述する。
図18にはマイクロプロセッサによるキャリブレーションデータの更新制御を主体に示した動作のフローチャートである。
マイクロプロセッサ5及びタッチセンサパネルコントローラ3Aなどに電源が投入されると(S21)、マイクロプロセッサ5はRAM307Aを有効とし、RAM307Bを無効とすることを、タッチセンサパネルコントローラ3Aに通知し(S22)、実施の形態1で説明したと同様に実装環境(室温、通常湿度)に最適化されたキャリブレーションデータC_Data[y1、x1]〜C_Data[yM,xN]を取得して(S23)、キャリブレーション用にRAM307Aに格納する(S24)。RAM307A、307Bの有効/無効は1ビットのパラメータもしくはフラグを用いて指示すればよい。例えばrをその有効性フラグとすると、r=0でRAM307Aが有効、307Bが無効を意味し、r=1でRAM307Aが無効、307Bが有効を意味する。RAM307A、307Bの有効/無効とはそれが保持するデータを検出動作で現在使用してよい(有効)か、否(無効)かを示すものである。
この後、タッチセンサパネルコントローラ3Aは前述のようにして検出動作を行なう(S25)。検出動作において検出回路301とキャリブレーション回路304でタッチセンサパネル1の1面分の検出データS_Dataを測定し(S26)、マイクロプロセッサ5は得られた検出データS_Dataを読み込んでタッチの有無を判定する(S27)。マイクロプロセッサ5はタッチ有りと判別したときは座標演算を行なって更に検出動作(S25)を繰り返す。
マイクロプロセッサ5は、タッチ無しと判定したときは、検出データS_Dataと非タッチ時のターゲット値VTG0との差分がε、例えば500mV相当のデジタル値を超過していなければ(S29のYES)、タッチセンサパネルコントローラ3Aにそのまま検出動作(S25)を実行させる。一方前記誤差が許容値εを超過した場合には(S29のNO)、マイクロプロセッサ5はキャリブレーションデータC_Dataの再計算を開始し(S30)、タッチセンサパネルコントローラ3Aには検出動作を実行させる(S25)。マイクロプロセッサ5によって再計算されたキャリブレーションデータは現在無効とされているRAM307Bに格納し(S31)、その間においても、タッチセンサパネルコントローラ3Aは現在有効なRAM307Aのキャリブレーションデータを用いて検出動作を行うことができるようになっている。要するに、再計算後のキャリブレーションデータは、キャリブレーション用のRAM307Bに格納し、RAM307Aには現在有効なキャリブレーションデータが維持されている。尚、タッチ無しと判定した場合には、検出動作の頻度を低くしても良く、その場合は必ずしもキャリブレーションデータC_Dataの再計算中に検出動作(S25)を実施しなくても良い。また、上記説明では、検出データS_Dataと非タッチ時のターゲット値VTG0との差分と、εとを比較して(S29)、マイクロプロセッサ5がキャリブレーションデータC_Dataの再計算を開始(S30)する手順を一例としたが、本発明はそれに限定されるものではなく、キャリブレーションデータC_Dataの再計算(S30)は、ステップS29の結果によらず、マイクロプロセッサ5が発行するコマンドで強制的に実施するようにしてもよい。即ち、マイクロプロセッサ5は、タッチ無しを検出したとき(S27のNO)、ステップS29の結果判定を行わずにキャリブレーションデータの計算を行って更新する指示コマンドをタッチセンサパネルコントローラ3Aに発行する。
