JP5811921B2 - Lead-acid battery charger - Google Patents

Lead-acid battery charger Download PDF

Info

Publication number
JP5811921B2
JP5811921B2 JP2012072112A JP2012072112A JP5811921B2 JP 5811921 B2 JP5811921 B2 JP 5811921B2 JP 2012072112 A JP2012072112 A JP 2012072112A JP 2012072112 A JP2012072112 A JP 2012072112A JP 5811921 B2 JP5811921 B2 JP 5811921B2
Authority
JP
Japan
Prior art keywords
charging
displacement amount
charge
voltage
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012072112A
Other languages
Japanese (ja)
Other versions
JP2013207856A (en
Inventor
佐藤 大介
大介 佐藤
磯貝 嘉宏
嘉宏 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012072112A priority Critical patent/JP5811921B2/en
Publication of JP2013207856A publication Critical patent/JP2013207856A/en
Application granted granted Critical
Publication of JP5811921B2 publication Critical patent/JP5811921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、鉛蓄電池の充電を行う充電装置に関する。   The present invention relates to a charging device for charging a lead storage battery.

電気車両などの動力源として、鉛蓄電池が利用されている。そして、鉛蓄電池は、放電に伴って蓄電量が減少すると、充電装置によって充電が行われる。ところで、鉛蓄電池は、満充電としない充電不足状態の充電回数が増加すると、正極又は負極の活物質が結晶化して充電し難い状態となり、容量劣化を招く。このため、容量劣化を解消するために、例えば特許文献1に開示されるような鉛蓄電池を過充電状態とするリフレッシュ充電が行われている。   Lead-acid batteries are used as power sources for electric vehicles and the like. The lead storage battery is charged by the charging device when the amount of stored electricity decreases with discharge. By the way, when the number of times of charge in an insufficiently charged state that is not fully charged increases, the lead-acid battery becomes a state in which the active material of the positive electrode or the negative electrode is crystallized and is difficult to charge, leading to capacity deterioration. For this reason, in order to eliminate capacity deterioration, for example, refresh charging is performed in which a lead storage battery as disclosed in Patent Document 1 is overcharged.

特開2003−163034号公報JP 2003-163034 A

特許文献1では、充電回数をもとにリフレッシュ充電を実行させている。しかしながら、鉛蓄電池は、リフレッシュ充電によって容量劣化を解消し得る反面、リフレッシュ充電を頻繁に実施すると、ガス発生による格子腐食や液枯れによって寿命低下を招く虞がある。このため、リフレッシュ充電は、適度に実施されることが好ましい。   In Patent Document 1, refresh charging is executed based on the number of times of charging. However, lead storage batteries can eliminate capacity deterioration by refresh charging, but if refresh charging is frequently performed, there is a risk that the life of the lead storage battery may be reduced due to lattice corrosion and liquid dying due to gas generation. For this reason, it is preferable that the refresh charging is appropriately performed.

この発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、鉛蓄電池におけるリフレッシュ充電を効果的に実行し得る鉛蓄電池の充電装置を提供することにある。   This invention was made paying attention to the problem which exists in such a prior art, The objective is to provide the charging device of the lead storage battery which can perform the refresh charge in a lead storage battery effectively. It is in.

上記問題点を解決するために、請求項1に記載の発明は、鉛蓄電池の充電を制御する鉛蓄電池の充電装置において、充電時における時間当りの電圧変位量を算出する算出部と、前記算出部が算出した電圧変位量を基準変位量と比較する比較部と、前記比較部が比較した電圧変位量が基準変位量を超えている場合にリフレッシュ充電を実行させる充電制御部と、を備えたことを要旨とする。   In order to solve the above-described problems, the invention according to claim 1 is a lead-acid battery charging device that controls charge of a lead-acid battery, a calculation unit that calculates a voltage displacement amount per hour during charging, and the calculation A comparison unit that compares the voltage displacement amount calculated by the unit with a reference displacement amount, and a charge control unit that executes refresh charging when the voltage displacement amount compared by the comparison unit exceeds the reference displacement amount. This is the gist.

これによれば、リフレッシュ充電を、充電時における鉛蓄電池の電圧変位量をもとに実行させる。つまり、リフレッシュ充電は、実際の鉛蓄電池の状態を監視し、その監視結果をもとに実行される。このため、鉛蓄電池の状態としてリフレッシュ充電が必要な時に、リフレッシュ充電を実行させることができる。したがって、鉛蓄電池におけるリフレッシュ充電を効果的に実行し得る。   According to this, refresh charging is executed based on the voltage displacement amount of the lead storage battery at the time of charging. That is, refresh charging is performed based on the monitoring result by monitoring the actual state of the lead storage battery. For this reason, the refresh charge can be executed when the refresh charge is required as the state of the lead storage battery. Therefore, the refresh charge in the lead storage battery can be executed effectively.

また、請求項に記載の発明において、前記鉛蓄電池は、多段定電流充電で充電が行われ、前記比較部は、前記算出部が算出した複数段の電圧変位量を前記基準変位量との比較対象とすることを要旨とする。 Further, in the invention according to claim 1, before Kinamari battery is charged with a multi-stage constant current charging is performed, the comparison unit, the reference displacement amount a voltage displacement of the plurality of stages of the calculation unit has calculated The gist is to be compared with.

これによれば、多段定電流充電において複数段の電圧変位量をもとにリフレッシュ充電の実行タイミングが決定される。これにより、リフレッシュ充電を実行すべきタイミングを精度良く決定できる。したがって、鉛蓄電池におけるリフレッシュ充電をより効果的に実行し得る。   According to this, in the multistage constant current charging, the execution timing of the refresh charge is determined based on the voltage displacement amount of a plurality of stages. Thereby, the timing which should perform refresh charge can be determined accurately. Therefore, the refresh charge in the lead storage battery can be executed more effectively.

請求項に記載の発明は、請求項に記載の鉛蓄電池の充電装置において、前記比較部は、前記複数段の電圧変位量の総和を前記基準変位量との比較対象とすることを要旨とする。これによれば、電圧変位量の総和をもとにリフレッシュ充電の実行タイミングを決定するので、簡単な方法で精度良く実行タイミングを決定することができる。 The invention according to claim 2 is the charging device for the lead storage battery according to claim 1 , wherein the comparison unit sets the sum of the voltage displacement amounts of the plurality of stages as a comparison object with the reference displacement amount. And According to this, since the execution timing of the refresh charge is determined based on the sum of the voltage displacement amounts, the execution timing can be accurately determined by a simple method.

請求項に記載の発明は、請求項に記載の鉛蓄電池の充電装置において、前記比較部は、前記複数段の電圧変位量の平均変位量を前記基準変位量との比較対象とすることを要旨とする。これによれば、電圧変位量の平均変位量をもとにリフレッシュ充電の実行タイミングを決定するので、簡単な方法で精度良く実行タイミングを決定することができる。 According to a third aspect of the invention, in the charging device of the lead-acid battery of claim 1, wherein the comparison unit, the average displacement amount of the voltage displacement amount of the plurality of stages be compared with the reference displacement amount Is the gist. According to this, since the execution timing of the refresh charge is determined based on the average displacement amount of the voltage displacement amount, the execution timing can be accurately determined by a simple method.

請求項に記載の発明は、請求項1〜請求項のうち何れか一項に記載の鉛蓄電池の充電装置において、前記鉛蓄電池の電池温度を計測する計測部と、を備え、前記比較部は、前記計測部が計測した電池温度に応じて比較する基準変位量を変更することを要旨とする。これによれば、鉛蓄電池が温度変化によって特性が変化することに鑑みて基準変位量を変更するので、リフレッシュ充電の実行タイミングをより精度良く決定することができる。 Invention of Claim 4 is a charging device of the lead storage battery as described in any one of Claims 1-3 , The measurement part which measures the battery temperature of the said lead storage battery is provided, The said comparison The gist of the unit is to change the reference displacement amount to be compared according to the battery temperature measured by the measurement unit. According to this, since the reference displacement amount is changed in view of the change in characteristics of the lead storage battery due to temperature change, the execution timing of the refresh charge can be determined with higher accuracy.

本発明によれば、鉛蓄電池においてリフレッシュ充電を効果的に実行させることができる。   ADVANTAGE OF THE INVENTION According to this invention, refresh charge can be effectively performed in a lead acid battery.

充電装置の構成を示すブロック図。The block diagram which shows the structure of a charging device. 充電の繰り返しによって生じ得る電圧の変位を示すグラフ。The graph which shows the displacement of the voltage which may arise by repetition of charge. 電圧の変位差を示すグラフ。The graph which shows the displacement difference of a voltage. 充電モードを判定する判定処理を示すフローチャート。The flowchart which shows the determination process which determines charge mode. 通常充電モードを示すフローチャート。The flowchart which shows normal charge mode. リフレッシュ充電モードを示すフローチャート。The flowchart which shows refresh charge mode.

以下、本発明を具体化した一実施形態を図1〜図6にしたがって説明する。
図1に示すように、鉛蓄電池10の充電装置11は、充電を制御する制御部13を備えている。鉛蓄電池10と充電装置11は、給電線L1を介して接続されている。給電線L1には、電力計12が接続されている。電力計12の計測結果は、充電装置11に送信される。なお、電力計12は、電圧値及び電流値を計測する。また、充電装置11は、給電線L2を介して電力系統14と接続されている。充電装置11は、電力系統14から供給される電力を受電する。電力系統14とは、電力を送電するための送電システムであって、電力会社が保有する。そして、鉛蓄電池10は、充電装置11からの電力供給を受けて充電される。本実施形態の鉛蓄電池10は、シール式鉛蓄電池である。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, the charging device 11 of the lead storage battery 10 includes a control unit 13 that controls charging. The lead storage battery 10 and the charging device 11 are connected via a power supply line L1. A wattmeter 12 is connected to the feeder line L1. The measurement result of the wattmeter 12 is transmitted to the charging device 11. In addition, the wattmeter 12 measures a voltage value and a current value. In addition, the charging device 11 is connected to the power system 14 via the feeder line L2. The charging device 11 receives power supplied from the power system 14. The power system 14 is a power transmission system for transmitting power and is owned by an electric power company. The lead storage battery 10 is charged by receiving power from the charging device 11. The lead storage battery 10 of this embodiment is a sealed lead storage battery.

本実施形態において制御部13は、多段定電流充電の方式を用いて鉛蓄電池10の充電を制御する。多段定電流充電は、定電流で充電を行うとともに充電電圧が所定電圧に到達する毎に電流値を段階的に下げて充電を行う方式である。本実施形態において制御部13は、5段階で充電を行う。   In the present embodiment, the control unit 13 controls the charging of the lead storage battery 10 using a multistage constant current charging method. Multi-stage constant current charging is a method in which charging is performed at a constant current and charging is performed by stepping down the current value every time the charging voltage reaches a predetermined voltage. In the present embodiment, the control unit 13 performs charging in five stages.

鉛蓄電池10は、満充電としない充電不足状態の充電回数が増加すると、正極又は負極の活物質が結晶化して充電し難い状態となり、容量劣化を招く。そして、この容量劣化は、鉛蓄電池10を過充電状態とするリフレッシュ充電を行うことで解消し得る。しかしながら、リフレッシュ充電を頻繁に実施すると、ガス発生による格子腐食や液枯れによって寿命低下を招く虞がある。このため、リフレッシュ充電は、適度に実施することが好ましい。そこで、本実施形態の充電装置11は、リフレッシュ充電を適切なタイミングで実行させる制御を行う。   When the number of times of charging in an insufficiently charged state that is not fully charged increases, the lead storage battery 10 becomes a state in which the active material of the positive electrode or the negative electrode is crystallized and is difficult to charge, resulting in capacity deterioration. And this capacity | capacitance degradation can be eliminated by performing the refresh charge which makes the lead storage battery 10 an overcharge state. However, if refresh charging is frequently performed, there is a risk that the life of the battery may be reduced due to lattice corrosion or liquid dying due to gas generation. For this reason, it is preferable to carry out refresh charging appropriately. Therefore, the charging device 11 of the present embodiment performs control to execute refresh charging at an appropriate timing.