マイクロプロセッサ5は新たに演算したキャリブレーションデータをそのとき無効なメモリ307Bに格納完了したとき、キャリブレーションデータの再計算に失敗がなかったかを判別し(S32)、なければ、キャリブレーションRAM307Aと307Bの有効/無効を切り替えて、新たなキャリブレーションデータを用いて検出動作を継続可能にする。一方、失敗があったときはキャリブレーションRAM307Aと307Bの切り替えを行なわずに、既存のキャリブレーションデータを用いた検出動作を継続可能にする。尚、再計算の失敗の有無の判定(S32)は、例えばキャリブレーションRAM307Aと307Bの同一アドレスのキャリブレーションデータC_Dataを比較すれば可能であり、その差分が一定以上大きければ、計算途中でタッチが有ったと判定する。ただし、再計算の失敗の有無が判定できれば、判定方法はこれに限るわけではないことは言うまでも無い。
したがって、キャリブレーションデータC_Dataの再計算で演算エラーを生じていたり、再計算中にタッチがあって、計算途中の中途半端なキャリブレーションデータ、例えば電極Ymまでは新たに演算されたキャリブレーションデータであるが、電極Ym+1〜電極YMについては1世代前のキャリブレーションデータであった場合に、多少のレベル変化はあるものの座標計算の実績がある1世代前のキャリブレーションデータを使用して、座標計算を実施することが可能にされる。
実施の形態2によれば以下の作用効果を得ることができる。実施の形態1により、XY電極の交点の交点容量Cxy毎に非タッチ時の検出データS_Dataを期待値VTG0になるように調整した上で、例えば、温度等、何らかの外的要因によって、タッチセンサの交点容量Cxyが増加した場合、検出電圧VOUTnは低下して0V近傍になり、AD変換回路302から出力される検出データS_Dataは、000hに接近する可能性がある。さらに検出データS_Dataが全体的に低レベル側にシフトされれば、十分なS/N比を確保することができなくなる。実施の形態2ではVTG0に対する誤差が拡大したときキャリブレーションデータを最適化して更新するから、動作環境に応じてS/N比が低下する事態の発生を未然に防止することができる。
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、夫々の実施の形態は互いに組み合わせて実施することが可能である。また、サブシステム用のマイクロプロセッサをタッチセンサパネルコントローラにオンチップしてシングルチップで構成してもよい。また、本発明に係る半導体装置は、タッチセンサパネルコントローラ内蔵の液晶ドライバ、或いは液晶ドライバ内蔵のタッチセンサパネルコントローラとして実現する事も可能である。本発明に係る半導体装置はシングルチップであっても、マルチチップであってもよく、マルチチップの場合にはシステム・イン・パッケージのようなモジュールデバイスとして実現されてもよい。
1 タッチセンサパネル(TP)
2 液晶ディスプレイパネル(DSP)
3 タッチセンサパネルコントローラ(TPC)
4 液晶ドライバ(DSPD)
5 サブシステム用のマイクロプロセッサ(SMPU)
6 ホストプロセッサ(HMPU)
Y1〜YM Y電極
X1〜XN X電極
Cxy 交点容量
300 駆動回路
301(301_1〜301_N) 検出回路
302(302_1〜302N) AD変換回路
303 検出データ用のRAM
304(304_1〜304N) キャリブレーション回路
305(305_1〜305_N) DA変換回路
306 ラインラッチ
307 キャリブレーションデータ用のRAM
310 制御部
311 バスインタフェース
3A タッチセンサパネルコントローラ
307A、307B キャリブレーション用のRAM
310A 制御部