図2は、鉛蓄電池10を多段定電流充電する場合の電圧変位の特性を示す。
図2において実線で示す電圧波形H1は、容量劣化が生じていない時の電圧波形である。容量劣化が生じていない時とは、初期充電時やリフレッシュ充電後のことである。一方、図2において一点鎖線で示す電圧波形H2は、所定サイクル数(数十サイクル)の充電を繰り返した場合の電圧波形である。また、図中の符号「D1」は多段定電流充電の1段目を、符号「D2」は2段目を、符号「D3」は3段目を、符号「D4」は4段目を示す。
FIG. 2 shows the characteristics of the voltage displacement when the lead storage battery 10 is charged with a multistage constant current.
A voltage waveform H1 indicated by a solid line in FIG. 2 is a voltage waveform when there is no capacity deterioration. The time when no capacity deterioration has occurred is after initial charging or after refresh charging. On the other hand, a voltage waveform H2 indicated by a one-dot chain line in FIG. 2 is a voltage waveform when charging is repeated for a predetermined number of cycles (several tens of cycles). Also, in the figure, “D1” indicates the first stage of multi-stage constant current charging, “D2” indicates the second stage, “D3” indicates the third stage, and “D4” indicates the fourth stage. .

電圧波形H1と電圧波形H2を比較すると、充電のサイクル数の増加に伴って容量劣化が進むと、多段定電流充電の各段において所定電圧Vに達する時間が早くなる。つまり、容量劣化が進んだ場合には、電圧波形の変位(傾き)が高くなる。このため、充電装置11の制御部13は、多段定電流充電の各段の電流値を切り換える直前の一定期間の電圧変位量を算出し、その算出した電圧変位量が予め定めた基準変位量としての閾値αを超えた場合に、リフレッシュ充電を行う。   Comparing the voltage waveform H1 and the voltage waveform H2, when the capacity deterioration progresses with an increase in the number of charging cycles, the time to reach the predetermined voltage V in each stage of the multi-stage constant current charging becomes earlier. That is, when the capacity deterioration progresses, the displacement (slope) of the voltage waveform increases. For this reason, the control unit 13 of the charging device 11 calculates a voltage displacement amount for a certain period immediately before switching the current value of each stage of the multistage constant current charging, and the calculated voltage displacement amount is used as a predetermined reference displacement amount. When the threshold value α is exceeded, refresh charging is performed.

図3は、一定期間における各段の電圧変位量(電圧差[ΔV])を示す。また、図中に実線で示す波形は図2の電圧波形H1に対応する各段の電圧変位量を示すとともに、図中の一点鎖線で示す波形は図2の電圧波形H2に対応する電圧変位量を示す。また、図中の符号「D1」は多段定電流充電の1段目を、符号「D2」は2段目を、符号「D3」は3段目を、符号「D4」は4段目を示す。図3に示すように、各段において、電圧波形H1の電圧変位量と電圧波形H2の電圧変位量には差が生じ得る。そして、その電圧変位量の差は、段数が進むほど、大きくなる。このため、前述したリフレッシュ充電の要否判定を、例えば、1段目の電圧波形H2の電圧変位量をもとに行う場合、その電圧変位量が電圧波形H1の電圧変位量と近似するので判定し難い。したがって、リフレッシュ充電の要否判定は、大きい段数の電圧変位量をもとに行うことが、正確な判定を行うために望ましい。なお、正確な判定とは、リフレッシュ充電を効果的に実行し得るための判定である。   FIG. 3 shows the voltage displacement amount (voltage difference [ΔV]) of each stage during a certain period. In addition, the waveform indicated by the solid line in the figure indicates the voltage displacement amount of each stage corresponding to the voltage waveform H1 in FIG. 2, and the waveform indicated by the alternate long and short dash line in the figure indicates the voltage displacement amount corresponding to the voltage waveform H2 in FIG. Indicates. Also, in the figure, “D1” indicates the first stage of multi-stage constant current charging, “D2” indicates the second stage, “D3” indicates the third stage, and “D4” indicates the fourth stage. . As shown in FIG. 3, at each stage, there may be a difference between the voltage displacement amount of the voltage waveform H1 and the voltage displacement amount of the voltage waveform H2. And the difference in the amount of voltage displacement increases as the number of stages increases. For this reason, when the above-described determination of necessity of refresh charging is performed based on, for example, the voltage displacement amount of the first-stage voltage waveform H2, the voltage displacement amount approximates the voltage displacement amount of the voltage waveform H1. It is hard to do. Therefore, it is desirable that the determination of whether or not the refresh charging is necessary is performed based on the voltage displacement amount of a large number of stages in order to perform an accurate determination. The accurate determination is a determination for effectively performing refresh charging.

以下、充電装置11の制御部13が鉛蓄電池10の充電を行うために実行する制御内容を図4にしたがって説明する。本実施形態では、以下の制御内容を実行する制御部13が、算出部、比較部及び充電制御部として機能する。   Hereinafter, the control content performed in order for the control part 13 of the charging device 11 to charge the lead acid battery 10 is demonstrated according to FIG. In this embodiment, the control part 13 which performs the following control content functions as a calculation part, a comparison part, and a charge control part.