Claims (10)

  1. 複数のY電極とX電極をマトリクス状に配置したタッチセンサパネルと、
    前記タッチセンサパネルの前記Y電極を駆動すると共に、駆動された前記Y電極に容量を介して交差するX電極に現れる信号に基づいて前記Y電極と前記X電極の交差位置毎の検出データを生成するタッチセンサパネルコントローラと、
    前記タッチセンサパネルコントローラから転送される前記Y電極と前記X電極の交差位置毎の検出データに基づいてタッチの有無判別を行なうと共にタッチ有りと判別したときのタッチ位置の座標計算を行なうマイクロプロセッサと、を有し、
    前記タッチセンサパネルコントローラは、前記複数のX電極に対応する複数の検出回路と、
    前記複数のX電極に対応する、前記複数の検出回路の入力信号に対して、オフセット調整を実施する複数のキャリブレーション回路と、
    前記キャリブレーション回路の調整パラメータを格納するメモリと、
    駆動するY電極を切り替える毎に前記調整パラメータを前記メモリから前記キャリブレーション回路に供給する制御回路と、を備えるタッチ検出装置であって、
    前記メモリは調整パラメータの異なるセットを格納する複数の記憶領域を有し、
    前記マイクロプロセッサは、非タッチの検出データと期待値との差が許容値を越えたとき、現在使用している調整パラメータのセットを有効な状態に維持して検出動作を可能にしたまま、新たな調整パラメータのセットを前記メモリの別の記憶領域に格納し、格納完了した調整パラメータのセットが有効であることを条件に、使用する調整パラメータのセットを当該新たな調整パラメータのセットに切り換える制御を行う、タッチ検出装置。
  2. 前記調整パラメータは、前記Y電極と前記X電極の交点毎のデータである、請求項1記載のタッチ検出装置。
  3. 前記メモリを前記マイクロプロセッサに接続するバスインタフェースを更に有する、請求項1記載のタッチ検出装置。
  4. 前記タッチセンサパネルコントローラは、前記複数のY電極に電極配列順でパルス信号を供給して駆動する駆動回路を有し、
    前記検出回路は、駆動されるY電極単位で当該Y電極に容量を介して交差するX電極に現れる信号を検出し、
    前記キャリブレーション回路は、前記パルス信号が印加される前記Y電極の切り替え毎に、前記メモリから対応するアドレスの調整パラメータを入力する、請求項3に記載のタッチ検出装置。
  5. 前記キャリブレーション回路は、X電極毎に接続された定電流源回路の電流量を、対応する調整パラメータによって調整する回路である、請求項1記載のタッチ検出装置。
  6. 前記キャリブレーション回路は、X電極毎に接続された容量素子に印加される容量結合電圧を、対応する調整パラメータによって調整する回路である、請求項1記載のタッチ検出装置。
  7. 複数のY電極とX電極をマトリクス状に配置したタッチセンサパネルと、
    前記タッチセンサパネルの前記Y電極を駆動すると共に、駆動された前記Y電極に容量を介して交差するX電極に現れる信号に基づいて前記Y電極と前記X電極の交差位置毎の検出データを生成するタッチセンサパネルコントローラと、
    前記タッチセンサパネルコントローラから転送される前記Y電極と前記X電極の交差位置毎の検出データに基づいてタッチの有無判別を行なうと共にタッチ有りと判別したときのタッチ位置の座標計算を行なうマイクロプロセッサと、を有し、
    前記タッチセンサパネルコントローラは、前記複数のX電極に対応する複数の検出回路と、
    前記複数のX電極に対応する、前記複数の検出回路の出力信号に対して、オフセット調整を実施する複数のキャリブレーション回路と、
    前記キャリブレーション回路の調整パラメータを格納するメモリと、
    駆動するY電極を切り替える毎に前記調整パラメータを前記メモリから前記キャリブレーション回路に供給する制御回路と、を備えるタッチ検出装置であって、
    前記キャリブレーション回路は、前記検出回路の出力信号に対して加減算する加減算量を、対応する調整パラメータによって調整する回路であり、
    前記メモリは調整パラメータの異なるセットを格納する複数の記憶領域を有し、
    前記マイクロプロセッサは、非タッチの検出データと期待値との差が許容値を越えたとき、現在使用している調整パラメータのセットを有効な状態に維持して検出動作を可能にしたまま、新たな調整パラメータのセットを前記メモリの別の記憶領域に格納し、格納完了した調整パラメータのセットが有効であることを条件に、使用する調整パラメータのセットを当該新たな調整パラメータのセットに切り換える制御を行う、タッチ検出装置。
  8. 複数のY電極とX電極をマトリクス状に配置したタッチセンサパネルの前記Y電極に容量を介して交差する前記X電極に現れる信号に基づいて前記Y電極と前記X電極の交差位置毎の検出データを生成する半導体装置であって、
    前記Y電極をパルス駆動する駆動回路と、
    前記複数のX電極に現れる信号をX電極毎に入力する複数の検出回路と、
    前記複数の検出回路の入力信号に対して、オフセット調整を実施する複数のキャリブレーション回路と、
    前記キャリブレーション回路の調整パラメータを格納するメモリと、
    駆動するY電極を切り替える毎に前記調整パラメータを前記メモリから前記キャリブレーション回路に供給する制御回路と、を備え、
    前記検出回路は、駆動されるY電極単位で当該Y電極と交差する夫々の前記X電極に現れる信号を検出し、
    前記キャリブレーション回路は、配列順に駆動される前記Y電極の切り替え毎に、前記メモリから対応するアドレスの調整パラメータを入力し、
    前記メモリを外部に接続するバスインタフェースを更に有し、
    前記メモリは調整パラメータの異なるセットを格納する複数の記憶領域を有し、
    使用する調整パラメータのセットが格納されている記憶領域は外部からバスインタフェースを介してコマンドで前記制御回路に指定され、
    前記制御回路は新たな調整パラメータのセットが格納される記憶領域に対して書き込み可能とし且つ読み出し不可能とし、切り替え前の調整パラメータが格納されている記憶領域に対して読み出し可能とし且つ書き込み不可能とする、読み出し用の選択信号及び書き込み用の選択信号を生成する、半導体装置。
  9. 前記Y電極と前記X電極の交差位置毎の検出データに基づいてタッチの有無判別を行なうと共にタッチ有りと判別したときのタッチ位置の座標計算を行なうマイクロプロセッサを更に有し、
    前記マイクロプロセッサは前記メモリに前記調整パラメータを格納する、請求項8記載の半導体装置
  10. 前記マイクロプロセッサは、非タッチの検出データと期待値との差が許容値を越えたとき、現在使用している調整パラメータのセットを有効な状態に維持して検出動作を可能にしたまま、新たな調整パラメータのセットを前記メモリの別の記憶領域に格納し、格納完了した調整パラメータのセットが有効であることを条件に、使用する調整パラメータのセットを当該新たな調整パラメータのセットに切り換える制御を行う、請求項9記載の半導体装置。
JP2011104293A 2011-05-09 2011-05-09 タッチ検出装置及び半導体装置 Expired - Fee Related JP5822526B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104293A JP5822526B2 (ja) 2011-05-09 2011-05-09 タッチ検出装置及び半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104293A JP5822526B2 (ja) 2011-05-09 2011-05-09 タッチ検出装置及び半導体装置