本実施形態において制御部13は、電圧検出と電流値の変更によって1段〜5段からなる多段定電流充電を行う。そして、制御部13は、充電を開始させると、段数Cxの充電を行う(ステップS10)。「x」には、1〜5段を示す「1」〜「5」の数字が代入される。制御部13は、充電を開始させると、電力計12を介して鉛蓄電池10の充電電圧を逐次検出する。そして、制御部13は、電圧検出により、その検出した電圧が所定電圧Vに到達したか否かを判定する(ステップS11)。この判定結果が否定、すなわち所定電圧Vに到達していない場合、制御部13は、現在の電流値を変更することなく、現在の段数の充電を継続する。つまり、制御部13は、ステップS11を否定判定すると、ステップS10に戻り、現在の段数の充電を継続する。   In the present embodiment, the control unit 13 performs multi-stage constant current charging including 1 to 5 stages by voltage detection and change of the current value. And the control part 13 will perform charge of the stage number Cx, if charge is started (step S10). “X” is assigned a number “1” to “5” indicating the first to fifth stages. When starting the charging, the control unit 13 sequentially detects the charging voltage of the lead storage battery 10 via the wattmeter 12. And the control part 13 determines whether the detected voltage reached | attained the predetermined voltage V by voltage detection (step S11). When this determination result is negative, that is, when the predetermined voltage V has not been reached, the control unit 13 continues to charge the current number of stages without changing the current value. That is, if the control unit 13 makes a negative determination in step S11, the control unit 13 returns to step S10 and continues charging the current number of stages.

一方、制御部13は、ステップS11の判定結果が肯定、すなわち所定電圧Vに到達すると、次の段数の充電を開始させるための処理を実行する。この処理により、電流値が変更される。制御部13は、ステップS12にて、充電の段数を次の段数に変更する。図4では、充電の段数の変更を「x=x+1」と表記する。つまり、この表記は、例えば、現在の段数が1段目であり、ステップS11を肯定判定すると、「1」に1加算して「2(=x)」とすることにより、段数を1段目から2段目に変更する。また、制御部13は、ステップS11を肯定判定し、段数を次の段数に切り替える時の時間を記憶する。   On the other hand, when the determination result of step S11 is affirmative, that is, when the predetermined voltage V is reached, the control unit 13 executes a process for starting charging the next number of stages. By this process, the current value is changed. In step S12, the control unit 13 changes the number of stages of charging to the next number of stages. In FIG. 4, the change in the number of charging stages is expressed as “x = x + 1”. That is, in this notation, for example, the current stage number is the first stage, and if affirmative determination is made in step S11, 1 is added to “1” to become “2 (= x)”, whereby the stage number is set to the first stage. Change to the 2nd row. In addition, the control unit 13 makes a positive determination in step S11 and stores the time when the number of steps is switched to the next number of steps.

次に、制御部13は、充電対象とする段数が「5」であるか否かを判定する(ステップS13)。ステップS13にて制御部13は、多段定電流充電の最後の段数であるか否かを判定する。この判定結果が否定、すなわち段数が「2〜4」の場合、制御部13は、ステップS10に戻り、次の段数の充電を開始する。つまり、制御部13は、電流値を切り替えて充電を開始させる。   Next, the control unit 13 determines whether or not the number of stages to be charged is “5” (step S13). In step S13, the control unit 13 determines whether or not it is the last stage number of the multistage constant current charging. If this determination result is negative, that is, the number of stages is “2 to 4”, the control unit 13 returns to step S10 and starts charging the next number of stages. That is, the control unit 13 starts charging by switching the current value.

一方、制御部13は、ステップS13の判定結果が肯定、すなわち段数が「5」の場合、ステップS14に移行して、最終段を通常充電モードとするか、又はリフレッシュ充電モードとするかを判定する。この判定において制御部13は、まず、最終段よりも前の各段における電圧変位量を算出する。この電圧変位量は、各段の電流値を切り換える直前の一定期間の電圧変位量である。このため、制御部13は、検出している充電電圧と切り替える時の時間をもとに、各段の時間当りの電圧変位量(電圧差/時間差)を算出する。次に、制御部13は、各段、すなわち1〜4段の各電圧変位量の総和を算出値Zとして算出するとともに、その算出値Zを予め定めた閾値αと比較する。閾値αは、リフレッシュ充電を開始させると判定することになる基準変位量である。この閾値αは、鉛蓄電池10の仕様(例えば容量)に応じて決まる変動値であり、シミュレーションなどで最適となる値に設定される。例えば、リフレッシュ充電を行った場合に、電圧特性が電圧波形H1に戻る範囲で設定すると良い。   On the other hand, when the determination result of step S13 is affirmative, that is, when the number of stages is “5”, the control unit 13 proceeds to step S14 and determines whether the final stage is set to the normal charge mode or the refresh charge mode. To do. In this determination, the control unit 13 first calculates a voltage displacement amount in each stage before the final stage. This voltage displacement amount is a voltage displacement amount for a certain period immediately before switching the current value of each stage. For this reason, the control part 13 calculates the voltage displacement amount (voltage difference / time difference) per time of each stage based on the time when switching with the detected charging voltage. Next, the control unit 13 calculates the total sum of the voltage displacement amounts of each stage, that is, 1 to 4 stages, as a calculated value Z, and compares the calculated value Z with a predetermined threshold value α. The threshold value α is a reference displacement amount that is determined to start refresh charging. This threshold value α is a fluctuation value determined according to the specification (for example, capacity) of the lead storage battery 10, and is set to an optimum value in simulation or the like. For example, when refresh charging is performed, the voltage characteristics may be set within a range in which the voltage characteristic returns to the voltage waveform H1.

そして、制御部13は、閾値αと算出値Zを比較し、算出値Zが閾値αを超えていない場合、ステップS14を肯定判定する。この場合、制御部13は、リフレッシュ充電を開始させないと判定する。これにより、制御部13は、最終段を通常充電モードで充電する(ステップS15)。一方、制御部13は、閾値αと算出値Zを比較し、算出値Zが閾値αを超えている場合、ステップS14を否定判定する。この場合、制御部13は、リフレッシュ充電を開始させると判定する。これにより、制御部13は、最終段をリフレッシュ充電モードで充電する(ステップS16)。   Then, the control unit 13 compares the threshold value α with the calculated value Z, and when the calculated value Z does not exceed the threshold value α, affirmative determination is made in step S14. In this case, the control unit 13 determines not to start refresh charging. Thereby, the control part 13 charges the last stage in normal charge mode (step S15). On the other hand, the control unit 13 compares the threshold value α with the calculated value Z. If the calculated value Z exceeds the threshold value α, the control unit 13 makes a negative determination in step S14. In this case, the control unit 13 determines to start refresh charging. Thereby, the control part 13 charges the last stage in refresh charge mode (step S16).

制御部13は、ステップS15において通常充電モードで充電を行う場合、図5に示すように、最終段の充電を開始させる(ステップS20)。次に、制御部13は、鉛蓄電池10における最終段の充電量が充電量Waに到達したか否かを判定する(ステップS21)。最終段の充電量は、最終段の充電を開始させてからの電力計12の検出結果をもとに算出される。そして、制御部13は、ステップS21の判定結果が否定、すなわち最終段の充電量が充電量Waに到達していない場合、ステップS20に戻って最終段の充電を継続する。一方、制御部13は、ステップS21の判定結果が肯定、すなわち最終段の充電量が充電量Waに到達した場合、最終段の充電を終了する。これにより、制御部13は、多段定電流充電に基づく鉛蓄電池10の充電を終了する。   When charging in the normal charging mode in step S15, the control unit 13 starts charging at the final stage as shown in FIG. 5 (step S20). Next, the control unit 13 determines whether or not the final charge amount of the lead storage battery 10 has reached the charge amount Wa (step S21). The charge amount in the final stage is calculated based on the detection result of the wattmeter 12 after starting the charge in the final stage. If the determination result in step S21 is negative, that is, if the final stage charge amount has not reached the charge amount Wa, the control unit 13 returns to step S20 and continues the final stage charge. On the other hand, when the determination result of step S21 is affirmative, that is, when the charge amount at the final stage reaches the charge amount Wa, the control unit 13 ends the charge at the final stage. Thereby, the control part 13 complete | finishes charge of the lead storage battery 10 based on multistage constant current charge.

一方、制御部13は、ステップS16においてリフレッシュ充電モードで充電を行う場合、図6に示すように、最終段の充電を開始させる(ステップS30)。次に、制御部13は、鉛蓄電池10における最終段の充電量が充電量Wbに到達したか否かを判定する(ステップS31)。充電量Wbは、通常充電モードによる充電の終了条件となる充電量Waに比して多い量に設定されている。そして、制御部13は、ステップS31の判定結果が否定、すなわち最終段の充電量が充電量Wbに到達していない場合、ステップS30に戻って最終段の充電を継続する。一方、制御部13は、ステップS31の判定結果が肯定、すなわち最終段の充電量が充電量Wbに到達した場合、最終段の充電を終了する。これにより、制御部13は、多段定電流充電に基づく鉛蓄電池10の充電を終了する。リフレッシュ充電モードでは、充電の終了条件である最終段の充電量として通常充電モードの時よりも多い充電量Wbが設定されている。このため、鉛蓄電池10は、通常時よりも過充電されることになる。   On the other hand, when charging in the refresh charging mode in step S16, the control unit 13 starts charging at the final stage as shown in FIG. 6 (step S30). Next, the control part 13 determines whether the last charge amount of the lead storage battery 10 has reached the charge amount Wb (step S31). The charge amount Wb is set to a larger amount than the charge amount Wa, which is a condition for ending charging in the normal charge mode. If the determination result in step S31 is negative, that is, if the final stage charge amount has not reached the charge amount Wb, the control unit 13 returns to step S30 and continues the last stage charge. On the other hand, when the determination result of step S31 is affirmative, that is, when the charge amount at the final stage reaches the charge amount Wb, the control unit 13 ends the charge at the final stage. Thereby, the control part 13 complete | finishes charge of the lead storage battery 10 based on multistage constant current charge. In the refresh charge mode, a charge amount Wb larger than that in the normal charge mode is set as the charge amount at the final stage, which is a charge termination condition. For this reason, the lead storage battery 10 is overcharged more than usual.

次に、本実施形態の充電装置11の作用を説明する。
充電装置11の制御部13は、鉛蓄電池10の充電を開始すると、最終段よりも前の各段の電圧変位量を監視する。そして、制御部13は、各段の電圧変位量が、一定の変位量を超えた場合にリフレッシュ充電を行う。具体的に言えば、制御部13は、各段の電圧変位量の総和が閾値αを超えた場合にリフレッシュ充電を行う。リフレッシュ充電後の鉛蓄電池10は、図2及び図3に示す電圧波形H1のように充電時の電圧特性が戻る。本実施形態では、充電時の鉛蓄電池10の電圧特性を実際に監視することでリフレッシュ充電を行うタイミングを決定する。このため、リフレッシュ充電を適切なタイミングで行わせることが可能となる。
Next, the effect | action of the charging device 11 of this embodiment is demonstrated.
When charging of the lead storage battery 10 is started, the control unit 13 of the charging device 11 monitors the voltage displacement amount of each stage before the final stage. The control unit 13 performs refresh charging when the voltage displacement amount of each stage exceeds a certain displacement amount. Specifically, the control unit 13 performs refresh charging when the sum of the amount of voltage displacement at each stage exceeds the threshold value α. The lead-acid battery 10 after refresh charging returns to the voltage characteristics during charging as shown by the voltage waveform H1 shown in FIGS. In this embodiment, the timing for performing refresh charging is determined by actually monitoring the voltage characteristics of the lead storage battery 10 during charging. For this reason, it is possible to perform refresh charging at an appropriate timing.

したがって、本実施形態では、以下に示す効果を得ることができる。
(1)リフレッシュ充電を、充電時における鉛蓄電池10の電圧変位量をもとに実行させる。つまり、リフレッシュ充電を、実際の鉛蓄電池10の状態を監視し、その監視結果をもとに実行させる。これにより、鉛蓄電池10の状態としてリフレッシュ充電が必要な時に実行させることができる。したがって、鉛蓄電池10におけるリフレッシュ充電を効果的に実行できる。
Therefore, in this embodiment, the following effects can be obtained.
(1) The refresh charge is executed based on the voltage displacement amount of the lead storage battery 10 at the time of charge. That is, refresh charging is performed based on the monitoring result by monitoring the actual state of the lead storage battery 10. Thereby, it can be made to perform when the refresh charge is required as a state of the lead storage battery 10. Therefore, the refresh charge in the lead storage battery 10 can be executed effectively.

(2)そして、鉛蓄電池10の状態を監視してリフレッシュ充電を行うので、リフレッシュ充電の実行タイミングを最適化することができる。その結果、リフレッシュ充電の回数を必要回数、すなわち適度な回数とすることができる。したがって、リフレッシュ充電を頻繁に実行させることによって生じ得る現象、すなわちガス発生による格子腐食や液枯れなどを抑制し、鉛蓄電池10の寿命延伸効果を期待することができる。   (2) Since the refresh charge is performed by monitoring the state of the lead storage battery 10, the execution timing of the refresh charge can be optimized. As a result, the number of refresh charges can be set to a necessary number, that is, an appropriate number. Therefore, a phenomenon that can be caused by frequently performing refresh charging, that is, lattice corrosion or liquid withering due to gas generation, can be suppressed, and the life extension effect of the lead storage battery 10 can be expected.

(3)複数段の電圧変位量をもとに閾値αと比較する算出値Zを算出するので、リフレッシュ充電を実行すべきタイミングを精度良く決定できる。すなわち、リフレッシュ充電の実行タイミングをより最適化することができる。したがって、鉛蓄電池10におけるリフレッシュ充電をより効果的に実行できる。   (3) Since the calculated value Z to be compared with the threshold value α is calculated based on the voltage displacement amounts in a plurality of stages, the timing at which refresh charging should be performed can be determined with high accuracy. That is, the refresh charge execution timing can be further optimized. Therefore, the refresh charge in the lead storage battery 10 can be executed more effectively.

(4)算出値Zを複数段の電圧変位量の総和で算出する。したがって、リフレッシュ充電の実行タイミングを、簡単な方法で精度良く決定することができる。
(5)実際の鉛蓄電池10の状態を監視し、その監視結果をもとにリフレッシュ充電を実行させるので、リフレッシュ充電の実行を自動化できる。つまり、鉛蓄電池10の使用者や保有者にリフレッシュ充電の実行を任せる必要がない。したがって、リフレッシュ充電を、最適タイミングで、効果的に実行できる。
(4) The calculated value Z is calculated as the sum of the voltage displacement amounts in a plurality of stages. Therefore, the refresh charging execution timing can be accurately determined by a simple method.
(5) Since the actual state of the lead storage battery 10 is monitored and refresh charging is executed based on the monitoring result, execution of the refresh charging can be automated. In other words, it is not necessary to leave the refresh charge to the user or owner of the lead storage battery 10. Therefore, the refresh charge can be effectively executed at the optimum timing.

(6)リフレッシュ充電の実行タイミングの最適化により、鉛蓄電池10の寿命延伸を図り得るので、鉛蓄電池10の使用者や保有者の維持費低減に寄与できる。
なお、上記実施形態は以下のように変更してもよい。
(6) Since the life of the lead storage battery 10 can be extended by optimizing the execution timing of the refresh charge, it is possible to contribute to reducing the maintenance cost of the user and the owner of the lead storage battery 10.
In addition, you may change the said embodiment as follows.

○ 鉛蓄電池10は、車載用鉛蓄電池や定置用鉛蓄電池の何れでも良い。また、その他の用途に用いる鉛蓄電池10でも良い。
○ 図1に二点鎖線で示すように、鉛蓄電池10に温度センサ15を設ける。そして、制御部13を、温度センサ15の検出結果から鉛蓄電池10の電池温度を計測する計測部として機能させる。また、制御部13には、電池温度に対して閾値αを対応付けたマップデータを記憶しておく。そして、制御部13は、図4のステップS14において算出値Zと比較する閾値αを、電池温度に基づき設定する。鉛蓄電池10は、温度変化によって特性が変化する。このため、電池温度に対応する閾値αを用意し、充電時の電池温度から閾値αを変更することにより、リフレッシュ充電の実行タイミングをより精度良く決定することができる。その結果、リフレッシュ充電をより効果的に実行させることができる。
The lead storage battery 10 may be either an in-vehicle lead storage battery or a stationary lead storage battery. Moreover, the lead storage battery 10 used for another use may be sufficient.
A temperature sensor 15 is provided in the lead storage battery 10 as shown by a two-dot chain line in FIG. Then, the control unit 13 is caused to function as a measurement unit that measures the battery temperature of the lead storage battery 10 from the detection result of the temperature sensor 15. Further, the control unit 13 stores map data in which the threshold value α is associated with the battery temperature. And the control part 13 sets the threshold value (alpha) compared with the calculated value Z in step S14 of FIG. 4 based on battery temperature. The characteristics of the lead storage battery 10 change due to temperature changes. For this reason, by preparing the threshold value α corresponding to the battery temperature and changing the threshold value α from the battery temperature at the time of charging, the execution timing of the refresh charge can be determined with higher accuracy. As a result, refresh charging can be executed more effectively.

○ 算出値Zを、複数段の電圧変位量の平均変位量としても良い。この場合は、閾値αも、平均変位量に応じた値に設定される。これによれば、実施形態と同様に、簡単な方法で精度良くリフレッシュ充電の実行タイミングを決定することができる。   The calculated value Z may be an average displacement amount of a plurality of voltage displacement amounts. In this case, the threshold value α is also set to a value corresponding to the average displacement amount. According to this, as in the embodiment, it is possible to determine the execution timing of the refresh charge with a simple method with high accuracy.

○ 鉛蓄電池10を多段定電流充電で充電する場合、その段数を変更しても良い。例えば、2〜4段でも良いし、6段以上でも良い。
○ 算出値Zを算出する場合の段数を変更しても良い。例えば、実施形態のように5段の多段定電流充電を行う場合、2〜4段の電圧変位量や、3,4段の電圧変位量から算出値Zを算出しても良い。また、連続する段数に代えて、例えば2段と4段というように連続しない段数の電圧変位量から算出値Zを算出しても良い。なお、この別例は、前述した算出値Zを複数段の電圧変位量の平均変位量で算出する場合にも適用することができる。
○ When the lead storage battery 10 is charged by multistage constant current charging, the number of stages may be changed. For example, it may be 2 to 4 stages or 6 or more stages.
○ The number of stages in calculating the calculated value Z may be changed. For example, when performing multi-stage constant current charging of 5 stages as in the embodiment, the calculated value Z may be calculated from 2 to 4 stages of voltage displacement or 3 or 4 stages of voltage displacement. Further, instead of the number of continuous stages, the calculated value Z may be calculated from voltage displacement amounts of non-continuous stages such as 2 stages and 4 stages, for example. This alternative example can also be applied to the case where the above-described calculated value Z is calculated as an average displacement amount of a plurality of stages of voltage displacement amounts.

○ 多段定電流充電において何れか1段の電圧変位量をもとにリフレッシュ充電を実行させるか否かの判定を行っても良い。例えば、実施形態の場合、3段目や4段目の電圧変位量を算出値Zとし、閾値αを超えた場合にリフレッシュ充電を実行させても良い。この場合は、閾値αも、1段の電圧変位量に応じた値に設定される。   In multi-stage constant current charging, it may be determined whether to perform refresh charging based on any one stage voltage displacement amount. For example, in the case of the embodiment, the voltage displacement amount at the third stage or the fourth stage may be the calculated value Z, and refresh charging may be executed when the threshold value α is exceeded. In this case, the threshold value α is also set to a value corresponding to the one-stage voltage displacement amount.

○ 鉛蓄電池10の充電方式を、多段定電流定電圧の方式としても良い。
○ 電力計12に代えて、電圧計や電流計としても良い。
○ 最終段の充電を行う場合の終了条件を変更しても良い。例えば、終了条件を電圧値(終止電圧)としても良い。この場合は、通常充電モードの終止電圧よりもリフレッシュ充電モードの終止電圧を高い値に設定する。また、終了条件を時間としても良い。この場合は、通常充電モードを終了させる時間よりもリフレッシュ充電モードを終了させる時間を長くする。なお、時間を長くすることは充電量を多くすることに等しいので、充電終了を時間管理する場合は充電量を計測する構成を省くことができる。また、充電方式を多段定電流定電圧とする場合の終了条件を電流値としても良い。この場合は、通常充電モードの電流値よりもリフレッシュ充電モードの電流値を高い値に設定する。
The charging method of the lead storage battery 10 may be a multistage constant current constant voltage method.
○ Instead of the wattmeter 12, a voltmeter or an ammeter may be used.
○ Termination conditions for the last stage of charging may be changed. For example, the end condition may be a voltage value (end voltage). In this case, the end voltage in the refresh charge mode is set higher than the end voltage in the normal charge mode. The end condition may be time. In this case, the time for ending the refresh charge mode is made longer than the time for ending the normal charge mode. In addition, since lengthening time is equivalent to increasing charge amount, when carrying out time management of charge completion, the structure which measures charge amount can be omitted. The termination condition when the charging method is a multistage constant current constant voltage may be the current value. In this case, the current value in the refresh charge mode is set higher than the current value in the normal charge mode.

○ 図5のステップS21、及び図6のステップS31で判定する充電の終了条件を、1段目の充電を開始させてからの総充電量としても良い。つまり、充電の終了条件は、充電開始時における鉛蓄電池10の充電量(SOC)を検出している場合であれば、充電を開始してからの総充電量を検出することができるので、上記のように充電の終了条件を変更しても良い。そして、この場合、リフレッシュ充電モードでは、充電の終了条件として通常充電モードの時よりも多い総充電量を設定して判定する。これにより、リフレッシュ充電モードにおいて鉛蓄電池10は、通常充電モードの時よりも過充電されることになる。   The charge termination condition determined in step S21 in FIG. 5 and step S31 in FIG. 6 may be the total charge amount after starting the first stage charge. That is, if the charge end condition is a case where the charge amount (SOC) of the lead storage battery 10 at the start of charging is detected, the total charge amount after the start of charging can be detected. The charging termination condition may be changed as follows. In this case, in the refresh charge mode, determination is made by setting a larger total charge amount than in the normal charge mode as a charge termination condition. As a result, the lead storage battery 10 is overcharged in the refresh charge mode than in the normal charge mode.

10…鉛蓄電池、11…充電装置、13…制御部。   DESCRIPTION OF SYMBOLS 10 ... Lead acid battery, 11 ... Charger, 13 ... Control part.

Claims (4)

鉛蓄電池の充電を制御する鉛蓄電池の充電装置において、
充電時における時間当りの電圧変位量を算出する算出部と、
前記算出部が算出した電圧変位量を基準変位量と比較する比較部と、
前記比較部が比較した電圧変位量が基準変位量を超えている場合にリフレッシュ充電を実行させる充電制御部と、を備え
前記鉛蓄電池は、多段定電流充電で充電が行われ、
前記比較部は、前記算出部が算出した複数段の電圧変位量を前記基準変位量との比較対象とすることを特徴とする鉛蓄電池の充電装置。
In the lead-acid battery charger that controls the charge of the lead-acid battery,
A calculation unit for calculating a voltage displacement amount per time at the time of charging;
A comparison unit for comparing the voltage displacement amount calculated by the calculation unit with a reference displacement amount;
A charge control unit that performs refresh charging when the voltage displacement amount compared by the comparison unit exceeds a reference displacement amount , and
The lead storage battery is charged by multi-stage constant current charging,
The said comparison part makes the voltage displacement amount of the multistage calculated by the said calculation part the comparison object with the said reference displacement amount, The charging device of the lead storage battery characterized by the above-mentioned .
前記比較部は、前記複数段の電圧変位量の総和を前記基準変位量との比較対象とすることを特徴とする請求項に記載の鉛蓄電池の充電装置。 2. The lead-acid battery charging device according to claim 1 , wherein the comparison unit uses a sum of the plurality of voltage displacement amounts as a comparison target with the reference displacement amount. 前記比較部は、前記複数段の電圧変位量の平均変位量を前記基準変位量との比較対象とすることを特徴とする請求項に記載の鉛蓄電池の充電装置。 The lead-acid battery charging device according to claim 1 , wherein the comparison unit uses an average displacement amount of the plurality of stages of voltage displacement amounts as a comparison target with the reference displacement amount. 前記鉛蓄電池の電池温度を計測する計測部と、を備え、
前記比較部は、前記計測部が計測した電池温度に応じて比較する基準変位量を変更することを特徴とする請求項1〜請求項のうち何れか一項に記載の鉛蓄電池の充電装置。
A measurement unit for measuring the battery temperature of the lead storage battery,
The comparison unit, the charging device of the lead-acid battery according to any one of claims 1 to 3, characterized in that to change the reference displacement amount compared according to the battery temperature, wherein the measurement unit is measured .
JP2012072112A 2012-03-27 2012-03-27 Lead-acid battery charger Active JP5811921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072112A JP5811921B2 (en) 2012-03-27 2012-03-27 Lead-acid battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072112A JP5811921B2 (en) 2012-03-27 2012-03-27 Lead-acid battery charger

Publications (2)

Publication Number Publication Date
JP2013207856A JP2013207856A (en) 2013-10-07
JP5811921B2 true JP5811921B2 (en) 2015-11-11

Family

ID=49526473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072112A Active JP5811921B2 (en) 2012-03-27 2012-03-27 Lead-acid battery charger

Country Status (1)

Country Link
JP (1) JP5811921B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520654B2 (en) * 2015-11-12 2019-05-29 株式会社豊田自動織機 Method of detecting the degree of deterioration of lead battery and method of controlling charging of lead battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347808B2 (en) * 1993-05-24 2002-11-20 本田技研工業株式会社 Rechargeable battery charging method
JPH09215222A (en) * 1996-01-31 1997-08-15 Oki Electric Ind Co Ltd Charging method for secondary battery
JPH11136876A (en) * 1997-10-28 1999-05-21 Shin Kobe Electric Mach Co Ltd Charging of lead-acid battery
JP2000035467A (en) * 1998-07-15 2000-02-02 Honda Motor Co Ltd Battery charging device
JP2000050521A (en) * 1998-08-03 2000-02-18 Honda Motor Co Ltd Method for charging battery
JP2001292534A (en) * 2000-04-04 2001-10-19 Sekisui Chem Co Ltd Determining apparatus for deterioration of lithium ion battery
JP2004119180A (en) * 2002-09-26 2004-04-15 Fuji Photo Film Co Ltd Charger
JP4251158B2 (en) * 2005-06-24 2009-04-08 パナソニック電工株式会社 Charger and electric tool set using the same
JP5373302B2 (en) * 2008-03-26 2013-12-18 有限会社オーエイチケー研究所 Battery evaluation device, battery charger with battery evaluation function, and battery evaluation method
JP5077386B2 (en) * 2010-04-28 2012-11-21 ソニー株式会社 Charge control method and battery pack
JP5741503B2 (en) * 2012-03-27 2015-07-01 株式会社豊田自動織機 Lead-acid battery charger

Also Published As

Publication number Publication date
JP2013207856A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
CN107991623B (en) Battery ampere-hour integral SOC estimation method considering temperature and aging degree
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
EP3002597B1 (en) Battery control device
JP5466564B2 (en) Battery degradation estimation method, battery capacity estimation method, battery capacity equalization method, and battery degradation estimation apparatus
JP5623629B2 (en) Remaining life judgment method
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
EP3076518B1 (en) Power storage system and method for charging secondary cell
CN114142563A (en) Method and apparatus for optimizing fast battery charging
CN102162836A (en) Estimation method of vehicle battery stress optical coefficient (SOC)
CN110870130B (en) Battery system charge control device, battery system, and battery charge control method
JPH08140270A (en) Method of measuring parameter of secondary cell, method of controlling charging/discharging of secondary cell by using the parameter measuring method, method of predicting life of secondary cell by using the parameter measuring method, device for controlling charging/discharging of secondary cell, and power storage device using the charging/discharging controlling device
CA2899239A1 (en) Method for determining a state of charge and remaining operation life of a battery
JP2012253975A (en) Charging/discharging control method for alkali storage battery, and charging/discharging system
WO2012132160A1 (en) Device for measuring degradation, rechargeable battery pack, method for measuring degradation, and program
CN110133515B (en) Method and device for determining remaining energy of battery
CN103424708A (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
JP2016102674A (en) Battery pack abnormality determination device
JP5741503B2 (en) Lead-acid battery charger
JP2015010962A (en) Method for determining degradation of storage battery and device for determining degradation of storage battery
JP2019165553A (en) Charging device for secondary battery unit
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JP6469485B2 (en) Battery deterioration determination device, battery pack, battery deterioration determination method, and battery deterioration determination program
JP5811921B2 (en) Lead-acid battery charger
JP6062919B2 (en) Method for optimal charging of electrochemical batteries
JP6103246B2 (en) Charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R151 Written notification of patent or utility model registration

Ref document number: 5811921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151