Publications (2)

Publication Number Publication Date
JP2012234473A JP2012234473A (ja) 2012-11-29
JP5822526B2 true JP5822526B2 (ja) 2015-11-24

Family

ID=47434711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104293A Expired - Fee Related JP5822526B2 (ja) 2011-05-09 2011-05-09 タッチ検出装置及び半導体装置

Country Status (1)

Country Link
JP (1) JP5822526B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854064B2 (en) * 2011-07-15 2014-10-07 Texas Instruments Incorporated Touch sensing method and apparatus
JP6035132B2 (ja) * 2012-12-06 2016-11-30 株式会社ジャパンディスプレイ 液晶表示装置
KR102004925B1 (ko) * 2012-12-14 2019-10-08 엘지디스플레이 주식회사 표시장치 및 그 구동방법
KR20150042366A (ko) 2013-10-10 2015-04-21 삼성전자주식회사 터치 스크린 센서 집적 회로, 이의 동작 방법, 및 이를 포함하는 시스템
JP2015125687A (ja) * 2013-12-27 2015-07-06 シナプティクス・ディスプレイ・デバイス合同会社 タッチ検出装置及び半導体装置
JP6223233B2 (ja) * 2014-03-04 2017-11-01 三菱電機株式会社 静電容量式検出装置及び静電容量式検出プログラム
KR102251059B1 (ko) 2014-10-06 2021-05-13 삼성전자주식회사 다단계 오프셋 커패시턴스 조정이 가능한 터치 디스플레이 장치
JP2016177339A (ja) * 2015-03-18 2016-10-06 アルプス電気株式会社 入力装置
JP6484154B2 (ja) * 2015-09-30 2019-03-13 トッパン・フォームズ株式会社 入力装置
JP6255461B2 (ja) * 2016-10-31 2017-12-27 株式会社ジャパンディスプレイ 液晶表示装置
KR102335788B1 (ko) * 2017-08-22 2021-12-08 주식회사 지2터치 터치 스크린
WO2019242018A1 (zh) * 2018-06-22 2019-12-26 深圳市柔宇科技有限公司 手写感应装置及其低功耗控制电路、方法
CN110658935B (zh) * 2018-06-29 2022-02-22 京东方科技集团股份有限公司 数据检测方法及装置、存储介质、触控装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8085247B2 (en) * 2007-01-03 2011-12-27 Apple Inc. Advanced frequency calibration
US8711129B2 (en) * 2007-01-03 2014-04-29 Apple Inc. Minimizing mismatch during compensation
JP5324297B2 (ja) * 2009-04-15 2013-10-23 株式会社ジャパンディスプレイ 座標入力装置、およびそれを備える表示装置
JP2010257046A (ja) * 2009-04-22 2010-11-11 Mitsubishi Electric Corp 近接検知装置
JP5480898B2 (ja) * 2009-06-29 2014-04-23 株式会社ジャパンディスプレイ 静電容量式タッチパネルおよびタッチ検出機能付き表示装置
JP2011013996A (ja) * 2009-07-03 2011-01-20 Renesas Electronics Corp タッチパネル及びディスプレイパネル用のドライバ回路

Also Published As

Publication number Publication date
JP2012234473A (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5822526B2 (ja) タッチ検出装置及び半導体装置
CN111857426B (zh) 触摸控制器
US8970527B2 (en) Capacitive touch panel having mutual capacitance and self capacitance sensing modes and sensing method thereof
CN104317462B (zh) 触摸控制器、具有其的显示驱动电路、显示设备和系统
US9250740B2 (en) Capacitive touch panel device with differing drive pulse widths
KR102394332B1 (ko) 터치 센서 회로와 이를 이용한 터치 센싱 표시장치와 그 구동 방법
KR101573238B1 (ko) 액정 표시 장치
US9568976B2 (en) Semiconductor device and electronic device
KR102347129B1 (ko) 터치 스크린 장치와 그의 구동방법
US20110199105A1 (en) Electrostatic capacity type touch sensor
US20180046325A1 (en) Touch display device including touch driving integrated circuit and operating method of touch driving integrated circuit
US20150253927A1 (en) Semiconductor device
CN105487730A (zh) 用于控制偏差电容校准的触摸显示装置
JP2009015489A (ja) タッチパネル付き表示装置
CN104036736A (zh) 驱动器ic及显示输入装置
KR101220889B1 (ko) 선형성이 강화된 터치 검출 방법 및 터치 검출 장치
KR20160032294A (ko) 스트레쳐블 표시 장치 및 이의 휘도 보상 방법
JP2010250522A (ja) 座標入力装置、およびそれを備える表示装置
JP2014146092A (ja) タッチパネル表示装置及びタッチパネルコントローラ
KR20140060991A (ko) 터치 센싱 시스템과 그 소비전력 제어방법
US10540041B2 (en) Touch processor, touch display driver integrated circuit chip including touch processor, and method of operating touch processor
CN104898907A (zh) 半导体装置以及电子设备
KR20160144957A (ko) 투사형 커패시턴스 터치 스크린들 및 패널들의 신호-대-잡음 성능을 향상시키기 위한 장치
JP6022320B2 (ja) 液晶表示装置
KR20150093395A (ko) 정전용량 감지 장치 및 정전용량 감지 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R150 Certificate of patent or registration of utility model

Ref document number: 5822526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees